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Abstract

We introduce a class of self-similar Gaussian processes and provide sufficient and necessary conditions
for a member of the class to admit a unique small scale limit in the Skorokhod space. The class includes
several well known processes. An example of application to the problem of estimation is given.
c⃝ 2018 Elsevier B.V. All rights reserved.

Keywords: Gaussian process; Covariance; Small scale limit; Tangent process

1. Introduction

In 1923 Norbert Wiener (see, e.g., Karatzas and Shreve [18], Ch. 2, Section 11) provided
a rigorous mathematical construction of a centred Gaussian process W = (Wt )t≥0 describing
random movement of particles in suspension. This phenomenon was previously observed in 1828
by the Scottish botanist Robert Brown and attracted the considerable attention of the scientific
community. Named in Wiener’s honour and nowadays interchangeably termed as (ordinary)
Brownian motion or Wiener process, W appeared to be well suited to serve as a basis for a huge
amount of models used in different fields of stochastic applications, including those in physics,
biology, financial markets, engineering, limit functional theory, etc. To gain insight into this
phenomenon, recall that a centred Gaussian process is completely determined by its covariance
function. In case of W , the latter is given by (here and in the rest part of the paper, ∧ stands for
a minimum)

RW (s, t) = E Ws Wt = s ∧ t.
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Its form implies the following properties of W : almost sure equality to 0 at the origin, continuity
of the paths, independence and stationarity of increments, Markov property, self-similarity.
Although all these properties are important in stochastic modelling and explain previously
mentioned popularity of W , the last one is central to the present paper. Therefore, we remind
a definition. A real-valued process (X t )t≥0 is self-similar with index γ > 0, provided, for any
c > 0, it holds (Xct )t≥0

d
= cγ (X t )t≥0, where d

= denotes equality in distribution. Thus, the
covariance of W yields that it is self-similar with γ = 1/2.

What does it mean, and how it may be described in the context of centred self-similar Gaussian
processes? Though self-similarity, by definition, may be interpreted in terms of the time scale
zooming, there is no one definite answer. Nonetheless, there are many facts to provide a more
detailed view of the picture. In order to depict main (as it seems to us) features, we proceed
further with our short historical account.

At the end of the 30s of the 20th century, Kolmogorov looked for a model of turbulence in
liquids. As a consequence, in 1940 he introduced [19] the first very well-known and widespread
family of self-similar Gaussian processes, encompassing W as a separate case, namely, a family
of fractional Brownian motions (further on we use abbreviation fBm; the name and related
terminology, appearing in the sequel without additional comments, originates from seminal
paper [23] of Mandelbrot and Van Ness). A centred Gaussian process B H

= (B H
t )t≥0, depending

on some fixed H ∈ (0, 1), is called a fBm with Hurst index H if its covariance function

RB H (s, t) =
1
2

(
s2H

+ t2H
− |t − s|2H ) .

Note that H is the self-similarity index of B H , and that B1/2
= W .

As with the case of ordinary Brownian motion W , family {B H
| H ∈ (0, 1)} became a

very popular one, and many models driven by W were translated to the more general setting of
{B H

| H ∈ (0, 1)}.
To gain a concrete example, consider fractional version of the Ornstein–Uhlenbeck process

(X t )t≥0, investigated by Cheridito et al. [10] and described by a stochastic differential equation

dX t = λX t + σdB H
t ,

where λ, σ ∈ (0,∞) are some fixed model defining parameters. One of the possible applications
of this stochastic differential equation is a modelling of interest rates. Ability to choose H
provides additional flexibility as compared to an initial version driven by W = B1/2.

Applications of such kind spawned very intensive research of dependence of properties of B H

on H . Though it still takes place in various forms, much are known. Here are some basic facts
featuring a role of the self-similarity index H (Mishura [25] and Nourdin [27] provide much
more details):

(a) for any fixed T, ε > 0, there exists a non-negative r.v. GT,ε having finite moments E G p
T,ε

of any order p > 0 and such that |B H
t − B H

s | ≤ |t − s|H−εGT,ε a.s. for all t, s ∈ [0, T ];
(b) for ∀t > 0, power variations of B H satisfy asymptotic relationship

2n∑
j=1

|B H
j t

2n
− B H

( j−1)t
2n

|
p P

−→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, p >

1
H

;

E |B H
t |

1
H , p =

1
H

;

∞, p <
1
H

;
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(c) fBm has stationary increments, and the correlation function ρH
n = Corr(X H

0 , X H
n ), n ≥ 0,

of the Fractional noise sequence X H
j = B H

j+1 − B H
j , j ≥ 0, is summable for H < 1

2 , and
is unsummable for H > 1

2 ;
(d) for H ̸= 1/2, fBm is neither a semimartingale, nor a Markov process.

Properties (a)–(b) show that H controls the smoothness of the trajectories, which are Hölder
continuous of order H − ε for any fixed ε. Property (c) demonstrates an impact of H on the
strength of dependence between outputs in time. The case H > 1/2 corresponds to phenomenon
referred in the literature as the long range dependence or the long memory (a good review
is given by Samorodnitsky [30]; Beran et al. [6] provide a comprehensive account), which is
quite hot topic nowadays, since in practice one meets a lot of processes exhibiting such type of
dependence. H < 1/2 corresponds to the opposite type, i.e., short range dependence, which also
plays an important role in applications, yet it is usually easier to handle analytically. Finally, (d)
demonstrates that analytical tractability of B H having H ̸= 1/2 is much more challenging than
that of W .

Though fBms’ family provides considerable flexibility, it is not the only one family of
popular centred self-similar Gaussian processes met in applications. Below we provide three
more families of such processes and explain one particular unifying interrelationship as well as
the relationship with the fBm. Finally, we explicate the purpose of the present paper for which,
as we hope, the introductory part above provides sufficient context highlighting the meaning of
objects involved.

1. Riemann–Liouville process RL H
= (RL H

t )t≥0 is a centred Gaussian process with a
covariance function

RRL H (s, t) =

∫ s∧t
0 ((t − v)(s − v))H−1/2 dv

Γ 2
(
H +

1
2

) . (1.1)

The corresponding family {RL H
| H ∈ (0, 1)} depends on a single parameter H , which is

also a self-similarity index.
2. Sub-fractional Brownian motion (sfBm) SH

= (SH
t )t≥0 was introduced by Bojdecki

et al. [9] in the context of occupation time fluctuations of branching particle systems.
Covariance of the latter process is given by

RSH (s, t) = s2H
+ t2H

−
1
2

[
(s + t)2H

+ |s − t |2H ] , (1.2)

and the corresponding family is again indexed by the self-similarity index H ∈ (0, 1).
3. Bi-fractional Brownian motion (bfBm) B H,K

= (B H,K
t )t≥0 is indexed by two parameters:

H ∈ (0, 1), K ∈ (0, 1]. It was introduced by Houdré and Villa [17], and it has the following
covariance function:

RB H,K (s, t) = 2−K
((

s2H
+ t2H )K

− |s − t |2H K
)
. (1.3)

The self-similarity index of B H,K is equal to H K .

Setting K = 1, one obtains previously announced relationship with the fBm: B H
=

B H,1, H ∈ (0, 1). To see the above mentioned interrelationship, we proceed as follows.
Let γ ∈ (0, 1), σ ∈ (0,∞), and l : [0,∞) → R be fixed. Assume that l is measurable, and

that l(0) = 1. Consider a centred real-valued self-similar Gaussian process (X t )t≥0 with X0 ≡ 0,
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self-similarity index γ , and a covariance function given by

R(s, t) = σ 2(s ∧ t)2γ l
(

|s − t |
s ∧ t

)
, s ∧ t > 0. (1.4)

It is straightforward to check that the above exemplary families admit such representation. The
corresponding quantities are as follows.

• For the case of RL,

γ = H ∈ (0, 1), σ 2
=

1
2HΓ 2

(
H +

1
2

) ,
l(u) = 2H

∫ 1

0
((v + u)v)H−1/2 dv.

(1.5)

• For the case of sfBm,

γ = H ∈ (0, 1), σ 2
= 2 − 22H−1,

l(u) = (2 − 22H−1)−1
(

1 + (1 + u)2H
−

1
2

(
(2 + u)2H

+ u2H )) . (1.6)

• For the case of bfBm,

γ = H K ∈ (0, 1), σ 2
= 1, l(u) = 2−K

((
1 + (1 + u)2H )K

− u2H K
)
. (1.7)

There are many works devoted for investigation of the properties of these families. Here is an
exemplary list: Alòs et al. [2], Bojdecki et al. [9], Houdré and Villa [17], Lei and Nualart [21],
Lim [22], Marinucci and Robinson [24], Russo and Tudor [29], Tudor [31], Tudor and Xiao [32].
Such popularity is the first reason to study a class of centred self-similar Gaussian processes
having the covariance given by (1.4).

Next, recall that {B H
| H ∈ (0, 1)} is the only family of the centred self-similar Gaussian

processes having members with stationary increments. Hence, excluding it from the above one,
we end up with the class of Gaussian processes with non-stationary increments; additionally,
in certain cases, the covariance is suitable for modelling of long-range dependence. Therefore,
it is interesting from both practical and theoretical point of view. Moreover, the structure of
the covariance function R is completely determined by the self-similarity parameter γ and the
function l. It is apparent that different properties of the members of the class can be expressed in
terms of the analytic properties of l and the restrictions on the range of γ . Since l depends on a
single variable, such characterization appeals to be well suited for applications. Hence one more
reason for investigations.

The current paper aims to identify members of the class admitting small scale limit. The
concept was introduced by R. L. Dobrushin [14]. It is defined as follows. One says that a process
X = (X t )t≥0 admits a small scale limit (ssl) at t0 ∈ [0,∞), whenever there exists a normalization
at0 : (0,∞) → (0,∞), at0 (u) → 0 + 0, u → 0 + 0, and a process Y t0 = (Y t0

τ )τ≥0, such that(
X t0 − X t0+τu

at0 (u)

)
τ≥0

fdd
−→ (Y t0

τ )τ≥0, u → 0 + 0, (1.8)

where fdd stands for a convergence of finite dimensional distributions. An existence of such limit
is quite important property, having both theoretical and practical applications. For the theoretical
ones, we refer to Falconer [15,16]. For the practical ones, consider Bardet and Surgailis [3].
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They develop limit theorems targeting ssl setting and provide reasonable amount of statistical
estimation examples.

One more thing to note is that, under certain assumptions (see Falconer [15,16]), Gaussian
process admits ssls only in the class of fBms (up to the positive multiplier). In the forthcoming
part of the paper, we provide sufficient and necessary conditions on l ensuring that X , having
covariance given by (1.4), admits such ssl at each t > 0. Moreover, it turns out that self-similarity,
which is present in our case, enables to replace fdd convergence above by the stronger one—
namely, weak convergence in the Skorokhod space D[0,∞). This is the core result of the paper.

Since, for any H ∈ (0, 1), the fBm B H is also in the class considered, it has itself as such
limit at each t > 0. Hence, the other members of the class having ssl equal to B H (again, up to
the positive constant) are alike in this limiting sense, and one can expect that they share certain
properties, resembling the corresponding ones of the B H . Our main result provides a reflection
of this thought in terms of the value of γ and the structure of l.

The remaining part of the paper is split into two sections. Section 2 is devoted for the statement
of the main result. It also contains relevant comments and several examples of applications,
implied by an existence of ssl. The proofs are given in Section 3.

2. Results

Our main result is contained in the first two theorems given below. Before proceeding to the
statement, we provide several comments regarding the notions.

• Whenever it is possible and no confusion occurs, we omit time argument for the process
and denote it by a single letter, e.g., X is used instead of (X t )t≥0. The time argument always
appears as a lower subscript; upper ones are left for the parameters upon which the process
depends.

• In all the rest part of the paper,
d

−→ denotes weak convergence in D[0,∞) when used
with process type arguments. In case of random variables, it denotes a common weak
convergence. FD denotes the set of random elements of D[0,∞).

• Let A ∈ (0,∞), f : [0, A] → R. Then we define

∆ ft,u = f (t + u) − f (t),∆(2) ft,u = ∆ ft+u,u − ∆ ft,u

= f (t + 2u) − 2 f (t + u) + f (t),

provided t, u ≥ 0 are such that t + 2u ∈ [0, A].
• For any real valued f, g, notion f ∼ g, u → u0, means that f (u) = g(u)(1 + o(1)), u →

u0; the same applies to one sided limits.
• D(X ) denotes a variance of a random variable X .
• Notion def

= stands for “by definition”. It is used to define quantities on the flow, when it is
not explicitly stated that we define a new quantity.

• Up to now, the fBm B H was defined for H ∈ (0, 1) as the centred Gaussian process with
the covariance function

RB H (s, t) =
1
2

(
s2H

+ t2H
− |t − s|2H ) .

It is convenient to extend this notion and to allow H to attain value 1. Then B1 is defined
by

B1
t = t Z , Z ∼ N (0, 1), t ≥ 0.
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It is obvious that limH→1−0 RB H = RB1 . The latter relationship justifies the introduced
extension.

Theorem 2.1. Let (X t )t≥0 be Gaussian with a covariance defined by (1.4), and let

l(u) =
1
2

(
1 + (1 + u)2γ

− (uκL(u))2
)
,

with some fixed κ ∈ (0, 1] and L : (0,∞) → (0,∞) slowly varying at zero. Fix u, t ∈ (0,∞),
and define a random process (Z t,u

τ )τ≥0 by

Z t,u
τ =

X t − X t+uτ

uκL(u)
, τ ≥ 0.

Then Z t,u d
−→ ct Bκ , u → 0 + 0, where ct = σ tγ−κ .

Theorem 2.2. Let (X t )t≥0 be Gaussian with a covariance defined by (1.4). Assume that, for all
t ∈ (0,∞) and some fixed A > 0, there exist random process (Y t

τ )τ≥0 and at : (0, A) → (0,∞)
such that:

(y1) Y t
1 is non-degenerate;

(y2) Y t
∈ FD;

(a1) at (u) −−−−→
u→0+0

0 + 0;

(a2)
(

X t −X t+τu
at (u)

)
τ≥0

d
−→ Y t , u → 0 + 0.

Then there exist κ ∈ (0, 1] and L : (0,∞) → [0,∞) such that:

(i) L is slowly varying at zero;

(ii) at (u) ∼ ct uκL(u), u → 0 + 0, with ct = σ tγ−κ

√
D(Y 1

1 )

D(Y 1
t )

;

(iii) l(u) =
1
2

(
1 + (1 + u)2γ

− (uκL(u))2
)
, u > 0;

(iv) for ∀t, Y t is a constant multiple of Bκ , and it is a unique (up to a constant multiplier)
small scale limit of X at t .

Summarizing contents of the above theorems, we arrive to the conclusion that the centred
Gaussian process having covariance (1.4) admits a ssl if and only if function l is of the form given
in Theorem 2.1. Quantity κ is the self-similarity index of the corresponding ssl. Proposition 2.1
below shows that κ = γ for all processes mentioned in the introductory section. That is, it
coincides with their self-similarity index. Note, however, that this is not true in general. To get
a plain example, fix H ∈ (0, 1

2 ) and take R(s, t) = RW (s, t)RB H (s, t). Simultaneous application
of the forthcoming Proposition 2.1 and Theorem 2.1 implies that a centred Gaussian process X
having covariance R(s, t) admits the ssl with κ = H ; yet its self-similarity index γ equals to
1
2 + H . Keeping this in mind, we proceed to our examples mentioned in the very end of the
introductory section.

Under assumptions that the model under consideration involves the process X , which belongs
to the Gaussian class defined by covariance (1.4), and which admits the ssl, it may be of interest
to estimate κ .

Once the structure of R is fully specified, there are many ways to do this. One can start from
plain maximum-likelihood approach. In case of failure, one can switch to other alternatives,
which are more suitable or convenient for the context considered. The list includes more general
M-estimators, L-estimators, Z-estimators, Bayes estimators, power-variation based estimators,
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etc. Turning to particular examples of the introductory section, literature is abundant, and it
offers many opportunities (especially for the case of the fBm). One can assume that: X is
observed directly, or that it is involved into some more complex model (consider, e.g., stochastic
differential equation for the Ornstein–Uhlenbeck process, mentioned in the introductory section);
the data is collected at equally or unequally spaced time-points, within a fixed or infinitely
growing time interval; observations belong to one particular trajectory, or there are several
independent copies of these; etc. We do not aim to provide a review; therefore, we will not dive
into details, and we will not provide any references treating particular models of the introductory
section.

Talking about the partially specified structure of R, the things go differently. While searching
the literature, we have found out that several authors considered classes of Gaussian processes
spanning functional form of the covariance function considered by us or at least intersecting one
of ours. Here is the chronological list: Dahlhaus and Polonik (2006) [13], Bégyn (2007) [5],
Coeurjolly (2008) [12], Bardet and Surgailis (2011, 2013) [3,4], Kubilius (2015) [20], Norvaiša
(2015) [26]. Below are brief comments.

Assuming appropriate discrete observational setting, a model investigated by Dahlhaus and
Polonik [13] could be employed to fit the covariance structure considered by us. Nonetheless,
providing our illustrative example below, we did not take this opportunity into account because
of the following reasons. First of all, results of Dahlhaus and Polonik [13] are presented in
inconvenient to us spectral setting, and the corresponding time domain representation is quite
artificial and unnatural in our context. Secondly, results of Bardet and Surgailis [4] cover these
of Dahlhaus and Polonik [13], and they also generalize these of Bardet and Surgailis [3] (see
Example 5.1), taken by us as a basis for illustration of the utility of ssl property. Summing up,
we did not expect any real benefit from adoption results of Dahlhaus and Polonik [13]: neither in
ease of interpretation or analytical tractability, nor in technical performance.

The functional form of covariance considered by Coeurjolly [12] spans (1.4), however, the
author imposes stationarity of increments.

Results of Kubilius [20], Norvaiša [26] and Bégyn [5] seem closest in the spirit of setting and
validity to apply immediately. Kubilius [20] and Norvaiša [26] impose asymptotic covariance
constraints satisfied by the covariance considered by us. However, the form of assumed
covariance explicates only self-similarity index γ . Therefore, such quantity as κ is not present
at all. Hence, by making use of their results, we can estimate κ consistently only under the
assumption κ = γ . It is also important to note that both authors do not offer confidence limits,
and their focus is mainly on point estimators. Bégyn [5] does. However, there is the same problem
of explication of γ alone. Additionally, the author imposes differentiability of covariance. In
general, the latter should not hold in our case.

In a view of this short survey, we provide illustrative Theorem 2.3, based on the result of
Bardet and Surgailis [3], which seems to be the most general (together with their result [4])
from the above and best suited for our case. Theorem 2.3 applies to any values of γ and κ .
It may be adopted in the context of stochastic differential equations driven by processes from
the class considered. This makes sense since power variational methods usually work well here.
Nonetheless, we point out that it is of illustrative nature, rather than being of real benefit, and that,
in our opinion, one can do better when dealing with particular models. Some related discussion
is given after the statement. By proving this theorem, we pursued two goals.

First of all, we aimed to demonstrate the use of ssl property. It comes into play due to the fact
that, deriving their results presented in [3,4], the authors, in fact, targeted the setting under which
ssl exists, i.e., the one of ours.
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Secondly, we aimed to demonstrate difficulties arising even in such case when the structure
of the covariance is quite well explicated. By inspecting the proof, one can clearly see the
restrictions laid on by the general ”ready to apply” result of [3].

In order to state the theorem, we describe the statistical model first. Let T > 0 be fixed.
Assume we have observations coming from one particular trajectory of a centred Gaussian X
having covariance given by (1.4). These are collected at discrete time grid lying within [0, T ].
We aim to estimate κ . To achieve this, we can make use of Theorem 2.3 and Corollary 2.1.

Theorem 2.3. Assume that conditions of Theorem 2.1 hold. Moreover, let L satisfy the following
additional constraints:

(L1) L(0) def
= limu→0+0L(u) exists, is positive and finite;

(L2) L(u) = L(0) + o(
√

u), u → 0 + 0;
(L3) there exist fixed c ∈ (0,∞), ζ ∈ ( 1

2 ,∞) and ε ∈ (0, 1
2 ) such that, for ∀k ∈ {2, . . . , n −

2}, n ≥ 3, and for ∀u ∈
(
0, ϱn

]
,⏐⏐∆(2) pku,u − 2(1 + u)2γ∆(2) p(k−1) u

1+u ,
u

1+u
+ (1 + 2u)2γ∆(2) p(k−2) u

1+2u ,
u

1+2u

⏐⏐
u2κ ≤ ck−ζ ,

where p(u) = (uκL(u))2 and ϱ =
1−ε
ε

.
Then, for T0 = T0(ε, T ) = εT and δn = δn(ε, T ) =

1−ε
n T ,

(i) RT
n

def
=

1
n−2

∑n−3
k=0ψ

(
∆(2) XT0+kδn ,δn ,∆

(2) XT0+(k+1)δn ,δn

) a.s
−→ Λ(κ) = λ(r (κ)), where

ψ(x, y) =
|x + y|

|x | + |y|
, (2.1)

λ(r ) =
1
π

(
arccos(−r ) +

√
1 + r
1 − r

ln
(

2
1 + r

))
, (2.2)

r (x) = corr(∆(2) Bx
0,1,∆

(2) Bx
1,1) =

−7 − 9x
+ 4x+1

2(4 − 4x )
, x ∈ (0, 1); (2.3)

(ii)
√

n
(
RT

n − Λ(κ)
) d

−→ N (0,Σ (κ)), where

Σ (x) =

∑
k∈Z

Cov
(
ψ(∆(2) Bx

0,1,∆
(2) Bx

1,1), ψ(∆(2) Bx
k,1,∆

(2) Bx
k+1,1)

)
. (2.4)

Corollary 2.1. κ̂n
def
= Λ−1(RT

n )
a.s

−→ κ;
√

n(̂κn − κ)
d

−→ N (0,Σ (κ)(Λ′(Λ−1(κ)))2).

Now, after the statement, we can provide several additional remarks explicating weakness of
the theorem and expressing some speculations regarding asymptotic performance. We also point
out directions of possible improvements.

It is common to assume that one observes a trajectory of the process within [0, T ].
Theorem 2.3 therefore states that one should discard the data coming from [0, εT ]. The
requirement seems pretty strange and could be treated as an artificial condition, imposed by
the method of proving of the CLT. On the other hand, note that, with the fBm being an exception,
the process under consideration is the one with non-stationary increments. Consequently, its
behaviour at the start of evolution is expected to be unpleasant, and the stable one appears only
after some time has passed. Moreover, even discarding the portion of data from [0, εT ] (if such
does exist) and applying theorem only to data from [εT, T ], one still retains the usual rate of
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convergence in CLT. Thus, it is very likely that the improvements of shrinkage of asymptotic
confidence interval are possible only up to a constant multiplier, with the order of shrinkage
remaining n−

1
2 . Practical superiority of estimating statistics based on data from [0, T ], rather

than [εT, T ], is also questionable because of the reasons mentioned above. That is, convergence
to asymptotic distribution may be slower and/or more unstable, giving a real gain only for very
large datasets. Moreover, as it was mentioned previously, a lot depends on the initial modelling
context. In order to address these questions, simulation studies similar to that of Coeurjolly [11]
(conducted for the case of the fBm) are needed. For this, however, some time should pass,
since, to our best knowledge, the setting considered here is a new one. Consequently, κ has
first to be recognized as an important quantity on its own. Talking about an improved version of
Theorem 2.3, which is based on data from [0, T ], our advice is to take careful inspection (undone
by us) of results of Bardet and Surgailis [4]. We are inclined to think that such inspection should
yield a remedy, and we see here an open room for those interested in a challenge of such kind.

We finish this section by one more illustrative statement. It shows that all families of processes
listed in the introduction possess ssls having self-similarity index equal to the self-similarity
index of the original process.

Proposition 2.1. For ∀H ∈ (0, 1) and for ∀K ∈ (0, 1), covariances of processes (SH
t ), (B H,K

t )
and (L RH

t ) admit representation with l as in Theorem 2.1. The defining quantities are as follows:

• L2
SH (u) =

1
2−22H−1

(
1 +

( 2
u

)2H
((

1 +
u
2

)2H
−

1+(1+u)2H

2

))
, κ = H;

• L2
B H,K (u) = 21−K

[
1 + ( 1

u )2H K
(
2K−1(1 + (1 + u)2H K ) − (1 + (1 + u)2H )K

)]
, κ = H K ;

• L2
L RH (u) = 2H

∫ 1/u
0

[
v2H−1

+ (v + 1)2H−1
− 2(v(1 + v))H−1/2

]
dv, κ = H.

Moreover, Corollary 2.1 applies to all classes of processes as well, provided that κ < 3
4 .

3. Proofs

Proof of Theorem 2.1. By self similarity of X ,(
Z t,u
τ

) d
= tγ

( X1 − X1+
u
t τ

uκL(u)

)
= tγ−κ

(
X1 − X1+

u
t τ( u

t

)κL
( u

t

) ) L
( u

t

)
L(u)

= tγ−κ
L
( u

t

)
L(u)

(Z
1, u

t
τ ).

Therefore, taking into account slow variation of L , it suffices to prove the theorem for t = 1. We
accomplish this by checking that conditions given in Pollard [28], Ch. VI, Lemma 9 and Theorem
10 (see also Billingsley [7], Theorem 8.2) hold. For short, we omit time parameter and write Zu

τ

instead of Z1,u
τ . We split the check of the above mentioned conditions into two separate items: in

(i), we check convergence of finite dimensional distributions; in (ii), we verify regularity of the
paths.

(i) Fix 0 < τ1 ≤ τ2 < ∞; to avoid inconsistencies, put 0 · L(0) def
= 0. Then E Zu

τ1
= E Zu

τ2
= 0

and
u2κL2(u)
σ 2 Cov(Zu

τ1
, Zu

τ2
) =

1
σ 2 E(X1 − X1+τ1u)(X1 − X1+τ2u) =

1 − l(τ1u) − l(τ2u) + (1 + τ1u)2γ l
(

(τ2 − τ1)u
1 + τ1u

)
=

−
1
2

[
(1 + τ1u)2γ

+ (1 + τ2u)2γ
− u2κ (τ 2κ

1 L2(τ1u) + τ 2κ
2 L2(τ2u)

)
−
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(1 + τ1u)2γ

(
1 +

(
1 + τ2u
1 + τ1u

)2γ

−

(
(τ2 − τ1)u
1 + τ1u

)2κ

L2
(

(τ2 − τ1)u
1 + τ1u

))]
=

u2κ

2

[
τ 2κ

1 L2(τ1u) + τ 2κ
2 L2(τ2u) − (τ2 − τ1)2κ (1 + τ1u)2(γ−κ)L2

(
(τ2 − τ1)u
1 + τ1u

)]
.

Since L varies slowly at 0, Bingham et al. [8], Theorem 1.2.1 implies that

L(τi u)
L(u)

−−−−→
u→0+0

1, i = 1, 2, and that
L
(

(τ2−τ1)u
1+τ1u

)
L(u)

−−−−→
u→0+0

1.

Thus,

Cov(Zu
τ1
, Zu

τ2
) −−−−→

u→0+0

σ 2

2

(
τ 2κ

1 + τ 2κ
2 − (τ2 − τ1)2κ)

or equivalently, Zu fdd
−→ σ Bκ , u → 0 + 0.

(ii) Fix ϵ, δ ∈ (0,∞) and 0 ≤ a < b < ∞, and any (un)n≥1 : un −−−→
n→∞

0 + 0. For the sake of
clarity, we divide a verification of regularity of paths into several steps.

Step 1. Let 0 ≤ c < d < ∞ be fixed. Then (because of a.s. continuity of τ ↦−→ Zun
τ ){

η > 0
⏐⏐⏐ ∃s ∈ [c, d] : sup

c≤τ<s

⏐⏐Zun
τ − Zun

c

⏐⏐ < η, sup
s≤τ≤d

⏐⏐Zun
τ − Zun

d

⏐⏐ < η

}
⊃{

η > 0
⏐⏐⏐ sup

c≤τ≤d

⏐⏐Zun
τ − Zun

c

⏐⏐ < η/2
}

∪

{
η > 0

⏐⏐⏐ sup
c≤τ≤d

⏐⏐Zun
τ − Zun

d

⏐⏐ < η/2
}

a.s.

Consequently,

P
(
∆(Zun , [c, d]) > η

)
≤ P

(
sup

c≤τ≤d

⏐⏐Zun
τ − Zun

c

⏐⏐ ≥
η

2

)
+ P

(
sup

c≤τ≤d

⏐⏐Zun
τ − Zun

d

⏐⏐ ≥
η

2

)
≤

2
[

P
(

sup
c≤τ≤d

(Zun
τ − Zun

c ) ≥
η

2

)
+ P

(
sup

c≤τ≤d
(Zun

τ − Zun
d ) ≥

η

2

)]
with the last being true because of the fact that Zun is centred. Thus, in order to bound left
hand side, it suffices to bound each probability on the right hand side. We give a detailed
implementation for the first one. The other one is handled in the same way.

Step 2. Let 0 ≤ c < d < ∞ be from the Step 1. Assume

d − c < 4−
1
κ . (3.1)

Define a process (ξ n,c,d
t )t∈[c,d] by ξ n,c,d

t = Zun
t − Zun

c , t ∈ [c, d]. Then (ξ n,c,d
t ) is centred and

continuous. Moreover, for t ∈ [c, d],

u2κ
n L2(un) E(ξ n,c,d

t )2
= E(X1+un t − X1+unc)2

= σ 2(1 + unc)2(γ−κ)((t − c)un)2κ

× L2
(

(t − c)un

1 + unc

)
.
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Since t − c ∈ [0, 1), and un → 0 + 0, Bingham et al. [8], Theorem 1.5.6 implies an existence of
n0 such that, for ∀n ≥ n0, it holds⎛⎝ L

(
(t−c)un
1+unc

)
L(u)

⎞⎠2

≤ 2σ−2(t − c)−κ ∨ (t − c)κ ≤
2σ−2

(t − c)κ
. (3.2)

We can also assume that n0 is chosen so that (1 + unc)2(γ−κ)
≤ 2 for ∀n ≥ n0. Then by (3.1),

σ 2
[c,d]

def
= sup

t∈[c,d]
E(ξ n,c,d

t )2
≤ 4(d − c)κ < 1. (3.3)

Next, note that, for c ≤ s < t ≤ d, it holds ξ n,c,d
t − ξ n,c,d

s = Zun
t − Zun

s = ξ
n,s,d
t . Hence, by the

above, the canonical metric of ξ n,c,d may be bounded as follows:

ρ2
ξn,c,d (s, t) ≤ 4|t − s|κ .

Consequently, the smallest number of balls having ϵ̃ ∈ (0, 1] radius with respect to ρξn,c,d and
covering [c, d] satisfies

N ([c, d], ρξn,c,d , ϵ̃) ≤

(
A
ϵ̃

) 2
κ

,

where A ≥ 2(d − c)
κ
2 can be chosen arbitrary. Let ϵ0 = σ[c,d]. Then application of Adler and

Taylor [1], Theorem 4.1.2 yields

P

(
sup

t∈[c,d]
ξ n,c,d

≥ η

)
≤

(
κ

2
(K Aη)2

σ 4
[c,d]

)1/κ

Φ̄

(
η

σ[c,d]

)
for any η ≥ σ[c,d]

(
1 +

√
2
κ

)
. In particular, setting η = θκ

√
σ[c,d], θκ =

(
1 +

√
2
κ

)
and taking into

account the bound (3.3), one has

P

(
sup

t∈[c,d]
ξ n,c,d

≥ θκ
√
σ[c,d]

)
≤

K̃

σ
3
κ

[c,d]

Φ̄

(
θκ

√
σ[c,d]

)
(3.4)

for n ≥ n0 and K̃ = ( κ2 (K Aθκ )2)
1
κ . Finishing this step, we note the following.

• The constant K̃ on the right hand side of (3.4) may be regarded as universal, provided
one neglects an obvious dependence on κ; it suffices to assume (3.1). Then, taking
A ≥ 1 > σ[c,d], we have that the constraint imposed on A by the Adler and Taylor [1],
Theorem 4.1.2 also holds.

• σ 2
[c,d] = O((d − c)κ ) = o(1), (d − c) → 0 + 0.

• Because of (3.2) and condition (1 + unc)2(γ−κ)
≤ 2, n ≥ n0, we have that n0 assuring (3.4)

depends on c and d − c. It is an increasing function of both. However, assumption (3.1)
discards the dependence on difference d − c.

Step 3. Let integer k ≥ 0,m ≥ 1 be such that [k, k +m] ⊃ [a, b], and k is the biggest whereas
m is the smallest among all having this property. Partition each [ j, j + 1], j = k, . . . , k + m − 1,
into equal intervals [t j

l , t j
l+1], l = 0, . . . , q − 1, so that 4(t j

l+1 − t j
l )κ < 1 ∧ (δθ−1

κ )2. Then, for
∀ j, l,

t j
l+1 − t j

l < 4−
1
κ and θκ

√
σ[t j

l ,t
j

l+1] < δ.



Please cite this article in press as: V. Skorniakov, On a covariance structure of some subset of self-similar Gaussian processes, Stochastic Processes
and their Applications (2018), https://doi.org/10.1016/j.spa.2018.06.013.

12 V. Skorniakov / Stochastic Processes and their Applications ( ) –

Therefore, an application of the results obtained in the previous steps (from line to line varying
constant value is denoted by the same letter K because its magnitude does not affect the limit)
yields

P
(

max
j,l

∆(Zun , [t j
l , t j

l+1] > δ)
)

≤ K · q · m max
j,l
σ

−
3
κ

[t j
l ,t

j
l+1]

Φ̄

⎛⎝ θκ√
σ[t j

l ,t
j

l+1]

⎞⎠ ≤

K (b − a) max
j,l
σ

−
5
κ

[t j
l ,t

j
l+1]

Φ̄

⎛⎝ θκ√
σ[t j

l ,t
j

l+1]

⎞⎠
since q−1

= t j
l+1−t j

l for all j, l, and m is proportional to (b−a). It is clear that x
5
κ Φ̄(θκ

√
x) −−−→

x→∞

0. Hence, if there is a need, one can increase the value of q up to the smallest integer for which
the right hand side does not exceed ϵ. Then it remains to pass to the upper limit as n → ∞. □

Proof of Theorem 2.2. Step 1. Fix t ∈ (0,∞), and define a random process (Z t
τ )τ>0 by

Z t
τ = X t − X t+ 1

τ
, τ > 0.

Let y → ∞. Put u = y−1, ft (y) = at (u). Then
(

Z t
τ y

ft (y)

)
τ>0

fdd
−→

(
Y t

1
τ

)
τ>0

. Therefore, Bingham

et al. [8], Theorems 8.5.1–8.5.2 imply that
(

Y t
1
τ

)
τ>0

is self-similar with some index κt ∈ R, and

ft is regularly varying with κt . Consequently,
(
Y t
τ

)
τ>0 is self-similar with index −κt , and at is

regularly varying at 0 with −κt . Since

Y t
0

d
= lim

u→0+0

X t − X t+0·u

at (u)
≡ 0,(

Y t
τ

)
τ≥0 is also self-similar with index −κt . Moreover, assumption at (u) −−−−→

u→0+0
0 + 0 implies

that κt ≤ 0. In fact, one must necessary have κt < 0. Indeed, if it were true that κt = 0, then, by
Bingham et al. [8], Theorems 8.5.1–8.5.2, it were true that Y t

τ

d
= Y t

1 + b ln τ, τ > 0. Since the
limit of the Gaussian process is Gaussian, fdd convergence yields convergence of the first two
moments. Thus, for any τ > 0,

E
(

X t − X t+τu

at (u)

)
−−−−→
u→0+0

E Y t
τ = 0 ⇒ 0 = E Y t

τ = E Y t
1 + b ln τ = b ln τ ⇒ b

= 0 ⇒ Y t
τ

d
= Y t

1 .

By assumption, Y t
1 is non-degenerate. On the other hand, continuity of the paths on the right

yields

P
(
Y t

1 = 0
)

= P
(

lim
τ→0+0

Y t
τ = 0

)
= 1.

Obtained contradiction excludes the case κt = 0. Also note that, in Bingham et al. [8], Theorem
8.5.1, constant c is equal to 0 because of the same condition Y t

0 = 0.

Step 2. Fix t ∈ (0,∞). By results of the Step 1,

X t − X t+tu

at (u)
d

−→ Y t
t ⇒ D

(
X t − X t+tu

at (u)

)
→ D(Y t

t ) = t−2κt D(Y t
1).



Please cite this article in press as: V. Skorniakov, On a covariance structure of some subset of self-similar Gaussian processes, Stochastic Processes
and their Applications (2018), https://doi.org/10.1016/j.spa.2018.06.013.

V. Skorniakov / Stochastic Processes and their Applications ( ) – 13

On the other hand, by self-similarity of X ,

D
(

X t − X t+tu

at (u)

)
= t2γ a2

1(u)
a2

t (u)
D
(

X1 − X1+u

a1(u)

)
∼ t2γ a2

1(u)
a2

t (u)
D(Y 1

1 ).

Thus,

at (u) ∼ tγ+κt a1(u)

√
D(Y 1

1 )
D(Y t

1)
= tγ+κt u−κ1 L1(u)

√
D(Y 1

1 )
D(Y t

1)
,

where L1 is slowly varying at 0 by the Step 1. Hence, for ∀t, κt = κ1
def
= −κ .

Step 3.

D(X1 − X1+u) = σ 2(1 + (1 + u)2γ
− 2l(u)) ⇒ l(u)

=
1
2

(
1 + (1 + u)2γ

−
D(X1 − X1+u)

σ 2

)
.

By all above, D(X1 − X1+u) ∼ a2
1(u) ∼ u2κL2

1(u). Therefore, L(u) def
=

√
D(X1−X1+u )

σ 2u2κ varies slowly
at 0.

Step 4. It remains to prove the last claim. Fix t ∈ (0,∞). Note that ct Y t
∈ Tan(X, t) for

any rn ↓ 0 and qn
ct ̸=0
= c−1

t at (rn). Take arbitrary Ỹ ∈ Tan(X, t). If rn ↓ 0, qn ↓ 0 are such that(
X t+τrn −X t

qn

)
τ≥0

d
−→ Ỹ , then Gaussianity yields D

(
X t −X t+trn

qn

)
−−−→
n→∞

D
(

Ỹt

)
. If D

(
Ỹt

)
> 0,

then

t2γ a2
1(rn)
q2

n
D(Y 1

1 ) ∼ t2γ a2
1(rn)
q2

n
D
(

X1 − X1+rn

a1(rn)

)
= D

(
X t − X t+trn

qn

)
→ D

(
Ỹt

)
> 0 ⇒

qn ∼ tγ
√ D(Y 1

1 )

D
(

Ỹt

)a1(rn).

Consequently, Ỹ is a constant multiple of Y t . If D
(

Ỹt

)
= 0, then, by Falconer [16],

Proposition 3.3 and self-similarity of X , D
(

Ỹτ
)

= 0 for all τ > 0. Thus, Ỹ is zero multiple
of Y t . Summing up, Y t is a unique tangent process of X at t . By Falconer [16], Corollary 4.3, the
set of such t ∈ (0,∞) for which Y t is not a scalar multiple of Bκ has the Lebesgue measure 0.
More than that, self-similarity of X implies that this set is empty. Indeed, fix arbitrary t0 having
property Y t0 d

= ct0 Bκ , and take any t1 ∈ (0,∞) \ {t0}. Then the claim follows by noting that(
X t1 − X t1+τu

at1 (u)

)
τ≥0

d
=

(
t1
t0

)γ( X t0 − X t0+τ
ut0
t1

at1 (u)

)
τ≥0

=

ct0,t1 (u)

( X t0 − X t0+τ
ut0
t1

at0 ( t0u
t1

)

)
τ≥0

d
−→ c̃t0,t1ct0 Bκ , u → 0 + 0,

where ct0,t1 (u) −−−−→
u→0+0

c̃t0,t1 ∈ (0,∞). □

Proof of Theorem 2.3. Define a process (Z T
t )t∈[0,1] by Z T

t = XT0+tT , t ∈ [0, 1]. Below, we
show that, under assumptions made above, Theorems 4.1–4.2 of Bardet and Surgailis [3] apply
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to Z T with H (t) ≡ κ and c(t) = (εγϱκσ L(0)(1 + ϱt)γ−κ )2. Note that in some expressions time
argument of Z T falls into the range of its domain only asymptotically. If this is the case, we
do not comment. However, one should keep in mind that the mentioned expressions are well
defined, provided n is large enough. For short, we assume that T = 1 and denote Z1 by Z .
The case of T ̸= 1 reduces to this one because of self-similarity. We also make use of notion
ε̄ = 1 − ε. Finally, for reproducibility, we label conditions of Bardet and Surgailis [3] exactly so
as it is done in the original source.

(A.1)′ Fix k ∈ {1, 2, . . . } and t ∈ (0, 1). Then

E
(

Z [nt]+k
n

− Z [nt]
n

)2
=

E
(

Z t− {nt}−k
n

− Z t− {nt}
n

)2
= ε2γ E

(
X

1+ϱ
(

t− {nt}−k
n

) − X
1+ϱ

(
t− {nt}

n

))2

=[
n
(

1 + t −
{nt}

n

)
=

1
ut

n

]
= ε2γ (nut

n)−2γ E(X1+ϱkut
n
− X1)2

=

ε2γϱ2κσ 2
(

k
n

)2κ

(nut
n)2(κ−γ )L2(ϱkut

n) (3.5)

and (nut
n)−1

= 1 + ϱ
(

t −
{nt}

n

)
= 1 + ϱt + O

( 1
n

)
. Since k is fixed,

E
(

Z [nt]+k
n

− Z [nt]
n

)2

( k
n

)2κ = ε2γϱ2κσ 2
(

1 + ϱt + O
(

1
n

))2(γ−κ) (
L2(0) + o(

√
kut

n)
)

=

ε2γϱ2κσ 2(1 + ϱt)2(γ−κ)
(

1 + O
(

1
n

))(
L2(0) + o

(
1

√
n

))
=

ε2γϱ2κσ 2L2(0)(1 + ϱt)2(γ−κ)
+ o

(
1

√
n

)
= c(t) + o

(
1

√
n

)
.

Thus, the first two conditions of Bardet and Surgailis [3], (A.1)′ hold. The third one follows
easily by noting that t ↦→ c(t) is continuously differentiable on [0, 1].

(A.2)p for p = 2. Let j ∈ {0, 1, . . . , n − 2}, un, j
def
=

ϱ

n+ϱ j . Then un, j+m =
un, j

1+mun, j
,m ≥ 0.

Thus, for k ≥ 1,

σ−2 E
(
∆Z j

n ,
1
n
∆Z j+k

n , 1
n

)
=

ε2γ σ−2 E
(

X1+ϱ
j+1
n

− X1+ϱ
j
n

) (
X1+ϱ

j+k+1
n

− X1+ϱ
j+k
n

)
=

ε2γ
[(

1 + ϱ
j + 1

n

)2γ
(

l

(
ϱ k

n

1 + ϱ
j+1
n

)
− l

(
ϱ k−1

n

1 + ϱ
j+1
n

))
−

(
1 + ϱ

j
n

)2γ
(

l

(
ϱ k+1

n

1 + ϱ
j
n

)
− l

(
ϱ k

n

1 + ϱ
j
n

))]
=

(ε̄)2γ n−2γ
(

u−2γ
n, j+1(l(kun, j+1) − l((k − 1)un, j+1))

−u−2γ
n, j (l((k + 1)un, j ) − l(kun, j ))

)
=

(ε̄)2γ
(nun, j )−2γ

2

[
(1 + un, j )2γ

(
(1 + (k + 1)un, j )2γ

− (1 + kun, j )2γ

(1 + un, j )2γ
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−∆p
(k−1)

un, j
1+un, j

,
un, j

1+un, j

)
−

(
(1 + (k + 1)un, j )2γ

− (1 + kun, j )2γ
− ∆pkun, j ,un, j

)]
=

(ε̄)2γ
(nun, j )−2γ

2

(
∆pkun, j ,un, j − (1 + un, j )2γ∆p

(k−1)
un, j

1+un, j
,

un, j
1+un, j

)
. (3.6)

Let ut
n, t ∈ (0, 1), be as in (A1). Then u

j
n
n = ϱ−1un, j . Therefore, taking k = 1 in (3.5)–(3.6), we

have (
ε̄γ

σ

)2

D
(
∆Z j

n ,
1
n

)
= u2κ

n, j (nun, j )−2γ L2(un, j );

(
ε̄γ

σ

)2

D
(
∆(2) Z j

n ,
1
n

)
=

(
ε̄γ

σ

)2 (
D
(
∆Z j+1

n , 1
n

)
+ D

(
∆Z j

n ,
1
n

)
−2 E

(
∆Z j+1

n , 1
n
∆Z j

n ,
1
n

))
=(

un, j

1 + un, j

)2κ( nun, j

1 + un, j

)−2γ

L2
(

un, j

1 + un, j

)
−

2
(nun, j )−2γ

2

(
∆pun, j ,un, j − (1 + un, j )2γ∆p

0,
un, j

1+un, j

)
+ (un, j )2κ (nun, j )−2γ L2(un, j ) =

(un, j )2κ (nun, j )−2γ
(

2(1 + un, j )2(γ−κ)L2
(

un, j

1 + un, j

)
+ 2L2(un, j ) + 22κL2(2un, j )

)
n→∞

∼

L2(0)(4 + 4κ )(un, j )2κ (nun, j )−2γ .

Consequently, for k ∈ {2, . . . , n} : k + j ≤ n,(
ε̄γ

σ

)2

E
(
∆(2) Z j

n ,
1
n
∆(2) Z j+k

n , 1
n

)
=

(
ε̄γ

σ

)2

E
(
∆Z j+1

n , 1
n

− ∆Z j
n ,

1
n

) (
∆Z j+k+1

n , 1
n

− ∆Z j+k
n , 1

n

)
=

(nun, j+1)−2γ

2

[
∆pkun, j+1,un, j+1 − (1 + un, j+1)2γ∆p(k−1)

un, j+1
1+un, j+1

,
un, j+1

1+un, j+1

−(
∆p(k−1)un, j+1,un, j+1 − (1 + un, j+1)2γ∆p(k−2)

un, j+1
1+un, j+1

,
un, j+1

1+un, j+1

)]
−

(nun, j )−2γ

2

[
∆p(k+1)un, j ,un, j − (1 + un, j )2γ∆pk

un, j
1+un, j

,
un, j

1+un, j

−(
∆pkun, j ,un, j − (1 + un, j )2γ∆p(k−1)

un, j
1+un, j

,
un, j

1+un, j

)]
= −

(nun, j )−2γ

2

[
∆(2) pkun, j ,un, j −

2(1 + un, j )2γ∆(2) p(k−1)
un, j

1+un, j
,

un, j
1+un, j

+ (1 + 2un, j )2γ∆(2) p(k−2)
un, j

1+2un, j
,

un, j
1+2un, j

] n→∞
∼

K ·

∆(2) pkun, j ,un, j − 2(1 + un, j )2γ∆(2) p(k−1)
un, j

1+un, j
,

un, j
1+un, j

+ (1 + 2un, j )2γ∆(2) p(k−2)
un, j

1+2un, j
,

un, j
1+2un, j

−1/2

√
D
(
∆(2) Z j

n ,
1
n

)
D
(
∆(2) Z j+k

n , 1
n

)
(un, j )2κ

,

where K = K (ε, κ, j, k, n) is uniformly bounded for all j, k, n. □
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Proof of Corollary 2.1. To prove the corollary, apply the Delta method. □

In order to prove Proposition 2.1, we need the following lemma. We believe that a similar
proposition was proved elsewhere. However, we could not find a corresponding reference.
Therefore, we provide a proof for completeness.

Lemma 3.1. Let x ∈ (0, 4) be fixed, and let gx
: [0,∞) → R be defined by

gx (y) = (y + 2)x
− 2(y + 1)x

+ yx .

Then there exists Cx ∈ (0,∞) such that |∆(2)gx
y,1| ≤

Cx
y4−x for ∀y > 0.

Proof. The claim follows immediately by noting that

∆(2)gx
y,1 = Dx

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
(y + v1 + v2 + v3 + v4)x−4dv1dv2dv3dv4,

where Dx = x(x − 1)(x − 2)(x − 3). □

Proof of Proposition 2.1. Since the proof of proposition reduces to a careful application of
the Taylor’s formula and Lemma 3.1, we give a detailed exposition for the sfBm. In case of
other families, it is a slightly reworked repetition of the latter. For short, we omit a subscript
denoting that the quantities under consideration correspond to the sfBm, i.e., we write R, l, . . . ,
instead of RSH , lSH , . . . . We also assume that H ∈ (0, 1) is fixed and put

(x
0

) def
= 1;

(x
j

) def
=

x(x−1)···(x− j+1)
j ! , j ≥ 1.

Step 1. Let t, s, h > 0, and let u ∈ [0, 1). Then

R(s, t) = s2H
+ t2H

−
1
2

(
|s + t |2H

+ |t − s|2H )
⇒

R(t, t + h) = t2H
+ (t + h)2H

−
1
2

(
(2t + h)2H

+ h2H )
=

t2H

(
1 +

(
1 +

h
t

)2H

−
1
2

((
2 +

h
t

)2H

+

(
h
t

)2H
))

⇒

l(u) =
1

2 − 22H−1

(
1 + (1 + u)2H

−
1
2

(
(2 + u)2H

+ u2H ))
⇒

l(u) −
1
2

(
1 + (1 + u)2H )

= −
1
2

u2κL2(u) =

22H−1

2 − 22H−1

(
1 + (1 + u)2H

2
−

(
1 +

u
2

)2H
−

(u
2

)2H
)

=

22H−1

2 − 22H−1

(
∞∑

k=1

(
2H
k

)
uk
(

1
2

−
1
2k

)
−

(u
2

)2H
)

= −
u2H

4 − 4H

(
1 + O

(
u2(1−H ))) ,

where the last two equalities are due to Taylor’s expansion in the neighbourhood of 0. Hence,
under assumptions made, (L1)–(L2) hold.

Step 2. By Step 1,

p(u) = u2κL2(u) =
22H

2 − 22H−1

((u
2

)2H
+

(
1 +

u
2

)2H
−

1 + (1 + u)2H

2

)
.
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Since constant does not affect the order of differences ∆p,∆(2) p, it suffices to show that

condition (L3) of Theorem 2.3 applies to p̃ def
=

(
22H

2−22H−1

)−1
p. Let gx be the same as in

Lemma 3.1. Then

∆ p̃ku,u =

(u
2

)2H (
(k + 1)2H

− k2H )
+((

1 + (k + 1)
u
2

)2H
−

(
1 + k

u
2

)2H
)

−
1
2

(
(1 + (k + 1)u)2H

− (1 + ku)2H )
⇒

∆(2) p̃ku,u =

(u
2

)2H
g2H (k) + g̃k

(u
2

)
−

1
2

g̃k (u) ,

where g̃k (u) = (1 + (k + 2)u)2H
− 2(1 + (k + 1)u)2H

+ (1 + ku)2H . Next, note that

(1 + ju)2H g̃k− j

(
u

1 + ju

)
= (1 + ju)2H

[(
1 + (k − j + 2)

u
1 + ju

)2H

−

2
(

1 + (k − j + 1)
u

1 + ju

)2H

+

(
1 + (k − j)

u
1 + ju

)2H]
= g̃k(u),

and that

(1 + ju)2H g̃k− j

(
u

2(1 + ju)

)
= (1 + ju)2H

[(
1 + (k − j + 2)

u
2(1 + ju)

)2H

−

2
(

1 + (k − j + 1)
u

2(1 + ju)

)2H

+

(
1 + (k − j)

u
2(1 + ju)

)2H]
= g̃k+ j

(u
2

)
.

Therefore, for u > 0,

∆(2) p̃ku,u − 2(1 + u)2H∆(2) p̃(k−1) u
1+u ,

u
1+u

+ (1 + 2u)2H∆(2) p̃(k−2) u
1+2u ,

u
1+2u

=(u
2

)2H
∆(2)g2H

k−2,1 + g̃k

(u
2

)
− 2g̃k+1

(u
2

)
+ g̃k+2

(u
2

)
=

(u
2

)2H

×

(
∆(2)g2H

k−2,1 + ∆(2)g2H
k+

2
u ,1

)
.

By Lemma 3.1, ∆(2)g2H
k−2,1 + ∆(2)g2H

k+
2
u ,1

= O
(

1
k4−2H

)
. □
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