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Abstract

We consider spatially extended systems of interacting nonlinear Hawkes processes modeling large
systems of neurons placed in Rd and study the associated mean field limits. As the total number of neurons
tends to infinity, we prove that the evolution of a typical neuron, attached to a given spatial position, can be
described by a nonlinear limit differential equation driven by a Poisson random measure. The limit process
is described by a neural field equation. As a consequence, we provide a rigorous derivation of the neural
field equation based on a thorough mean field analysis.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

The aim of this paper is to present a microscopic model describing a large network of spatially
structured interacting neurons, and to study its large population limits. Each neuron is placed in
Rd . Its activity is represented by a point process accounting for the successive times at which
the neuron emits an action potential, commonly referred to as a spike. The firing intensity of
a neuron depends on the past history of the neuron. Moreover, this intensity is affected by the
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activity of other neurons in the network. Neurons interact mostly through chemical synapses.
A spike of a pre-synaptic neuron leads to a change in the membrane potential of the post-
synaptic neuron (namely an increase if the synapse is excitatory or a decrease if the synapse
is inhibitory), possibly after some delay. In neurophysiological terms this is called synaptic
integration. Thus, excitatory inputs from the neurons in the network increase the firing intensity,
and inhibitory inputs decrease it. Hawkes processes provide good models for this synaptic
integration mechanism by the structure of their intensity processes, see (1.1). We refer to [8,9,15]
and to [19] for the use of Hawkes processes in neuronal modeling. For an overview of point
processes used as stochastic models for interacting neurons both in discrete and in continuous
time and related issues, see also [12].

In this paper, we study spatially structured systems of interacting Hawkes processes rep-
resenting the time occurrences of action potentials of neurons. Each neuron is characterized
by its spike train, and the whole system is described by the multivariate counting process
(Z (N )

1 (t), . . . , Z (N )
N (t))t≥0. Here, the integer N ≥ 1 stands for the size of the neuronal network and

Z (N )
i (t) represents the number of spikes of the i th neuron in the network during the time interval

[0, t]. This neuron is placed in a position xi ∈ Rd , and we assume that the empirical distribution
of the positions µ(N )(dx) := N−1∑N

i=1δxi (dx) converges1 to some probability measure ρ(dx)
on Rd as N → ∞.

The multivariate counting process (Z (N )
1 (t), . . . , Z (N )

N (t))t≥0 is characterized by its intensity
process (λ(N )

1 (t), . . . , λ(N )
N (t))t≥0 (informally) defined through the relation

P
(

Z (N )
i has a jump in ]t, t + dt]|Ft

)
= λ

(N )
i (t)dt,

where Ft = σ (Z (N )
i (s), s ≤ t, 1 ≤ i ≤ N ). We work with a spatially structured network of

neurons in which λ
(N )
i (t) is given by λ

(N )
i (t) = f (U (N )

i (t−)) with

U (N )
i (t) := e−αt u0(xi ) +

1
N

N∑
j=1

w
(
x j , xi

) ∫
]0,t]

e−α(t−s)d Z (N )
j (s). (1.1)

Here, f : R → R+ is the firing rate function of each neuron and w : Rd
×Rd

→ R is the matrix
of synaptic strengths; for each i, j ∈ {1, . . . , N }, the value w(x j , xi ) models the influence of
neuron j (located in position x j ) on neuron i (in position xi ). The parameter α ≥ 0 is the leakage
rate. Moreover, u0(xi ) is the initial input to the membrane potential of neuron i.

Eq. (1.1) has the typical form of the intensity of a multivariate nonlinear Hawkes process,
going back to [16] and [17] who introduced Hawkes processes in a univariate and linear
framework. We refer to [4] for the stability properties of multivariate nonlinear Hawkes
processes, and to [10] and [6] for the study of Hawkes processes in high dimensions.

In this paper, we study the limit behavior of the system (Z (N )
1 (t), . . . , Z (N )

1 (t))t≥0 as N → ∞.
Our main result states that – under suitable regularity assumptions on the parameters u0, w

and f – the system can be approximated by a system of inhomogeneous independent Poisson
processes (Z̄x (t))t≥0 associated with positions x ∈ Rd which can informally be described as
follows. In the limit system, the spatial positions of the neurons are distributed according to the
probability measure ρ(dx). Given a position x ∈ Rd , the law of the attached process (Z̄x (t))t≥0

is the law of an inhomogeneous Poisson process having intensity given by (λ(t, x))t≥0. Here

1 Convergence in the sense of the Wasserstein W2-distance is considered in Scenario (S2) below.
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λ(t, x) = f (u(t, x)) and u(t, x) solves the scalar neural field equation⎧⎨⎩
∂u(t, x)

∂t
= −αu(t, x) +

∫
Rd

w(y, x) f (u(t, y))ρ(dy),

u(0, x) = u0(x).
(1.2)

Such scalar neural field equations (or neural field models) have been studied extensively in the
literature, see e.g. [21,22] and [1]. They constitute an important example of spatially structured
neuronal networks with nonlocal interactions, see [5] for a recent and comprehensive review. Let
us cite a remark made by Paul Bressloff, on page 15 of [5] :

There does not currently exist a multi-scale analysis of conductance-based neural networks
that provides a rigorous derivation of neural field equations, although some progress has been
made in this direction [. . . ]. One crucial step in the derivation of neural field equations presented
here was the assumption of slowly varying synaptic currents, which is related to the assumption
that there is not significant coherent activity at the level of individual spikes. This allowed us to
treat the output of a neuron (or population of neurons) as an instantaneous firing rate. A more
rigorous derivation would need to incorporate the mean field analysis of local populations of
stochastic spiking neurons into a larger scale cortical model, and to carry out a systematic form
of coarse graining or homogenization in order to generate a continuum neural field model.

Our model is not a conductance-based neural network. Nevertheless, with the present work,
to the best of our knowledge, we present a first rigorous derivation of the well-known neural field
equation as mean field limit of spatially structured Hawkes processes.

The paper is organized as follows. In Section 2 we introduce the model and provide an
important a priori result, stated in Proposition 3, on the expected number of spikes of a typical
neuron in the finite size system. In Section 3 we present our main results, Theorems 1 and 2,
on the convergence of spatially extended nonlinear Hawkes processes towards the neural field
equation (1.2). This convergence is expressed in terms of the empirical measure of the spike
counting processes associated with the neurons as well as the empirical measure corresponding
to their position. Therefore, we work with probability measures on the space D([0, T ],N) × Rd

and a convenient distance defined on this space which is introduced in (3.8). The main ingredient
of our approach is the unique existence of the limit process (or equivalently, of its intensity
process), which is stated in Proposition 5. Once the unique existence of the limit process is
granted, our proof makes use of a suitable coupling technique for jump processes which has
already been applied in [10,6] and [11], together with a control of the Wasserstein distance of
order 2 between the empirical distribution of the positions µ(N )(dx) and the limit distribution
ρ(dx).

As a byproduct of these convergence results, we obtain Corollaries 1 and 2, the former
being closely connected to the classical propagation of chaos property and the latter stating the
convergence of the process (U (N )

1 (t), . . . , U (N )
N (t))t≥0 towards to the solution of the neural field

equation.
In Section 4 are given the main technical estimates we use. Sections 5 and 6 are devoted to

the proofs of our two main results, Theorems 1 and 2, together with Corollary 2. In Section 7 we
discuss briefly the assumptions that are imposed on the parameters of the model by our approach.
Finally, some auxiliary results are postponed to the Appendix.
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2. General notation, model definition and first results

2.1. General notation

Let (S, d) be a Polish metric space and S be the Borel σ -algebra of S. The supremum
norm of any real-valued S-measurable function h defined on S will be denoted by ∥h∥S,∞ :=

supx∈S|h(x)|. We will often write ∥h∥∞ instead of ∥h∥S,∞ when there is no risk of ambiguity. For
any real-valued function h(y, x) defined on S × S and x ∈ S, the x-section of h is the function
hx defined on S by hx (y) = h(y, x) for all y ∈ S. Similarly, for any y ∈ S, the y-section of h
is the function h y defined on S by h y(x) = h(y, x) for all x ∈ S. The space of all continuous
functions from (S, d) to (R+, |·|) will be denoted by C(S,R+). For any measure ν on (S,S) and
S-measurable function h : S → R, we shall write ⟨h, ν⟩ =

∫
S h(x)ν(dx) when convenient. For

any p ≥ 1, we shall write L p(S, ν) to denote the space of S-measurable functions h : S → R
such that ∥h∥L p(ν) := (

∫
|h(x)|pdν(x))1/p < ∞.

For two probability measures ν1 and ν2 on (S,S), the Wasserstein distance of order p between
ν1 and ν2 associated with the metric d is defined as

Wp(ν1, ν2) = inf
π∈Π (ν1,ν2)

(∫
S

∫
S

d(x, y)pπ (dx, dy)
)1/p

,

where π varies over the set Π (ν1, ν2) of all probability measures on the product space S × S
with marginals ν1 and ν2. Notice that the Wasserstein distance of order p between ν1 and ν2 can
be rewritten as the infimum of E[d(X, Y )p]1/p over all possible couplings (X, Y ) of the random
elements X and Y distributed according to ν1 and ν2 respectively, i.e.

Wp(ν1, ν2) = inf
{

E[d(X, Y )p]1/p
: L(X ) = ν1 and L(Y ) = ν2

}
.

Let Lip(S) denote the space of all real-valued Lipschitz functions on S and

∥h∥Lip = sup
x ̸=y

|h(x) − h(y)|
d(x, y)

.

We write Lip1(S) to denote the subset of Lip(S) such that ∥h∥Lip ≤ 1. When p = 1, the
Kantorovich–Rubinstein duality provides another useful representation for W1(ν1, ν2), namely

W1(ν1, ν2) = sup
h∈Lip1(S)∩L1(S,d|ν1−ν2|)

{∫
S

h(x)(ν1 − ν2)(dx)
}

.

Furthermore, the value of the supremum above is not changed if we impose the extra condition
that h is bounded, see e.g. Theorem 1.14 of [20].

2.2. The model and preliminary remarks

Throughout this paper we work on a filtered probability space (Ω ,F , (Ft )t≥0, Q) which is
rich enough such that all following processes may be defined on it. We consider a system of
interacting nonlinear Hawkes processes which is spatially structured. In the sequel, the integer
N ≥ 1 will denote the number of processes in the system. Each process models the behavior of a
specific neuron. All neurons are associated with a given spatial position belonging to Rd . These
spatial positions are denoted by x1, . . . , xN . In the following, Rd will be equipped with a fixed
norm ∥ · ∥. The positions x1, . . . , xN are assumed to be fixed in this section (unlike Section 5
where the positions are assumed to be random).
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We now describe the dynamics of the N Hawkes processes associated with these positions.

Definition 1. Let f : R → R+, w : Rd
× Rd

→ R and u0 : Rd
→ R be measurable

functions and α ≥ 0 be a fixed parameter. A (Ft )t≥0-adapted multivariate counting process
(Z (N )

1 (t), . . . , Z (N )
1 (t))t≥0 defined on (Ω ,F , (Ft )t≥0, Q) is said to be a multivariate Hawkes

process with parameters (N , f, w, u0, α), associated with the positions (x1, . . . , xN ), if

1. Q-almost surely, for all pairs i, j ∈ {1, . . . , N } with i ̸= j , the counting processes
(Z (N )

i (t))t≥0 and (Z (N )
j (t))t≥0 never jump simultaneously.

2. For each i ∈ {1, . . . , N } and t ≥ 0, the compensator of Z (N )
i (t) is given by

∫ t
0 λ

(N )
i (s)ds

where (λ(N )
i (t))t≥0 is the non-negative (Ft )t≥0−progressively measurable process defined,

for all t ≥ 0, by λ
(N )
i (t) = f (U (N )

i (t−)) with

U (N )
i (t) = e−αt u0(xi ) +

1
N

N∑
j=1

w
(
x j , xi

) ∫
]0,t]

e−α(t−s)d Z (N )
j (s). (2.1)

Remark 1. Notice that for each i ∈ {1, . . . , N }, the process (U (N )
i (t))t≥0 satisfies the following

stochastic differential equation

dU (N )
i (t) = −αU (N )

i (t)dt +
1
N

N∑
j=1

w
(
x j , xi

)
d Z (N )

j (t).

The functions f : R → R+ and w : Rd
×Rd

→ R are called spike rate function and matrix of
synaptic strengths respectively. The parameter α ≥ 0 is called the leakage rate. For each neuron
i ∈ {1, . . . , N }, u0(xi ) is interpreted as an initial input to the spike rate of neuron i (its value
depends on the position xi of the neuron).2

An alternative definition of multivariate Hawkes processes which will be used later on is the
following.

Definition 2. Let (Πi (dz, ds))1≤i≤N be a sequence of i.i.d. Poisson random measures with inten-
sity measure dsdz on R+ × R+. A (Ft )t≥0-adapted multivariate counting process (Z (N )

1 (t), . . . ,
Z (N )

N (t))t≥0 defined on (Ω ,F , (Ft )t≥0, Q) is said to be a multivariate Hawkes process with
parameters (N , f, w, u0, α), associated with the positions (x1, . . . , xN ), if Q-almost surely, for
all t ≥ 0 and i ∈ {1, . . . , N },

Z (N )
i (t) =

∫ t

0

∫
∞

0
1{

z≤ f
(

U (N )
i (s−)

)}Πi (dz, ds), (2.2)

where U N
i (s) is given in (2.1).

Proposition 1. Definitions 1 and 2 are equivalent.

We refer the reader to Proposition 3 of [10] for a proof of Proposition 1. In what follows we
will work under

Assumption 1. The function f is Lipschitz continuous with Lipschitz norm L f > 0.

2 Without too much effort, the initial input u0(xi ) could be replaced by a random input of the form 1
N
∑N

j=1Ui, j ,
where the random variables Ui,1, . . . , Ui,N are i.i.d. distributed according to some probability measure ν(xi , du) defined
on Rd . In the limit N → +∞, we have the correspondence limN→+∞ N−1∑N

j=1Ui, j =
∫

uν(xi , du) = u0(xi ).
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Assumption 2. The initial condition u0 is Lipschitz continuous with Lipschitz norm Lu0 > 0
and bounded, i.e., ∥u0∥Rd ,∞ < ∞.

Proposition 2. Under Assumption 1, there exists a path-wise unique multivariate Hawkes
process with parameters (N , f, w, u0, α) such that t ↦→ sup1≤i≤N E(Z (N )

i (t)) is locally bounded.

The proof of Proposition 2 relies on classical Picard iteration arguments and can be found (in
a more general framework) in Theorem 6 of [10].

The next result provides an upper bound for the expected number of jumps in a finite time
interval [0, T ], for each fixed T > 0, which will be crucial later.

Proposition 3. Under Assumptions 1 and 2, for each N ≥ 1 and T > 0, the following
inequalities hold.

1
N

N∑
i=1

E
[
(Z (N )

i (T ))
]

≤ T
(

f (0) + L f ∥u0∥Rd ,∞

)
exp

{
T L f sup

j
∥wx j ∥L1(µ(N ))

}
, (2.3)

and

1
N

N∑
i=1

E
[
(Z (N )

i (T ))2
]

≤ exp

⎧⎨⎩T

⎛⎝1 + 4L2
f

(
sup

j
∥wx j ∥L2(µ(N ))

)2
⎞⎠⎫⎬⎭

×

[
T
(

f (0) + L f ∥u0∥Rd ,∞

)
exp

{
T L f sup

j
∥wx j ∥L1(µ(N ))

}
+ 2T f (0)2

+ 4L2
f T ∥u0∥

2
Rd ,∞

]
, (2.4)

where µ(N )(dx) = N−1∑N
i=1δxi (dx) is the empirical distribution associated with the fixed spatial

positions x1, . . . , xN ∈ Rd .

The proof of Proposition 3 will be given in Appendix A.1.

3. Convergence of spatially extended Hawkes processes

In this section, we present two convergence results for the empirical process of nonlinear
spatially extended Hawkes processes, our main results. We fix a probability measure ρ(dx) on
(Rd ,B(Rd )); it is the expected limit of the empirical distribution µ(N )(dx) = N−1∑N

i=1δxi (dx).
The following additional set of assumptions will be required as well.

Assumption 3. The measure ρ(dx) admits exponential moments, i.e., there exists a parameter
β > 0 such that Eβ :=

∫
eβ∥x∥ρ(dx) < ∞.

Assumption 4. The matrix of synaptic strengths w satisfies the following Lipschitz and
boundedness conditions.
1. There exists a constant Lw > 0 such that for all x, x ′, y, y′

∈ Rd ,

|w(y, x) − w(y′, x ′)| ≤ Lw(∥x − x ′
∥ + ∥y − y′

∥). (3.1)

2. There exist x0 and y0 in Rd such that ∥w(y0, ·)∥Rd ,∞ < +∞ and ∥w(·, x0)∥Rd ,∞ < +∞.
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Remark 2. Notice that the vectors x0 and y0 can be taken as the origin 0d in Rd . This
follows directly from the Lipschitz continuity of w. Moreover, under Assumption 3, notice that
Assumption 4-2. is equivalent to the fact that the y-sections wy and the x-sections wx of w are
uniformly square integrable with respect to ρ(dx), i.e.,

sup
y∈Rd

∫
|w(y, x)|2ρ(dx) < ∞, (3.2)

and

sup
x∈Rd

∫
|w(y, x)|2ρ(dy) < ∞. (3.3)

In fact, (3.2) and (3.3) are the assumptions that naturally appear through the proofs (see e.g. (5.2)
where we need (3.2), and (4.10) where we need (3.3)).

Proof of the equivalence of Assumption 4-2. with (3.2) and (3.3), under Assumption 3 and
(3.1).

We will only show that ∥w0d ∥Rd ,∞ is finite if and only if (3.3) holds, the other case is treated
similarly. Observe that the Lipschitz continuity of w implies that for each x, y ∈ Rd ,

(max{0, |w0d (x)| − Lw∥y∥})2
≤ |wx (y)|2 ≤ 2

(
∥w0d ∥

2
Rd ,∞

+ L2
w∥y∥

2
)

.

As a consequence of the inequality above, it follows that

|w0d (x)|2

4
ρ

(
B
(

0d ,
|w0d (x)|

2Lw

))
≤

∫
|wx (y)|2ρ(dy) ≤ 2

(
∥w0d ∥

2
Rd ,∞

+ L2
w

∫
∥y∥

2ρ(dy)
)

,

where for each z ∈ Rd and r > 0, B(z, r ) is the ball of radius r centered at z. Now, taking the
supremum with respect to x, we deduce that

sup
x∈Rd

∫
|wx (y)|2ρ(dy) ≤ 2

(
∥w0d ∥

2
Rd ,∞

+ L2
w

∫
∥y∥

2ρ(dy)
)

(3.4)

and

∥w0d ∥
2
Rd ,∞

4
ρ(B(0d , ∥w0d ∥Rd ,∞/2Lw)) ≤ sup

x∈Rd

∫
|wx (y)|2ρ(dy). (3.5)

Under Assumption 3, we know that
∫

∥y∥
2ρ(dy) is finite. Therefore, (3.4) shows that ∥w0d ∥

2
Rd ,∞

< ∞ implies (3.3). On the other hand, (3.5) shows that (3.3) implies ∥w0d ∥
2
Rd ,∞

< ∞ if
ρ(B(0d , ∥w0d ∥Rd ,∞/2Lw)) > 0. Finally, if ρ(B(0d , ∥w0d ∥Rd ,∞/2Lw)) = 0, then it trivially
holds that ∥w0d ∥

2
Rd ,∞

< ∞ since Lw > 0 and since ρ(B(0d , ∞)) = 1. □

Let us now introduce, for each T > 0 fixed, the empirical measure

P (N ,N )
[0,T ] (dη, dx) =

1
N

N∑
i=1

δ(
(Z (N )

i (t))0≤t≤T ,xi

)(dη, dx). (3.6)

This measure P (N ,N )
[0,T ] is a random probability measure on the space D([0, T ],N) × Rd , where

D([0, T ],N) is the space of càdlàg functions defined on the interval [0, T ] taking values in
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N. The measure is random since it depends on the realization of the N counting processes
Z (N )

1 , . . . , Z (N )
N , defined on (Ω ,F , (Ft )t≥0, Q).

Under two frameworks described below, our two main results state that P (N ,N )
[0,T ] converges as

N → ∞ to a deterministic probability measure P[0,T ] defined on the space D([0, T ],N) × Rd .
This convergence is stated with respect to a convenient distance between random probability
measures P and P̃ on the space D([0, T ],N) × Rd which is introduced now.

For càdlàd functions η, ξ ∈ D([0, T ],N) we consider the distance dS(η, ξ ) defined by

dS(η, ξ ) = inf
φ∈I

{
∥φ∥[0,T ],∗ ∨ ∥η − ξ (φ)∥[0,T ],∞

}
, (3.7)

where I is the set of non-decreasing functions φ : [0, T ] → [0, T ] satisfying φ(0) = 0 and
φ(T ) = T and where for any function φ ∈ I the norm ∥φ∥[0,T ],∗ is defined as

∥φ∥[0,T ],∗ = sup
0≤s<t≤T

log
(

φ(t) − φ(s)
t − s

)
.

The metric dS(·, ·) is equivalent to the classical Skorokhod distance. More importantly the metric
space (D([0, T ],N), dS) is Polish, see for instance [2].

Finally, for any random probability measures P and P̃ on D([0, T ],N) × Rd , we define the
Kantorovich–Rubinstein like distance between P and P̃ as

dK R(P, P̃) = sup
g∈Lip1(D([0,T ]×N)×Rd )

E
[
|

⟨
g, P − P̃

⟩
|

]
, (3.8)

where we recall that ⟨g, P − P̃⟩ =
∫
Rd

∫
D([0,T ],N) g(η, x)(P − P̃)(dη, dx). Here the expectation

is taken with respect to the probability measure Q on (Ω ,F , (Ft )t≥0), that is with respect to the
randomness present in the jumps of the process.

Our convergence results are valid under two scenarios.

Definition 3. Consider the two following assumptions:

(S1): Random spatial distribution.
The positions x1, . . . , xN are the realizations of an i.i.d. sequence of
random variables X1, . . . , X N , . . . , distributed according to ρ(dx).

(S2): Deterministic spatial distribution.
The positions x1, . . . , xN are deterministic (depending on ρ(dx))
such that the sequence of associated empirical measures
µ(N )(dx) = N−1∑N

i=1δxi (dx) satisfies W2(µ(N ), ρ) ≤ K N−1/d ′

for any d ′ > d and for all N sufficiently large, for a fixed constant
K > 0.

Remark 3. Under Scenario (S1), the random positions x1, . . . , xN are interpreted as a random
environment for our dynamics. This random environment is supposed to be independent of the
Poisson random measures Πi (dz, ds), i ≥ 1.

In Scenario (S2), the bound N−1/d ′

is reasonable compared to the generic optimal quantization
rate N−1/d [13, Theorem 6.2]. This bound is used afterwards to control the contribution of the
spatial approximation in our spatial mean field approximation context. The construction of a
sequence satisfying the claimed bound is described in Section 6.
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In Theorems 1 and 2 we will prove that as N → ∞,

dK R(P (N ,N )
[0,T ] , P[0,T ]) → 0, (3.9)

almost surely with respect to the random environment under Scenario (S1).
Let us now discuss briefly the properties that this limit P[0,T ] should a priori satisfy. First, we

obtain the following integrability property.

Proposition 4. Under Assumptions 1, 2, 4 and either Scenario (S1) or (S2), the limit measure
P[0,T ] a priori satisfies that∫

Rd

∫
D([0,T ],N)

[η2
T + ηT ]P[0,T ](dη, dx) < ∞. (3.10)

Proposition 4 is the limit version of Proposition 3, and its proof is postponed to Appendix A.2.
Let us now precisely define the limit measure P[0,T ]. Firstly, consider any real-valued smooth

test function (η, x) ↦→ g(η, x) ≡ g(x) defined on D([0, T ],N) × Rd which does not depend on
the variable η. Evaluating the integral of g with respect to the probability measure P (N ,N )

[0,T ] , and
then letting N → ∞, one deduces that the second marginal of P[0,T ] on Rd must be equal to the
probability measure ρ(dx) (since µ(N )(dx) converges to ρ(dx)).

Since (D([0, T ],N), dS) is Polish, it follows from the Disintegration Theorem that P[0,T ] can
be rewritten as

P[0,T ](dη, dx) = P[0,T ](dη|x)ρ(dx), (3.11)

where P[0,T ](dη|x) denotes the conditional distribution of P[0,T ] given the position x ∈ Rd . Here,
x ↦→ P[0,T ](dη|x) is Borel-measurable in the sense that x ↦→ P[0,T ](A|x) is Borel-measurable
for any measurable subset A ⊂ D([0, T ],N). From a heuristic which is explained below, the
conditional distribution P[0,T ](dη|x) (for each x ∈ Supp(ρ), the support of ρ) turns out to be
the law of a inhomogeneous Poisson point process with intensity process (λ(t, x))0≤t≤T where
λ = (λ(t, x), 0 ≤ t ≤ T, x ∈ Rd ) is solution of the nonlinear equation

λ(t, x) = f
(

e−αt u0(x) +

∫
Rd

w(y, x)
∫ t

0
e−α(t−s)λ(s, y)dsρ(dy)

)
. (3.12)

The heuristic relies on the following argument: at the limit, we expect that the firing rate at time t
of the neurons near location y should be approximately equal to λ(t, y). Taking this into account,
Eq. (3.12) is the limit version of the interaction structure of our system described in Definition 1.
In particular, the empirical mean with respect to the positions, i.e. the integral with respect to
µ(N )(dx), is replaced by an integral with respect to ρ(dx).

Rewriting (3.10) in terms of the intensities, we obtain moreover that a priori,∫
Rd

[(∫ T

0
λ(t, x)dt

)2

+

∫ T

0
λ(t, x)dt

]
ρ(dx) < ∞,

for each fixed T > 0. Existence and uniqueness of solutions for the nonlinear equation (3.12) is
now ensured by

Proposition 5. Under Assumptions 1, 2 and 4, for any solution λ of Eq. (3.12) such that

t ↦→
∫
Rd

∫ t
0 λ(s, y)dsρ(dy) and t ↦→

∫
Rd

(∫ t
0 λ(s, y)ds

)2
ρ(dy) are locally bounded, the

following assertions hold.
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1. For any T > 0, λ ∈ C([0, T ] × Rd ,R+) and ∥λ∥Rd×[0,T ],∞ < ∞.

2. λ is Lipschitz-continuous in the space variable, that is, there exists a positive constant
C = C( f, u0, w, α, ∥λ∥[0,T ]×Rd ,∞, T ) such that for all x, y ∈ Rd and for all t ≤ T,

|λ(t, x) − λ(t, y)| ≤ C∥x − y∥. (3.13)

Furthermore, if we consider the map F from C([0, T ] × Rd ,R+) to itself defined by

λ ↦→ F(λ)(t, x) = f
(

e−αt u0(x) +

∫
Rd

w(y, x)
∫ t

0
e−α(t−s)λ(s, y)dsρ(dy)

)
,

then for any λ, λ̃ ∈ C([0, T ] × Rd ,R+), the following inequality holds

∥F(λ) − F(λ̃)∥[0,T ]×Rd ,∞ ≤
(
1 − e−αT )α−1L f sup

x∈Rd
∥wx

∥L1(ρ)

× ∥λ − λ̃∥[0,T ]×Rd ,∞. (3.14)

The proof of Proposition 5 is postponed to Appendix A.3. The inequality (3.14) together with
a classical fixed point argument imply not only the existence but also the uniqueness of a solution
of Eq. (3.12).

We are now in position to state the two main results of the present paper.

Theorem 1. Under Assumptions 1–4 and Scenario (S1), there exists a positive constant
C = C(T, f, w, u0, α, β) and a random variable N0 depending only on the realization of the
random positions X1, . . . , X N , . . . , such that for all N ≥ N0,

dK R

(
P (N ,N )

[0,T ] , P[0,T ]

)
≤ C

(
N−1/2

+ W2(µ(N ), ρ)
)
. (3.15)

Moreover, if ∥w∥Rd×Rd ,∞ < ∞, then N0 = 1 is valid. Furthermore, for any fixed d ′ > d, it
holds that

dK R

(
P (N ,N )

[0,T ] , P[0,T ]

)
≤ C N−

1
4+d′ (3.16)

eventually almost surely as N → ∞.

Theorem 2. Under Assumptions 1–4 and Scenario (S2), for each T > 0, there exists a positive
constant C = C(T, f, w, u0, α, β) such that for all N ∈ N,

dK R

(
P (N ,N )

[0,T ] , P[0,T ]

)
≤ C

(
N−1/2

+ W2(µ(N ), ρ)
)
. (3.17)

Furthermore, for any fixed d ′ > 2 ∨ d, it holds that

dK R

(
P (N ,N )

[0,T ] , P[0,T ]

)
≤ C N−

1
d′ (3.18)

eventually as N → ∞.

The proofs of Theorems 1 and 2 are respectively postponed to Sections 5 and 6. Here are
given two corollaries that are valid under either Scenario (S1) or Scenario (S2).

Corollary 1. 1. For any bounded functions g, g̃ ∈ Lip1,⏐⏐⏐E [⟨g, P (N ,N )
[0,T ]

⟩ ⟨
g̃, P (N ,N )

[0,T ]

⟩]
−
⟨
g, P[0,T ]

⟩ ⟨
g̃, P[0,T ]

⟩⏐⏐⏐
≤ (∥g∥∞ + ∥g̃∥∞) dK R

(
P (N ,N )

[0,T ] , P[0,T ]

)
.
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2. Suppose moreover that ρ admits a C1 density, denoted by fρ , with respect to the Lebesgue
measure. Then for any 1-Lipschitz bounded functions ϕ, ϕ̃ : D([0, T ],N) → [−1, 1] and any
x, x̃ ∈ Rd such that fρ(x) ̸= 0 and fρ(x̃) ̸= 0, there exist kernel functions ΦN (z), Φ̃N (z) with
ΦN (z) fρ(z)dz

w
→ δx (dz) and Φ̃N (z) fρ(z)dz

w
→ δx̃ (dz), as N → ∞, such that for

gN (η, z) = ϕ(η)ΦN (z) and g̃N (η, z) = ϕ̃(η)Φ̃N (z),

we have

E
[⟨

gN , P (N ,N )
[0,T ]

⟩ ⟨
g̃N , P (N ,N )

[0,T ]

⟩]
→
⟨
ϕ, P[0,T ](·|x)

⟩ ⟨
ϕ̃, P[0,T ](·|x̃)

⟩
. (3.19)

Remark 4. Eq. (3.19) has to be compared to the property of propagation of chaos for standard or
multi-class mean field approximations. Thanks to a suitable spatial scaling, which is contained in
the test functions gN and g̃N and is explicit in the proof, we find that the activity near position x
is asymptotically independent of the activity near position x̃ . Relating this result with multi-class
propagation of chaos as defined in [14] for instance, let us mention that:

• if x = x̃ , one recovers the chaoticity within a class,
• if x ̸= x̃ , one recovers the chaoticity between two different classes.

The functions ΦN and Φ̃N are approximations to the identity with spatial scaling N p(d). The
optimal scaling obviously depends on the scenario under study. Under Scenario (S1), we need
p(d) < [(4 + d)(2d + 1)]−1 whereas (S2) the weaker condition p(d) < [(2 ∨ d)(2d + 1)]−1 is
needed (the condition is weaker since the convergence is faster).

Proof of Corollary 1. For any bounded functions g, g̃ ∈ Lip1, we apply the triangle inequality
to obtain the following bound⏐⏐⏐E [⟨g, P (N ,N )

[0,T ]

⟩ ⟨
g̃, P (N ,N )

[0,T ]

⟩]
−
⟨
g, P[0,T ]

⟩ ⟨
g̃, P[0,T ]

⟩⏐⏐⏐
≤ ∥g∥∞

⏐⏐⏐E [⟨g̃, P (N ,N )
[0,T ] − P[0,T ]

⟩]⏐⏐⏐+ ∥g̃∥∞

⏐⏐⏐E [⟨g, P (N ,N )
[0,T ] − P[0,T ]

⟩]⏐⏐⏐ (3.20)

from which we deduce the first statement.
Next, to construct suitable sequences (gN )N≥1 and (g̃N )N≥1, let us first give some control

for the density fρ . Since fρ is C1, let r > 0, ε > 0 and M > 0 be such that for all y in
B(x, r ) ∪ B(x̃, r ), fρ(y) ≥ ε (recall that fρ(x) ̸= 0, fρ(x̃) ̸= 0) and ∥∇ fρ(y)∥ ≤ M .

Then, let Φ : Rd
→ R be a mollifier, that is a compactly supported smooth function such that∫

Φ(y)dy = 1. Let us define ΦN and Φ̃N by

ΦN (y) = N dp(d) Φ(N p(d)(y − x))
fρ(y)

and Φ̃N (y) = N dp(d) Φ(N p(d)(y − x̃))
fρ(y)

,

where p(d) > 0 gives the spatial scaling of the approximations ΦN and Φ̃N (conditions on
p(d) raising to convergence are given in Remark 4 and proved below). Since Φ is compactly
supported, there exists R > 0 such that Supp(Φ) ⊂ B(0, R) which in particular implies that
Supp(ΦN ) ⊂ B(x, RN−p(d)) and Supp(Φ̃N ) ⊂ B(x̃, RN−p(d)). Until the end of the proof, we
will assume that N is large enough so that RN−p(d)

≤ r . Furthermore, we have

max(∥ΦN ∥∞, ∥Φ̃N ∥∞) ≤ N dp(d) ∥Φ∥∞

ε
= αN , (3.21)

and, by applying the quotient rule,

max
(
∥∇ΦN (y)∥, ∥∇Φ̃N (y)∥

)
≤ N dp(d)

[
N p(d)

∥∇Φ∥∞

ε
+

∥Φ∥∞M
ε2

]
= βN .
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We are now in position to define suitable sequences (gN )N≥1 and (g̃N )N≥1 by

gN (η, y) = ϕ(η)ΦN (y) and g̃N (η, y) = ϕ̃(η)Φ̃N (y).

Obviously, the functions β−1
N gN and β−1

N g̃N belong to Lip1 and max(∥gN ∥∞, ∥g̃N ∥∞) ≤ αN .
On the one hand, applying the inequality obtained in the first step to β−1

N gN and β−1
N g̃N , we

deduce that⏐⏐⏐E [⟨gN , P (N ,N )
[0,T ]

⟩ ⟨
g̃N , P (N ,N )

[0,T ]

⟩]
−
⟨
gN , P[0,T ]

⟩ ⟨
g̃N , P[0,T ]

⟩⏐⏐⏐
is upperbounded by 2βN αN dK R

(
P (N ,N )

[0,T ] , P[0,T ]

)
.

On the other hand, we have⟨
gN , P[0,T ]

⟩
=

∫
Rd

E
[
ϕ(Z̄ y)

]
N dp(d)Φ(N p(d)(y − x))dy →

∫
Rd

E
[
ϕ(Z̄ y)

]
δx (dy),

thanks to the continuity of y ↦→ E[ϕ(Z̄ y)], which is a consequence of (4.13) proven below.
Therefore,⟨

gN , P[0,T ]
⟩
→
⟨
ϕ, P[0,T ](·|x)

⟩
and

⟨
g̃N , P[0,T ]

⟩
→
⟨
ϕ̃, P[0,T ](·|x̃)

⟩
.

Gathering the steps above, we deduce (3.19) provided that βN αN dK R

(
P (N ,N )

[0,T ] , P[0,T ]

)
goes to 0,

which holds true if p(d) < [(4 + d)(2d + 1)]−1 under Scenario (S1) (apply Theorem 1) or if
p(d) < [(2 ∨ d)(2d + 1)]−1 under Scenario (S2) (apply Theorem 2). □

We close this section with the following observation. If for each t ≥ 0 and x ∈ Rd we call

u(t, x) = e−αt u0(x) +

∫
Rd

w(y, x)
∫ t

0
e−α(t−s)λ(s, y)dsρ(dy), (3.22)

then clearly λ(t, x) = f (u(t, x)) and u(t, x) satisfies the scalar neural field equation⎧⎨⎩
∂u(t, x)

∂t
= −αu(t, x) +

∫
Rd

w(y, x) f (u(t, y))ρ(dy)

u(0, x) = u0(x).
(3.23)

Writing U (N )(t, xi ) := U (N )
i (t), where U (N )

i (t) has been defined in (2.1), we obtain the conver-
gence of U (N )(t, xi ) to the solution u(t, x) of the neural field equation in the following sense.

Corollary 2. Under the conditions of either Theorem 1 or Theorem 2, we have that

lim
N→∞

E
(∫

R

∫ T

0
|U (N )(t, x) − u(t, x)|dtµ(N )(dx)

)
= 0, (3.24)

for any T > 0, where expectation is taken with respect to the randomness present in the jumps
of the process.

The proof of this corollary goes along the lines of the proof of Theorem 1 and Theorem 2, in
Sections 5 and 6.

4. Estimating dK R(P (N,N)
[0,T ] , P[0,T ]) for fixed positions x1, . . . , xN

Assume that the following quantities are given and fixed:

• the number of neurons N ,
• the positions of the neurons x1, . . . , xN .
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Hereafter the following empirical measures will be used (the first and the last one are just
reminders of (3.6) and (3.11) respectively),⎧⎪⎪⎪⎨⎪⎪⎪⎩

P (N ,N )
[0,T ] (dη, dx) =

1
N

N∑
i=1

δ(
(Z (N )

i (t))0≤t≤T ,xi

)(dη, dx),

P (∞,N )
[0,T ] (dη, dx) = P[0,T ](dη|x)µ(N )(dx),

P[0,T ](dη, dx) = P[0,T ](dη|x)ρ(dx).

(4.1)

To estimate dK R(P (N ,N )
[0,T ] , P[0,T ]) we shall proceed as follows. We will first show that P (N ,N )

[0,T ]

and P (∞,N )
[0,T ] are close to each other by using a suitable coupling. The rate of convergence of

such a coupling is a balance between the variance coming from the N particles and the bias
induced by the replacement of ρ(dx) by µ(N )(dx). Next, it will be shown that the dK R-distance
between P (∞,N )

[0,T ] and P[0,T ] is controlled in terms of the Wasserstein distance between µ(N )(dx)
and ρ(dx).

4.1. Estimating the dK R-distance between P (N ,N )
[0,T ] and P (∞,N )

[0,T ]

The aim of this subsection is to upper-bound dK R(P (N ,N )
[0,T ] , P (∞,N )

[0,T ] ) when the positions
x1, . . . , xN ∈ Rd are fixed.

Theorem 3. Under Assumptions 1, 2 and 4, for each N in N and T > 0 there exists a constant
C = C(α, f, w, T, u0) > 0 such that for a fixed choice x1, . . . , xN ∈ Rd of positions,

dK R

(
P (N ,N )

[0,T ] , P (∞,N )
[0,T ]

)
+ E

(∫
R

∫ T

0
|U (N )(t, x) − u(t, x)|dtµ(N )(dx)

)

≤ C N−1/2

⎡⎣(∫
Rd

(∫ T

0
λ(t, x)dt

)2

µ(N )(dx)

)1/2

+

(
sup

j
∥wx j ∥L2(µ(N )) exp

(
sup

j
∥wx j ∥L1(µ(N ))T

)
+ 1

)

×

(∫
Rd

∫ T

0
λ(t, x)dtµ(N )(dx)

)1/2
⎤⎦

+ CW2(µ(N ), ρ) exp

(
sup

j
∥wx j ∥L1(µ(N ))T

)
. (4.2)

Proof. Fix a test function g ∈ Lip1 and observe that by definition⏐⏐⏐⟨g, P (N ,N )
[0,T ] − P (∞,N )

[0,T ]

⟩⏐⏐⏐ =

⏐⏐⏐⏐⏐ 1
N

N∑
i=1

[
g
(

(Z (N )
i (t))0≤t≤T , xi

)
−

∫
g (η, xi ) P[0,T ](dη|xi )

]⏐⏐⏐⏐⏐ .
We will introduce in Eq. (4.5) a suitable coupling between the processes (Z (N )

i (t))0≤t≤T , i =

1, . . . , N and the processes (Z̄ i (t))0≤t≤T , i ≥ 1, the latter being independent and distributed
according to P[0,T ](dη|xi ). In particular, we can decompose the equation above as
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⏐⏐⏐⟨g, P (N ,N )
[0,T ] − P (∞,N )

[0,T ]

⟩⏐⏐⏐ ≤

⏐⏐⏐⏐⏐ 1
N

N∑
i=1

[
g
(

(Z (N )
i (t))0≤t≤T , xi

)
− g

(
(Z̄ i (t))0≤t≤T , xi

)]⏐⏐⏐⏐⏐
+

⏐⏐⏐⏐⏐ 1
N

N∑
i=1

[
g
(
(Z̄ i (t))0≤t≤T , xi

)
−

∫
g (η, xi ) P[0,T ](dη|xi )

]⏐⏐⏐⏐⏐ ≤ AN (T ) + B N (T ),

with ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
AN (T ) :=

1
N

N∑
i=1

sup
0≤t≤T

⏐⏐⏐Z (N )
i (t) − Z̄ i (t)

⏐⏐⏐
B N (T ) :=

⏐⏐⏐⏐⏐ 1
N

N∑
i=1

G i − E[G i ]

⏐⏐⏐⏐⏐ ,
where G i := g

(
(Z̄ i (t))0≤t≤T , xi

)
for each i ∈ {1, . . . , N }. To obtain the upper bound AN (T ) we

have used the 1-Lipschitz continuity of g and the inequality dS(η, ξ ) ≤ supt≤T |η(t)−ξ (t)| which
is valid for all η, ξ ∈ D([0, T ],N).

Thus it suffices to obtain upper bounds for the expected values of AN (T ) and B N (T ). We start
studying B N (T ). By the Cauchy–Schwarz inequality and the independence of the Z̄ i ’s, it follows
that

E[B N (T )] ≤

[
1

N 2

N∑
i=1

Var[G i ]

]1/2

,

so that we only need to control the variance of each G i . Now, let (Z̃ i (t))0≤t≤T be an independent
copy of (Z̄ i (t))0≤t≤T and set G̃ i = g

(
(Z̃ i (t))0≤t≤T , xi

)
. In what follows, the expectation Ẽ is

taken with respect to G̃ i . Thus, by applying Jensen’s inequality we deduce that

Var(G i ) = E
[
(G i − E[G i ])2]

= E
[[

Ẽ(G i − G̃ i )
]2
]

≤ E
[

Ẽ
[
(G i − G̃ i )2

]]
.

Then, since dS(η, ξ ) ≤ sup0≤t≤T |η(t) − ξ (t)| for all η, ξ ∈ D([0, T ],N) and both processes
(Z̄ i (t))0≤t≤T and (Z̃ i (t))0≤t≤T are increasing, the 1-Lipschitz continuity of g implies that

|G i − G̃ i | ≤ sup
0≤t≤T

|Z̄ i (t) − Z̃ i (t)| ≤ Z̄ i (T ) + Z̃ i (T ).

Therefore, by applying once more Jensen’s inequality we obtain that

Ẽ
[
(G i − G̃ i )2

]
≤ 2Ẽ

[(
Z̄ i (T )2

+ Z̃ i (T )2
)]

= 2
(
Z̄ i (T )2

+ E
[
Z̄ i (T )2]) .

Collecting all the estimates we then conclude that

Var(G i ) ≤ 4E
[
Z̄ i (T )2].

Now, noticing that Z̄ i (T ) is a Poisson random variable with rate
∫ T

0 λ(t, xi )dt,

E
[
Z̄ i (T )2]

= Var(Z i (T )) +
(
E[Z̄ i (T )]

)2
=

∫ T

0
λ(t, xi )dt +

(∫ T

0
λ(t, xi )dt

)2

.
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Hence, we have just shown that

E[B N (T )] ≤ 2N−1/2

[∫
Rd

∫ T

0
λ(t, x)dtµ(N )(dx)

+

∫
Rd

(∫ T

0
λ(t, x)dt

)2

µ(N )(dx)

]
1/2.

Since clearly (u + v)1/2
≤ u1/2

+ v1/2 for all u, v ≥ 0, it follows that

E[B N (T )] ≤ 2N−1/2

⎡⎣(∫
Rd

∫ T

0
λ(t, x)dtµ(N )(dx)

)1/2

+

(∫
Rd

(∫ T

0
λ(t, x)dt

)2

µ(N )(dx)

)1/2
⎤⎦ . (4.3)

We shall next deal with AN (T ). Let us now introduce the coupling we consider here. Let

(Πi (dz, ds))i≥1 be a sequence of i.i.d. Poisson random measures with intensity measure dsdz
on R+ × R+. By Proposition 1 the process (Z (N )

i (t))t≥0,i=1,...,N defined for each t ≥ 0 and

i ∈ {1, . . . , N } by

Z (N )
i (t) =

∫ t

0

∫
∞

0
1{

z≤ f

(
e−αs u0(xi )+ 1

N
∑N

j=1 w(x j ,xi)
∫ s

0 e−α(s−h)d Z (N )
j (h)

)}Πi (dz, ds), (4.4)

is also a multivariate nonlinear Hawkes process with parameters (N , f, w, u0, α), and the

processes (Z̄ i (t))t≥0,i=1,...,N defined for each i ∈ {1, . . . , N } and t ≥ 0 as

Z̄ i (t) =

∫ t

0

∫
∞

0
1{

z≤ f

(
e−αs u0(xi )+

∫
Rd w(y,xi )

∫ s
0 e−α(s−h)λ(h,y)dhρ(dy)

)}Πi (dz, ds), (4.5)

are independent and such that (Z̄ i (t))t≥0 is distributed according to P(·|xi ) for each i ∈

{1, . . . , N }. Now, for each i and t ≥ 0, let us define the following quantity

∆(N )
i (t) =

∫ t

0
|d(Z (N )

i (s) − Z̄ i (s))|.

Using successively that f is Lipschitz and the triangle inequality we deduce that

E[∆(N )
i (T )] ≤ L f E

(∫ T

0
|U (N )(s, xi ) − u(s, xi )|ds

)
:= L f

(
F (N )

i (T ) + G(N )
i (T ) + H (N )

i (T )
)

, (4.6)
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where U (N )(s, xi ) := U (N )
i (s), with U (N )

i (s) as in (2.1), and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (N )
i (T ) := E

⎡⎣⏐⏐⏐⏐⏐⏐
∫ T

0

1
N

N∑
j=1

w
(
x j , xi

) ∫
[0,t[

e−α(t−s)
[
d Z (N )

j (s) − d Z̄ j (s)
]

dt

⏐⏐⏐⏐⏐⏐
⎤⎦ ,

G(N )
i (T ) := E

⎡⎣⏐⏐⏐⏐⏐⏐
∫ T

0

1
N

N∑
j=1

w
(
x j , xi

) ∫
[0,t[

e−α(t−s) [d Z̄ j (s) − λ(s, x j )ds
]

dt

⏐⏐⏐⏐⏐⏐
⎤⎦ ,

H (N )
i (T ) :=

⏐⏐⏐⏐⏐⏐
∫ T

0

∫
[0,t[

e−α(t−s)
[ 1

N

N∑
j=1

w(x j , xi )λ(s, x j )

−

∫
Rd

w(y, xi )λ(s, y)ρ(dy)
]
dsdt

⏐⏐⏐⏐⏐⏐ .
Notice that since e−α(s−h)

≤ 1 for 0 ≤ h ≤ s, we have

F (N )
i (T ) ≤

1
N

N∑
j=1

|w(x j , xi )|
∫ T

0
E[∆(N )

j (s)]ds,

which in turn implies that

1
N

N∑
i=1

F (N )
i (T ) ≤ sup

j
∥wx j ∥L1(µ(N ))

∫ T

0

1
N

N∑
j=1

E[∆(N )
j (s)]ds. (4.7)

Now, write W j (t) := w
(
x j , xi

) ∫
[0,t[ e−α(t−s)d Z̄ j (s). By the triangle inequality, we have

G(N )
i (T ) ≤ E

⎡⎣∫ T

0

⏐⏐⏐⏐⏐⏐ 1
N

N∑
j=1

W j (t) − E[W j (t)]

⏐⏐⏐⏐⏐⏐ dt

⎤⎦ .

Then the Cauchy–Schwarz inequality and the independence of the W j ’s implies that

G(N )
i (T ) ≤

∫ T

0

⎛⎝ 1
N 2

N∑
j=1

Var(W j (t))

⎞⎠1/2

dt.

Now, Var(W j (t)) = w(x j , xi )2
∫ t

0 e−2α(t−s)λ(s, x j )ds, whence

1
N

N∑
i=1

G(N )
i (T ) ≤

∫ T

0

1
N

N∑
i=1

⎛⎝ 1
N 2

N∑
j=1

w(x j , xi )2
∫ t

0
e−2α(t−s)λ(s, x j )ds

⎞⎠1/2

dt.

Applying Jensen’s inequality twice, the right-hand side of the inequality above can be upper-
bounded by

sup
j

∥wx j ∥L2(µ(N ))T

⎛⎝ 1
T

1
N 2

N∑
j=1

∫ T

0

∫ t

0
e−2α(t−s)λ(s, x j )dsdt

⎞⎠1/2

.
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Since
∫ T

0

∫ t
0 e−2α(t−s)λ(s, x j )dsdt =

∫ T
0 λ(t, x j )(2α)−1(1 − e−2α(T −t))dt ≤ T

∫ T
0 λ(s, x j )dt

(recall that 1 − e−v
≤ v for all v ≥ 0), we deduce that

1
N

N∑
i=1

G(N )
i (T ) ≤ sup

j
∥wx j ∥L2(µ(N ))T

(∫
Rd

∫ T

0
λ(t, x)dtµ(N )(dx)

)1/2

N−1/2.

Finally we shall deal with H (N )
i (T ). Proceeding similarly as above, we have

H (N )
i (T ) ≤

∫ T

0

∫ t

0
e−α(t−s)

⏐⏐⏐⏐∫
Rd

w(y, xi )λ(s, y)
[
µ(N )(dy) − ρ(dy)

]⏐⏐⏐⏐ dsdt

≤ T
∫ T

0

⏐⏐⏐⏐∫
Rd

w(y, xi )λ(t, y)
[
µ(N )(dy) − ρ(dy)

]⏐⏐⏐⏐ dt,

and therefore it follows that

1
N

N∑
i=1

H (N )
i (T ) ≤ T

∫ T

0

∫
Rd

⏐⏐⏐⏐∫
Rd

w(y, x)λ(t, y)
[
µ(N )(dy) − ρ(dy)

]⏐⏐⏐⏐µ(N )(dx)dt.

Thus, defining δ(t) = N−1∑N
i=1 E[∆i (t)] and then gathering the steps above gives

δ(T ) ≤ T

(
sup

j
∥wx j ∥L2(µ(N ))

(∫
Rd

∫ T

0
λ(t, x)dtµ(N )(dx)

)1/2

N−1/2

+

∫ T

0

∫
Rd

⏐⏐⏐⏐∫
Rd

w(y, x)λ(t, y)
[
µ(N )(dy) − ρ(dy)

]⏐⏐⏐⏐µ(N )(dx)dt

+ sup
j

∥wx j ∥L1(µ(N ))

∫ T

0
δ(t)dt

)
.

Now, Gronwall’s lemma implies

δ(T ) ≤ T

(
sup

j
∥wx j ∥L2(µ(N ))

(∫
Rd

∫ T

0
λ(t, x)dtµ(N )(dx)

)1/2

N−1/2

+

∫ T

0

∫
Rd

⏐⏐⏐⏐∫
Rd

w(y, x)λ(t, y)
[
µ(N )(dy) − ρ(dy)

]⏐⏐⏐⏐µ(N )(dx)dt
)

exp

(
sup

j
∥wx j ∥L1(µ(N ))T

)
. (4.8)

To deduce (4.2), it suffices to observe that E[AN (T )] ≤ δ(T ) and the following control proven
below: there exists a constant C = C(α, f, w, T, u0) > 0 such that∫ T

0

∫
Rd

⏐⏐⏐⏐∫
Rd

w(y, x)λ(t, y)
[
µ(N )(dy) − ρ(dy)

]⏐⏐⏐⏐µ(N )(dx)dt ≤ CW2(µ(N ), ρ). (4.9)

Indeed, let (Ω̃ , Ã, P̃) be a probability space on which are defined random variables Y (N )
1 and

Y (N )
2 such that their joint law under P̃ is the optimal coupling achieving the Wasserstein distance
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W2(µ(N ), ρ) of order 2 between µ(N ) and ρ. Then for all t ≤ T, using Hölder’s inequality,⏐⏐⏐⏐∫
Rd

w(y, x)λ(t, y)
[
µ(N )(dy) − ρ(dy)

]⏐⏐⏐⏐
=

⏐⏐⏐Ẽ(w(Y (N )
1 , x)λ(t, Y (N )

1 ) − w(Y (N )
2 , x)λ(t, Y (N )

2 ))
⏐⏐⏐

≤ ∥λ∥[0,T ]×Rd ,∞ Ẽ(|w(Y (N )
1 , x) − w(Y (N )

2 , x)|)

+ ∥wx
∥L2(ρ)

(
Ẽ(|λ(t, Y (N )

1 ) − λ(t, Y (N )
2 )|

2
)
)1/2

. (4.10)

By Assumption 4,

Ẽ(|w(Y (N )
1 , x) − w(Y (N )

2 , x)|) ≤ Lw Ẽ(|Y (N )
1 − Y (N )

2 |) ≤ LwW2(µ(N ), ρ).

Moreover, using (3.13),(
Ẽ(|λ(t, Y (N )

1 ) − λ(t, Y (N )
2 )|

2
)
)1/2

≤ CW2(µ(N ), ρ),

implying (4.9). Finally, observe that together with (4.6), we obtain the same control for
E
(∫

R
∫ T

0 |U (N )(t, x) − u(t, x)|dtµ(N )(dx)
)

. □

4.2. Estimating the dK R-distance between P (∞,N )
[0,T ] and P[0,T ]

In this subsection we give an upper bound for dK R(P (∞,N )
[0,T ] , P[0,T ]) in terms of the Wasserstein

distance between the empirical distribution µ(N )(dx) and the limit measure ρ(dx).

Proposition 6. Grant Assumptions 1–4. For each N ≥ 1 and T > 0, there exists a positive
constant C = C( f, u0, w, α, T ) such that for any choice of x1, . . . , xN ∈ Rd the following
inequality holds

dK R

(
P (∞,N )

[0,T ] , P[0,T ]

)
≤ CW1(µ(N ), ρ), (4.11)

where W1(µ(N ), ρ) is the Wasserstein distance between µ(N )(dx) and ρ(dx) associated with the
metric d(x, y) = ∥x − y∥ for x, y ∈ Rd .

Proof. Notice that for deterministic probability measures P and P̃ which are defined on
D([0, T ],N) × Rd , the distance dK R

(
P, P̃

)
reduces to

dK R

(
P, P̃

)
= sup

g∈Lip1,∥g∥∞<∞

⟨
g, P − P̃

⟩
. (4.12)

Now, fix a test function g ∈ Lip1. We take any coupling W (N )(dx, dy) of µ(N )(dx) and ρ(dy).
Given x and y in Rd , we use the canonical coupling of Z̄x (t) and Z̄ y(t). That is, we pose

Z̄x (t) =

∫ t

0

∫
∞

0
1{

z≤ f

(
e−αs u0(x)+

∫
Rd w(y,x)

∫ s
0 e−α(s−h)λ(h,y)dhρ(dy)

)}Π (dz, ds),

and

Z̄ y(t) =

∫ t

0

∫
∞

0
1{

z≤ f

(
e−αs u0(y)+

∫
Rd w(y′,y)

∫ s
0 e−α(s−h)λ(h,y′)dhρ(dy′)

)}Π (dz, ds),
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where we use the same Poisson random measure Π (dz, ds) for the construction of Z̄x (t) and of
Z̄ y(t). Then⟨

g, P (∞,N )
[0,T ] − P[0,T ]

⟩
= E

(∫
Rd

g(Z̄x (t), x)µ(N )(dx) −

∫
Rd

g(Z̄ y(t), y)ρ(dy)
)

= E
∫
Rd

∫
Rd

[
g(Z̄x (t), x) − g(Z̄ y(t), y)

]
W (N )(dx, dy),

since µ(N )(Rd ) = ρ(Rd ) = 1. By the Lipschitz continuity of g,⏐⏐⏐⟨g, P (∞,N )
[0,T ] − P[0,T ]

⟩⏐⏐⏐ ≤ E
∫∫ [

dS((Z̄x (t))0≤t≤T , (Z̄ y(t))0≤t≤T ) + ∥x − y∥
]

× W N (dx, dy).

Yet, as a consequence of the canonical coupling, it follows that

E
[
dS(Z̄x , Z̄ y)

]
≤ E

[
sup
[0,T ]

|Z̄x (t) − Z̄ y(t)|

]
≤

∫ T

0
|λ(t, x) − λ(t, y)|dt

≤ CT ∥x − y∥, (4.13)

where we used (3.13). Finally, the assertion follows from the definition of W1. □

Before going to the proofs of Theorems 1 and 2, let us sum up the results obtained above and
then present the scheme of the remaining proofs.

Remark 5. Combining Theorem 3 and Proposition 6 together with the inequalities W1(µ(N ), ρ)
≤ W2(µ(N ), ρ) and ∥ · ∥L1(µ(N )) ≤ ∥ · ∥L2(µ(N )), it follows that to conclude the proofs of the
theorems it suffices to control as N → +∞:
1- the Wasserstein distance W2(µ(N ), ρ); 2- the supremum sup j∥wx j ∥L2(µ(N )).

To treat the second point of the remark above, we use the following technical lemma in order
to use (3.2).

Lemma 1. Grant Assumption 4. Let µ, ρ be two probability measures. Assume that ρ satisfies
Assumption 3 and that µ is supported in B(0d , r ) for some r > 0. Then, for any β ′ < β, there
exists a constant C = C(w, β, β ′) such that

sup
∥y∥≤r

⏐⏐⏐∥wy∥
2
L2(µ) − ∥wy∥

2
L2(ρ)

⏐⏐⏐ ≤ C
(
1 + r

)
W1(µ, ρ) + CEβe−β ′r . (4.14)

Proof. The proof is based on a truncation argument. Let us define the auxiliary measure ρr (dx)
by

ρr (dx) := ρ(dx)1B(0d ,r )(x) +
(
1 − ρ(B(0d , r ))

)
δ0d (dx), (4.15)

which is the truncated version of ρ(dx) to which we add a Dirac mass at 0d .
The Lipschitz continuity of w implies that for any y, x, z ∈ B(0d , r ),

|w2
y(x) − w2

y(z)| ≤ Cw(1 + r )∥x − z∥,

that is, x ∈ B(0d , r ) ↦→ (wy(x))2 is Lipschitz with explicit constant, where the positive constant
Cw depends only on w(0, 0) and Lw. We hence deduce that for all y ∈ B(0d , r ),⏐⏐⏐∥wy∥

2
L2(µ) − ∥wy∥

2
L2(ρr )

⏐⏐⏐ =

⏐⏐⏐⏐∫
B(0d ,r )

wy(x)2d(µ − ρr )(x)
⏐⏐⏐⏐ ≤ Cw(1 + r )W1(µ, ρr ),
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thanks to the Kantorovich–Rubinstein duality. By the triangle inequality it follows then⏐⏐⏐∥wy∥
2
L2(µ) − ∥wy∥

2
L2(ρr )

⏐⏐⏐ ≤ Cw(1 + r )(W1(µ, ρ) + W1(ρ, ρr )).

By the canonical coupling, we have

W1(ρ, ρr ) ≤

∫
∥x∥>r

∥x∥ρ(dx).

Now, since for any β ′ < β, there exists a constant C > 0 depending only on β and β ′

such that ∥x∥eβ ′
∥x∥

≤ Ceβ∥x∥ we infer that
∫
∥x∥>r ∥x∥ρ(dx) ≤ CEβe−β ′r which implies that

W1(ρ, ρr ) ≤ CEβe−β ′r .
Now, with Mr = |w(0, 0)| + Lwr , we have for any y ∈ B(0d , r ),⏐⏐⏐∥wy∥

2
L2(ρr ) − ∥wy∥

2
L2(ρ)

⏐⏐⏐ ≤

∫
∥x∥>r

(Mr + Lw∥x∥)2ρ(dx) +
(
1 − ρ(B(0d , r ))

)
M2

r

≤ 2L2
w

∫
∥x∥>r

∥x∥
2ρ(dx) + 3

(
1 − ρ(B(0d , r ))

)
M2

r .

On the one hand, for any β ′ < β,
∫
∥x∥>r ∥x∥

2ρ(dx) ≤
∫
∥x∥>r ∥x∥

2eβ ′
∥x∥ρ(dx)e−β ′r and

there exists a constant C that only depends on β and β ′ such that ∥x∥
2eβ ′

∥x∥
≤ Ceβ∥x∥.

Hence
∫
∥x∥>r ∥x∥

2ρ(dx) ≤ CEβe−β ′r . On the other hand, 1 − ρ(B(0d , r )) =
∫
∥x∥>r ρ(dx) ≤

Eβe−βr . The same argument applies and gives the existence of a constant C such that(
1 − ρ(B(0d , r ))

)
M2

r ≤ CEβe−β ′r . Finally, (4.14) follows from triangular inequality. □

5. Proof of Theorem 1

In this section we give the proof of Theorem 1 using the estimates obtained in the previous
section. We work under the additional assumption that the positions x1, . . . , xN are realizations
of i.i.d. random variables X1, . . . , X N , distributed according to ρ.

On the one hand, to control the Wasserstein distance, Theorem 1.6 Item (i) of [3] gives that
for any fixed d ′ > d there exist constants K and N0 depending only on d , β and Eβ such that

P(W2(µ(N ), ρ) > ε) ≤ e−K Nε2
,

for any 0 < ε ≤ 1 and N ≥ N0 max{1, ε−(4+d ′)
}. As a consequence, for any fixed d ′ > d it

follows that if εN = O(N−
1

4+d′ ) then
∞∑

N=1

P(W2(µ(N ), ρ) > εN ) < ∞,

so that Borel–Cantelli’s lemma implies

W2(µ(N ), ρ) ≤ C N−
1

4+d′ (5.1)

eventually almost surely.
On the other hand, define RN = N γ where the constant γ > 0 will be specified later

and observe that by Markov’s inequality, P
(
∪

N
i=1 {∥X i∥ > RN }

)
≤ N P(∥X1∥ > RN ) ≤

Eβe−β RN (1−o(1)). As a consequence,
∑

∞

N=1 P
(
∪

N
i=1 {∥X i∥ > RN }

)
< ∞ and by Borel–Cantelli’s

lemma we deduce that for almost all realizations X1, X2, . . . there exists a N0 depending on that
realization such that for all N ≥ N0, µ(N ) is supported in B(0d , RN ).
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Taking d ′
= d + 1, 0 < γ < 1/(10 + 2d) and applying Lemma 1 gives that almost surely,

sup
∥y∥≤RN

⏐⏐⏐∥wy∥
2
L2(µ(N )) − ∥wy∥

2
L2(ρ)

⏐⏐⏐ −−−→
N→∞

0,

and in particular,

lim sup
N→∞

sup
1≤ j≤N

∥wx j ∥
2
L2(µ(N ))

≤ sup
y∈Rd

∫
Rd

(wy(x))2ρ(dx) < ∞. (5.2)

Finally, the first two assertions of Theorem 1 follow immediately from (4.2) and (4.11)
combined with (5.2) — or sup j∥wx j ∥L2(µ(N )) ≤ ∥w∥∞ in case w is bounded; (3.16) is a
consequence of (5.1).

6. Proof of Theorem 2

In this section we give the proof of Theorem 2 using the estimates obtained in Section 4.
The main issue here is to construct a sequence of empirical distributions µ(N ) for which the
Wasserstein distance W2(µ(N ), ρ) is controlled.

We first use a truncation argument to reduce to the case where ρ is compactly supported. Let
r > 0 be a truncation level to be chosen later. Let us define the measure ρr by

ρr (dx) := ρ(dx)1B(0d ,r )(x) +
(
1 − ρ(B(0d , r ))

)
δ0d (dx).

By the canonical coupling, we have

W2(ρ, ρr ) ≤

∫
∥x∥>r

∥x∥
2ρ(dx).

Yet, if r is large enough,∫
∥x∥>r

∥x∥
2ρ(dx) ≤

∫
∥x∥>r

eβ∥x∥ρ(dx)r2e−βr ,

hence, by Assumption 3, there exists β > 0 such that

W2(ρ, ρr ) ≤ Eβr2e−βr < +∞. (6.1)

Let us now describe how we construct an empirical distribution made of N points adapted to
any probability measure ρr supported in B(0d , r ). For simplicity of our construction, we assume
that Rd is endowed with the distance induced by the ℓ∞ norm.

The construction is iterative, so we first explain how each step works. Let ν be a measure
having support in the cube B(0d , r ) = [−r, r ]d and denote by |ν| ≥ 1/N its mass. Let us prove
that

there exists a cube C with ν(C) ≥ 1/N and radius less than r

⌊(N |ν|)1/d
⌋
−1

≤ 2r (N |ν|)−1/d . (6.2)

Assume that the ν-mass of any cube of radius equal to r⌊(N |ν|)1/d
⌋
−1

is less than 1/N . There
exists a covering of the cube [−r, r ]d into ⌊(N |ν|)1/d

⌋
d

disjoint smaller cubes, each one of radius
equal to r⌊(N |ν|)1/d

⌋
−1

. This implies

|ν| < ⌊(N |ν|)1/d
⌋

d
N−1

≤ ((N |ν|)1/d )d N−1
= |ν|

yielding a contradiction. Then, treat separately the cases (N |ν|)1/d
≥ 2 and (N |ν|)1/d < 2 to

prove r⌊(N |ν|)1/d
⌋
−1

≤ 2r (N |ν|)−1/d .
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Applying the iterative step above to the probability measure ρr gives the existence of a cube
CN such that ρr (CN ) ≥ 1/N and Diam(CN ) ≤ 4r N−1/d . Then, we define the measure

ρN
r :=

N−1

ρr (CN )
ρr 1CN .

Its mass is 1/N . Applying the iterative step to ρ̃r = ρr − ρN
r (its mass is (N − 1)/N ) gives a

cube CN−1 such that ρ̃r (CN−1) ≥ 1/N and Diam(CN−1) ≤ 4r (N − 1)−1/d . Similarly we define
ρN−1

r :=
N−1

ρ̃r (CN−1) ρ̃r 1CN−1 . In brief, applying N times the iterative step gives a sequence of cubes
C1, . . . , CN and associated measures ρ1

r , . . . , ρN
r such that for all k,

Diam(Ck) ≤ 4rk−1/d ,

ρk
r is a measure of mass 1/N supported in Ck , and ρr =

∑N
k=1ρ

k
r .

For each k, let xk denote the center of Ck and let µ(N )
= N−1∑N

k=1δxk denote the associated
empirical distribution. To control W2(µ(N ), ρr ), we use the canonical coupling π (dx, dy) =∑N

k=1

(
N−1δxk

)
⊗ ρk

r . Hence,

W2(µ(N ), ρr )2
≤ N−1

N∑
k=1

∫
Rd

∫
Rd

∥x − y∥
2δxk (dx)ρk

r (dy)

≤ N−1
N∑

k=1

Diam(Ck)2
≤ 16r2 N−1

N∑
k=1

k−2/d .

If d = 1, then
∑

+∞

k=1k−2/d
= π2/6 so W2(µ(N ), ρr )2

≤ g1(r, N ) := (4π2r/6)N−1/2. If d ≥ 2, by
Hölder’s inequality,3

N∑
k=1

k−2/d
≤

(
N∑

k=1

k−1

)2/d

N 1−2/d
≤ N

(
1 + ln N

N

)2/d

,

so that

W2(µ(N ), ρr ) ≤ gd (r, N ) := 4r
(

1 + ln N
N

)1/d

. (6.3)

We now chose a truncation level that depends on N , namely rN = N ε for some ε > 0.
Combining (6.1) and the results above with the triangular inequality, we have, for N large
enough,

W2(µ(N ), ρ) ≤ C N 2εe−βNε
+ gd (N ε, N ). (6.4)

Hence, for any d ′ > 2 ∨ d, there exist K , N0 such that for all N ≥ N0,

W2(µ(N ), ρ) ≤ K N−1/d ′

. (6.5)

Taking d ′
= d + 2, 0 < ε < 1/(d + 2) and applying Lemma 1 gives that

sup
∥y∥≤rN

⏐⏐⏐∥wy∥
2
L2(µ(N )) − ∥wy∥

2
L2(ρ)

⏐⏐⏐ −−−−→
N→+∞

0,

and in particular,

lim sup
N→∞

sup
1≤ j≤N

∥wx j ∥
2
L2(µ(N ))

≤ sup
y∈Rd

∫
Rd

w2
y(x)ρ(dx) < +∞. (6.6)

3 This is not optimal (see [7] for a refined version of this quantization argument).
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Finally, the first assertion of Theorem 2 follows immediately from (4.2) and (4.11) combined
with (6.6); (3.18) is a consequence of (6.5).

Proof of Corollary 2. Corollary 2 follows under both scenarios from (4.2) in Theorem 3,
together with the arguments used to conclude the proofs of Theorems 1 and 2. □

7. Final discussion

In the previous sections, some technical assumptions have been imposed regarding the
parameters of our model. These parameters are: the spike rate function f , the initial condition
u0 and the matrix of synaptic strengths w. Here, we discuss these assumptions with respect to
standard choices appearing e.g. in [5].

There are three main choices for the function f : a sigmoid-like function, a piecewise linear
function or a Heaviside function (see page 6 of [5]). The first two choices obviously fit our
Lipschitz condition (Assumption 1). A Heaviside function does of course not satisfy the Lipschitz
condition. However, a Heaviside nonlinearity is less realistic and is mainly studied for purely
mathematical reasons (to obtain explicit computations).

A typical choice for the function u0 is a Gaussian kernel (see page 38 of [5]). It can describe
an initial bump of the neural activity at some location of the cortex.

Usually, a (homogeneity) simplification is made concerning the function w: w(y, x) is
assumed to depend on ∥x − y∥ only. Under this simplification, a common choice is the so-called
Mexican hat function (see page 41 of [5]). Nevertheless, inhomogeneous neural fields where the
previous simplification is dropped are also studied (see section 3.5 of [5] for instance). As a
consequence of the modeling used in the present article, the interaction strength felt by neurons
at position x coming from neurons in the vicinity dy of y is given by w(y, x)ρ(dy). Hence,
inhomogeneity in neural networks can be considered in two ways:

• with an inhomogeneous matrix w (whereas the limit spatial distribution ρ is homoge-
neous),

• with an homogeneous w but an inhomogeneous distribution ρ.

Let us discuss the spatial distribution ρ. Two standard choices are a uniform distribution over
a bounded set (see [18]), or a finite sum of Dirac masses (in that case, the present paper is highly
related to [11]). In these cases, ρ is compactly supported and therefore satisfies Assumption 3.
For unbounded domains, a typical choice is a Gaussian distribution satisfying Assumption 3
as well. Finally, let us notice that uniform distributions over unbounded domains (such as the
Lebesgue measure on Rd ) are also considered for the study of the neural field equation. Such a
model (which cannot correspond to a probability distribution on the positions) does not fit our
assumptions and therefore cannot be obtained as the limit of a microscopic description following
our approach.

Finally, the rate of convergence obtained in the present paper depends on the modeling
scenario: the positions of the neurons are random or they are deterministic. Notice that our
approach gives better rates of convergence in the deterministic framework (rate in N−

1
2∨d′ for

any d ′ > d) than in the random one (rate in N−
1

4+d′ for any d ′ > d).
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Appendix. Remaining mathematical proofs

A.1. Proof of Proposition 3

Using the inequality f (u) ≤ L f |u| + f (0) valid for all u ∈ R (which follows from the
Lipschitz continuity of f ), we have that for each 1 ≤ i ≤ N ,

λ
(N )
i (t) ≤ f (0) + L f

⎛⎝e−αt
|u0(xi )| +

1
N

N∑
j=1

|w(x j , xi )|
∫

[0,t[
e−α(t−s)d Z (N )

j (s)

⎞⎠ . (A.1)

Thus, using that e−α(t−s)
≤ 1 for all 0 ≤ s ≤ t , we obtain that

E
[
λ

(N )
i (t)

]
≤ f (0) + L f

⎛⎝|u0(xi )| +
1
N

N∑
j=1

|w(x j , xi )|E
[

Z (N )
j (t)

]⎞⎠ .

Then, denoting β(t) = N−1∑N
i=1 E

[
Z (N )

i (t)
]

for each t ≥ 0, it follows that

β(T ) =
1
N

N∑
i=1

∫ T

0
E
[
λ

(N )
i (t)

]
dt

≤ T
(

f (0) + L f

∫
Rd

|u0(x)|µ(N )(dx)
)

+ L f sup
j

∥wx j ∥L1(µ(N ))

∫ T

0
β(t)dt. (A.2)

Proposition 2 implies that t ↦→ β(t) is locally bounded so that the first inequality stated in
Proposition 3 follows from Gronwall’s inequality. We now turn to the control of the second
moment of Z (N )

i (t). We first work with the stopped processes Z (N )
i (· ∧ τK ), where τK = inf{t ≥

0 :
∑N

i=1 Z (N )
i (t) ≥ K }, for some fixed truncation level K > 0. By Itô’s formula,

E
[
(Z (N )

i (t ∧ τK ))2
]

= E
[

Z (N )
i (t ∧ τK )

]
+ 2E

[∫ t∧τK

0
Z (N )

i (s)λ(N )
i (s)ds

]
≤ E

[
Z (N )

i (t)
]

+

∫ t

0
E
[
(Z (N )

i (s ∧ τK ))2
]

ds +

∫ t

0
E
[
(λ(N )

i (s))2
]

ds.

(A.1) implies that

[λ(N )
i (t)]2

≤ 2 f (0)2
+ 4L2

f

⎛⎝|u0(xi )|2 +
1
N

N∑
j=1

|w(x j , xi )|2[Z (N )
j (t)]2

⎞⎠ .

Denoting γK (t) = N−1∑N
i=1 E

[
(Z (N )

i (t ∧ τK ))2
]

for each t ≥ 0, it follows that

γK (T ) ≤ β(T ) +

∫ T

0
γK (s)ds + 2T f (0)2

+

4L2
f T
∫
Rd

|u0(x)|2µ(N )(dx) + 4L2
f

(
sup

j
∥wx j ∥L2(µ(N ))

)2 ∫ T

0
γK (s)ds. (A.3)



J. Chevallier et al. / Stochastic Processes and their Applications 129 (2019) 1–27 25

This implies, applying once more Gronwall’s inequality, that

1
N

N∑
i=1

E
[
(Z (N )

i (T ∧ τK ))2
]

≤ exp

⎧⎨⎩T

⎛⎝1 + 4L2
f

(
sup

j
∥wx j ∥L2(µ(N ))

)2
⎞⎠⎫⎬⎭

×

[
T
(

f (0) + L f ∥u0∥∞

)
exp

{
T L f sup

j
∥wx j ∥L1(µ(N ))

}
+ 2T f (0)2

+ 4L2
f T ∥u0∥

2
∞

]
.

We now obtain the result by letting K → ∞.

A.2. Proof of Proposition 4

Taking the test function g(η, x) := ηT which belongs to Lip1, we obtain first for any N ,∫
Rd

∫
D(R+,N)

g(η)P[0,T ](dη, dx) ≤ dK R(P (N ,N )
[0,T ] , P[0,T ])

+ E
(∫

Rd

∫
D(R+,N)

g(η)P (N ,N )
[0,T ] (dη, dx)

)
,

and then, letting N → ∞ and using (3.9),∫
Rd

∫
D(R+,N)

g(η)P[0,T ](dη, dx) ≤ lim sup
N→∞

E
(∫

Rd

∫
D(R+,N)

g(η)P (N ,N )
[0,T ] (dη, dx)

)
.

Yet

lim sup
N→∞

E
(∫

Rd

∫
D(R+,N)

g(η)P (N ,N )
[0,T ] (dη, dx)

)
= lim sup

N→∞

1
N

N∑
i=1

E[Z (N )
i (T )] < ∞

by Proposition 3 together with (5.2) or (6.6) (depending on the chosen scenario).
To prove the second assertion, fix a truncation level K > 0 and let ΦK : R+ → R+ be a

smooth bounded function such that ΦK (x) = x2 for all x ≤ K , ΦK (x) ≤ x2 for all x ≥ 0 and
such that ∥ΦK ∥Lip := supx ̸=y

|ΦK (x)−ΦK (y)|
|x−y|

≤ 4K . Put then g(η) :=
1

4K ΦK (ηT ), by construction,
this function belongs to Lip1. As before, we obtain that∫

Rd

∫
D(R+,N)

g(η)P[0,T ](dη, dx) ≤ lim sup
N→∞

E
(∫

Rd

∫
D(R+,N)

g(η)P (N ,N )
[0,T ] (dη, dx)

)
,

which implies, multiplying g(η) by 4K , that∫
Rd

∫
D(R+,N)

ΦK (ηT )P[0,T ](dη, dx) ≤ lim sup
N→∞

E
(∫

Rd

∫
D(R+,N)

η2
T P (N ,N )

[0,T ] (dη, dx)
)

,

where we have used that ΦK (x) ≤ x2 to obtain the rhs which does not depend on K any more.
As in the first step of the proof, the rhs of the above inequality is finite, thanks to Proposition 3
together with (5.2) or (6.6) (depending on the chosen scenario). Therefore, letting now K → ∞

in the lhs of the above equation, the assertion follows.

A.3. Proof of Proposition 5

Using the inequality f (u) ≤ L f |u| + f (0) valid for all u ∈ R, one gets for each 0 ≤ t ≤ T ,

λ(t, x) ≤ f (0) + L f

[
e−αt

|u0(x)| +

∫
Rd

|w(y, x)|
∫ t

0
e−α(t−s)λ(s, y)dsρ(dy)

]
.
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We use that e−α(t−s)
≤ 1 for all 0 ≤ s ≤ t, that u0 is bounded and apply Hölder’s inequality to

the last term (with respect to ρ(dy)) to obtain the upper bound

λ(t, x) ≤ f (0) + L f ∥u0∥∞ + L f ∥w
x
∥L2(ρ)

∫
Rd

(∫ t

0
λ(s, y)ds

)2

ρ(dy).

Since t →
∫
Rd (
∫ t

0 λ(s, y)ds)2ρ(dy) is locally bounded by assumption and since by Assumption 4
together with Remark 2, x ↦→ ∥wx

∥L2(ρ) is bounded, one obtains from the inequality above that
λ(t, x) is bounded on [0, T ] × Rd , for any fixed T > 0.

We now prove the continuity of the function λ(t, x). To that end, take t, t ′
∈ [0, T ] with

t ≤ t ′
≤ T and x, y in Rd . On the one hand, by using successively the Lipschitz continuity of f ,

the triangle inequality and the boundedness of u0, we deduce that

|λ(t, x) − λ(t ′, x)| ≤ L f ∥u0∥∞|e−αt
− e−αt ′

|

+ L f

∫
Rd

|w(y, x)|
∫ t ′

0
|e−α(t−s)

− e−α(t ′−s)
|λ(s, y)dsρ(dy)

+ L f

∫
Rd

|w(y, x)|
∫ t ′

t
e−α(t−s)λ(s, y)dsρ(dy).

Write ∥λ∥[0,T ]×Rd ,∞ := supx∈Rd ,t≤T λ(t, x) which is bounded thanks to the first step of the proof.
It follows from the inequality above that

|λ(t, x) − λ(t ′, x)| ≤ αL f ∥u∥∞h + L f ∥w
x
∥L1(ρ)∥λ∥[0,T ]×Rd ,∞(

(eαh
− 1)(1 − e−αh) +

(eαh
− 1)
α

)
. (A.4)

On the other hand, the Lipschitz continuity of f implies that

|λ(t ′, x) − λ(t ′, y)| ≤ L f e−αt ′
|u0(x) − u0(y)|

+ L f

∫ t ′

0
e−α(t ′−s)

∫
Rd

λ(s, z)|w(z, x) − w(z, y)|dsρ(dz).

Thus, using the Lipschitz-continuity of u0, the Lipschitz-continuity of w and the boundedness
of λ, we deduce from the inequality above that

|λ(t ′, x) − λ(t ′, y)| ≤ L f

(
e−αt ′ Lu0 + ∥λ∥[0,T ]×Rd ,∞(1 − e−αt ′ )α−1Lw

)
∥x − y∥. (A.5)

Inequality (A.5) proves (3.13) and, together with (A.4), proves the continuity of λ.
Therefore it remains to establish (3.14). For that sake, observe that the Lipschitz continuity of

f implies that

|F(λ)(t, x) − F(λ̃)(t, x)| ≤ L f

∫
Rd

|w(y, x)|
∫ t

0
e−α(t−s)

⏐⏐⏐λ(s, y) − λ̃(s, y)
⏐⏐⏐ dsρ(dy),

whence

|F(λ)(t, x) − F(λ̃)(t, x)| ≤ L f ∥w
x
∥L1(ρ)∥λ − λ̃∥[0,T ]×Rd ,∞

∫ t

0
e−α(t−s)ds,

which implies the result.

References
[1] S. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields, Biol. Cybernet. 27 (2) (1977)

77–87.

http://refhub.elsevier.com/S0304-4149(18)30022-X/sb1
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb1
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb1


J. Chevallier et al. / Stochastic Processes and their Applications 129 (2019) 1–27 27

[2] P. Billingsley, Convergence of Probability Measures, in: Wiley Series in Probability and Mathematical Statistics,
Wiley, New York, 1968.

[3] F. Bolley, A. Guillin, C. Villani, Quantitative concentration inequalities for empirical measures on non-compact
spaces, Probab. Theory Related Fields 137 (3) (2007) 541–593.

[4] P. Brémaud, L. Massoulié, Stability of nonlinear Hawkes processes, Ann. Probab. 24 (1996) 1563–1588.
[5] P.C. Bressloff, Spatiotemporal dynamics of continuum neural fields, J. Phys. A 45 (3) (2012) 033001.
[6] J. Chevallier, Mean-field limit of generalized Hawkes processes, Stochastic Process. Appl. 127 (2017) 3870–3912.
[7] J. Chevallier, Uniform decomposition of probability measures: quantization, classification, rate of convergence,

2018. arXiv preprint arXiv:1801.02871.
[8] J. Chevallier, M.J. Cacéres, M. Doumic, P. Reynaud-Bouret, Microscopic approach of a time elapsed neural model,

Math. Models Methods Appl. Sci. 25 (14) (2015) 2669–2719.
[9] E.S. Chornoboy, L.P. Schramm, A.F. Karr, Maximum likelihood identification of neural point process systems,

Biol. Cybernet. 59 (4) (1988) 265–275.
[10] S. Delattre, N. Fournier, M. Hoffmann, Hawkes processes on large networks, Ann. Appl. Probab. 26 (2016)

216–261.
[11] S. Ditlevsen, E. Löcherbach, Multi-class oscillating systems of interacting neurons, Stochastic Process. Appl. 127

(2017) 1840–1869.
[12] A. Galves, E. Löcherbach, Modeling networks of spiking neurons as interacting processes with memory of variable

length, J. Soc. Française Statist. 157 (2016) 17–32.
[13] S. Graf, H. Luschgy, Foundations of Quantization for Probability Distributions, Springer, 2007.
[14] C. Graham, Chaoticity for multiclass systems and exchangeability within classes, J. Appl. Probab. 45 (4) (2008)

1196–1203.
[15] N. Hansen, P. Reynaud-Bouret, V. Rivoirard, Lasso and probabilistic inequalities for multivariate point processes,

Bernoulli 21 (2015) 83–143.
[16] A.G. Hawkes, Spectra of some self-exciting and mutually exciting point processes, Biometrika 58 (1) (1971) 83–90.
[17] A. Hawkes, D. Oakes, A cluster process representation of a self-exciting process, J. Appl. Probab. 11 (1974) 93–503.
[18] E. Luçon, W. Stannat, Mean field limit for disordered diffusions with singular interactions, Ann. Appl. Probab.

24 (5) (2014) 1946–1993.
[19] P. Reynaud-Bouret, V. Rivoirard, F. Grammont, C. Tuleau-Malot, Goodness-of-fit tests and nonparametric adaptive

estimation for spike train analysis, J. Math. Neurosci. 4 (1) (2014) 3.
[20] C. Villani, Topics in Optimal Transportation, in: Graduate Studies in Mathematics, American Mathematical Society,

cop., Providence (R.I.), 2003.
[21] H.R. Wilson, J.D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons,

Biophys. J. 12 (1) (1972) 1–24.
[22] H.R. Wilson, J.D. Cowan, A mathematical theory of the functional dynamics of cortical and thalamic nervous

tissue, Kybernetik 13 (2) (1973) 55–80.

http://refhub.elsevier.com/S0304-4149(18)30022-X/sb2
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb2
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb2
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb3
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb3
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb3
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb4
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb5
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb6
http://arxiv.org/1801.02871
http://arxiv.org/1801.02871
http://arxiv.org/1801.02871
http://arxiv.org/1801.02871
http://arxiv.org/1801.02871
http://arxiv.org/1801.02871
http://arxiv.org/1801.02871
http://arxiv.org/1801.02871
http://arxiv.org/1801.02871
http://arxiv.org/1801.02871
http://arxiv.org/1801.02871
http://arxiv.org/1801.02871
http://arxiv.org/1801.02871
http://arxiv.org/1801.02871
http://arxiv.org/1801.02871
http://arxiv.org/1801.02871
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb8
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb8
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb8
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb9
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb9
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb9
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb10
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb10
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb10
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb11
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb11
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb11
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb12
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb12
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb12
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb13
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb14
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb14
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb14
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb15
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb15
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb15
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb16
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb17
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb18
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb18
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb18
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb19
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb19
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb19
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb20
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb20
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb20
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb21
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb21
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb21
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb22
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb22
http://refhub.elsevier.com/S0304-4149(18)30022-X/sb22

	Mean field limits for nonlinear spatially extended Hawkes processes with exponential memory kernels
	Introduction
	General notation, model definition and first results
	General notation
	The model and preliminary remarks

	Convergence of spatially extended Hawkes processes
	Estimating dKR(P[0,T](N,N),P[0,T]) for fixed positions x1,...,xN
	Estimating the dKR-distance between P[0,T](N,N) and P[0,T](∞,N)
	Estimating the dKR-distance between P[0,T](∞,N) and P[0,T]

	Proof of Theorem 1
	Proof of Theorem 2
	Final discussion
	Acknowledgments
	Remaining mathematical proofs
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5

	References


