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Abstract

We study the estimation of a stable Cox–Ingersoll–Ross model, which is a special subcritical continuous-
state branching process with immigration. The exponential ergodicity and strong mixing property of the
process are proved by a coupling method. The regular variation properties of distributions of the model are
studied. The key is to establish the convergence of some point processes and partial sums associated with
the model. From those results, we derive the consistency and central limit theorems of the conditional least
squares estimators (CLSEs) and the weighted conditional least squares estimators (WCLSEs) of the drift
parameters based on low frequency observations. The theorems show that the WCLSEs are more efficient

than the CLSEs and their errors have distinct decay rates n−(α−1)/α and n−(α−1)/α2
, respectively, as the

sample sizes n goes to infinity. The arguments depend heavily on the recent results on the construction and
characterization of the model in terms of stochastic equations.
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1. Introduction

The Cox–Ingersoll–Ross model (CIR-model) introduced by Cox et al. [10] has been used
widely in the financial world. This model has many appealing advantages. In particular, it is
mean-reverting and remains non-negative. Let a > 0, b > 0 and σ > 0 be given constants. The
classical CIR-model is a non-negative diffusion process {X (t) : t ≥ 0} defined by

d X (t) = (a − bX (t))dt + σ


X (t)d B(t), (1.1)

where {B(t) : t ≥ 0} is a standard Brownian motion. The process defined by (1.1) has continuous
sample paths and light tailed marginal distributions. The restrictions a > 0 and b > 0 of the
parameters come from the mean-reverting assumption in mathematical finance.

It is well-known that many financial processes exhibit discontinuous sample paths and heavy
tailed distributions. This phenomenon has been pointed out by many authors such as Mandel-
brot [36] and Fama [20]. Thus α-stable processes as generalizations of the Brownian motion
have often been used in mathematical finance. Let (Ω , F , Ft , P) be a filtered probability space
satisfying the usual hypotheses. A natural generalization of (1.1) is the stochastic differential
equation

d X t = (a − bX t )dt + σ α


X t−d Z t , (1.2)

where {Z t : t ≥ 0} is a spectrally positive stable (Ft )-Lévy process with index 1 < α ≤ 2. For
α = 2, we understand the noise as a standard Brownian motion, so (1.2) reduces to (1.1). When
1 < α < 2, we assume it is a stable process with Lévy measure

να(dz) :=
1{z>0}dz

αΓ (−α)zα+1 . (1.3)

By a result of Fu and Li [22], there is a pathwise unique non-negative strong solution {X t : t ≥ 0}

to (1.2). We refer to this process as a stable Cox–Ingersoll–Ross model (SCIR-model). We shall
see that the discontinuous SCIR-model indeed captures the important heavy tail property in the
sense of infinite variance. This model was considered in [7, p. 134] as a time-changed α-stable
process. The reader may refer to Borkovec and Klüppelberg [5], Embrechts et al. [19, Sec-
tion 7.6] and Fasen et al. [21] for other similar modifications of the CIR-model. In the recent
work of Jing et al. [29], some statistical evidence from high-frequency data has been provided
to support the application of pure jump models alone in financial modeling. The SCIR-model
is a particular form of the so-called continuous-state branching processes with immigration
(CBI-processes), which arise as scaling limits of Galton–Watson branching processes with immi-
gration (GWI-processes); see, e.g., [30]. The general CBI-processes were also constructed and
studied in terms of stochastic integral equations in [14,15,22,34]. From the results in [22,30], it
is clear that (1.2) essentially gives the most general form of a discontinuous CBI-process driven
by a single Lévy process.

The estimation for stochastic processes based on the minimization of a sum of squared de-
viations about conditional expectations was developed in [31]. They applied their results to the
conditional least squares estimators (CLSEs) of the offspring and immigration means of subcrit-
ical GWI-processes. Their estimators are essentially the same as those studied by Quine [42,43].
By the results of Klimko and Nelson [31] and Quine [42,43], under a finite third moment con-
dition, as the sample size n goes to infinity, the errors of the CLSEs decay at rate n−1/2 and
they are asymptotically Gaussian; see also the earlier work of Heyde and Seneta [23,24]. The
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asymptotic properties of CLSEs of GWI-processes with general offspring laws were studied in
[50,51]. The estimation problems of the CIR-model defined by (1.1) were studied by Overbeck
and Rydén [40], who proposed some CLSEs and proved Gaussian central limit theorems for
them; see also [39].

Based on the idea of Nelson [38], the weighted conditional least squares estimators
(WCLSEs) of the offspring and immigration means of GWI-processes were proposed by Wei and
Winnicki [52], who proved some self-normalized central limit theorems for the estimators in the
subcritical, critical and supercritical cases. The limiting distributions of Wei and Winnicki [52]
are Gaussian in the subcritical and supercritical cases. Wei and Winnicki [52] observed that the
WCLSEs are more efficient than the CLSEs in the sense that they have smaller asymptotic vari-
ances. The reader may refer to de la Peña et al. [16] for recent developments in self-normalized
limit theorems and their statistical applications. The asymptotics of the WCLSEs of the drift pa-
rameters of general CBI-processes was studied in [25] under the finite variance condition, which
are not satisfied by the SCIR-model.

In this paper, we consider the estimation problem for the drift coefficients (b, a) of the SCIR-
model using low frequency observations at equidistant time points {k∆ : k = 0, 1, . . . , n} from a
single realization {X t : t ≥ 0}. For simplicity, we take ∆ = 1, but all the results presented below
can be modified to the general case. We also introduce the parameters

γ = e−b, ρ = ab−1(1 − γ ). (1.4)

By applying Itô’s formula to (1.2), for any t ≥ r ≥ 0 we have

X t = e−b(t−r) Xr + a
 t

r
e−b(t−s)ds + σ

 t

r
e−b(t−s) X1/α

s− d Zs . (1.5)

From (1.5) we obtain the first order autoregressive equation

Xk = ρ + γ Xk−1 + εk, (1.6)

where

εk = σ

 k

k−1
e−b(k−s) X1/α

s− d Zs . (1.7)

It is easy to see that

εk = Xk − E(Xk |Fk−1), k ≥ 1

is a sequence of martingale differences. See also [23,24,31,40] for similar considerations. The
CLSEs of (γ, ρ) and (b, a) can be given by minimizing the sum of squares

n
k=1

ε2
k =

n
k=1

[Xk − E(Xk |Fk−1)]
2

=

n
k=1

(Xk − γ Xk−1 − ρ)2. (1.8)

In particular, the estimators of (b, a) are given by

b̂n = − log

n
k=1

Xk−1

n
k=1

Xk − n
n

k=1
Xk−1 Xk n

k=1
Xk−1

2
− n

n
k=1

X2
k−1

(1.9)
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and

ân =

b̂n
 n

k=1
Xk − e−b̂n

n
k=1

Xk−1


n(1 − e−b̂n )
. (1.10)

We also consider the WCLSEs of (γ, ρ) and (b, a) following Wei and Winnicki [52] and Huang
et al. [25]. Those are obtained by minimizing the weighted sum

n
k=1

ε2
k

Xk−1 + 1
=

n
k=1

[Xk − γ (Xk−1 + 1) − (ρ − γ )]2

Xk−1 + 1
. (1.11)

The advantage of considering the above quantity is it does not fluctuate too much even when the
values of the samples Xk, k = 0, 1, . . . , n, are large. The resulting WCLSEs of (b, a) are given
by

b̃n = − log

n
k=1

Xk

n
k=1

1
Xk−1+1 − n

n
k=1

Xk
Xk−1+1

n
k=1

(Xk−1 + 1)
n

k=1

1
Xk−1+1 − n2

(1.12)

and

ãn =

b̃n
 n

k=1
Xk − e−b̃n

n
k=1

Xk−1


n(1 − e−b̃n )
. (1.13)

The main purpose of this paper is to study the asymptotic properties of the WCLSEs and the
CLSEs of the SCIR-model defined above. We show that the estimators are consistent and obey
some central limit theorems. It turns out that the WCLSEs are more efficient than the CLSEs
with different convergence rates. More precisely, for 1 < α ≤ 2 we prove that the sequence
n(α−1)/α(b̃n − b, ãn − a) converges to an α-stable random vector as n → ∞. This extends the
results on general CBI-processes established in [25] under the finite second moment condition.
For 1 < α < (1 +

√
5)/2, we show that n(α−1)/α2

(b̂n − b, ân − a) converges to a nontrivial limit
as n → ∞. Then the errors of the WCLSEs and the CLSEs have distinct decay rates n−(α−1)/α

and n−(α−1)/α2
, respectively. This is interesting and different from the situation of CBI-processes

or GWI-processes with finite variance observed in [25,40,52], where the errors of the WCLSEs
and the CLSEs have the same decay rate n−1/2 as n → ∞. It is somewhat unfortunate that
our approach to the central limit theorem of the CLSEs only works for 1 < α < (1 +

√
5)/2.

Since the relevant distributions are actually not well-defined otherwise, we do not think one
can remove the restriction by a simple modification of the approach. As a consequence, the
complete characterization of the asymptotics of the CLSEs is left as an open problem. From the
viewpoint of theoretical completeness, we certainly expect a complete solution of the problem.
However, since one can always choose the more efficient WCLSEs instead of the CLSEs, the
incompleteness of our results does not really cause much inconvenience from the viewpoint of
applications.

The proofs of our limit theorems are rather different from and more difficult than those in the
Gaussian case and depend heavily on the construction and characterization of CBI-processes in
terms of the stochastic equations established in [14,15,22,34]. These also stimulate the study of a
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number of interesting properties of CBI-processes. We first prove the exponential ergodicity and
strong mixing property of the subcritical CBI-process by using the coupling method developed
in [9,8]. We also study the regular variation properties of the distributions of the SCIR-model.
Then we prove the convergence of some point processes defined from the discrete observations.
Based on those results, the most important step of our approach is to establish the convergence of
some normalized partial sums. More precisely, we shall prove limit theorems of the sequences

1

n1/α

 n
k=1

εk,

n
k=1

εk

Xk−1 + 1


,

 1

n2/α

n
k=1

X2
k−1,

1

n(α+1)/α2

n
k=1

Xk−1εk


.

The techniques of point processes in the study of limit theorems have been developed extensively
by Basrak and Segers [3], Davis and Hsing [12], Davis and Mikosch [13] among others. We also
make use of the results of Hult and Lindskog [27] on the extremal behavior of Lévy stochastic
integrals.

The paper is organized as follows. In Section 2, we prove the exponential ergodicity of some
subcritical CBI-processes, which implies the strong mixing property of the SCIR-model. Sec-
tion 3 is devoted to the regular variation properties of some random sequences defined from
the model. The limit theorems of random point processes and partial sums are established in
Section 4. Based on those theorems, the asymptotic properties of the estimators are proved in
Section 5. Some basic concepts and technical results on regular variations are reviewed in the
Appendix.

Notation. Let N = {0, 1, 2, . . .} and Z = {0, ±1, ±2, . . .}. Let R = (−∞, ∞), R̄ =

[−∞, ∞] and R̄d
0 = R̄d

\ {0}, where 0 = (0, 0, . . . , 0). Let C+

0 (R̄d
0) be the collection of non-

negative continuous functions on R̄2
0 with compact support. Let M(R̄d

0) be the class of Radon
point measures on R̄d

0 furnished with the topology of vague convergence. We use C with or
without subscripts to denote non-negative constants whose values are not important.

2. CBI-processes and ergodicity

In this section, we prove some simple properties of CBI-processes. In particular, we prove a
subcritical CBI-process is exponentially ergodic and strongly mixing. The results are essentially
useful in the study of the stable limit theorems of the partial sums related to the CLSEs and the
WCLSEs. They should also be interesting on their own right.

We start with an important special case of the CBI-process. Let σ ≥ 0 and b be constants and
(u ∧ u2)m(du) a finite measure on (0, ∞). For z ≥ 0 set

φ(z) = bz +
1
2
σ 2z2

+


∞

0
(e−zu

− 1 + zu)m(du).

A Markov process with state space R+ := [0, ∞) is called a continuous-state branching process
(CB-process) with branching mechanism φ if it has transition semigroup (Qt )t≥0 given by

∞

0
e−λy Qt (x, dy) = e−xvt (λ), (2.1)

where t → vt (λ) is the unique non-negative solution of

∂

∂t
vt (λ) = −φ(vt (λ)), v0(λ) = λ. (2.2)
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The CB-process is called critical, subcritical or supercritical as b = 0, b > 0 or b < 0,
respectively. From (2.2) we obtain the following semigroup property:

vr+t (λ) = vr (vt (λ)), r, t, λ ≥ 0.

Taking the derivatives of both sides of (2.2) one can see ut := (d/dλ)vt (0) solves the equation
(d/dt)ut = −but , and so ut = e−bt for t ≥ 0. Then differentiating both sides of (2.1) gives

∞

0
yQt (x, dy) = xe−bt , t, x ≥ 0.

By Jensen’s inequality, we have vt (λ) ≤ λe−bt for t, λ ≥ 0.
It is easy to see that (Qt )t≥0 is a Feller transition semigroup, so it has a Hunt realization. Let

X = (Ω , G , Gt , X t , Qx ) be a Hunt realization of the CB-process. The hitting time τ0 = inf{t ≥

0 : X t = 0} is called the extinction time of X . It follows from Theorem 3.5 of Li [33] that for
t ≥ 0 the limit v̄t =↑ limλ→∞ vt (λ) exists in (0, ∞], and

Qx (τ0 ≤ t) = Qx (X t = 0) = exp{−x v̄t }. (2.3)

By Theorem 3.8 of Li [33], we have v̄t < ∞ for all t > 0 if and only if the following condition
holds:

Condition 2.1. There is some constant θ > 0 such that φ(z) > 0 for z > θ and
∞

θ

φ(z)−1dz < ∞.

Let t → vt (λ) be defined by (2.2). A Markov process with state space R+ is called a
CBI-process with branching mechanism φ and immigration rate a ≥ 0 if it has transition
semigroup (Pt )t≥0 given by

∞

0
e−λy Pt (x, dy) = exp


−xvt (λ) − a

 t

0
vs(λ)ds


. (2.4)

By differentiating both sides of (2.4) we obtain
∞

0
y Pt (x, dy) = xe−bt

+ a
 t

0
e−bsds = xe−bt

+ ab−1(1 − e−bt ), (2.5)

where b−1(1 − e−bt ) = t when b = 0 by convention.

Proposition 2.2. Suppose that b > 0. Then the transition semigroup (Pt )t≥0 has a unique sta-
tionary distribution µ, which is given by

Lµ(λ) =


∞

0
e−λxµ(dx) = exp


−a

 λ

0
zφ(z)−1dz


, λ ≥ 0. (2.6)

Moreover, we have
∞

0
xµ(dx) =

d

dλ
Lµ(λ)


λ=0+

=
a

b
. (2.7)
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Proof. By Theorem 3.20 of Li [33], there is a probability measure µ on R+ so that limt→∞

Pt (x, ·) = µ by weak convergence for any x ≥ 0. Then (Pt )t≥0 has the unique stationary
distribution µ. The expression (2.6) of the Laplace transform follows from a formula in
[33, p. 67]. By differentiating (2.6) we obtain (2.7). �

A realization of the CBI-process can be constructed as the strong solution to a stochastic
integral equation. Let W (ds, du) be a time–space Gaussian white noise on (0, ∞)2 with intensity
dsdu and N1(ds, dz, du) a Poisson random measure on (0, ∞)3 with intensity dsm(dz)du. Let
Ñ1(ds, dz, du) = N1(ds, dz, du) − dsm(dz)du denote the compensated measure. Then for
each x ≥ 0 there is a pathwise unique non-negative strong solution to the following stochastic
equation:

Yt (x) = x +

 t

0
(a − bYs(x))ds + σ

 t

0

 Ys−(x)

0
W (ds, du)

+

 t

0


∞

0

 Ys−(x)

0
z Ñ1(ds, dz, du). (2.8)

The solution {Yt (x), t ≥ 0} is a CBI-process with branching mechanism φ and immigration rate
a. See Theorem 3.1 of Dawson and Li [15] or Theorem 2.1 of Li and Ma [34]. A slightly different
formulation of the process was given in [14].

Proposition 2.3. Suppose that Condition 2.1 holds. For x, y ≥ 0, let Tx,y := inf{t ≥ 0 :

Yt (x) − Yt (y) = 0}. Then we have P{Tx,y < ∞} = 1 and

P{Tx,y ≤ t} = exp{−|x − y|v̄t }, t ≥ 0. (2.9)

Moreover, we have Yt (x) = Yt (y) for all t ≥ Tx,y .

Proof. It suffices to consider the case of y ≥ x ≥ 0. By Theorem 3.2 of Dawson and Li [15],
we have P{Yt (x) ≥ Yt (y) ≥ 0 for all t ≥ 0} = 1 and {Yt (x) − Yt (y) : t ≥ 0} is a CB-process
with branching mechanism φ; see also Remark 2.1(iv) of Li and Ma [34]. Then (2.9) follows
from (2.3). The pathwise uniqueness of (2.8) implies that Yt (x) = Yt (y) for all t ≥ Tx,y . By
Corollary 3.9 of Li [33] we have P{Tx,y < ∞} = 1. �

The above proposition provides a successful coupling of the CBI-processes. This has many
important implications. The coupling method goes back to Doeblin [17]. We refer the reader to
Chen [9,8] for systematical study of the method and its applications in the theory of Markov
processes. In particular, we shall use the above coupling to prove the strong Feller property and
exponential ergodicity of the CBI-process following the arguments in Section 5.3 of Chen [9].
The later implies a strong mixing property, which is necessary in the study of central limit
theorems of the estimators defined in the introduction. Write f ∈ bB(R+) if f is a bounded
measurable function on R+.

Theorem 2.4. Under Condition 2.1, the transition semigroup (Pt )t≥0 given by (2.4) has the
strong Feller property. Moreover, for any t > 0 and x, y ≥ 0, we have

∥Pt (x, ·) − Pt (y, ·)∥var ≤ 2(1 − e−v̄t |x−y|) ≤ 2v̄t |x − y|, (2.10)

where ∥ · ∥var denotes the total variation norm.
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Proof. Clearly, the strong Feller property follows from (2.10). Then it suffices to prove this
inequality. Let f ∈ bB(R+) satisfy ∥ f ∥∞ ≤ 1. Then

|Pt f (x) − Pt f (y)| ≤ E[| f (Yt (x)) − f (Yt (y))|1{Tx,y>t}] ≤ 2P(Tx,y > t).

By Proposition 2.3 we have P(Tx,y > t) = 1 − e−v̄t |x−y|
≤ v̄t |x − y|. That gives (2.10). �

Theorem 2.5. Suppose that b > 0 and Condition 2.1 is satisfied. Then the transition semigroup
(Pt )t≥0 is exponentially ergodic. More precisely, for any x, t ≥ 0, we have

∥Pt (x, ·) − µ(·)∥var ≤ 2[1 ∧ (x + ab−1)v̄1eb(1−t)
], (2.11)

where µ is given by (2.6).

Proof. Since the total variation norm is a special case of the so-called Wasserstein distance, the
exponential ergodicity is essentially a consequence of the arguments in Section 5.3 of Chen [9].
In fact, by Theorem 2.4 one can see

∥Pt (x, ·) − µ(·)∥var =

 ∞

0
[Pt (x, ·) − Pt (y, ·)]µ(dy)


var

≤


∞

0
∥Pt (x, ·) − Pt (y, ·)∥varµ(dy)

≤ 2


∞

0
(1 ∧ |x − y|v̄t )µ(dy)

≤ 2


∞

0
[1 ∧ (x + y)v̄t ]µ(dy)

= 2[1 ∧ (x + ab−1)v̄t ],

where the last equality follows by (2.7). By Corollary 3.11 of Li [33, p. 61], for t ≥ 1, we have
v̄t = vt−1(v̄1) and so v̄t ≤ eb(1−t)v̄1 for t ≥ 1. Then we obtain desired result. �

Under the conditions of Theorem 2.5, for any finite set {t1 < t2 < · · · < tn} ⊂ R we can
define the probability measure µt1,t2,...,tn on Rn

+ by

µt1,t2,...,tn (dx1, dx2, . . . , dxn) = µ(dx1)Pt2−t1(x1, dx2) · · · Ptn−tn−1(xn−1, dxn). (2.12)

It is easy to see that {µt1,t2,...,tn : t1 < t2 < · · · < tn ∈ R} is a consistent family. By Kolmogorov’s
theorem, there is a stochastic process {Yt : t ∈ R} with finite-dimensional distributions given by
(2.12). This process is a (strictly) stationary Markov process with one-dimensional marginal
distribution µ and transition semigroup (Pt )t≥0. Since (Pt )t≥0 is a Feller semigroup, the process
{Yt : t ∈ R} has a càdlàg modification.

Remark 2.6. Let {Yt : t ∈ R} be a Markov process with finite-dimensional distributions given
by (2.6). Then it follows from Theorem 2.5 that it is also strongly mixing with geometric rate,
that is, as t → ∞,

πt := sup
A∈σ {Ys ,s≤0}

sup
B∈σ {Ys ,s>t}

P(A ∩ B) − P(A)P(B)


decays to zero exponentially; see, e.g., [37, p. 516] or [6, p. 112]. �
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Now let us consider a filtered probability space (Ω , F , Ft , P) satisfying the usual hypotheses.
Let {Z t : t ≥ 0} be a spectrally positive α-stable Lévy process. For α = 2, we understand the
process as a standard Brownian motion; and for 1 < α < 2, we assume it is a stable process with
Lévy measure να(dz) given by (1.3). By Theorem 6.2 of Fu and Li [22], for any initial value X0,
which is a non-negative F0-measurable random variable, there is a unique non-negative strong
solution {X t : t ≥ 0} to (1.2). The existence and uniqueness of this solution also follows from
Corollary 6.3 of Fu and Li [22] by a time change. Let f be a bounded continuous function on R
with bounded continuous derivatives up to the second order. For α = 2, we can use Itô’s formula
to see that

f (X t ) = f (Xr ) +

 t

r
L f (Xs)ds + Mt ( f ), t ≥ r, (2.13)

where {Mt ( f ) : t ≥ r} is a martingale with respect to the filtration (Ft )t≥r and

L f (x) = (a − bx) f ′(x) +
σ 2

2
x f ′′(x), x ≥ 0.

When 1 < α < 2, by the Lévy–Itô representation of {Z t }, we can rewrite (1.2) into the integral
form:

X t = Xr +

 t

r
(a − bXs)ds + σ

 t

r


∞

0
X1/α

s− z Ñ (ds, dz), t ≥ r, (2.14)

where Ñ (ds, dz) is a compensated Poisson random measure on (0, ∞)2 with intensity dsνα(dz).
By Itô’s formula one can see that (2.13) still holds for 1 < α < 2 with the operator L defined by

L f (x) = (a − bx) f ′(x) +
σαx

αΓ (−α)


∞

0
[ f (x + y) − f (x) − y f ′(x)]

dy

yα+1 .

By Theorem 9.30 of Li [33], for any 1 < α ≤ 2, we can identify the SCIR-model as a subcritical
CBI-process with immigration rate a and branching mechanism

φ(λ) = bλ +
σα

α
λα, λ ≥ 0. (2.15)

It follows from Proposition 2.2 that the SCIR-model has the unique stationary distribution µ with
Laplace transform given by

Lµ(λ) =


∞

0
e−λxµ(dx) = exp


−

 λ

0

αadz

αb + σαzα−1


, λ ≥ 0. (2.16)

Let Px denote the law of the SCIR-model {X t : t ≥ 0} defined by (1.2) with X0 = x ≥ 0 and let
Ex denote the corresponding expectation.

Proposition 2.7. Let 1 < α < 2 and let {X t } be the SCIR-model defined by (2.14). Then for any
0 < β < α, there is a constant C ≥ 0 so that, for t, T ≥ 0,

Ex

 t

0
e−b(t−s) X1/α

s− d Zs

β ≤ C(1 + xβ/αe−βbt/α)

and

Ex


sup

0≤t≤T

 t

0
e−b(t−s) X1/α

s− d Zs

β ≤ C(xβ/αeβb(1−1/α)T
+ eβbT ).
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Proof. By Remark A.8, we have

Ex

 t

0
e−b(T −s) X1/α

s− d Zs

β ≤ C1e−βbt Ex

 t

0
eαbs Xsds

β/α
and

Ex


sup

0≤t≤T

 t

0
e−b(t−s) X1/α

s− d Zs

β ≤ C1Ex

 T

0
eαbs Xsds

β/α
.

By Hölder’s inequality and (2.5) it is easy to see

Ex

 t

0
eαbs Xsds

β/α
≤

 t

0
Ex (e

αbs Xs)ds
β/α

≤

 t

0
eαbs(xe−bs

+ ab−1)ds
β/α

≤ C2(xβ/αeβb(1−1/α)t
+ eβbt ).

Then we have the desired inequalities. �

Proposition 2.8. Let 1 < α < 2 and let {X t } be the SCIR-model defined by (2.14). Then for any
0 < β < α, there is a constant C ≥ 0 and a locally bounded function T → C(T ) ≥ 0 so that,
for t, T ≥ 0,

Ex (Xβ
t ) ≤ C(1 + xβe−βbt/α)

and

Ex


sup

0≤t≤T
Xβ

t


≤ C(T )(1 + xβ).

Proof. Using (1.5) with r = 0 and an elementary inequality, we have

Ex (Xβ
t ) ≤ C1Ex


xβe−βbt

+ aβb−β
+ σ βEx

 t

0
e−b(t−s) X1/α

s− d Zs

β
and

Ex


sup

0≤t≤T
Xβ

t


≤ C1


xβ

+ aβb−β
+ σ βEx


sup

0≤t≤T

 t

0
e−b(t−s) X1/α

s− d Zs

β.
Then the results follow by Proposition 2.7. �

3. Regular variation

In this section, we assume 1 < α < 2. We shall study the regular variation properties of some
random sequences associated with the SCIR-model. The approach to be given uses heavily the
stochastic equations (1.2) and (2.8). Some necessary concepts and technical results are reviewed
in the last section of the paper. Recall that Px denotes the law of the SCIR-model {X t : t ≥ 0}

defined by (1.2) with X0 = x ≥ 0 and Ex denotes the corresponding expectation.

Proposition 3.1. Fix t > 0. For any x ≥ 0, we have, as u → ∞,

Px (X t > u) ∼
σαt

αΓ (−α)
[qα(t) + pα(t)x]u−α,
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where

pα(t) =
1

b(α − 1)
[e−bt

− e−αbt
], qα(t) =

a

b

 1
αb

(1 − e−αbt ) − pα(t)

. (3.1)

Proof. In view of (1.5), the extremal behavior of X t is determined by a stochastic integral. Then,
using Remark A.7, we have, as u → ∞,

Px (X t > u) ∼ Px


σ

 t

0
e−b(t−s) α


Xs−d Zs > u


∼ σαPx (Z t > u)

 t

0
e−αb(t−s)Ex (Xs)ds.

Based on (2.5), it is easy to compute

Ex

 t

0
e−αb(t−s) Xsds


= qα(t) + pα(t)x . (3.2)

By Remark A.6 we have Px (Z t > u) ∼ t/(αΓ (−α)uα). Then the desired result follows. �

Proposition 3.2. For any K > 0, we have

lim
u→∞

sup
x∈[0,K ]

uαPx (X1 > u) −
σα

αΓ (−α)
(qα + pαx)

 = 0

and

lim
u→∞

sup
x∈[0,K ]

uα−1Ex (X11{X1>u}) −
σα

(α − 1)Γ (−α)
(qα + pαx)

 = 0

where pα = pα(1) and qα = qα(1) are defined by (3.1).

Proof. Let {X t (x)} be the SCIR-model defined by (1.2) with initial value X0 = x . By Theorem
5.5 of Fu and Li [22], the random function x → X t (x) is increasing, so x → Px (X t > u) is
increasing for any t, u ≥ 0; see also (2.8). Then the first convergence holds by Proposition 3.1
and Dini’s theorem. The second convergence follows similarly by Proposition A.2. �

In the sequel of this section, let us consider a stationary càdlàg realization {X t : t ∈ R} of the
SCIR-model with one-dimensional marginal distribution µ given by (2.16). By a modification of
the arguments in the proofs of Theorems 9.31 and 9.32 Li [33] one can see that, on an extension of
the probability space, there is a compensated Poisson random measure Ñ (ds, dz) on R× (0, ∞)

with intensity dsνα(dz) so that (2.14) is satisfied for all t ≥ r ∈ R. For any integer k ∈ Z let

Ik = εk

1, (1 + Xk−1)

−1, Hk = Xk−1

X1/α

k−1, εk

, (3.3)

where

εk = σ

 k

k−1


∞

0
e−b(k−s) X1/α

s− z Ñ (ds, dz). (3.4)

It is easy to see that the above sequences are stationary. We are going to prove that they are jointly
regularly varying.
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Proposition 3.3. Let µ be the stationary distribution of the SCIR-model given by (2.16). For any
t ≥ 0, we have, as x → ∞,

µ(x, ∞) ∼ −
aσα

α2b2 Γ (1 − α)−1x−α
=

aσα

α3b2 Γ (−α)−1x−α.

Consequently, for any 0 < r < α, we have
∞

0
xrµ(dx) =


∞

0
µ(y1/r , ∞)dy < ∞.

Proof. The tail behavior of X t is closely related with the asymptotics of its Laplace transform.
By (2.16), as λ → 0,

Lµ(λ) = 1 −
a

b

 λ

0

αbdz

αb + σαzα−1 + O(λ2)

= 1 −
a

b
λ +

a

b

 λ

0

σαzα−1dz

αb + σαzα−1 + O(λ2)

= 1 −
a

b
λ +

a

b2

 λ

0

bσαzα−1dz

αb + σαzα−1 + O(λ2)

= 1 −
a

b
λ +

a

αb2

 λ

0
σαzα−1dz −

a

αb2

 λ

0

σ 2αz2(α−1)dz

αb + σαzα−1 + O(λ2)

= 1 − λ


∞

0
xµ(dx) +

aσα

α2b2 λα
− O(λ2α−1) + O(λ2),

where we have used (2.7) for the last equality. Then the result follows by Theorem 8.1.6 of
Bingham et al. [4]. �

Lemma 3.4. Let Ñ (ds, dz) be the compensated Poisson random measure in (2.14) and let

z(t) = σ

 t

0

 1

0
e−b(t−s) X1/α

s− z Ñ (ds, dz). (3.5)

Then, for any 1 ≤ r < α2 and any T ≥ 0, we have

E


sup
0≤t≤T

|z(t)|r


< ∞.

Proof. We follow an idea in the proof of Lemma 5.5 of Hult and Lindskog [27]. Let q =

1/(1 − p−1) for any p ∈ (1, α2/r). By the Burkholder–Davis–Gundy inequality and Hölder’s
inequality, we have

E


sup
0≤t≤T

|z(t)|r


≤ σ r E


sup
0≤t≤T

 t

0

 1

0
ebs X1/α

s− z Ñ (ds, dz)
r

≤ C1E
 T

0

 1

0
e2bs X2/α

s− z2 N (ds, dz)
r/2

≤ C(T )E


sup
0≤s≤T

Xr/α
s

 T

0

 1

0
z2 N (ds, dz)

r/2
≤ C(T )


E


sup
0≤s≤T

Xr p/α
s

1/p
E
 T

0

 1

0
z2 N (ds, dz)

rq/21/q
.
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The first expectation on the right-hand side is finite by Proposition 2.8. By Theorem 34 of
Protter [41, p. 25], the second expectation is also finite. �

Lemma 3.5. Suppose that {An} ⊂ F0 is a sequence of events so that P(An) → 0 as n → ∞.
Then, for any x > 0 and T ≥ 0, we have

lim
n→∞

nP


An, sup
0≤t≤T

 t

0
e−b(t−s) X1/α

s− d Zs

 > an x


= 0. (3.6)

Proof. The right-hand side of (3.6) is bound above by J1 + J2 + J3, where

J1 = nP


sup
0≤t≤T

 t

0

 1

0
e−b(t−s) X1/α

s− z Ñ (ds, dz)
 > an x/3


,

J2 = nP


sup

0≤t≤T

 t

0
e−b(t−s) X1/α

s ds


∞

1
zνα(dz)

 > an x/3


,

and

J3 := nP


An, sup

0≤t≤T

 t

0


∞

1
e−b(t−s) X1/α

s− zN (ds, dz)

 > an x/3


.

Let z(t) be defined by (3.5). Then, for any 1 ≤ r < α2, we have

J1 ≤
C1n

nr/αxr E


sup
0≤t≤T

|z(t)|r

, J2 ≤

C2n

nr/αxr E
 T

0
X1/α

s− ds
r

,

where the two expectations are finite by Proposition 2.8 and Lemma 3.4. Then J1 → 0 and
J2 → 0 as n → ∞. By introducing the Lévy process

ξ(t) :=

 t

0


∞

1
zN (ds, dz), t ≥ 0,

for any K ≥ 1, we have

J3 ≤ nP(An, K 1/αξ(T ) > an x/6) + nP
 T

0
X1/α

s− 1{Xs−>K }dξ(s) > an x/6

.

By Remark A.6 and the property of independent increments of {ξ(t)}, it follows that

lim
n→∞

nP(An, K 1/αξ(T ) > an x/6) = lim
n→∞

nP(An)P(K 1/αξ(T ) > an x/6) = 0.

By Remarks A.6 and A.7,

lim
n→∞

nP
 T

0
X1/α

s− 1{Xs−>K }dξ(s) > an x/6


= C3x−α

 T

0
E[Xs1{Xs>K }]ds,

which tends to zero as K → ∞. Then we have the desired result. �

Theorem 3.6. The sequence {Xk} is jointly regularly varying with index α. More precisely, as
x → ∞ we have

P(X0 > x) ∼
aσα

α3b2 Γ (−α)−1x−α (3.7)
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and, for any integer k ≥ 1,

P

X−1

0 (X0, . . . , Xk) ∈ ·|X0 > x
 w
−→ δ(1,e−b,...,e−bk )(·). (3.8)

Proof. By Proposition 3.3 we have the asymptotics (3.7). It suffices to show (3.8) holds when
x → ∞ along the sequence an := n1/α . Let X = (X0, X1, . . . , Xk) and X̄ = (X0, X0e−b, . . . ,

X0e−bk). Let z(t) be defined by (3.5). For any δ > 0, we can use (1.5) to see

P

∥X − X̄∥ > anδ|X0 > an


≤ P


ak + max

1≤ j≤k

 j

0
e−b( j−s) X1/α

s− d Zs

 > anδ

 X0 > an


≤ CnP


X0 > an, max

1≤ j≤k

 j

0
e−b( j−s) X1/α

s− d Zs

 > anδ − ak


≤ Cn
k

j=1

P


X0 > an,

 j

0
e−b( j−s) X1/α

s− d Zs

 > (anδ − ak)/k

.

By Lemma 3.5 it is easy to see the right-hand tends to zero as n → ∞. By an equivalent form of
regular variation given in [44, p. 69], we conclude that, as n → ∞,

P(X/an ∈ ·|X0 > an) ∼ P(X̄/an ∈ ·|X0 > an)

v
−→ α


∞

1
1{z(1,e−b,...,e−bk )∈·}

dz

zα+1 .

Then (3.8) follows by the continuous mapping theorem. By Corollary 3.2 in [3], the sequence
{Xk} is jointly regularly varying with index α. �

Proposition 3.7. The sequence {Ik} defined by (3.3) is jointly regularly varying with index α.
More precisely, as x → ∞ we have

P(∥I1∥ > x) ∼
E(G)

α2Γ (−α)
x−α

=
aσα(1 − e−αb)

α3b2Γ (−α)
x−α (3.9)

and, for any integer k ≥ 1,

P

∥I1∥

−1(I1, . . . , Ik) ∈ ·|∥I1∥ > x


w
−→ E(G)−1E


G; ((1, (1 + X0)

−1), 0, . . . , 0) ∈ ·

, (3.10)

where

G = σα

 1

0
e−αb(1−t) X t dt. (3.11)

Proof. Clearly, it suffices to show that (3.9) and (3.10) hold when x → ∞ along the sequence
an := n1/α . For 0 ≤ s ≤ k, let Zs = (Zs, Zs) and 8s = (φ1(s), φ2(s)), where

φ1(s) =

k
j=1

1( j−1, j](s)e
−b( j−s)σ X1/α

s− , φ2(s) =

k
j=1

1( j−1, j](s)
e−b( j−s)σ X1/α

s−

1 + X j−1
.

We consider the process

(8 · Z)t :=

 t

0
φ1(s)d Zs,

 t

0
φ2(s)d Zs


.
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Choose some δ ∈ (α, α2). By Proposition 3.3, we have E[X δ/α

0 ] < ∞. Then Proposition 2.8
implies that

E


sup
0≤s≤k

∥8s∥
δ


≤ E


sup
0≤s≤k

σ δ X δ/α
s


≤ σ δC(k)[1 + E(X δ/α

0 )] < ∞.

By Theorem 3.4 in [27] and Remark A.6, as n → ∞,

nP(a−1
n (8 · Z) ∈ ·)

ŵ
−→ Q(·) := kE[να{x ∈ R+ : x8τ 1[τ,k] ∈ ·}], (3.12)

where να is defined by (1.3) and τ is uniformly distributed on [0, k] and independent of 8. In
view of (3.12), we have

nP(a−1
n (8 · Z)1 ∈ ·)

v
−→ Q({y ∈ D2

[0, k] : y1 ∈ ·}).

By Definition A.1 it follows that

Q({y ∈ D2
[0, k] : ∥y1∥ > r}) = r−α Q({y ∈ D2

[0, k] : ∥y1∥ > 1}).

Now define the functions h0, h1, h2 : D2
[0, k] → R2k by

h0(y) = (y1, y2 − y1, . . . , yk − yk−1),

h1(y) = 1{∥y1∥>1}, h2(y) = h0(y)h1(y).

Let Disc(hi ) be the set of discontinuities of hi (i = 0, 1, 2). By (3.12) it is easy to see that
Q(Disc(h0)) = Q(Disc(h1)) = 0, so Q(Disc(h2)) = 0. Moreover, for any B ∈ B(R2k)

bounded away from 0 the set h−1
2 (B) ∈ B(D2

[0, k]) is bounded away from 0. Applying the
continuous mapping theorem, we obtain as n → ∞,

nP

∥I1∥ > an, a−1

n (I1, I2, . . . , Ik) ∈ ·
 v
−→ Q ◦ h−1

2 (·)

on R2k
\ {0}, where

Q ◦ h−1
2 (·) = kE


να


x ∈ R+ : ∥x8τ 1[τ,k](1)∥ > 1, x


8τ 1[τ,k](1), 0, . . . , 0


∈ ·


= kE

να


x ∈ R+ : ∥x8τ∥ > 1, τ ≤ 1, x


8τ 1[τ,k](1), 0, . . . , 0


∈ ·


= kE

να


x ∈ R+ : x∥8τ∥ > 1, x


8τ , 0, . . . , 0


∈ ·

1[0,1](τ )


.

Let E = {(y1, . . . , yk) ∈ R2k
: ∥y1∥ > 0}. Define the injection f : E → (0, ∞) × E by

f (y1, . . . , yk) =

∥y1∥, y1/∥y1∥, . . . , yk/∥y1∥


.

Then we have as n → ∞,

nP

∥I1∥ > an, ∥I1∥

−1(I1, . . . , Ik) ∈ ·
 w
−→ Q ◦ h−1

2 ◦ f −1(·)

on E , where

Q ◦ h−1
2 ◦ f −1(·) = kE


να


x ∈ R+ : x∥8τ∥ > 1,


8τ /∥8τ∥, 0, . . . , 0


∈ ·

1[0,1](τ )


= kE


να


x ∈ R+ : x∥8τ∥ > 1


1[0,1](τ ),


8τ /∥8τ∥, 0, . . . , 0


∈ ·


=

k

αΓ (−α)
E
 ∞

∥8τ ∥−1

dz

zα+1 1[0,1](τ ),

(1, (1 + X0)

−1), 0, . . . , 0


∈ ·


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=
k

α2Γ (−α)
E

∥8τ∥

α1[0,1](τ ),

(1, (1 + X0)

−1), 0, . . . , 0


∈ ·


=
1

α2Γ (−α)

 1

0
E

∥8s∥

α,

(1, (1 + X0)

−1), 0, . . . , 0


∈ ·

ds

=
1

α2Γ (−α)
E

G,

(1, (1 + X0)

−1), 0, . . . , 0


∈ ·

.

In particular, as n → ∞ we have

nP(∥I1∥ > an) −→
E(G)

α2Γ (−α)
.

By (2.7), we have E(X t ) = a/b. It follows that

E(G) =
aσα

b

 1

0
e−αb(1−t)dt =

aσα

αb2 (1 − e−αb).

Then we have (3.9) and (3.10). By Corollary 3.2 in [3], the sequence {Ik} is jointly regularly
varying with index α. �

Remark 3.8. For k = 1, 2, . . . define

Vk = σ

 k

k−1
e−b(k−s)e−b(s−k+1)/αd Zs . (3.13)

Then the sequence {Vk} is i.i.d. with the same distribution as

σ
e−b

− e−αb

(α − 1)b

1/α

Z1,

which is regularly varying with index α.

Lemma 3.9. Let {Vk} be defined by (3.13) and let H̄k = X (α+1)/α

k−1 (1, Vk). Then, for any
0 < r < α3/(α2

+ 1), we have

E

∥Hk − H̄k∥

r  < ∞.

Proof. Since 0 < r < α3(α2
+ 1)−1 < α, by Remark A.8 and Hölder’s inequality,

E

∥Hk − H̄k∥

r 
= E

 k

k−1
σe−b(k−s) Xk−1


X1/α

s− − X1/α

k−1e−b(s−k+1)/α


d Zs

r
≤ CE

 k

k−1
e−αb(k−s) Xα

k−1

Xs − Xk−1e−b(s−k+1)
ds
r/α

≤ CE


Xr
k−1


EXk−1

 1

0
|Xs − X0e−bs

|ds
r/α

≤ CE


Xr
k−1

 1

0
EXk−1


|Xs − X0e−bs

|

ds
r/α

≤ CE


Xr
k−1

 1

0
EXk−1

 s

0
e−b(s−u) X1/α

u− d Zu

ds
r/α
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≤ CE


Xr
k−1

 1

0
EXk−1

 s

0
e−b(s−u) X1/α

u− d Zu

rds
1/α

≤ CE

Xr

k−1(1 + Xr/α2

k−1 )

,

which is finite by Proposition 2.8. �

Proposition 3.10. The sequence {Hk} defined by (3.3) is jointly regularly varying with index
α2/(α + 1). Let {Vk} be defined by (3.13). Then we have, as x → ∞,

P(∥H1∥ > x) ∼ E

1 ∨ |V1|

α2/(α+1)
 aσα

α3b2Γ (−α)
x−α2/(α+1) (3.14)

and, for any integer k ≥ 1,

P

∥H1∥

−1(H1, . . . , Hk) ∈ ·|∥H1∥ > x


w
−→

E

1 ∨ |V1|

α2/(α+1)
; (21, . . . ,2k) ∈ ·


E

1 ∨ |V1|

α2/(α+1)
 , (3.15)

where

2 j = e−b( j−1)(α+1)/α(1 ∨ |V1|)
−1(1, V j ).

Proof. We only need to show (3.14) and (3.15) hold when x → ∞ along the sequence cn :=

n(α+1)/α2
. By Proposition 3.3 it follows that X (α+1)/α

0 is regularly varying with the index α2/

(α + 1). More precisely, as n → ∞,

P

X (α+1)/α

0 > x


∼
aσα

α3b2Γ (−α)
x−α2/(α+1). (3.16)

By Remark 3.8, we have E[|Vk |
r
] < ∞ for any 0 < r < α. Note that ∥H̄k∥ = X (α+1)/α

k−1 (1 ∨ Vk).
By (3.16) and Breiman’s Lemma, as n → ∞,

P(∥H̄1∥ > x) ∼ E

1 ∨ |V1|

α2/(α+1)
 aσα

α3b2Γ (−α)
x−α2/(α+1)

; (3.17)

see, e.g., [45, p. 231]. Then ∥H̄1∥ is regularly varying with the index α2/(α +1). By Lemma 3.9,
for any 0 < r < α3/(α2

+ 1), we have E[∥H1 − H̄1∥
r
] < ∞. Now let H = (H1, . . . , Hk) and

H̄ = (H̄1, . . . , H̄k). By Markov’s inequality and (3.17) we have, as x → ∞,

P(∥H − H̄∥ > x)

P(∥H̄1∥ > x)
≤

x−r

P(∥H̄1∥ > x)

k
j=1

E

∥H j − H̄ j∥

r 
→ 0.

As in the proof of Lemma 3.12 in [28], we obtain (3.14) from (3.17). From the above relation we
also have, as n → ∞,

P(c−1
n H ∈ ·|∥H1∥ > cn) ∼ P(c−1

n H̄ ∈ ·|∥H̄1∥ > cn). (3.18)

Let H̃k = (X0e−b(k−1))(α+1)/α(1, Vk). For δ > 0 and K > 1 we have

P

∥H̃k − H̄k∥ > cnδ|X0 > an


≤ P


∥H̃k − H̄k∥ > cnδ, |Vk | ≤ K |X0 > an


+ P


∥H̃k − H̄k∥ > cnδ, |Vk | > K |X0 > an


.
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Let J1 and J2 denote the two terms on the right-hand side. Then

J1 ≤ P

K |(X0e−b(k−1))(α+1)/α

− X (α+1)/α

k−1 | > cnδ|X0 > an

.

By Theorem 3.6 and the continuous mapping theorem, we have J1 → 0 as n → ∞. Since X0 is
independent of Vk , we have

J2 ≤ P(|Vk | > K |X0 > an) = P(|Vk | > K ),

which tends to zero as K → ∞. Then the regular variation property of X0 implies, for any
ζ > 0,

lim
x→∞

P(∥H̃k − H̄k∥ > x (α+1)/αζ |X0 > x) = 0. (3.19)

See, e.g., [45, p. 14] for a similar method. By (3.7) we have P(K α/(α+1) X0 > an) ∼ h1n−1 as
n → ∞ for some constant h1 > 0. By (3.19) and the multiplicative formula it is easy to see

lim
n→∞

nP(∥H̃k − H̄k∥ > cnδ, K α/(α+1) X0 > an) = 0.

It follows that

lim sup
n→∞

nP(∥H̃k − H̄k∥ > cnδ, ∥H̄1∥ > cn)

= lim sup
n→∞

nP(∥H̃k − H̄k∥ > cnδ, X (α+1)/α

0 (1 ∨ V1) > cn)

≤ lim
n→∞

nP(X (α+1)/α

0 |V1|1{|V1|>K } > cn)

= lim
n→∞

nE[|V1|
α2/(α+1)1{|V1|>K }]P(X (α+1)/α

0 > cn)

= C1E[|V1|
α2/(α+1)1{|V1|>K }],

where we have used Breiman’s Lemma again for the second equality. The right hand side goes
to zero as K → ∞. But, by (3.17) there is a constant h2 > 0 so that P(∥H̄1∥ > cn) ∼ h2n−1 as
n → ∞. Then

lim
n→∞

P(∥H̃k − H̄k∥ > cnδ|∥H̄1∥ > cn) = 0.

Let H̃ = (H̃1, . . . , H̃k). We have

P(∥H̃ − H̄∥ > cnδ|∥H̃1∥ > cn) ≤

k
j=1

P(∥H̃ j − H̄ j∥ > cnδ|∥H̃1∥ > cn) → 0.

Since H̃1 = H̄1, by the above relation, we have as n → ∞,

P(c−1
n H̄ ∈ ·|∥H̄1∥ > cn) ∼ P(c−1

n H̃ ∈ ·|∥H̃1∥ > cn)

∼ h−1
2 nP(|∥H̃1∥ > cn, c−1

n H̃ ∈ ·). (3.20)

By Proposition 3.3 one can see, as n → ∞,

nP(c−1
n X (α+1)/α

0 ∈ ·)
v

−→ ν(·) := C2


∞

0

1{u∈·}du

u1+α2/(α+1)
.
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Note that X0 is independent of Vk for k ≥ 1. By the extended Breiman’s Lemma, as n → ∞,

nP(c−1
n H̃ ∈ ·)

v
−→ E


ν{u : u(41, . . . ,4k) ∈ ·}


where 4 j = e−b( j−1)(α+1)/α(1, V j ); see Theorem 3.1 of Hult and Lindskog [27]. By (3.18) and
(3.20), we have

P(c−1
n H ∈ ·|∥H1∥ > cn)

v
−→ C3


∞

0
E

ν{u > (1 ∨ V1)

−1
: u(41, . . . ,4k) ∈ ·}

 du

u1+α2/(α+1)
.

Then (3.15) follows by an application of the continuous mapping theorem. By Corollary 3.2
in [3], the sequence {Hk} is jointly regularly varying with index α. �

Remark 3.11. It follows from Theorem 2.5 and Remark 2.6 that the process {X t } is strongly
mixing with geometric rate. From (1.6) and (3.3) we see Ik and Hk are measurable with respect
to σ(Xk−1, Xk). Then {Ik} and {Hk} are also strongly mixing with geometric rate, and thus
satisfies the mixing condition A (an) defined in Remark A.3.

4. Convergence of partial sums

In this section, we will first prove some convergence results on the point processes associated
with the stationary sequences {Ik} and {Hk} defined by (3.3). Then we derive the limit theorems
of suitably normalized partial sums for those sequences. The results will play essential roles in
the proofs of the asymptotics of the estimators of the SCIR-model. The techniques used in this
section have been developed extensively by Basrak and Segers [3], Davis and Hsing [12], Davis
and Mikosch [13] among others. For i.i.d. random variables, the idea goes back to Davis [11] and
LePage et al. [32]. Let an = n1/α and cn = n(α+1)/α2

= a(α+1)/α
n for n ≥ 1. We shall assume

1 < α < 2 except for Theorem 4.5.

Lemma 4.1. Let rn = [nδ
] for any 0 < δ < 1. Then for any x > 0 we have

lim
m→∞

lim sup
n→∞

n
rn

k=m

P(|εk | > an x, |ε1| > an x) = 0. (4.1)

Proof. Let Ex denote the expectation of {X t : t ≥ 0} given X0 = x . Take a constant r ∈ (δ, 1).
For k ≥ 2, we can use Markov’s inequality and Proposition 2.7 to see

P(|εk | > an x, |ε1| > an x) =
σ rα

(an x)rα
E

1{|ε1|>an x}

 k

k−1
e−b(k−s) X1/α

s− d Zs

rα
=

σ rα

(an x)rα
E

1{|ε1|>an x}EXk−1

 1

0
e−b(1−s) X1/α

s− d Zs

rα
≤

C1σ
rα

(an x)rα
E

1{|ε1|>an x}(1 + Xr

k−1)


≤
C2σ

rα

(an x)rα
E

1{|ε1|>an x}(1 + Xr

1e−rb(k−2)/α)

,
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where the last inequality follows from Proposition 2.8. In view of (1.6), we have

n
rn

k=m

P(|εk | > an x, |ε1| > an x) ≤ J1 + J2 + J3,

where

J1 =
C3σ

rαn

(an x)rα
(rn − m + 1)P


|ε1| > an x


,

J2 =
C4σ

rαn

(an x)rα

∞
k=m

e−rb(k−2)/αE

|ε1|

r 1{|ε1|>an x}


,

J3 =
C5σ

rαn

(an x)rα

∞
k=m

e−rb(k−2)/αE

Xr

01{|ε1|>an x}


.

By Proposition 3.7, we have P(|ε1| > an x) = O(n−1). It follows that J1 = O(nδ−r ) as n → ∞.
By Proposition A.2 one can see, as n → ∞,

E

|ε1|

r 1{|ε1|>an x}


∼

α

α − r
(an x)r P


|ε1| > an x


∼

αxr

α − r
nr/αP


|ε1| > an x


.

Thus we have J2 = O(nr/α−r ) as n → ∞. By Markov’s inequality and Proposition 2.7,

E

Xr

01{|ε1|>an x}


≤

1

(an x)α(1−r)
E

Xr

0|ε1|
α(1−r)


=

1

(an x)α(1−r)
E


Xr
0[EX0(|ε1|

α(1−r))]


≤
C6

(an x)α(1−r)
E(Xr

0 + X0).

It follows that

lim
m→∞

lim sup
n→∞

J3 ≤ lim
m→∞

C7

∞
k=m

e−rαb(k−1)
= 0.

Then we have (4.1). �

Proposition 4.2. Let G be defined by (3.11). Then we have, as n → ∞,

ηn :=

n
k=1

δa−1
n Ik

d
−→ η on M(R̄2

0), (4.2)

where η is a point process on R̄2
0 with the Laplace functional E[e−η( f )

], f ∈ C+

0 (R̄2
0) given by

exp

−

1
αΓ (−α)


∞

0
E


1 − exp

− f


y,

y

1 + X0


G
 dy

yα+1


. (4.3)

Proof. By Remarks 3.11 and A.3, the sequence {Ik} satisfies the mixing condition A (an) with
rn = [nδ

] for any 0 < δ < 1. Since {εk} is a stationary sequence, we have
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nP


max
m≤|k|≤rn

|εk | > an x, |ε1| > an x


≤ n
rn

k=m


P(|εk | > an x, |ε1| > an x) + P(|ε−k | > an x, |ε1| > an x)


= n

rn
k=m


P(|εk | > an x, |ε1| > an x) + P(|ε1| > an x, |εk+2| > an x)


≤ 2n

rn+2
k=m

P(|εk | > an x, |ε1| > an x).

The right hand side tends to zero as n → ∞ by Lemma 4.1. By Proposition 3.7 we have, as
n → ∞,

P


max
m≤|k|≤rn

|εk | > an x | |ε1| > an x


→ 0.

By Proposition 3.7 we have nP(∥I1∥ > (cn)1/α) → 1 as n → ∞, where

c =
aσα(1 − e−αb)

α3b2Γ (−α)
.

By Theorem 4.5 in [3] we have (4.2) with the Laplace functional E[e−η( f )
] given by

exp

−

1
E(G)


∞

0
E


1 − exp

− f


c1/αv,

c1/αv

1 + X0


G

d(−v−α)


.

This clearly coincides with (4.3). �

Based on the above theorem, we now study the convergence of some partial sums associated
with the sequence {Ik} defined by (3.3). To do so, let us introduce some notation. For any
B ∈ B(R+) define

U1,n(B) =

n
k=1

εk1B(|εk |), U2,n(B) =

n
k=1

εk

1 + Xk−1
1B

 εk

1 + Xk−1

. (4.4)

Then we define Ũ j,n(B) = U j,n(B) − E[U j,n(B)] for j = 1, 2.

Lemma 4.3. For any δ > 0 we have

lim
z→0

lim sup
n→∞

P

a−1

n |Ũ1,n(0, anz]| > δ


= 0.

Proof. Since E(εk) = E(εk |Fk−1) = 0, we have

a−1
n Ũ1,n(0, anz] = a−1

n

n
k=1

[εk1{|εk |≤an z} − E(εk1{|εk |≤an z})]

= a−1
n

n
k=1

[εk1{|εk |≤an z} − E(εk1{|εk |≤an z}|Fk−1)]

− a−1
n

n
k=1


E(εk1{|εk |>an z}|Fk−1) − E(εk1{|εk |>an z})


.
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Let J1 and J2 denote the two terms on the right-hand side. By Proposition 3.7 one can see that
ε2

1 is regularly varying with index α/2. Then by Proposition A.2 it follows that, as n → ∞,

Var(J1) = a−2
n

n
k=1

E


εk1{|εk |≤an z} − E(εk1{|εk |≤an z}|Fk−1)
2

≤ na−2
n E(ε2

11{|ε1|≤an z}) = na−2
n E(ε2

11
{ε2

1≤a2
n z2}) ∼ Cz2−α,

which goes to zero as z → 0. Now we discuss the asymptotics of J2. Observe that, for u >

γ x + ρ, we have |X1 − γ x − ρ| > u if and only if X1 > u + γ x + ρ. It follows that

uα−1Ex

|X1 − ε1|1{|ε1|>u}


= uα−1Ex


|γ x + ρ|1{|X1−γ x−ρ|>u}


= (γ x + ρ)uα−1Px (X1 > u + γ x + ρ).

Using Proposition 3.1 we see the right-hand side tends to zero uniformly in x ∈ [0, K ] as
u → ∞. By Proposition 3.2, we have

lim
u→∞

uα−1Ex

|ε1|1{|ε1|>u}


= lim

u→∞
uα−1Ex


ε11{|X1−γ x−ρ|>u}


= lim

u→∞
uα−1Ex [X11{X1>u+γ x+ρ}]

=
σα

(α − 1)Γ (−α)
(qα + pαx),

and the convergence is uniform in x ∈ [0, K ]. It follows that, as n → ∞, we have almost surely

a−1
n

n
k=1

1{Xk−1≤K }E

εk1{|εk |>an z}|Fk−1


= a−1

n

n
k=1

1{Xk−1≤K }EXk−1


ε11{|ε1|>an z}


=

σαz1−α

(α − 1)Γ (−α)n

n
k=1

1{Xk−1≤K }(qα + pα Xk−1) + o(1)

=
σαz1−α

(α − 1)Γ (−α)n

n
k=1

1{Xk−1≤K }(qα + pα Xk−1) + o(1)

=
σαz1−α

(α − 1)Γ (−α)
E

1{X0≤K }(qα + pα X0)


+ o(1), (4.5)

where the last equality holds from the ergodic theorem. Similarly, we have

na−1
n E


1{X0≤K }ε11{|ε1|>an z}


=

σαz1−α

(α − 1)Γ (−α)
E

1{X0≤K }(qα + pα X0)


+ o(1). (4.6)

Then (4.5) and (4.6) cancel asymptotically as n → ∞. Observe that

P(1{X0>K }|ε1| > u) = P

σ

 1

0
1{X0>K }e

−b(1−s) X1/α
s− d Zs > u


+ P


σ

 1

0
1{X0>K }e

−b(1−s) X1/α
s− d(−Zs) > u


.

By Remark A.7, as u → ∞,

P(1{X0>K }|ε1| > u) ∼ C(K )

P(Z1 > u) + P(−Z1 > u)


= C(K )u−α,
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where

C(K ) = σαE
 1

0
1{X0>K }e

−αb(1−s) Xsds


≤ C1E[1{X0>K }(1 + X0)].

Then, by Proposition A.2, as n → ∞,

a−1
n E

 n
k=1


1{Xk−1>K }E(|εk |1{|εk |>an z}|Fk−1) + E(1{Xk−1>K }|εk |1{|εk |>an z})


= 2a−1

n

n
k=1

E

1{Xk−1>K }|εk |1{1{Xk−1>K }|εk |>an z}


= a−1

n nE

1{X0>K }|ε1|1{1{X0>K }|ε1|>an z}


= C2nP


1{X0>K }|ε1| > anz


= C2C(K )z−α.

The right hand side goes to zero as K → ∞. That gives the desired result. �

Lemma 4.4. For any δ > 0 we have

lim
z→0

lim sup
n→∞

P

a−1

n |Ũ2,n(0, anz]| > δ


= 0.

Proof. It is simple to see that

uα−1Ex

 ε1

x + 1
1{|ε1|>(x+1)u}


=

[u(x + 1)]α−1

(x + 1)α
Ex [ε11{|ε1|>(x+1)u}],

where u(x + 1) > u and (x + 1)−α
≤ 1. Thus as u → ∞, uniformly for x ∈ [0, K ],

uα−1Ex

 ε1

x + 1
1{|ε1|>(x+1)u}


→

σα(qα + pαx)

(α − 1)Γ (−α)(x + 1)α
.

The remaining argument is similar to the proof of Lemma 4.3. �

Theorem 4.5. Let U1,n = U1,n(0, ∞) and U2,n = U2,n(0, ∞). Then for 1 < α ≤ 2 we have, as
n → ∞,

a−1
n (U1,n, U2,n)

d
−→(U1, U2) on R2,

where (U1, U2) is the α-stable random vector with characteristic function given by

E

exp{i(λ1U1 + λ2U2)}


= exp

σα

α
E


λ1 +
λ2

1 + X0

α
qα + pα X0


e−iπα/2


, (4.7)

and pα = pα(1) and qα = qα(1) are defined by (3.1).

Proof. A proof of the result in the Gaussian case (α = 2) was given in [25, p. 1106] for a more
general model, so we only consider the case 1 < α < 2. Fix z > 0 and λ = (λ1, λ2) ∈ R2 and
define the function on R2 by fλ,z(x1, x2) = λ1x11{|x1|>z} + λ2x21{|x2|>z}. Then we have

ηn( fλ,z) = a−1
n

2
j=1

λ jU j,n(anz, ∞).
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It is easy to see that the mapping from M(R2) into R defined by

N :=

∞
k=1

δ(x1,k ,x2,k ) → N ( fλ,z)

is a.s. continuous with respect to the distribution of the limit point process η in Proposition 4.2.

By the continuous mapping theorem, as n → ∞, we have ηn( fλ,z)
d

−→ η( fλ,z), and hence

E

exp


ia−1

n

2
j=1

λ jU j,n(anz, ∞)


= E

exp{iηn( fλ,z)}


→ E


exp(iη( fλ,z))


,

where the right-hand side is given by

exp


1
αΓ (−α)


∞

0
E


exp


iλ1 y1{y>z} +
iλ2 y1{y>z(1+X0)}

1 + X0


− 1


G
 dy

yα+1


.

By Propositions A.2 and 3.7, as n → ∞,

a−1
n E[U1,n(anz, ∞)] = na−1

n E(ε11{|ε1|>an z}) ∼
αnz

α − 1
P(|ε1| > anz)

∼
1

α(α − 1)Γ (−α)
E(G)z1−α

=
1

αΓ (−α)


∞

0
E(G)y1{y>z}

dy

yα+1 .

By Proposition A.2 and Remarks A.6 and A.7, as n → ∞,

a−1
n E[U2,n(anz, ∞)] = na−1

n E
 ε1

1 + X0
1 ε1

1+X0

>an z


∼
αnz

α − 1
P
 ε1

1 + X0

 > anz


∼
1

α(α − 1)Γ (−α)
E
 G

(1 + X0)α


z1−α

=
1

αΓ (−α)


∞

0
E
 G

(1 + X0)α


y1{y>z}

dy

yα+1 .

Consequently, for fixed z, as n → ∞,

E

exp


ia−1

n

2
j=1

λ j Ũ j,n(anz, ∞)


= E

exp{i η̃n( fλ,z)}


converges to

exp


1
αΓ (−α)


∞

0
E


exp


iλ1 y1{y>z} +
iλ2 y

1 + X0
1{y>z(1+X0)}


− 1

− iλ1 y1{y>z} −
iλ2 y

1 + X0
1{y>z(1+X0)}


G
 dy

yα+1


.
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As z → 0, the above quantity tends to

exp


1
αΓ (−α)


∞

0
E


e
iλ1 y+

iλ2 y
1+X0 − 1 − iλ1 y −

iλ2 y

1 + X0


G
 dy

yα+1


= exp


1

αΓ (−α)


∞

0


ei z

− 1 − i z

E


λ1 +
λ2

1 + X0

α

G
 dz

zα+1


.

By Corollary 14.11 of Sato [49] and (3.2) one can see this coincides with (4.7). Since E(U j,n) =

E[U j,n(0, ∞)] = 0, by the above calculations and Lemmas 4.3 and 4.4, first as n → ∞, then as
z → 0,

E

exp


ia−1

n

2
j=1

λ jU j,n


= E


exp


ia−1

n

2
j=1

λ j Ũ j,n(0, ∞)


converges to (4.7). That gives the desired result. �

Remark 4.6. The proof of the convergence of a−1
n (U1,n, U2,n) in the Gaussian case (α = 2)

given in [25] is based on the standard ergodic theory and the martingale convergence theorem.
The approach to the non-Gaussian case (1 < α < 2) given above is much more involved and
uses heavily the theory of regular variations and the convergence of point processes developed in
this and the last sections. The above theorem plays the key role in the proof of the limit theorem
of the WCLSEs.

Lemma 4.7. Let rn = [nδ
] with 0 < δ < 1. Then we have

lim
m→∞

lim sup
n→∞

nP


max
−rn≤k≤−m

∥Hk∥ > cn x, X0 > an x


= 0.

Proof. Since {(Hk, Xk) : k ∈ Z} is a stationary sequence, by (1.5), it is easy to see

nP


max
−rn≤k≤−m

∥Hk∥ > cn x, X0 > an x


= nP


max
m−rn≤k≤0

∥Hk∥ > cn x, Xm > an x


≤ nP


e−bm X0 + a
 m

0
e−b(m−s)ds > an x/2


+ nP


An, σ

 m

0
e−b(m−s) X1/α

s− d Zs

 > an x/2

,

where

An =


max

−rn≤k≤0
∥Hk∥ > cn x


.

By Proposition 3.10 it is easy to see that

lim
n→∞

P(An) = lim
n→∞

rn
k=0

P(∥H−k∥ > cn x)

= lim
n→∞

(rn + 1)P(∥H0∥ > cn x) = 0.

Then Lemma 3.5 implies that

lim
n→∞

nP


An, σ

 m

0
e−b(m−s) X1/α

s− d Zs

 > an x/2


= 0.
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From Proposition 3.3 it follows that

lim
n→∞

nP


e−bm X0 + a
 m

0
e−b(m−s)ds > an x/2


= Ce−αbm x−α,

which goes to zero as m → ∞. Then we have the desired result. �

Lemma 4.8. There exists δ ∈ (0, 1) so that for rn = [nδ
] we have

lim
m→∞

lim sup
n→∞

nP


max
m≤k≤rn

∥Hk∥ > cn x, X0 > an x


= 0.

Proof. Recall that X0 is regularly varying with index α. It is easy to see that

nP


max
m≤k≤rn

∥Hk∥ > cn x, X0 > an x


≤ n
rn

k=m

P(∥Hk∥ > cn x, X0 > an x)

≤ n
rn

k=m

P(∥H̄k − Hk∥ > cn x/2)

+ n
rn

k=m

P(∥H̄k∥ > cn x/2, X0 > an x).

Let J1 and J2 denote the two terms on the right-hand side. By Lemma 3.9, we can choose
rn = [nδ

] for sufficiently small δ ∈ (0, 1), and thus

lim sup
n→∞

J1 ≤ lim sup
n→∞

Cnrn

xr cr
n

E(∥H̄1 − H1∥
r )

≤ lim sup
n→∞

Cn1+δ

xr cr
n

E(∥H̄1 − H1∥
r ) = 0.

By Proposition A.2, we have

E[X01{X0>an x}] ∼
αan x

α − 1
P(X0 > an x) ∼ C(an x)1−α.

By Remark 3.8, we have E[|1 ∨ Vk |
α/(α+1)

] < ∞. Note that (X0, Xk−1) is independent of Vk
for k ≥ 2. Then for some constant δ ∈ (0, 1/α),

J2 ≤
2α/(α+1)n

an xα/(α+1)

rn
k=m

E

Xk−1|1 ∨ Vk |

α/(α+1)
; X0 > an x


≤

Cn

an xα/(α+1)

rn
k=m

E

|1 ∨ Vk |

α/(α+1)

E

1{X0>an x}EX0(Xk−1)


≤

Cn

an xα/(α+1)

rn
k=m

E


1{X0>an x}


X0e−b(k−1)

+ ab−1(1 − e−b(k−1))


≤
Cn

an xα/(α+1)
E[X01{X0>an x}]

rn
k=m

e−b(k−1)
+

Cnrn

an xα/(α+1)
P(X0 > an x).
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It follows that

lim sup
n→∞

J2 ≤
Cx1−α

xα/(α+1)

∞
k=m

e−b(k−1),

which goes to zero as m → ∞. �

Lemma 4.9. Let H̄k = X (α+1)/α

k−1 (1, Vk). Then there exists δ ∈ (0, 1) so that for rn = [nδ
] we

have

lim
m→∞

lim sup
n→∞

nP


max
m≤|k|≤rn

∥Hk∥ > cn x, ∥H̄1∥ > cn x


= 0.

Proof. For any K > 1, we have

nP


max
m≤|k|≤rn

∥Hk∥ > cn x, ∥H̄1∥ > cn x


≤ nP

X (α+1)/α

0 |V1|1{|V1|>K } > cn x/2


+ nP


max
m≤k≤rn

∥Hk∥ > cn x, K X (α+1)/α

0 > cn x/2


+ nP


max
−rn≤k≤−m

∥Hk∥ > cn x, K X (α+1)/α

0 > cn x/2

.

Observe that X (α+1)/α

0 is regularly varying with index α2/(α + 1). By Remark 3.8, we have
E[|V1|

b
] < ∞ for some b > α2/(α + 1). It follows from Breiman’s Lemma that

lim
n→∞

nP

X (α+1)/α

0 |V1|1{|V1|>K } > cn x/2


= lim
n→∞

nE(|V1|
α2/(α+1)1{|V1|>K })P(X (α+1)/α

0 > cn x/2)

= Cx−α2/(α+1)E(|V1|
α2/(α+1)1{|V1|>K }).

The right-hand side goes to zero as K → ∞. Then the result follows by Lemmas 4.7 and
4.8. �

Proposition 4.10. Let {V j } be defined by (3.13). Then we have, as n → ∞,

ξn :=

n
k=1

δc−1
n Hk

d
−→ ξ on M(R̄2

0), (4.8)

where ξ is a point process on R̄2
0 with Laplace functional E[e−ξ( f )

], f ∈ C+

0 (R̄2
0) given by

exp

−

aσα

α2b2Γ (−α)


∞

0
E


1 − exp

− f


y(α+1)/α(1, V1)


× E


exp


−

∞
j=2

f

y(α+1)/αe−b( j−1)(α+1)/α(1, V j )

 dy

yα+1


. (4.9)

Proof. By Remarks 3.11 and A.3, the sequence {Hk} satisfies the mixing condition A (an) with
rn = [nδ

] for any 0 < δ < 1. It is easy to see that

nP


max
m≤|k|≤rn

∥Hk∥ > cn x, ∥H1∥ > cn x


≤ nP

∥H̄1 − H1∥ > cn x/2


+ nP


max

m≤|k|≤rn
∥Hk∥ > cn x, ∥H̄1∥ > cn x/2


.
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By Lemma 3.9, we have E[∥Hk − H̄k∥
r
] < ∞ for some r > α2/(α + 1). Then Markov’s

inequality implies that

lim sup
n→∞

nP

∥H̄1 − H1∥ > cn x/2


≤ lim sup

n→∞

2r (cn x)−r E

∥H1 − H̄1∥

r 
= 0.

By Lemma 4.9 we have

lim
m→∞

lim sup
n→∞

nP


max
m≤|k|≤rn

∥Hk∥ > cn x, ∥H1∥ > cn x


= 0,

where rn = [nδ
] for some δ ∈ (0, 1). Let

h =
aσα

α3b2Γ (−α)
E[1 ∨ |V1|

α2/(α+1)
].

By Proposition 3.10 we have, as n → ∞,

nP{∥H1∥ > (hn)(α+1)/α2
} = nP{∥H1∥ > h(α+1)/α2

cn} → 1.

Observe also that

ξn( f ) =

n
k=1

f (c−1
n Hk) =

n
k=1

f (h(α+1)/α2
(h(α+1)/α2

cn)−1Hk).

Let 2i be defined as in Proposition 3.10. Then we can use Theorem 4.5 in [3] to obtain (4.8)
with E[e−ξ( f )

] given by

exp

−

1

E(1 ∨ |V1|
α2/(α+1))


∞

0
E

exp


−

∞
j=2

f (h(α+1)/α2
v2i )


×


1 − exp


− f (h(α+1)/α2

v21)


(1 ∨ |V1|
α2/(α+1))


d(−v−α2/(α+1))


= exp


−

aσα

α3b2Γ (−α)


∞

0
E

exp


−

∞
j=2

f (y(α+1)/α(1 ∨ |V1|)2i )


×


1 − exp


− f (y(α+1)/α(1 ∨ |V1|)21)


d(−y−α)


,

which can be rewritten as (4.9). �

From the above theorem, we can derive some limit theorem of partial sums associated with
the sequence {Hk} defined by (3.3). For B ∈ B(R+) define

S1,n(B) =

n
k=1

X2
k−11B(Xk−1), S2,n(B) =

n
k=1

Xk−1εk1B(|Xk−1εk |). (4.10)

Lemma 4.11. For any δ > 0 we have

lim
z→0

lim sup
n→∞

P

c−2

n |S1,n(0, cnz)| > δ


= 0.



3224 Z. Li, C. Ma / Stochastic Processes and their Applications 125 (2015) 3196–3233

Proof. By Theorem 3.6, it is easy to see that X2
0 is regularly varying with index α/2 < 1. Using

Proposition A.2 and Theorem 3.6, we have, as n → ∞,

E

c−2

n S1,n(0, cnz)


=
1

c2
n

n
k=1

E

X2

k−11{Xk−1<cn z}


∼
nαz2

2 − α
P(X0 > cnz) ∼ Cz2−α.

The right-hand side tends to zero as z → 0. Then we have the desired result. �

Lemma 4.12. Suppose that 1 < α < (1 +
√

5)/2. Then for any δ > 0 we have

lim
z→0

lim sup
n→∞

P

c−1

n |S2,n(0, cnz)| > δ


= 0.

Proof. By Proposition 3.10, we see X0ε1 is regularly varying with index α2/(α + 1). Under the
condition 1 < α < (1 +

√
5)/2, we have α2/(α + 1) < 1. By Propositions A.2 and 3.10, as

n → ∞,

E

c−1

n |S2,n(0, cnz)|


≤
1
cn

n
k=1

E

|Xk−1εk |1{|Xk−1εk |<cn z}


=

n

cn
E

|X0ε1|1{|X0ε1|<cn z}


∼

α2nz

α + 1 − α2 P(|X0ε1| > cnz) ∼ Cz1−α2/(α+1).

The right-hand side tends to zero as z → 0. That gives the result; see also [12, p. 896]. �

Theorem 4.13. Let V1 be defined by (3.13). Let S1,n = S1,n(0, ∞) and S2,n = S2,n(0, ∞). If
1 < α < (1 +

√
5)/2, then we have, as n → ∞,

(a−2
n S1,n, c−1

n S2,n)
d

−→(S1, S2) on R2,

where (S1, S2) has characteristic function E[exp{iλ1S1 + iλ2S2}] given by

exp

−

aσα

α2b2Γ (−α)


∞

0
E


1 − exp

iλ1 y2

+ iλ2 y(α+1)/αV1


× E

exp

 ie−2bλ1 y2

1 − e−2b
+

ie−b(α+1)/αλ2 y(α+1)/αV2

(1 − e−b(α+1))1/α

 dy

yα+1


. (4.11)

Proof. We first remark that the integral on the right-hand side of (4.11) is well-defined. In fact,
by Remarks A.6 and 3.8, we have, as x → ∞,

P(V1 ≥ x) ∼ C1x−α
+ o(x−α), P(V1 ≤ −x) = o(x−α).

By Theorems 8.1.10 and 8.1.11 in [4], we have, as λ → 0,

E[1 − cos(λV1)] ∼ C2λ
α

+ o(λα), E[sin(λV1)] ∼ C3λ
α

+ o(λα).

It follows that E(1 − eiλV1) = E(1 − eiλV2) ∼ cλα as λ → 0. Then the integral in (4.11)
converges. Fix any λ = (λ1, λ2) ∈ R2 and z > 0, define the function on R+ × R by

gλ,z(x1, x2) = λ1x2α/(α+1)

1 1{x1>z(α+1)/α} + λ2x21{|x2|>z}.

It is easy to check that

ξn(gλ,z) :=


R+×R

gλ,zdξn = λ1a−2
n S1,n(anz, ∞) + λ2c−1

n S2,n(cnz, ∞).
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On the other hand, one can see the mapping from M(R̄2
0) into R defined by

N :=

∞
k=1

δ(x1,k ,x2,k ) → N (gλ,z) :=


R+×R

gλ,zd N

is a.s. continuous with respect to distribution of the limit process ξ in Proposition 4.10. By the

continuous mapping theorem, as n → ∞, we have ξn(gλ,z)
d

−→ ξ(gλ,z), and hence

E[exp(iξn(gλ,z))] → E[exp(iξ(gλ,z))],

where the right hand side is equal to

exp

−

aσα

α2b2Γ (−α)


∞

0
E

exp


iλ1 y2

∞
j=2

e−2b( j−1)1{ye−b( j−1)>z}


× exp


iλ2 y(α+1)/α

∞
j=2

e−b( j−1)(α+1)/αV j 1{|e−b( j−1)(α+1)/αV j |>z}


× E


1 − exp{iλ1 y2

+ iλ2 y(α+1)/αV1}

 dy

yα+1


.

Then we can use dominated convergence theorem to see that, as z → 0, the above quantity goes
to

exp

−

aσα

α2b2Γ (−α)


∞

0
E


1 − exp{iλ1 y2
+ iλ2 y(α+1)/αV1}


× E


exp


i

∞
j=2


λ1 y2e−2b( j−1)

+ λ2 y(α+1)/αe−b( j−1)(α+1)/αV j
 dy

yα+1


.

Since the sequence {V1, V2, . . .} is i.i.d., the above quantity is equal to (4.11). Note that E(V1)

= 0. Then the theorem follows by Lemmas 4.11 and 4.12. �

5. Asymptotics of the estimators

In this section, we investigate the asymptotics of the estimators for the SCIR-model. The
results are presented in a number of theorems. Let us consider a stationary càdlàg realization
{X t : t ∈ R} of the SCIR-model with one-dimensional marginal distribution µ given by (2.16).
In fact, we shall first study the asymptotics of the estimators of the parameters (γ, ρ) defined in
(1.4). Their CLSEs can be obtained by minimizing the sum of squares in (1.8). They are given
by

γ̂n =

n
k=1

Xk−1

n
k=1

Xk − n
n

k=1
Xk−1 Xk n

k=1
Xk−1

2
− n

n
k=1

X2
k−1

(5.1)

and

ρ̂n =
1
n

 n
k=1

Xk − γ̂n

n
k=1

Xk−1


. (5.2)
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By minimizing the weighted sum in (1.11), we obtain the WCLSEs of the parameters:

γ̃n =

n
k=1

Xk

n
k=1

1
Xk−1+1 − n

n
k=1

Xk
Xk−1+1

n
k=1

(Xk−1 + 1)
n

k=1

1
Xk−1+1 − n2

(5.3)

and

ρ̃n =
1
n

 n
k=1

Xk − γ̃n

n
k=1

Xk−1


. (5.4)

In view of Proposition 2.3 and the above expressions, in the discussions of the above estimators
it suffices to consider a stationary realization {X t : t ≥ 0} of the SCIR-model.

Lemma 5.1. We have, as n → ∞,

1
n

n
k=1

Xk
a.s.
−→

a

b
,

1
n

n
k=1

1
1 + Xk−1

a.s.
−→ λ, (5.5)

and

1
n

n
k=1

Xk

Xk−1 + 1
a.s.
−→ ρλ + γ (1 − λ), (5.6)

where

λ = E
 1

1 + X0


.

Proof. By Theorem 2.5, the process {X t } is exponentially ergodic and thus strongly mixing, so
the tail σ -algebra of the process is trivial; see, e.g., [18, p. 351]. Recall that E(X0) = a/b. In
view of (1.6), we have

E
 X1

1 + X0


= ρE

 1
1 + X0


+ γ E

 X0

1 + X0


= ρλ + γ (1 − λ).

Then the result follows by Birkhoff’s ergodic theorem; see, e.g., [18, p. 341]. �

Proposition 5.2. The estimators (ρ̃n, γ̃n) are strongly consistent and, as n → ∞, n(α−1)/α

γ̃n −

γ, ρ̃n − ρ


converges in distribution to

κ−1(U1, U2)


λ λ − 1
−1 ab−1


= κ−1λU1 − U2, (λ − 1)U1 + ab−1U2


,

where κ = (1 + ab−1)λ − 1 and (U1, U2) is an α-stable random vector with characteristic
function given by (4.7).

Proof. In view of (5.3) and (5.4), the results of Lemma 5.1 imply that

γ̃n
a.s.
−→

ab−1λ − ρλ − γ (1 − λ)

(1 + ab−1)λ − 1
=

ab−1γ λ − γ (1 − λ)

(1 + ab−1)λ − 1
= γ
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and

ρ̃n
a.s.
−→

a

b
(1 − γ ) = ρ.

Those give the strong consistency of ρ̃n and γ̃n . A simple calculation based on (1.6), (5.3) and
(5.4) shows that

n(α−1)/α

γ̃n − γ, ρ̃n − ρ


= κ−1

n UnBn,

where

κn =
1

n2

n
k=1

(Xk−1 + 1)

n
k=1

1
Xk−1 + 1

− 1,

Bn =
1
n


n

k=1

1
Xk−1 + 1

−

n
k=1

Xk−1

Xk−1 + 1

−n
n

k=1

Xk−1

 ,

and

Un =
1

n1/α

 n
k=1

εk,

n
k=1

εk

Xk−1 + 1


.

From (5.5) it follows that κn
a.s.
−→ κ and

Bn
a.s.
−→ B :=


λ λ − 1

−1 ab−1


.

By Theorem 4.5, we have Un
d

−→(U1, U2). Then we have the desired convergence. �

Theorem 5.3. The estimators (b̃n, ãn) are strongly consistent and as n → ∞, n(α−1)/α(b̃n −

b, ãn − a) converges in distribution to

κ−1eb(U2 − λU1), (1 − e−b)−1
[aλ + b(λ − 1)]U1 + ab−1eb(U2 − λU1)


,

where κ = (1 + ab−1)λ − 1 and (U1, U2) is an α-stable random vector with characteristic
function given by (4.7).

Proof. The strong consistency of b̃n and ãn follows from that of ρ̃n and γ̃n . By the relations in
(1.4), we have, as n → ∞,

(γ̃n − γ ) = e−b̃n − e−b
= −(b̃n − b)e−b

+ o(b̃n − b) (5.7)

and

ãn − a =
ρ̃n b̃n

1 − e−b̃n
−

ρb

1 − e−b =
ρ̃n b̃n(1 − e−b) − ρb(1 − e−b̃n )

(1 − e−b̃n )(1 − e−b)

=
b(ρ̃n − ρ)

1 − e−b −
aeb(γ̃n − γ )

b
+

a(γ̃n − γ )

1 − e−b + o(b̃n − b). (5.8)

Then the desired convergence follows from Proposition 5.2. �
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Proposition 5.4. The estimators (ρ̂n, γ̂n) are weakly consistent. Moreover, if 1 < α < (1 +√
5)/2, then, as n → ∞,

n(α−1)/α2
(γ̂n − γ, ρ̂n − ρ)

d
−→ S−1

1 S2(1, −ab−1), (5.9)

where (S1, S2) has characteristic function given by (4.11).

Proof. By (1.6) and (5.1) we have

γ̂n − γ =

n
k=1

Xk−1

n
k=1

εk − n
n

k=1
Xk−1εk n

k=1
Xk−1

2
− n

n
k=1

X2
k−1

.

Then using (5.2) we get

ρ̂n − ρ =

n
k=1

Xk−1

n
k=1

Xk−1εk −

n
k=1

X2
k−1

n
k=1

εk n
k=1

Xk−1
2

− n
n

k=1
X2

k−1

.

By Theorem 4.13 it is easy to see that

n
k=1

Xk−1εk

n
k=1

X2
k−1

p
−→ 0.

Then we have ρ̂n −ρ
p

−→ 0 and γ̂n −γ
p

−→ 0, giving the weak consistency of (ρ̂n, γ̂n). Take any
constant 0 < δ < [1 ∧ (α − 1)2

]/α2. From the above relations it follows that

n(α−1)/α2
γ̂n − γ, ρ̂n − ρ


= T −1

n SnAn,

where

Tn =
1

n1+2/α

 n
k=1

Xk−1

2
−

1

n2/α

n
k=1

X2
k−1,

An =

 1

n1+1/α2−δ

n
k=1

Xk−1 −
1

n1+1/α2−δ

n
k=1

X2
k−1

−1
1
n

n
k=1

Xk−1


,

and

Sn =


1

n1/α+δ

n
k=1

εk,
1

n(α+1)/α2

n
k=1

Xk−1εk


.
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If α2 < α + 1, by (5.5) and Theorem 4.13, we have Tn
d

−→ −S1 and

An
d

−→ A :=


0 0

−1 ab−1


.

By Theorems 4.5 and 4.13 we have Sn
d

−→(0, S2). Then (5.9) holds. �

Theorem 5.5. The estimators (b̂n, ân) are weakly consistent. Moreover, if 1 < α < (1+
√

5)/2,
then, as n → ∞,

n(α−1)/α2
(b̂n − b, ân − a)

d
−→ −eb(1, ab−1)S−1

1 S2,

where (S1, S2) has the characteristic function given by (4.11).

Proof. The weak consistency of b̂n and ân follows from that of ρ̂n and γ̂n . The relations (5.7)
and (5.8) still hold when the “checks” are replaced by “hats”. Then the desired result follows
from Proposition 5.4. �

Remark 5.6. By the results of Huang et al. [25], Overbeck and Rydén [40] and Wei and Winnicki
[52], for CBI-processes or GWI-processes with finite variance the sequences (b̂n −b, ân −a) and
(b̃n −b, ãn −a) have the same magnitude

√
n and they both have Gaussian limit distributions. In

other words, for those models the WCLSEs are not much more efficient than the CLSEs. On the
other hand, by Theorems 5.3 and 5.5, the sequence (b̃n −b, ãn −a) has convergence rate n(α−1)/α

while the sequence (b̂n − b, ân − a) has rate n(α−1)/α2
for 1 < α < (1 +

√
5)/2. Then the SCIR-

model provides an example whose WCLSEs are more efficient than the CLSEs with different
convergence rates. It is somewhat unfortunate that our approach to the central limit theorem of
the CLSEs only works for 1 < α < (1 +

√
5)/2. Since (4.11) does not define a characteristic

function otherwise, it seems the restriction cannot be removed by a simple modification of the
approach.
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Appendix

In this last section, we review some concepts and technical results on regularly varying
stochastic processes, which have been used in the preceding proofs. Most of the results can
be found in [1,3,26,27,44,46]. The reader may also refer to Samorodnitsky and Grigoriu [48] for
results on the tail behavior of solutions to certain stochastic differential equations driven by Lévy
processes. Let “| · |” be any norm on Rd .

Definition A.1. A d-dimensional random vector X is said to be regularly varying if there exists
a Radon measure η on Rd , finite on sets of the form {x ∈ Rd

: |x | ≥ r}, and a sequence {an}
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satisfying an → ∞ such that, as n → ∞,

nP(a−1
n X ∈ ·)

v
−→ η(·). (A.1)

The above sequential form of the condition is the same as saying there exists a (necessarily
regularly varying) function t → g(t) such that, as n → ∞,

g(t)P(t−1X ∈ ·)
v

−→ η(·).

It is known that the condition implies the existence of a constant α > 0 such that η(r A) =

r−αη(A) for all r > 0 and all A ∈ B(Rd) bounded away from 0, where r A = {r x : x ∈ A}. In
this case, we say X is regularly varying with index α > 0.

The next proposition follows immediately from Karamata’s theorem; see, e.g., [46, pp. 25
and 36].

Proposition A.2. Let ξ be a positive regularly varying random variable with index α > 0. Then
we have:

(i) If α > 1, then as x → ∞,

E(ξ1{ξ>x}) ∼
α

α − 1
xP(ξ > x).

(ii) If 0 < α < 1, then as x → ∞,

E(ξ1{ξ<x}) ∼
α

1 − α
xP(ξ > x).

Remark A.3. Suppose that {Yk} is a stationary sequence of regularly varying random vectors.
Let {an} be taken such that nP(|Y0| > an) → 1 as n → ∞. By Lemma 2.3.9 of Basrak [1],
the strong mixing condition implies the mixing condition A (an), i.e. there exists a sequence of
non-negative integers rn such that rn → ∞, ln = [n/rn] → ∞ as n → ∞ and

E exp

−

n
k=1

f (Yk/an)


−


E exp


−

rn
k=1

f (Yk/an)
ln

→ 0

for every f ∈ C+

0 (R̄0). See also Section 3.4.3 of Basrak et al. [2] for similar arguments. In fact, it
was pointed out in Remark 2.3.10 of Basrak [1] that we can choose rn = [nδ

] for any 0 < δ < 1
if {Yk} is strongly mixing with geometric rate.

Definition A.4. A sequence of random variables {Xk : k ∈ Z} in Rd is called jointly regularly
varying if all the vectors of the form (X1, . . . , Xl) are regularly varying.

The concept of regular variations can also be defined for continuous time stochastic processes.
Let T ≥ 0 and let Dd

[0, T ] := D([0, T ], Rd) be the space of all Rd -valued càdlàg functions
on [0, T ] equipped with Skorokhod topology; see [18, p. 353]. In the sequel, we use the norm
∥x∥ := maxi |xi | for x = (x1, . . . , xd) ∈ Rd . Let

Sd
[0, T ] =


y ∈ Dd

[0, T ] : sup
0≤t≤T

∥yt∥ = 1

.

Definition A.5. A stochastic process Y = {Yt : 0 ≤ t ≤ T } with sample path in Dd
[0, T ] is

said to be regularly varying if there exist a measure Q on Dd
[0, T ], finite on sets bounded away
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from 0, and a sequence {an} satisfying an → ∞ such that for any set B ∈ B(Dd
[0, T ]) bounded

away from 0 with Q(∂ B) = 0, as n → ∞,

nP(a−1
n Y ∈ B) → Q(B).

The above property implies there is a constant α > 0 such that Q(u B) = u−α Q(B) for all u > 0
and all B ∈ B(Dd

[0, T ]) bounded away from 0. In this situation, we say Y is regularly varying
with index α > 0.

The convergence in the above definition can be formulated for general boundedly finite mea-

sures on D̄d
0 [0, T ] = (0, ∞] × Sd

[0, T ]. We shall denote the convergence by “
ŵ

−→”. The reader
may refer to Hult and Lindskog [26] for more details.

Remark A.6. Let 0 < α < 2 and let {Z t : t ≥ 0} be a one-dimensional α-stable process with
Lévy measure ν(dz). It follows from Lemma 2.1 of Hult and Lindskog [27] that, as n → ∞,

nP(n−1/α Z t ∈ ·)
v

−→ tν(·).

Remark A.7. Let 0 < α < 2 and T ≥ 1. Suppose that {Z t : 0 ≤ t ≤ T } is a one-dimensional
Lévy process such that X = Z1 satisfies (A.1) with η(z, ∞) = cz−α for some c > 0. Let
{Yt : 0 ≤ t ≤ T } be a non-negative predictable càglàd process satisfying sup0≤t≤T Yt > 0
a.s. and E[sup0≤t≤T Y α+δ

t ] < ∞ for some δ > 0. By Theorem 3.4 and Example 3.1 in [27], for
any z > 0 and 0 ≤ t ≤ T , we have, as n → ∞,

nP


a−1
n

 t

0
Ys−d Zs > z


→ η(z, ∞)

 t

0
E(Y α

s )ds = cz−α

 t

0
E(Y α

s )ds.

Remark A.8. Suppose that {Z t } is an α-stable Lévy process with 0 < α ≤ 2 and {y(t)} is a
predictable process satisfying, a.s., T

0
|y(t)|αdt < ∞, T ≥ 0.

It was proved in [35, p. 649] that for any 0 < r < α there exists a constant C = C(r, α) ≥ 0
such that

E

sup
t≤T

 t

0
y(s)d Zs

r ≤ CE
 T

0
|y(t)|αdt

r/α
.

The above result can be regarded as a generalization of Theorem 3.2 of Rosinski and
Woyczynski [47], where the symmetric case was considered.
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