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Abstract

The aim of this paper is to consider reversible random walk in a random environment in one dimension
and prove the Einstein relation for this model. It says that the derivative at 0 of the effective velocity under
an additional local drift equals the diffusivity of the model without drift (Theorem 1.2). Our method here is
very simple: we solve the Poisson equation (Pω − I )g = f and then use the pointwise ergodic theorem in
Wiener (1939) [10] to treat the limit of the solutions to obtain the desired result. There are analogous results
for Markov processes with discrete space and for diffusions in random environment.
c⃝ 2015 Elsevier B.V. All rights reserved.

MSC: 60J15; 60F05; 60J27

Keywords: Einstein relation; Random walk; Random environment

1. Introduction

The definition of a Random walk in Random environment involves two ingredients: The
environment which is randomly chosen but remains fixed throughout the time evolution; and the
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random walk whose transition probabilities are determined by the environment. Let (Ω , A, P)

be a probability space. The space Ω is interpreted as the space of environments. For each ω ∈ Ω ,
we define the random walk in the environment ω as the (time-homogeneous) Markov chain
{Xn, n = 0, 1, 2, . . .} on Zd with certain (random) transition probabilities

p(ω, x, y) = Pω{X1 = y|X0 = x},

where the probability measure Pω determines the distribution of the random walk in a given
environment ω. In the case that the random walk has the initial condition X0 = x ,

Px
ω{X0 = x} = 1.

The probability measure Px
ω, which denotes the distribution of the random walk in a given

environment ω with the initial position of the walk at x , is referred to as the Quenched law.
By averaging the Quenched probability Px

ω further, with respect to the environment distribu-
tion, we obtain the Annealed measure Px

= P × Px
ω, which determines the probability law of the

random walk in random environment

Px (A) =


Ω

Px
ω(A)P(dω) = E


Px

ω(A)

.

For more information on the random walk in random environment, the reader can refer to [1–3,
6,9,11].

We now consider again the model for the random walk in random environment as in [3]. Let
(Ω , A, µ) be a probability space and T be an invertible measure preserving transformation on Ω
which is ergodic. More precisely, T acts on Ω by

T : Ω × Z −→ Ω

(ω, k) −→ T kω,

which is jointly measurable and satisfies

– For any k, h ∈ Z : T k+h
= T k T h and T 0ω = ω,

– T preserves the measure µ : µ(T k A) = µ(A) for any k ∈ Z,
– T is ergodic: If, for all A ∈ A, T k A = A (up to null sets) for all k ∈ Z then µ(A) = 0 or 1.

On the lattice Z we assume that the conductivity of the edge between {k, k + 1} is equal to
c(T kω), where c is a positive measurable function on Ω . Fix ω ∈ Ω , we consider a random walk
(Xn)n≥0 on Z with X0 = 0 and with a transition probability p(ω, k, h) which is given by

p(ω; k, k + 1) = P0
ω{Xn+1 = k + 1|Xn = k} = c(T kω)/c̄(T kω),

p(ω; k, k − 1) = P0
ω{Xn+1 = k − 1|Xn = k} = c(T k−1ω)/c̄(T kω),

where c̄ = c + c ◦ T −1. The random walk is reversible since for all adjacent vertices x, y in Z we
have c̄(T xω)p(ω; x, y) = c̄(T yω)p(ω; y, x). The corresponding Markov operator f −→ Pω f
is defined by

Pω f (k) =
1

c̄(T kω)


c(T k−1ω) f (k − 1) + c(T kω) f (k + 1)


.

When c is integrable, but c−1 is not, Y. Derriennic and M. Lin have proved, in an unpublished
work, the Annealed Limit Theorem: limn→+∞ n−1Eω(X2

n) = 0 in µ-measure, where Eω denotes
the expectation relative to the randomness of the walk, the environment being fixed. For the
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Quenched version, recently in [3] J. Depauw and J.-M. Derrien considered a non negative
solution f , defined on Z, of the Poisson equation (Pω − I ) f = 1 with f (0) = 0 in order to
obtain the limit of the variance of the reversible random walk (Xn)n≥0. That is,

Theorem 1.1 (Depauw and Derrien, [3]). For almost all environments ω,

lim
n→+∞

Eω


X2

n

n


=


1
c

dµ


c dµ

−1

. (1)

This limit is null if at least one of the integrals is +∞ and it is denoted by σ 2.

In [7], H.-C. Lam then generalized Theorem 1.1 and established the Quenched Central Limit
Theorem. Their proofs do not involve a martingale construction and c is only required to be
positive. In the case when at least one of c and c−1 is not integrable, limn→+∞ n−1Eω(X2

n) = 0
and Xn/

√
n converges to 0 as n → +∞.

In the sequel, we will study the following model. Fixed environment ω ∈ Ω and fixed number
λ ≠ 0, the conductances of the edges [k, k + 1] are equal to eλc(T kω). The number λ is called
the “drift” of the model. We consider a random walk (Xn)n≥0 on Z with X0 = 0 and the
corresponding Markov operator f −→ Pλ,ω f which is defined by

Pλ,ω f (k) =
1

π(T kω)


e−λc(T k−1ω) f (k − 1) + eλc(T kω) f (k + 1)


,

where π = eλc + e−λc ◦ T −1. Eλ,ω will denote the expectation relative to the space (Ω , µ),
the environment being fixed in the case λ ≠ 0. The aim of the present paper is to prove the
Quenched Einstein relation for the last model with the drift λ. It is adapted from J. Depauw
and J.-M. Derrien [3]. For the Einstein relation, the reader can refer to [4,5,8]. The following
definitions can be found in [4].

Definition 1.1. The Quenched diffusivity of a random walk Xn without drift is defined by

κ = lim
n→+∞

Eω


X2

n

n


.

Remark 1.1. When the model is without drift λ = 0, from (1) for almost all environment ω we
have κ = σ 2 if c and c−1

∈ L1(µ), and κ = 0 if not.

Definition 1.2. The Quenched effective drift of Xn is defined by

dω(λ) = lim
n→+∞

Eλ,ω


Xn

n


.

Remark 1.2. When the model is without drift λ = 0, then dω(0) = 0.

We now state our main theorem which is a version of the Einstein relation.

Theorem 1.2 (Einstein Relation). For almost all environment ω, the function λ −→ dω(λ) has
a derivative at λ = 0 which satisfies

lim
λ→0

dω(λ)

λ
= κ = σ 2, (2)

if c ∈ L p(µ) and c−1
∈ Lq(µ) with p, q ∈ [1, +∞] such that 1/p + 1/q = 1.
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For the L p-integrability assumptions (p ≥ 1) our model works without using either of the
classical assumptions of uniform ellipticity and independence on the conductances. They are
used for proving Hλ/c ∈ L1(µ) where Hλ is defined as in (10). We can then apply successfully
the pointwise ergodic theorem in Wiener [10] for the function Hλ/c to obtain dω(λ). This is the
key to the proof of Theorem 1.2. However we do not know if it works for the case where at least
one of c and c−1 is not integrable! We will see in the proof of this theorem that dω(λ) is defined
a.s and does not depend on ω. So, it will be denoted by d(λ) in the sequel.

Remark 1.3. The Einstein relation for reversible diffusions in random environment is discussed
in a recent paper of Gantert, Mathieu, Piatnitski [4]. This paper is in Rd but assumes uniform
ellipticity of the diffusion coefficients, boundedness of the drift and finite range dependence.

This paper is organized as follows. We will prove Theorem 1.2 in Section 2. In Section 3 there
is an analogue to a Markov process with continuous time and discrete space, and the diffusion in
random environment.

2. Proof of Theorem 1.2

Our method here is adapted from [3]. Fix ω ∈ Ω , we first consider the Poisson equation on Z
(Pλ,ω − I ) f ≡ 1,

f (0) = 0.

This equation has a particular solution f which depends on λ and it will be denoted by fλ. By
the definition of Pλ,ω one has Eλ,ω{ fλ(Xn)} = n for any n ≥ 0. Furthermore, if the limit of
fλ(m)/m exists and finite for a.a ω then we can treat the limit of Eλ,ω{Xn}/n to obtain d(λ)

as in [3]. Theorem 1.2 will be proved by Propositions 2.1 and 2.3. We begin with the following
elementary lemmas.

Lemma 2.1. Let un and vn be two sequences of positive real numbers. Assume that limn→+∞

n−1n
ℓ=1 uℓ = u and limn→+∞ vn = v then for each α = 0, 1, . . .

lim
n→+∞

1

nα+1

n
ℓ=1

ℓαuℓvℓ =
uv

α + 1
. (3)

Proof. Firstly, we prove the case α = 0, we will show that

lim
n→+∞

1
n

n
ℓ=1

uℓvℓ = uv. (4)

For any ε > 0 the inequalities1n
n

ℓ=1

uℓvℓ − uv

 ≤

1n
n

ℓ=1

uℓ(vℓ − v)

+
1n

n
ℓ=1

(uℓ − u)v


≤

1
n

n
ℓ=1

uℓ |vℓ − v| + v

1n
n

ℓ=1

uℓ − u

 < ε

hold for all large enough n which completes (4).
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Now assume that (3) is true for α ≥ 0, we claim that it holds also for α + 1 that is

lim
n→+∞

1

nα+2

n
ℓ=1

ℓα+1uℓvℓ =
uv

α + 2
. (5)

Put Wn =
n

ℓ=1 ℓαuℓvℓ, using summation by parts formula

1

nα+2

n
ℓ=1

ℓα+1uℓvℓ = −
1

nα+2

n−1
ℓ=1

Wℓ +
1

nα+1 Wn = −I1 + I2.

By the assumption limn→+∞ I2 = limn→+∞ Wn/nα+1
= uv/(α + 1), and then for any ε > 0

the inequalitiesI1 −
uv

(α + 1)(α + 2)

 ≤
1

nα+2

n−1
ℓ=1

ℓα+1
 Wℓ

ℓα+1 −
uv

α + 1


+

 1

nα+2

n−1
ℓ=1

ℓα+1
−

1
α + 2

 uv

α + 1
< ε

hold for all large enough n. So,

lim
n→+∞

1

nα+2

n
ℓ=1

ℓα+1uℓvℓ = −
uv

(α + 1)(α + 2)
+

uv

α + 1
=

uv

α + 2

which completes (5). �

Lemma 2.2. Let (an)n≥0 be a sequence of positive real numbers and let An be a partial sum
An =

n
i=0 ai . Assume that limn→∞ An/n = L then

+∞
ℓ=0

aℓℓρ
ℓ < +∞ (6)

where 0 < ρ < 1. Furthermore

lim
ρ→1−

(1 − ρ)

+∞
ℓ=0

aℓρ
ℓ

= L . (7)

Proof. Using summation by parts formula

n
ℓ=0

aℓℓρ
ℓ

= (1 − ρ)

n−1
ℓ=0

Aℓℓρ
ℓ
−

n−1
ℓ=0

Aℓρ
ℓ+1

+ Annρn .

Since limn→∞ An/n = L then limn→∞ Annρn
= 0,


+∞

ℓ=0 Aℓℓρ
ℓ and


+∞

ℓ=0 Aℓρ
ℓ+1 converge

by the D’Alembert criterion, which completes (6).
Eq. (7) means that the existence of Cesaro means implies the existence of Abel means. We

recall the proof of the classical result. We have

(1 − ρ)

+∞
ℓ=0

aℓρ
ℓ
− L = (1 − ρ)2

∞
ℓ=0


Aℓ

ℓ
−

1
ρ

L


ℓρℓ. (8)
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For any ε > 0 there exists N > 0 such that for any n ≥ N one has |An/n − L| < ε and
limn→∞ Anρn

= 0. Then the absolute value of the right hand side of (8) is bounded by

(1 − ρ)2
N−1
ℓ=0

 Aℓ

ℓ
−

1
ρ

L

 ℓρℓ
+ (1 − ρ)L + ε

which completes (7). �

Proposition 2.1. For almost all environment ω and for λ > 0 we have

lim
λ→0+

d(λ)

λ
= lim

λ→0+

1
λ


lim

n→+∞
Eλ,ω


Xn

n


= σ 2.

Proof. Fix ω ∈ Ω we consider a function fλ, defined on Z, such that (Pλ,ω − I ) fλ ≡ 1 and
fλ(0) = 0. For example, we can take

fλ(m) =



m−1
ℓ=0

1

c(T ℓω)e2ℓλ

ℓ
s=−∞

π(T sω)e(2s−1)λ, if m ≥ 1

0, if m = 0

−

−m
ℓ=1

1
c(T −ℓω)

e2ℓλ
−ℓ

s=−∞

π(T sω)e(2s−1)λ, if m ≤ −1.

Replacing m by Xn and taking the expectation, one has

Eλ,ω { fλ(Xn)} = n ∀n ≥ 0. (9)

The formula (9) can be rewritten as

Eλ,ω


fλ(Xn)

Xn
×

Xn

n


= 1.

We will see that the limit of fλ(m)/m exists as m → ∞ and then, as Xn → ∞ as n → +∞, the
limit of Eλ,ω {Xn/n} will exist as n → +∞.

In the next step we will compute the limit of fλ(m)/m. The pointwise ergodic theorem is a
limiting statement n−1n−1

k=0 π(T −kω) =

Ω π dµ. For the rest of this section we assume that

ρ = e−2λ. If we put

Hλ(ω) =
√

ρ

+∞
k=0

π(T −kω)ρk (10)

then Lemma 2.2 ensures that Hλ(ω) is finite and one has also

lim
λ→0+

(1 − e−2λ)Hλ(ω) = lim
ρ→1−

(1 − ρ)Hλ(ω) =


Ω

π dµ. (11)

Lemma 2.3. With the function fλ defined as above, we have

lim
m→±∞

fλ(m)

m
=


Ω

Hλ

c
dµ.

This limit is strictly positive and it is denoted by Lλ.
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Proof. We will prove this for m > 0, the other case is left to the reader. By the definition of
function fλ one has

fλ(m) =

m−1
ℓ=0

ρℓ

c(T ℓω)

√
ρ

ℓ
s=−∞

π(T sω)ρ−s
=

m−1
ℓ=0

1
c(T ℓω)

√
ρ

ℓ
s=−∞

π(T sω)ρℓ−s .

Since T s
= T s−ℓ

◦ T ℓ one has

fλ(m) =

m−1
ℓ=0

1
c(T ℓω)


√

ρ

ℓ
s=−∞

π(T s−ℓω)ρℓ−s


◦ T ℓ.

Replacing ℓ − s by k one obtains

fλ(m) =

m−1
ℓ=0

1
c(T ℓω)


√

ρ

+∞
k=0

π(T −kω)ρk


◦ T ℓ

=

m−1
ℓ=0

Hλ

c
◦ T ℓ(ω).

By hypothesis c ∈ L p(µ) we have π ∈ L p(µ). Using Holder’s inequality one can show that
Hλ ∈ L p(µ). Again, using Holder’s inequality and the hypothesis that 1/c ∈ Lq(µ) we conclude
that Hλ/c ∈ L1(µ). The proof of Lemma 2.3 is thus complete by using the pointwise ergodic
theorem for the function Hλ/c. �

From Lemma 2.3 for any ε > 0 there exists M > 0 such that for any |m| > M then 1
Lλ

fλ(m)

m
− 1

 < ε. (12)

We now combine (9) and (12) to compute the limit of Eλ,ω {Xn/n}. If we decompose Ω =

{|Xn| ≤ M} ∪ {|Xn| > M} then the inequalitiesEλ,ω


Xn

n


−

1
Lλ

 ≤
1
n

Eλ,ω

Xn −
fλ(Xn)

Lλ

 1{|Xn |≤M}


+ Eλ,ω

1 −
1

Lλ

fλ(Xn)

Xn

 |Xn|

n
1{|Xn |>M}



< ε + ε


Eλ,ω


X2

n

n2


(13)

hold for all large enough n. We see that if Eλ,ω


X2

n/n2


is bounded then the limit of Eλ,ω {Xn/n}

is equal to 1/Lλ.

Proposition 2.2. For almost all environment ω and for λ > 0 we have

lim
n→+∞

Eλ,ω


X2

n

n2


=

1

L2
λ

. (14)
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Proof. Again, fix ω ∈ Ω we consider a function gλ ≥ 0, defined on Z, such that (Pλ,ω − I )gλ ≡

fλ and gλ(0) = 0. For example, we can take

gλ(m) =



m−1
ℓ=0

1

c(T ℓω)e2ℓλ

ℓ
s=−∞

π(T sω)e(2s−1)λ fλ(s), if m ≥ 1

0, if m = 0

−

−m
ℓ=1

1
c(T −ℓω)

e2ℓλ
−ℓ

s=−∞

π(T sω)e(2s−1)λ fλ(s), if m ≤ −1

then (Pλ,ω − I )gλ(m) = fλ(m) for any m ∈ Z. Replacing m by Xn and taking the expectation,
one has

Eλ,ω {gλ(Xn)} =
n(n − 1)

2
, ∀n ≥ 0. (15)

The formula (15) can be rewritten as

Eλ,ω


gλ(Xn)

X2
n

×
X2

n

n2


∼

1
2
,

where f ∼ g means limn→+∞ f (n)/g(n) = 1. We will see also that the limit of gλ(m)/m2

exists as m → ∞ and then, as Xn → ∞ as n → +∞, the limit of Eλ,ω


X2

n/n2


will exist as
n → +∞.

In the next step we will compute the limit of gλ(m)/m2 by using Lemmas 2.1–2.3.

Lemma 2.4. With the function gλ defined as above we have

lim
m→±∞

gλ(m)

m2 =
1
2

L2
λ.

Proof. We will prove this for m > 0, the other case is left to the reader. Put

ξ1 =

m−1
ℓ=0

ρℓ

c(T ℓω)

√
ρ

0
s=−∞

π(T sω)ρ−s fλ(s),

ξ2 =

m−1
ℓ=0

ρℓ

c(T ℓω)

√
ρ

ℓ
s=1

π(T sω)ρ−s fλ(s),

ξ3 =

m−1
ℓ=0

ρℓ

c(T ℓω)

√
ρ

ℓ
s=1

π(T sω)ρ−ss.

By the definition of function gλ, we have gλ(m) = ξ1 + ξ2. We will prove that

lim
m→+∞

ξ1

m2 = 0 (16)

and

lim
m→+∞

ξ2

m2 =
1
2

L2
λ. (17)

By (6) and lims→∞ fλ(s)/s = Lλ then
0

s=−∞
π(T sω)ρ−s fλ(s) is finite which completes (16).
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Proof of (17). Replacing ℓ − s by k we obtain

ξ3 =

m−1
ℓ=0

1
c(T ℓω)

√
ρ

ℓ
s=1

π(T sω)ρℓ−ss =

m−1
ℓ=0

1
c(T ℓω)

√
ρ

ℓ−1
k=0

π(T ℓ−kω)ρk(ℓ − k).

Since T ℓ−k
= T −k

◦ T ℓ, one has

ξ3 =

m−1
ℓ=0

ℓ

c(T ℓω)


√

ρ

ℓ−1
k=0

π(T −kω)ρk


◦ T ℓ

−

m−1
ℓ=0

√
ρ

c(T ℓω)


ℓ−1
k=0

π(T −kω)kρk


◦ T ℓ.

If we put

Gλ(ω) =
√

ρ

∞
k=0

π(T −kω)kρk

then Gλ ∈ L p(µ) and so Gλ/c ∈ L1(µ) by Holder’s inequality. Now, using the pointwise
ergodic theorem we see that when m goes to infinity m−2m−1

ℓ=0 [Gλ(ω)/c(ω)] ◦ T ℓ goes to 0. It
follows that

lim
m→+∞

1

m2

m−1
ℓ=0

√
ρ

c(T ℓω)


ℓ−1
k=0

π(T −kω)kρk


◦ T ℓ

= 0.

On the other hand, for each ℓ = 0, 1, . . .√ρ

ℓ−1
k=0

π(T ℓ−kω)ρk
− Hλ(T ℓω)

 = ρℓ Hλ(ω).

Taking ai = c−1(T iω) in (6) one has limm→+∞ m−2m−1
ℓ=0 c−1(T ℓω)ℓρℓ Hλ(ω) = 0. Hence

we have

lim
m→+∞

1

m2

m−1
ℓ=0

ℓ

c(T ℓω)

√ρ

ℓ−1
k=0

π(T ℓ−kω)ρk
− Hλ(T ℓω)

 = 0.

So,

lim
m→+∞

ξ3

m2 = lim
m→+∞

1
m

m−1
ℓ=0

Hλ

c
◦ T ℓ(ω)


ℓ

m


.

By Lemma 2.1, this limit is equal to 1
2 Lλ.

Moreover, since lims→∞ fλ(s)/s = Lλ then limm→+∞ sups≤m m−1 | fλ(s) − sLλ| = 0.
Replacing ℓ − s by k in both definitions of ξ2 and ξ3 one has ξ2

m2 −
ξ3

m2 Lλ

 ≤


1
m

m−1
ℓ=0

Hλ(T ℓω)

c(T ℓω)


sup
s≤m

1
m

| fλ(s) − sLλ| .

It follows that this tends to 0 when m goes to infinity, and then

lim
m→+∞

ξ2

m2 = lim
m→+∞

ξ3

m2 Lλ =
1
2

L2
λ

which completes (17). �
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By Lemma 2.4, for any ε′ > 0, there exists M ′ > 0 such that for any |m| > M ′ then m2

gλ(m)
−

2

L2
λ

 < ε′/2. (18)

We now combine (15) and (18) to compute the limit of Eλ,ω {Xn/n}. If we decompose Ω =
|Xn| ≤ M ′


∪

|Xn| > M ′


then the inequalityEλ,ω


X2

n

n2


−

1

L2
λ

 < ε′

holds for all large enough n. �

We have thus proved that limn→+∞ Eλ,ω


X2

n/n2


= L−2
λ . From (13), we obtain

lim
n→+∞

Eλ,ω


Xn

n


=

1
Lλ

=


Ω

Hλ

c
dµ

−1

= d(λ).

This limit does not depend on ω. Finally, by using L p-convergence stated in (11) one has

lim
λ→0+

d(λ)

λ
= lim

λ→0+

(1 − e−2λ)

λ


Ω

(1 − e−2λ)Hλ

c
dµ

−1

= lim
λ→0+

(1 − e−2λ)

λ(e−λ + eλ)


Ω

c dµ


Ω

1
c

dµ

−1

= σ 2

which completes the proof of Proposition 2.1. �

Proposition 2.3. For almost all environment ω and for λ < 0 we have

lim
λ→0−

d(λ)

λ
= σ 2.

Proof. The proof of this proposition is very similar to Proposition 2.1 where we modify the
functions fλ and gλ, defined on Z, as follows

fλ(m) =



−

m−1
ℓ=0

1

c(T ℓω)e2ℓλ

+∞
s=ℓ

π(T sω)e(2s+1)λ, if m ≥ 1

0, if m = 0
−m
ℓ=1

1
c(T −ℓω)

e2ℓλ
+∞

s=−ℓ

π(T sω)e(2s+1)λ, if m ≤ −1

and

gλ(m) =



−

m−1
ℓ=0

1

c(T ℓω)e2ℓλ

+∞
s=ℓ

π(T sω)e(2s+1)λ fλ(s), if m ≥ 1

0, if m = 0
−m
ℓ=1

1
c(T −ℓω)

e2ℓλ
+∞

s=−ℓ

π(T sω)e(2s+1)λ fλ(s), if m ≤ −1

where ω is fixed. �
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Remark 2.1. We have proved that for almost all ω limn→+∞ Eλ,ω {Xn/n} = d(λ) and
limn→+∞ Eλ,ω


X2

n/n2


= d(λ)2 with λ ≠ 0. This implies that for ω a.s Xn/n converges to
d(λ) in probability.

Remark 2.2. By the argument as in [1], we can show that Xn/n converges a.s. Indeed, we will
prove this for λ > 0 and the other case is left to the reader. Following the notation of [1] we
introduce

αi (ω) = P0
ω {Xn+1 = i + 1|Xn = i} = eλc(T iω)/π(T iω),

βi (ω) = P0
ω {Xn+1 = i − 1|Xn = i} = e−λc(T i−1ω)/π(T iω),

ρi = ρi (ω) = βi (ω)/αi (ω),

and S = S(ω) = 1 +


+∞

k=1 ρ1ρ2 . . . ρk one has

S = c(ω)

+∞
k=0

1
c(T kω)

e−2λk
∈ L1(µ)

by Holder’s inequality. Theorem 4.1 in [1] ensures that

lim
n→+∞

Xn

n
= v, µ a.s ω,

where v−1
=

Ω (1 + ρ0(ω))S(ω)dµ(ω). By calculating the integrand in the last expression

e−λ
+∞
k=0

π(ω)e−2λk

c(T kω)
= e−λ

+∞
k=0


π(T −kω)e−2λk

c(T kω)


◦ T k .

Since T preserves the measure µ one obtains

v =


Ω

Hλ

c
dµ

−1

= d(λ), µ a.s ω,

where Hλ = e−λ


+∞

k=0 π(T −kω)e−2λk . However, we do not know if Alili’s method works for
continuous time process or for diffusion!

3. An analogue to a continuously time process

In this section, we will discuss two theorems as the continuous versions of Theorem 1.2 in
one dimension. These theorems can be proved by solving Poisson’s equation as in Theorem 1.2.

3.1. Markov process with discrete space

We first consider Markov process (X t )t≥0 with continuous time on Z and the initial condition
X0 = 0, the infinitesimal generator is defined by

Lλ,ω f (k) = e−λc(T k−1ω) f (k − 1) + eλc(T kω) f (k + 1) − π(T kω) f (k),

where π = eλc + e−λc ◦ T −1.

Theorem 3.1. For almost all environment ω,

lim
λ→0

1
λ


lim

t→+∞
Eλ,ω


X t

t


= 2


Ω

1
c

dµ

−1

,

if c−1 is integrable.
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Proof. We consider this theorem for λ > 0 and the other case is left to the reader. Fixed ω, we
solve two Poisson’s equations on Z

Lλ,ω fλ ≡ 1, fλ(0) = 0

and

Lλ,ωgλ ≡ fλ, gλ(0) = 0

in order to obtain the particular solutions as follows

fλ(m) =



m−1
ℓ=0

1

c(T ℓω)e2ℓλ

ℓ
s=−∞

e(2s−1)λ, if m ≥ 1

0, if m = 0

−

−m
ℓ=1

1
c(T −ℓω)

e2ℓλ
−ℓ

s=−∞

e(2s−1)λ, if m ≤ −1

and

gλ(m) =



m−1
ℓ=0

1

c(T ℓω)e2ℓλ

ℓ
s=−∞

e(2s−1)λ fλ(s), if m ≥ 1

0, if m = 0

−

−m
ℓ=1

1
c(T −ℓω)

e2ℓλ
−ℓ

s=−∞

e(2s−1)λ fλ(s), if m ≤ −1.

The hypothesis c−1
∈ L−1(µ) ensures that for almost all ω

lim
m→±∞

fλ(m)

m
=

e−λ

1 − e−2λ


Ω

1
c

dµ,

and

lim
m→±∞

gλ(m)

m2 =
1
2


e−λ

1 − e−2λ


Ω

1
c

dµ

2

.

We then obtain

lim
t→+∞

Eλ,ω


X2

t

t2


= d(λ)2 and lim

t→+∞
Eλ,ω


X t

t


= d(λ), (19)

where d(λ) = (eλ
− e−λ)


Ω

1
c dµ

−1
. It follows that

lim
λ→0+

1
λ


lim

t→+∞
Eλ,ω


X t

t


= 2


Ω

1
c

dµ

−1

. �

Remark 3.1. From (19) we deduce that for ω a.s X t/t converges to d(λ) in probability.

3.2. Diffusion in random environment

Let (Ω , A, µ) be a probability space equipped with an ergodic flow (Tx )x∈R. We consider two
random variables a, b > 0 such that the functions x → a(Txω) and x → b(Txω) are continuous.
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In this section we study, for fixed ω and drift λ ≠ 0, the process with the infinitesimal generator
defined by

Lλ,ω f (x) =
1

2eλx a(Txω)

d
dx


eλx b(Txω)

d f

dx


,

and the initial condition X0 = 0.
The associated process satisfies the stochastic differential equation

dX t = σω(X t )dBt + µω(X t )dt, (20)

where (Bt )t≥0 is a Brownian motion, the coefficient of diffusion σ 2
ω(x) = b(Txω)/a(Txω) and

the drift µω(x) =

2eλx a(Txω)

−1 d
dx


eλx b(Txω)


.

Theorem 3.2. Suppose that, for almost every ω ∈ Ω , the functions σ 2
ω(x) and µω(x) are local

Lipschitz. Then, for almost all ω ∈ Ω , the solution (X t )t≥0 of (20) satisfies

lim
λ→0

1
λ


lim

t→+∞

Eλ,ω {X t }

t


=


Ω

a dµ


Ω

1
b

dµ

−1

,

if a ∈ L p(µ) and b−1
∈ Lq(µ) with p, q ∈ [1, +∞] such that 1/p + 1/q = 1.

Proof. We consider this theorem for λ > 0 and the other case is left to the reader. Fixed ω, we
solve two Poisson’s equations on R

Lλ,ω fλ ≡ 1, fλ(0) = 0

and

Lλ,ωgλ ≡ fλ, gλ(0) = 0

in order to obtain the particular solutions as follows

fλ(x) =


 x

v=0

1
eλvb(Tvω)

 v

u=−∞

2eλua(Tuω) du dv, if x ≥ 0

−

 0

v=x

1
eλvb(Tvω)

 v

u=−∞

2eλua(Tuω) du dv, if x < 0

and

gλ(x) =


 x

v=0

1
eλvb(Tvω)

 v

u=−∞

2eλua(Tuω) fλ(u) du dv, if x ≥ 0

−

 0

v=x

1
eλvb(Tvω)

 v

u=−∞

2eλua(Tuω) fλ(u) du dv, if x < 0.

The hypotheses a ∈ L p(µ) and b−1
∈ Lq(µ) ensure that for almost all ω

lim
x→±∞

fλ(x)

x
=


Ω

Hλ

b
dµ,

and

lim
x→±∞

gλ(x)

x2 =
1
2


Ω

Hλ

b
dµ

2

,
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where Hλ(ω) = 2


+∞

t=0 e−λt a(T−tω) dt . We then obtain

lim
t→+∞

Eλ,ω


X2

t

t2


= d(λ)2 and lim

t→+∞
Eλ,ω


X t

t


= d(λ), (21)

where d(λ) =


Ω Hλ/b dµ
−1. It follows that

lim
λ→0+

1
λ


lim

t→+∞

Eλ,ω {X t }

t


=


Ω

a dµ


Ω

1
b

dµ

−1

. �

Remark 3.2. From (21) we deduce that for ω a.s X t/t converges to d(λ) in probability.
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