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Abstract

This paper focuses on a general class of systems of nonlinear stochastic differential equations, inspired
by stochastic chemostat models. In the first part, the system is formulated as a hybrid switching diffusion.
A complete characterization of the asymptotic behavior of the system under consideration is provided. It
is shown that the long-term properties of the system can be classified by using a real-valued parameter
λ. If λ ≤ 0, the bacteria will die out, which means that the process does not operate. If λ > 0, the system
has an invariant probability measure and the transition probability of the solution process converges to
that of the invariant measure. The rate of convergence is also obtained. One of the distinct features of
this paper is that the critical case λ = 0 is also considered. Moreover, numerical examples are given
to illustrate our results. In the second part of the paper, controlled diffusions with a long-run average
objective function are treated. The associated Hamilton–Jacobi–Bellman (HJB) equation is derived and
the existence of an optimal Markov control is established. The techniques and methods of analysis in
this paper can be applied to many other stochastic Kolmogorov systems.
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1. Introduction

We consider a class of systems of nonlinear stochastic differential equations. The motivation
stems from the pressing need of the treatment of chemostat models that are a laboratory
apparatus used for the continuous culture of microorganism, which is a technique introduced
by Novick and Szilard in [29]. This technique plays an important role in microbiology,
biotechnology, and population biology, and is perhaps the best laboratory idealization of nature
for population studies [36]. Chemostats are also used as microcosms in ecology [2,30] and
evolutionary biology [8,19], as well as in wastewater treatment based on chemostat models
[5,11,14,20,38], which has led to numerous research inventions. Since 1950’s, much attention
has been devoted to modeling and analyzing chemostat problems; see [10,15,16,33] and
references therein.

The dynamics of the process can be modeled in the general form by a system of ordinary
differential equations⎧⎪⎪⎨⎪⎪⎩

d S(t)
dt

=
S0 − f0(S(t))

θ
− X (t) f1

(
S(t), X (t)

)
,

d X (t)
dt

=X (t)
(

f2
(
S(t), X (t)

)
− kd −

1 + R
θ

)
,

(1.1)

where S(t), X (t) are the substrate concentration and the bacterial concentration, respectively;
S0 and f0(S) are the input concentration and the decay rate of the substrate, respectively; 1

θ
is

the dilution rate (or equivalently, θ is the mean residence time), kd is the death rate of X and
R is the recycle ratio; f1(S, X ) is the consumption rate and f2(S, X ) is the growth rate of the
bacteria. The formulation in (1.1) is much more general than the existing models. The readers
can find works on the specialized forms of the models with specific forms of the functions
f0, f1, f2 in [6,16,31,39,40] and references therein.

To better reflect the reality, effort has been devoted to stochastic systems to take into account
the effect of environmental perturbations [17,35]. A fundamental problem is the long-term
behavior of the system. However, the dynamic behaviors have not been fully understood to the
best our knowledge. The asymptotic features of the systems and important information such
as the wash-out time have not been fully understood to date. In contrast to the existing work,
we develop new approaches to carefully analyze the corresponding systems.

Considering the system in a fluctuating environment, we may assume that the dynamics are
perturbed by a white noise. Then, we have a stochastic counterpart of (1.1),⎧⎪⎪⎪⎨⎪⎪⎪⎩

d S(t) =

(
S0 − f0

(
S(t)

)
θ

− X (t) f1
(
S(t), X (t)

))
dt + σ1S(t)dW1(t),

d X (t) =X (t)
(

f2
(
S(t), X (t)

)
− kd −

1 + R
θ

)
dt + σ2 X (t)dW2(t),

(1.2)

where W1(t) and W2(t) are two independent real-valued Brownian motions. However, it has
been recognized that the formulation above is not able to capture some important features of
the underlying process. More often than not, in addition to the Brownian type perturbations,
there are also abrupt changes in the environment that cannot be described by continuous
perturbations. An effective way to model these discrete event perturbations is to use a Markov
chain with a finite state space; see [26–28] and references therein. Suppose that the coefficients
f0, f1, f2, kd and the intensities of the white noises depend on α(t), a random switching process
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having a finite state space. Then we have a more general system⎧⎨⎩ d S(t) =

(
S0 − f0(S(t), α(t))

θ
− X (t) f1

(
S(t), X (t), α(t)

))
dt + σ1(α(t))S(t)dW1(t),

d X (t) =X (t)
(

f2
(
S(t), X (t), α(t)

)
− k̃d (α(t))

)
dt + σ2(α(t))X (t)dW2(t),

(1.3)

where k̃d (α(t)) := kd (α(t)) +
1+R

θ
, α(t) is a Markov chain with state space M = {1, . . . , m0}

and generator Q = (qkl)m0×m0 , and α(t) is independent of the Brownian motions so that

P{α(t + ∆) = j |α(t) = i, α(s), s ≤ t} = qi j∆ + o(∆) if i ̸= j and
P{α(t + ∆) = i |α(t) = i, α(s), s ≤ t} = 1 + qi i∆ + o(∆). (1.4)

The models to be considered in this paper belong to the class of stochastic Kolmogorov
systems, which is a class of dynamic systems used extensively in ecological, biological, and
environment modeling. Two long standing and fundamental questions concerning Kolmogorov
systems are: (i) Under what conditions do populations persist or go extinct? (ii) When
do interacting species coexist? The answers to these questions are essential for guiding
conservation efforts. Our current paper is one of them along this line. In the literature, much
effort has been devoted to such systems. A common approach is to use Lyapunov functions,
which gives only sufficient conditions that are nowhere near necessary, and are not sharp. In
addition, there is no systematic way of finding the Lyapunov functions. The analysis in this
work is based on a completely different approach (used in [3,13,32]), which requires treating
the systems by looking at the boundary. While sharp results for a very general class of stochastic
systems have been obtained in [3], some of their conditions are not always satisfied for our
model. The proofs for persistence and extinction therefore require some delicate treatment of
the behavior of the process near infinity. In the second part of the paper, we also consider
controlled systems to reach the goal of getting optimality under a long-run average performance
measure.

The rest of the paper is organized as follows. In Section 2, we prove the existence and
uniqueness of positive solutions to (1.3) and (1.4). Then a complete characterization of the
asymptotic behavior of the system under consideration is provided. We show that the long-
term properties of the system can be classified by using a real-valued parameter λ. If λ ≤ 0,
the bacteria will die out; if λ > 0, the system has an invariant probability measure and the
transition probability of the solution process converges to the invariant measure. One of the
distinct contributions of this paper is that the critical case λ = 0 is also considered. Some
numerical examples are given in Section 3. Section 4 is devoted to the study of the system
under ergodic control. Controlled diffusions with random switching can be considered, but the
notation will be more complex. To highlight the main ergodic control ideas, we decide to use a
simplified model without switching. We obtain the Hamilton–Jacobi–Bellman (HJB) equation
and prove the existence and uniqueness of the solution of the HJB equation corresponding to
the long-term time-average control problem. Establishing the existence and uniqueness of the
solution to the HJB equation is most difficult because the usual conditions for ergodic controlled
diffusions are not satisfied in our model. Inspired by the work [1], we use a vanishing discount
argument to examine the associated cost and value functions of the corresponding discounted
control problem and then to take a limit when the discount factor tends to 0. However, the
results in the aforementioned book cannot be applied or adopted directly because the conditions
in the reference are not satisfied in our setup. More details on this will be given in Section 4.
Finally, Section 5 issues some concluding remarks. Although our main motivation comes from
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chemostat models, the analysis and techniques used can be applied to many other nonlinear
ecological and biological systems.

2. Complete characterization of long-time behavior

This section is devoted to asymptotic properties of the switching diffusion models. We
show that the long-term properties of the system can be completely classified by using a real
parameter λ. In particular, if λ ≤ 0, the bacteria will die out and we refer to such case as
the system being not permanent because it does not work in long term and the efficiency
goes to 0. If λ > 0, the system has an invariant probability measure and the transition
probability of the solution process converges to the invariant measure. This is what we refer to
as permanence (with the terminology carried over from the study in biological and ecological
models). Moreover, we obtain the rate of convergence.

One of the highlights here is that we derive sufficient and necessary conditions for
permanence. First, the process under consideration is jointly a Markov–Feller process. By using
the Lyapunov exponent of X (t), we then establish the existence of the invariant measure of
(S(t), α(t)). Furthermore, under suitable conditions, we obtain the exponential error bounds of
the difference of the transition function and that of the invariant measure in the total variation
norm.

Throughout this paper, we use the lowercase letters s, x , and i to denote the initial values
of S(t), X (t), and α(t), respectively. Note the distinction of s and the input concentration of
the substrate S0. To simplify the notation, let

k̂d = max
i∈M

{̃kd (i)} ; ǩd = min
i∈M

{̃kd (i)},

and

σ̂k = max
i∈M

{σk(i)} ; σ̌k = min
i∈M

{σk(i)}, k = 1, 2.

We denote by R+ = [0, ∞), R◦
+

= (0, ∞), R2
+

= [0, ∞)×[0, ∞), and R2,◦
+ = (0, ∞)×(0, ∞).

The operator associated with the process
(
S(t), X (t), α(t)

)
, solving (1.3) and (1.4), is given by

LV (φ, i) = Vφ(φ, i) f̃ (φ, i) +
1
2

tr[̃g(φ, i )̃g⊤(φ, i)Vφφ(φ, i)] +

∑
j∈M

qi j V (φ, j), (2.1)

where A⊤ denotes the transpose of A, φ = (s, x), Vφ(φ, i) and Vφφ(φ, i) are the gradient and
Hessian of V (·, i) with respect to φ, f̃ and g̃ are the drift and diffusion coefficients of (1.3),
respectively. That is,

f̃ (φ, i) =

(
S0 − f0(s, i)

θ
− x f1(s, x, i), x

(
f2(s, x, i) − k̃d (i)

))⊤

,

g̃(φ, i) = diag
(
σ1(i)s, σ2(i)x

)
∈ R2×2,

where diag(a, b) denotes the diagonal matrix with entries a and b. Note that the particular
structure of g̃ implies that g̃g̃⊤

= g̃2. In what follows, we write V (φ, i) and V (s, x, i)
interchangeably, whichever is more convenient. We also assume the following conditions
throughout.
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Assumption 2.1. Suppose that

• W1(t) and W2(t) are independent real-valued standard Brownian motions that are inde-
pendent of the Markov chain α(t).

• S0, θ , k̃d (i), σ1(i), σ2(i) are positive constants for each i ∈ M.
• f0(s, i), f1(s, x, i), and f2(s, x, i) are locally Lipschitz; f0(0, i) = f1(0, x, i) = 0

satisfying lims→∞ f0(s, i) = ∞; 0 ≤ f2(s, x, i) ≤ κ0
(

f1(s, x, i) ∧ f0(s, i)
)
, f1(s, x, i) ≤

κ0(1+ s) for some κ0 > 1. Moreover, for each i ∈ M, f2(s, x, i) is uniformly continuous
at x = 0 (that is, limx→0 sup{| f2(s, x, i) − f2(s, 0, i)|} = 0).

• The Markov chain or its generator Q = (qi j )m0×m0 is irreducible, that is for any i, j ∈ M,
there exist i = i0, i1, . . . , in = j such that qik−1,ik > 0 for k = 1, . . . , n.

To start, we state following Theorem, which provides the preliminary results, namely, the
existence and uniqueness of the global solution, and the positivity of the solution. The proof
is postponed to the Appendix.

Theorem 2.1. For any (s, x, i) ∈ R2
+

×M, there exists a unique global solution to the system
(1.3) and (1.4) with initial value (s, x, i). The three-component process {(S(t), X (t), α(t)), t ≥

0} is a Markov–Feller process. Moreover, we have Ps,x,i {S(t) > 0, t > 0} = 1 and Ps,x,i {X (t) =

0, t > 0} = 1 if x = 0, Ps,x,i {X (t) > 0, t > 0} = 1 if x > 0.

To proceed, we examine the boundary by letting X (t) = 0. Let Ŝ(t) be the solution to (1.3)
with X (t) = 0, i.e.,

d Ŝ(t) =
S0 − f0

(
Ŝ(t), α(t)

)
θ

dt + σ1(α(t))Ŝ(t)dW1(t). (2.2)

Since the drift of (2.2) is negative when Ŝ(t) is sufficiently large, and is positive when Ŝ(t) is
sufficiently small, we can see[

L̂
(

s + ln
s

s + 1

)]
(s, i) ≤ −1 if s < ŝ or s >

1
ŝ
,

for some ŝ > 0 being sufficiently small, where L̂ is the operator associated with (2.2).
Thus, the hybrid diffusion (2.2) is positive recurrent due to its nondegeneracy (see, e.g.,
[37, Chapter 4]). Then there exists a unique invariant measure π of (2.2). Moreover,

lim
t→∞

∥P̂(t, s, i, ·) − π (·)∥T V = 0, (s, i) ∈ (0, ∞) × M, (2.3)

where ∥·∥T V is the total variation norm of a measure and P̂(t, s, i, ·) is the transition probability
of (Ŝ(t), α(t)). Since P0,i {Ŝ(t) > 0, t > 0} = 1, (2.3) holds even when s = 0.

When X (t) is small, S(t) can be approximated by Ŝ(t). Due to Itô’s formula and the

ergodicity of (Ŝ(t), α(t)), when X (t) is small, the long-term growth rate
ln X (t)

t
is approximated

by the critical value

λ :=

∑
i∈M

∫
R◦

+

(
f2(s, 0, i) − k̃d (i) −

σ 2
2 (i)
2

)
π (ds, i). (2.4)

As a result, the sign of λ determines whether or not X (t) converges to 0. A heuristic argument
for getting λ can be found in [7]. The main results of this section is provided in the next
theorem to follow. First, we state an assumption. One of the conditions in Assumption 2.2 will
be used in the main theorem.
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Assumption 2.2. Denoting by πα the invariant measure of α(t), assume that one of the
following conditions holds.

(1) For each i ∈ M, f2(s, x, i) is non-decreasing in s and non-increasing in x for any
(s, x) ∈ [0, ∞) × (0, ∞);

(2) ∑
i∈M

(
lim sup

s→∞

f2(s, 0, i) − k̃d (i) −
σ 2

2 (i)
2

)
πα(i) < 0; (2.5)

(3) ∑
i∈M

(
lim inf

s→∞
f2(s, 0, i) − k̃d (i) −

σ 2
2 (i)
2

)
πα(i) > 0. (2.6)

Theorem 2.2. The following claims hold.

• If λ < 0, we have limt→∞

ln X (t)
t

= λ a.s. and the distribution of
(
S(t), α(t)

)
converges

weakly to the unique invariant probability measure π if either condition (1) or (2) of
Assumption 2.2 holds.

• If λ = 0 and condition (1) of Assumption 2.2 holds then

lim
T →∞

1
T
Es,x,i

∫ T

0
S(t)dt = S0 and lim

T →∞

1
T
Es,x,i

∫ T

0
X (t)dt = 0 (2.7)

under additional conditions that for any i ∈ M, ∂ f0(s,i)
∂s and ∂ f2(s,0,i)

∂s exist and are positive,
continuous, and ∂ f0(s,i)

∂s is bounded below by a positive constant.
• If λ > 0, then there exists an invariant probability measure µ∗ on R2,◦

+ × M
and limt→∞ ∥P(t, s, i, ·) − µ∗(·)∥T V = 0. We assume further that condition (3) of
Assumption 2.2 holds, and lim infs→∞

f0(s,i)
sq > 0, i ∈ M for some q ∈ (0, 1]. Then,

(i) in case q < 1,

lim
t→∞

tβ−1
∥P(t, s, x, i, ·) − µ∗(·)∥T V = 0,

for any 1 ≤ β <
1

1 − q
, (s, x, i) ∈ R+ × R◦

+
× M;

(ii) if q = 1, there exists a γ̃ > 0 such that

lim
t→∞

eγ̃ t
∥P(t, s, x, i, ·) − µ∗(·)∥T V = 0, (s, x, i) ∈ R+ × R◦

+
× M, (2.8)

where P(t, s, x, i, ·) is the transition probability of
(
S(t), X (t), α(t)

)
.

Remark 2.1. If λ > 0, it is easy to see that condition (1) of Assumption 2.2 implies
the condition (3) in Assumption 2.2. Moreover, most models in the literature consider the
case f0(s) = Ci s while the coefficients x f1(s, x, i), x f2(s, x) are linear functional response
( f j (s, x, i) = ci j x, j = 1, 2), Holling type II response ( f j (s, x, i) =

ci j s
mi j +ai j s , j = 1, 2),

Holling type III response ( f j (s, x, i) =
ci j s2

(mi j1+ai j1s)(mi j2+ai j2s) , j = 1, 2), and Beddington–

DeAngelis functional response ( f j (s, x, i) =
ci j s

mi j +ai j s+bi j x , j = 1, 2) etc.; see e.g., [31,39,40]
and the references therein. It is clear that these functions satisfy Assumption 2.1 and part (1)
of Assumption 2.2.
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Proof for the case λ = 0. We argue by contradiction. Suppose
(
S(t), X (t), α(t)

)
has an

invariant probability measure µ∗ on R2,◦
+ × M. Then, it follows from the ergodicity that for

µ∗-almost every initial value (s, x, i),

lim
T →∞

1
T

∫ T

0
h
(
S(t), X (t), α(t)

)
dt =

∑
i ′∈M

∫
R2,◦

+

h(s ′, x ′, i ′)µ∗(ds ′, dx ′, i ′), (2.9)

for any measurable function h that is µ∗-integrable. Since the transition probability density is
continuous and positive, the invariant measure µ∗ is unique and equivalent to m̃×πα where m̃ is
the Lebesgue measure on R2,◦

+ . As a result, if µ∗(A) = 1, then Ps,x,i
(
(S(t), X (t), α(t)) ∈ A

)
= 1

for every (s, x, i) ∈ R2,◦
+ × M, t > 0, which implies that (2.9) holds for any initial value

(s, x, i) ∈ R2,◦
+ × M. By the comparison theorem (see e.g., [12]), we have Ŝ(t) ≥ S(t) with

probability 1 given that Ŝ(0) = S(0). Hence, it follows (1.3), (2.2) and positivity of S(t), Ŝ(t)
and additional assumption on f0(·, ·) (non-decreasing in s) that

lim sup
T →∞

1
T
Es,x,i

∫ T

0
f0(S(t), α(t))dt ≤ lim sup

T →∞

1
T
Es,i

∫ T

0
f0(Ŝ(t), α(t))dt ≤ S0. (2.10)

On the other hand, since
∂ f0(s, i)

∂s
is bounded below by a positive constant and f0(0, i) = 0,

there exists a g1 > 0 such that

f0(s, i)
θ

≥ g1s, ∀s ≥ 0, i ∈ M. (2.11)

Let 0 < p <
g1

2σ̂ 2
1

and 0 < g2 <
(1+p)g1

4 . By Itô’s formula, we obtain that

Es,i eg2T Ŝ1+p(T )

=s1+p
+ Es,i

∫ T

0
eg2t (1 + p)Ŝ p(t)

(
S0 − f0

(
Ŝ(t), α(t)

)
θ

+
pσ 2

1 (α(t))
2

Ŝ(t) +
g2

1 + p
Ŝ(t)

)
dt

≤s1+p
+ Es,i

∫ T

0
eg2t (1 + p)Ŝ p(t)

(
S0

θ
−

g1

2
Ŝ(t)

)
dt

≤s1+p
+

g3eg2T

g2
, ∀T > 0, where g3 :=

(1 + p)S0

θ

(
2S0

θg1

)p

.

As a consequence, we have

lim sup
T →∞

Es,x,i S1+p(T ) ≤ lim sup
T →∞

Es,i Ŝ1+p(T ) ≤
g3

g2
. (2.12)

Moreover, we also obtain that

Es,x,i
(
S(T ) + X (T )

)1+p is uniformly bounded in T . (2.13)
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Using Itô’s formula again, we have

Es,i Ŝ1+p(T )
T

=
s1+p

T
+

(1 + p)S0

θT
Es,i

∫ T

0
Ŝ p(t)dt −

1 + p
θT

Es,i

×

∫ T

0
Ŝ p(t) f0

(
Ŝ(t), α(t)

)
dt

+
p(1 + p)

2T
Es,i

∫ T

0
σ 2

1 (α(t))Ŝ1+p(t)dt,

which together with (2.12) implies that

lim sup
T →∞

1
T
Es,i

∫ T

0
Ŝ p(t) f0

(
Ŝ(t), α(t)

)
dt ≤ g4, for some g4 < ∞. (2.14)

We have from (2.2) and (2.12) that

lim
T →∞

1
T
Es,i

∫ T

0

(
S0

θ
−

f0
(
Ŝ(t), α(t)

)
θ

)
dt = lim

T →∞

Es,i Ŝ(T ) − s
T

= 0.

Hence

lim
T →∞

1
T
Es,i

∫ T

0
f0
(
Ŝ(t), α(t)

)
dt = S0. (2.15)

From (1.3), with standard arguments, we have

Es,x,i

∫ T

0
X (t) f1(S(t), X (t), α(t))dt ≤ S0T + s, T ≥ 0.

Moreover, due to the uniform boundedness (2.13), the linear growth bound of f0 and the almost
sure convergence (2.9), it follows from the dominated convergence theorem that

lim
T →∞

1
T
Es,x,i

∫ T

0

(
S0 − f0

(
S(t), α(t)

)
θ

)
dt =

∑
i ′∈M

∫
R2,◦

+

S0 − f0(s ′, x ′, i ′)
θ

× µ∗(ds ′, dx ′, i ′) =: ĝ (2.16)

From (1.3) and (2.13), we deduces that limT →∞
1
T Es,x,i

∫ T
0 X (t) f1(S(t), X (t), α(t))dt exists

(because the two others in (2.17) exist) and

lim
T →∞

1
T
Es,x,i

∫ T

0

(
S0 − f0

(
S(t), α(t)

)
θ

− X (t) f1
(
S(t), X (t), α(t)

))
dt

= lim
T →∞

Es,x,i S(T ) − s
T

= 0,

(2.17)

where, due to Fatou’s lemma,

lim
T →∞

1
T
Es,x,i

∫ T

0
X (t) f1

(
S(t), X (t), α(t)

)
dt

= ĝ ≥

∑
i ′∈M

∫
R2,◦

+

x ′ f1(s ′, x ′, i ′)µ∗(ds ′, dx ′, i ′) > 0.

We have from (2.15) and (2.16) that

lim
T →∞

1
T
Es,x,i

∫ T

0

(
f0
(
Ŝ(t), α(t)

)
− f0

(
S(t), α(t)

))
dt = θ ĝ, s, x ≥ 0, i ∈ M. (2.18)
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Now, let H > 1 be a sufficiently large constant satisfying that g4
H p ≤

θ ĝ
2 . Combining with

(2.14), we obtain

lim sup
T →∞

1
T
Es,x,i

∫ T

0
1{Ŝ(t)>H}

(
f0
(
Ŝ(t), α(t)

)
− f0

(
S(t), α(t)

))
dt

≤ lim sup
T →∞

1
T
Es,x,i

∫ T

0

Ŝ p(t)
H p

f0
(
Ŝ(t), α(t)

)
dt

≤
g4

H p
≤

θ ĝ
2

.

(2.19)

A consequence of (2.18) and (2.19) is that

lim inf
T →∞

1
T
Es,x,i

∫ T

0
1{Ŝ(t)≤H}

(
f0
(
Ŝ(t), α(t)

)
− f0

(
S(t), α(t)

))
dt ≥

θ ĝ
2

. (2.20)

Since ∂ f0(s,0,i)
∂s is continuous and positive, there exists a gH

5 < ∞ such that

f0(s1, i) − f0(s2, i) ≤ gH
5 (s1 − s2), ∀0 ≤ s2 ≤ s1 ≤ H, i ∈ M.

Thus, (2.20) implies that

lim inf
T →∞

1
T
Es,x,i

∫ T

0
1{Ŝ(t)≤H}

(
Ŝ(t) − S(t)

)
dt ≥

θ ĝ

2gH
5

. (2.21)

Similarly, there exists a gH
6 > 0 such that

f2(s1, 0, i) − f2(s2, 0, i) ≥ gH
6 (s1 − s2), for any 0 ≤ s2 ≤ s1 ≤ H, i ∈ M.

Hence, combining with f2(s, x, i) being non-increasing in x , we obtain

f2(s1, 0, i) − f2(s2, x, i) ≥ gH
6 (s1 − s2) ∀x ≥ 0, 0 ≤ s2 ≤ s1 ≤ H, i ∈ M. (2.22)

As a consequence of (2.21) and (2.22),

lim
T →∞

1
T
Es,x,i

∫ T

0

(
f2
(
Ŝ(t), 0, α(t)

)
− f2

(
S(t), X (t), α(t)

))
dt

≥ lim
T →∞

1
T
Es,x,i

∫ T

0
1{Ŝ(t)≤H}

(
f2
(
Ŝ(t), 0, α(t)

)
− f2

(
S(t), X (t), α(t)

))
dt

≥gH
6 lim inf

T →∞

1
T
Es,x,i

∫ T

0
1{Ŝ(t)≤H}

(
Ŝ(t) − S(t)

)
dt

≥
gH

6 θ ĝ

2gH
5

.

Therefore, we obtain that∑
i ′∈M

∫
R2,◦

+

(
f2(s ′, x ′, i ′) − k̃d (i) −

σ 2
2 (i)
2

)
µ∗(ds ′, dx ′, i ′)

= lim
T →∞

1
T
Es,x,i

∫ T

0

(
f2
(
S(t), X (t), α(t)

)
− k̃d (α(t)) −

σ 2
2 (α(t))

2

)
dt

≤ lim
T →∞

1
T
Es,x,i

∫ T

0

(
f2
(
Ŝ(t), 0, α(t)

)
− k̃d (α(t)) −

σ 2
2 (α(t))

2

)
dt −

gH
6 θ ĝ

2gH
5

≤λ −
gH

6 θ ĝ

2gH
5

= −
gH

6 θ ĝ

2gH
5

.

(2.23)
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By (1.3), Itô’s formula, the ergodicity, and (2.23), we have

lim
T →∞

ln X (T )
T

= lim
T →∞

1
T

(
X (0) +

∫ T

0
σ2(α(t))dW2(t)

)
+ lim

T →∞

1
T

∫ T

0

(
f2
(
S(t), X (t), α(t)

)
− k̃d (α(t)) −

σ 2
2 (α(t))

2

)
dt

≤ −
gH

6 θ ĝ

2gH
5

< 0 a.s.

As a result,

Ps,x,i

{
lim

T →∞

X (T ) = 0
}

= 1,

which contradicts the assumption that the process has an invariant probability measure on R2,◦
+ ×

M. Moreover, π × δ∗ is the unique invariant measure of
(
S(t), α(t), X (t)

)
on R+ ×M×R+,

where δ∗ is the Dirac measure with mass at 0. Consider the empirical measure

Π s,x,i
t (·) =

1
t

∫ t

0
Ps,x,i {(S(s), X (s), α(s)) ∈ ·}ds.

In view of (2.13), the family {Π s,x,i
t (·), t ≥ 0} is tight for each (s, x, i) ∈ R2

+
×M. It is well-

known (see e.g., [13] and [32]) that any weak limit of Π s,x,i
t (·) as t → ∞ is an invariant

probability measure of
(
S(t), α(t), X (t)

)
. Since π × δ∗ is the unique invariant probability

measure and we have the boundedness of Es,x,i
(
S(t)+ X (t)

)1+p in (2.13), we can easily obtain
(2.7). □

Proof for the case λ > 0. Proof of the convergence in total variation of transition probability
to an invariant measure is straightforward. Applying [3, Theorem 4.4], with W (s, x, i) = s + x
and V (s, x, i) = ln x

x+1 we obtain the persistence of X (t) and the existence of an invariant
probability measure of (S(t), X (t), α(t)) on R2,◦

+ × M. Because of the nondegeneracy of
the diffusion, which implies irreducibility and strong Feller property of the skeleton process
{(S(nt0), X (nt0)), α(nt0), n ∈ Z+} for any t0 > 0, we can obtain the convergence in total
variation of transition probability of the process (S(t), X (t), α(t)) to its invariant probability
measure on R2,◦

+ × M; see [23, Theorem 6.1] or [41].
Now, we consider the rate of convergence where conditions in [3, Theorem 4.12 or

Proposition 4.13] are not easy to verify for our model. We assume that condition (3) of
Assumption 2.2 holds. In view of (2.6), there exists an Ĥ > 0 such that∑

i∈M

(
inf

s≥Ĥ
{ f2(s, 0, i)} − k̃d (i) −

σ 2
2 (i)
2

)
πα(i) > 0. (2.24)

Therefore, by the uniform continuity at x = 0 of f2(s, x, i), there exists an ε1 > 0 such that

4̃λ :=

∑
i∈M

ĥiπα(i) > 0, where ĥi := inf
(s,x)∈[Ĥ ,∞)×[0,ε1]

{ f2(s, x, i)} − k̃d (i) −
σ 2

2 (i)
2

. (2.25)

Since
∑

i∈M(4̃λ−ĥi )πα(i) = 0, an application of the Fredholm alternative implies the existence
of γi > 0 with i ∈ M such that∑

j∈M

qi jγ j = 4̃λ − ĥi , ∀i ∈ M.
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Let ρ1 be sufficiently small satisfying

ρ1γi (−4̃λ + ĥi ) < λ̃(1 − ρ1γi ), ρ1σ
2
2 (i) < 4̃λ and ρ1γi < 1, ∀i ∈ M,

and define V3(s, x, i) = (1 − ρ1γi )x−ρ1 . By directed calculations, we obtain that

LV3(s, x, i) =ρ1V3(s, x, i)
(

− f2(s, x, i) + k̃d (i) +
ρ1 + 1

2
σ 2

2 (i)
)

+ ρ1(−4̃λ + ĥi )V3(s, x, i) + ρ2
1γi (−4̃λ + ĥi )x−ρ1

≤ − 2ρ1̃λV3(s, x, i) + ρ2
1γi (−4̃λ + ĥi )x−ρ1

≤ − ρ1̃λV3(s, x, i) ∀i ∈ M, s ≥ Ĥ , x ≤ ε1.

(2.26)

Since
[
L 1

x

]
(s, x, i) ≤

k̃d (i)+σ 2
2 (i)

x ≤
k̂d+σ̂ 2

2
x , it is easily verified that

Es,x,i X−1(t) ≤ e(̂kd+σ̂ 2
2 )t x−1, t ≥ 0, (s, x, i) ∈ R2,◦

+ × M. (2.27)

On the other hand, by (2.4), we obtain that there is a T1 > 1 satisfying

− ln(1 − ρ1γi ) <
ρ1λT1

4
, ∀i ∈ M, (2.28)

such that

1
T
Es,0,i

∫ T

0

(
f2
(
S(t), 0, α(t)

)
− k̃d (α(t)) −

σ 2
2 (α(t))

2

)
dt >

3λ

4
, i ∈ M, T ≥ T1, s ≤ Ĥ .

(2.29)

Let n∗ ∈ Z+ and n∗ >
k̂d+σ̂ 2

2
λ̃

+ 1. Inspired by the use of the log-Laplace transform in [3,4],
we can follow the proof of [13, Proposition 4.1] to obtain the existence of some ρ2 ∈ (0, ρ1)
and ε2 ∈ (0, ε1) satisfying

Es,x,i X−ρ2 (t) ≤ e−
ρ2λt

2 x−ρ2 for i ∈ M, t ∈ [T1, n∗T1], s ≤ Ĥ , x < ε2. (2.30)

With such ρ2, we have from (2.30) and (2.28) that

Es,x,i V
ρ2
ρ1

3

(
S(t), X (t), α(t)

)
≤Es,x,i X−ρ2 (t) ≤ e−

ρ2λt
2 x−ρ2 = e−

ρ2λt
2 V

ρ2
ρ1

3 (s, x, i)(1 − ρ1γi )
−

ρ2
ρ1

≤e−
ρ2λt

2 V
ρ2
ρ1

3 (s, x, i)e
ρ2λt

4 ≤ e−
ρ2λt

4 V
ρ2
ρ1

3 (s, x, i), ∀i ∈ M, t ∈ [T1, n∗T1],

×s ≤ Ĥ , x < ε2.

(2.31)

Since ρ2 < ρ1, we can apply Itô’s formula to obtain from (2.26) that

LV
ρ2
ρ1

3 (s, x, i) ≤ −ρ2̃λV
ρ2
ρ1

3 (s, x, i) ∀i ∈ M, s ≥ Ĥ , x ≤ ε2. (2.32)

Estimates (2.31) and (2.32) allow us to estimate Es,x,i V
ρ2
ρ1

3

(
S(t), X (t), α(t)

)
through V

ρ2
ρ1

3 (s, x, i)
when x is sufficiently small and s ≥ 0. Using (2.31), (2.32), and (2.27), we can follow the
proof of [13, Theorem 4.1] to show the existence of q∗ ∈ (0, 1) and K∗ > 0 such that

Es,x,i V
ρ2
ρ1

3

(
S(n∗T1), X (n∗T1), α(n∗T1)

)
≤ q∗V

ρ2
ρ1

3 (s, x, i) + K∗. (2.33)
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Moreover, if lim infs→∞
f0(s,i)

sq > 0, i ∈ M for some q ∈ (0, 1], we have

[L(κ0s + x)] (s, x, i) ≤
S0κ0

θ
−

κ0 f0(s, i)
θ

− k̃d (i)x ≤ c̃1 − c̃2(κ0s + x)q , (2.34)

for some c̃1, c̃2 > 0.
Having (2.33) and (2.34), we can apply [18, Theorem 3.6] and [9, Proposition 22] with

slight modifications of their proofs to show that

Es,x,i

τ∗(H̃)∑
k=1

(k + 1)β−1
≤ cβ(H̃)

(
V

ρ2
ρ1

3 (s, x, i) + κ0s + x + 1
)

, (2.35)

where 1 ≤ β < 1
1−q , H̃ is a compact set in [0, ∞) × (0, ∞), cβ(H̃) is some positive constant,

and

τ ∗(H̃) = inf{k ∈ Z+ : (S(kn∗T1), X (kn∗T1)) ∈ H̃}.

Since the drift term of S(t) is positive when S(t) = 0, a standard argument shows that the
compact set H̃ of [0, ∞)× (0, ∞) is petite (see e.g., [7]). Using this fact and (2.35), we derive
from [34, Theorem 2.1] that

lim
k→∞

(k + 1)β−1
∥P(kn∗T1, s, x, i, ·) − µ∗(·)∥T V = 0.

An application of some standard arguments (see e.g., [7]) then shows that

lim
t→∞

tβ−1
∥P(t, s, x, i, ·) − µ∗(·)∥T V = 0, for any 1 ≤ β <

1
1 − q

.

If q = 1, we obtain from (2.33) and (2.34) that

Es,x,i

[
V

ρ2
ρ1

3

(
S(n∗T1), X (n∗T1), α(n∗T1)

)
+ κ0S(n∗T1) + X (n∗T1)

]
≤ q̃∗

(
V

ρ2
ρ1

3 (s, x, i) + κ0s + x
)

+ K̃∗,

for some q̃∗
∈ (0, 1) and K̃∗ > 0. Then [34, Theorem 2.1] implies that

lim
k→∞

eγ̃ k
∥P(kn∗T1, s, x, i, ·) − µ∗(·)∥T V = 0, for some γ̃ > 0.

Then, we can obtain the exponential rate of convergence. □

Proof for the case λ < 0. If condition (1) of Assumption 2.2 holds, the proof can be carried
out using comparison arguments by comparing S(t) and Ŝ(t). The details are omitted here
since they are similar to [7, Theorem 2.1]. [In [7], we obtain that lim supt→∞

ln X (t)
t ≤ λ,

then simple arguments using the fact that any weak limit of random occupation measures is an
invariant probability measure (see e.g., [13]), and we can obtain the convergence rate (Lyapunov
exponent) limt→∞

ln X (t)
t = λ.]

Now, we assume that condition (2) of Assumption 2.2 holds. Analogous to the proof in the
case λ > 0, we have

Es,x,i V
ρ4
ρ3

5

(
S(n∗T2), X (n∗T2), α(n∗T2)

)
≤ q̂∗V

ρ4
ρ3

5 (s, x, i) + K̂∗; i ∈ M, s ≥ 0, x ≤ ε3,

where V5(s, x, i) = (1−ρ3γi )xρ3 for suitable constants ρ3, ρ4, n∗, T2, q̂∗
∈ (0, 1), K̂∗, ε3. Then

we can mimic the proofs of [13, Theorems 5.1 & 5.2] to obtain the desired result. □
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Remark 2.2. Before proceeding further, let us make the following remarks.

• The techniques of handling the critical case can be applied to such stochastic models in
epidemiology as SIR, SEIR, SEIS models, and predator–prey models, when the system
exhibits certain monotone properties so that the contradiction arguments in the proof for
the case λ = 0 can be applied.

• Constructing Lyapunov function for switching diffusions is practically more difficult
than that for diffusions. In non-critical cases, we showed how to construct the pair
of Lyapunov functions (Ṽ , H̃ ) satisfying [3, Proposition 4.13] for systems involving
Markovian switching if the construction is possible but not obvious (in our model, the
requirement is (2) or (3) of Assumption 2.2 together with lims→∞

f0(s,i)
sq > 0, q < 1

being satisfied). We also showed that when it is practically impossible to find (Ṽ , H̃ )
satisfying [3, Proposition 4.13], we can obtain a sub-geometric convergence rate under
certain conditions. Our techniques combined with the main approaches in [3] can work
for some stochastic Kolmogorov systems under relaxed conditions.

3. Numerical examples

This section is devoted to some numerical examples. Consider an example of system (1.3)
as follows, which is often used in wastewater treatment (see e.g., [25,33])⎧⎪⎪⎨⎪⎪⎩

d S(t) =

(
S0 − S(t)

θ
−

km(α(t))S(t)X (t)
KS + S(t)

)
dt + σ1(α(t))S(t)dW1(t),

d X (t) =X (t)
(

km(α(t))Y (α(t))S(t)
KS + S(t)

− kd (α(t)) −
1 + R

θ

)
dt + σ2(α(t))X (t)dW2(t).

(3.1)

The following table provides parameter values for conventional activated sludge system using
a completely mixed flow reactor extracted from [24, p. 351].

Parameter Typical range Units

km : the growth constant of the bacteria 2–10 mg of cells × day
KS: the half-saturation constant 25–100 mg of cells × day/L
Y =

the growth rate of the bacteria
the rate of substrate consumption 0.4–0.8 Dimensionless

kd : the death rate 0.025–0.075 1/day
θ : the hydraulic residence time 3–5 day

Example 3.1. Consider equation (3.1) with α(t) ∈ M = {1, 2} and parameters S0 = 15,
km(1) = 9, km(2) = 6, θ = 5, R = 0, Y (1) = 0.8, Y (2) = 0.6, kd (1) = 0.06, kd (2) = 0.08,
KS = 60, σ1(1) = 0.1, σ2(1) = 0.2, σ1(2) = 1, σ2(2) = 0.1, q12 = 0.2, and q21 = 0.8. Using
the strong law of large numbers,

λ = lim
T →∞

1
T

∫ T

0

(
km(α(t))Y (α(t))Ŝ(t)

KS + Ŝ(t)
− kd (α(u))

)
.

We can approximate λ through the occupation measure in a long period of time [0, T ]. In this
example, λ ≈ 0.915 > 0. Thus, the process (S(t), X (t)) has an invariant probability measure on
R2,◦. Fig. 1 displays a sample path of S(t), X (t). The empirical approximation for the density
function is shown in Figs. 2 and 3.
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Fig. 1. Sample paths of S(t) (in blue on the left) and X (t) (in blue on the right) and α(t) (in red) in Example 3.1.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 2. Densities p(s, x, 1) = µ∗(ds, dx, 1) (on the left) and p(s, x, 2) = µ∗(ds, dx, 2) (on the right) of the invariant
probability measure µ∗ in Example 3.1. Different colors represent different sizes of the density.

Fig. 3. Graphs of densities p(s, x, 1) (on the left) and p(s, x, 2) (on the right) of the invariant probability measure
µ∗ in Example 3.1.
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Fig. 4. Trajectories of S(t) (on the left) and X (t) (on the right) in Example 3.2.

Fig. 5. Sample paths of S(t) (on the left) and X (t) (on the right) in Example 3.3.

Example 3.2. Consider (3.1) without switching and parameters

S0 = 12, km = 8, θ = 1, ρ = 0, Y = 0.6, kd = 0.06, KS = 60, σ1 = 0.2, σ2 = 0.2.

Direct computation shows that λ ≈ −0.28 < 0. Thus, X (t) will tend to 0 as t → ∞, which is
illustrated in Fig. 4.

Example 3.3. Consider (3.1) without switching and parameters

S0 = 12, km = 8, θ = 5, ρ = 0, Y = 0.6, kd = 0.06, KS = 60, σ1 = 0.2, σ2 = 0.2.

We have λ ≈ 0.5. Sample paths are given in Fig. 5, and the density of the empirical measure,
which approximate the invariant density, is shown in Fig. 6.

Example 3.4. The limit E S∗
:= limt→∞ Es,x,i S(t) is regarded as the expected effluent

concentration. We are interested in investigating the limit E S∗ and λ as functions of the
hydraulic residence time θ . It can be seen that the expected effluent concentration is decreasing
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Fig. 6. The left figure is the 3D graph of the density of the invariant probability measure in Example 3.3. The
right one depicts the density using scaled colors.

in θ . By Theorem 2.2 and (2.18), we have for λ > 0 that

E S∗
:= lim

t→∞
Es,x,i S(t) =

⎧⎪⎨⎪⎩
S0 if λ < 0∑
j∈M

∫
R2,◦

+

sµ∗(ds, dx, j) < S0 if λ > 0.

Note that when λ < 0, the expected effluent concentration levels off at S0 and then becomes
smaller than S0 after θ0: the value of θ at which λ = 0. The numerical approximation (see
Figs. 7 and 8) for the expected effluent concentration justifies the claim. Some fluctuations are
due to the errors of approximation of the random processes. The behavior of E S∗ as a function
of θ is very similar to the deterministic counterpart in [25].

When one designs the treatment, a crucial design parameter is the so-called wash-out time.
If the residence time θ is less than a critical value, denoted by θ0, then the sewage flow is too
fast for bacteria to grow, existing cells are flushed out faster than they can multiply. As a result,
the bacteria become extinct. Figs. 7 and 8 show that λ is an increasing function of θ . By our
theoretical results, to find the wash-out time θ0, we need to solve the equation λ(θ ) = 0. For
the system without switching (1.2), the value λ can be obtained in a closed form by solving
the Fokker–Planck equation. Then we can solve the equation λ(θ ) = 0 by a standard numerical
scheme. In Fig. 8, we can see that θ0 ≈ 1.4. When random switching are involved, the value of
λ in (2.4) cannot be solved in a closed form. However, because of the exponential convergence
rate, one can also perform a numerical approximation to find θ0. In Fig. 7, θ0 ≈ 0.8.

4. Controlled stochastic chemostat models

To better help us reaching our goal of dynamically regulating and optimizing the per-
formance of chemostat models, we introduce a control process in this section and consider
controlled stochastic chemostat models. Note that for notational simplicity, we consider only
the controlled dynamic systems without switching in this section. Switching can be added,
but the notation would be much more complex. One needs to deal with a system of dynamic
programming equations (partial differential equations) in lieu of a single equation. It seems to
be more instructive to treat relatively simpler models to present the main ideas and leaving out
the notational details.
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Fig. 7. λ and the expected effluent concentration as a function of θ with other parameters as in Example 3.1.

Fig. 8. λ and the expected effluent concentration as a function of θ with other parameters as in Example 3.3.

Suppose that we can add a certain amount of bacteria u(t) (the control) to the system at any
time t , which enables us to better adjust the system performance so as to minimize the amount
of substrate over a long-time horizon. In this section, we focus on the case f0(s, i) = s. Then
we have a controlled differential equation as follows⎧⎪⎪⎨⎪⎪⎩

d S(t) =

(
S0 − S(t)

θ
− X (t) f1(S(t), X (t))

)
dt + σ1S(t)dW1(t),

d X (t) =

(
u(t) + X (t)

(
f2(S(t), X (t)) − kd −

1 + R
θ

))
dt + σ2 X (t)dW2(t).

(4.1)

We assume the control u(t) taking value in a compact interval [0, M] for some M > 0. Our
objective is to minimize

lim sup
T →∞

1
T
Eu

s,x

∫ T

0
S(t)dt,

over the class of admissible controls u(t), where u(t) is Ft -adapted. That is, we aim to minimize
the amount of substrate over the infinite horizon. The cost criterion is in the sense of an average
cost per unit time (or long-run average cost).
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Before proceeding further, let us describe how we plan to carry out the analysis. In getting
the desired optimal control, we need to obtain the Hamilton–Jacobi–Bellman (HJB) equation.
We use a “vanishing discount argument”, which utilizes some ideas from the book [1].
Nevertheless, in the book, the HJB equation is derived under either “near-monotone” or “stable”
conditions. Unfortunately, our model satisfies neither of these conditions. As a result, some
new approaches are needed to obtain the HJB equation. The intuitive idea is to look at
two different domains. In each of the domains, one of the “near-monotone” condition or the
“stable” condition is satisfied. Nevertheless, the complication is that we also need to analyze
the dynamics of the system, to investigate how the solution moves from one domain to the
other, and to examine how the movement affects the objective function.

To proceed, we provide a road map of our approach. First, we recall some notation. Then
the analysis is carried out using relaxed control setup and appropriate occupation measures.
Theorem 4.2 presents the main result. To prove it, we need a number of technical results to
take care of the situation as mentioned in the last paragraph regarding the two regions satisfying
the “near-monotone” condition or “stable” conditions separately and the dynamic movements
between these regions. These technical details are presented in a number of lemmas.

To continue, we recall some concepts and notation introduced in [1,21]. Let M(∞) denote
the family of measures {m(·)} on the Borel subsets of [0, ∞) × [0, M] satisfying m([0, t] ×

[0, M]) = t for all t ≥ 0. By the weak convergence mn(·) → m(·) in M(∞), we mean
limn→∞

∫
f (s, α)mn(ds × dα) =

∫
f (s, α)m(ds × dα) for any continuous function f (·) :

[0, ∞) × [0, M] ↦→ R with compact support. A random measure m(·) with values in M(∞) is
said to be an admissible relaxed control for (4.1) if

∫ M
0

∫ t
0 f (s, u)m(ds × du) is independent

of {Wi (t + s) − Wi (t), s > 0, i = 1, 2} for each bounded and continuous function f (·). Under
a relaxed control m(·), the controlled diffusion (4.1) becomes⎧⎨⎩ d S(t) =

(
S0 − S(t)

θ
− X (t) f1

(
S(t), X (t)

))
dt + σ1S(t)dW1(t),

d X (t) =
(
m t + X (t)

(
f2
(
S(t), X (t)

)
− k̃d

))
dt + σ2 X (t)dW2(t),

(4.2)

where m t =
∫ M

0 um t (du) and the “derivative” m t is defined as the measure-valued function
of (ω, t) such that for any smooth and bounded function f , we have

∫∫
f (s, u)m(ds × du) =∫

ds
∫

f (s, u)ms(du). The operator associated with the controlled diffusion process (4.2), in
which t-dependence is hidden, is given by

Lmφ(s, x) =
∂φ(s, x)

∂s

[
S0 − s

θ
− x f1(s, x)

]
+

∂φ(s, x)
∂x

[
m t + x f2(s, x) − xk̃d

]
+

1
2

(
σ 2

1
∂2φ(s, x)

∂s2 s2
+ σ 2

2
∂2φ(s, x)

∂x2 x2
)

.

Definition 4.1. We have the following definitions and notations.

• Let P(M(∞)) be the space of probability measures on M(∞). A relaxed control m(·)
for (4.2) is said to be Markov if there exists a measurable function v : R2

+
↦→ P(M(∞))

such that m t = v(S(t), X (t)), t ≥ 0. Under a relaxed Markov control m t = v(S(t), X (t)),
the solution process (S(t), X (t)) to (4.2) is a Markov process with generator

Lvφ(s, x) =
∂φ(s, x)

∂s

[
S0 − s

θ
− x f1(s, x)

]
+

∂φ(s, x)
∂x

[
v(s, x) + x f2(s, x) − xk̃d

]
+

1
2

(
σ 2

1
∂2φ(s, x)

∂s2 s2
+ σ 2

2
∂2φ(s, x)

∂x2 x2
)

.
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• A Markov control v is a relaxed control satisfying that v(z) is a Dirac measure on [0, M]
for each z ∈ R2

+
.

• Denote the set of Markov controls and relaxed Markov controls by ΠM an ΠRM ,
respectively. With a relaxed Markov control, (S(t), X (t)) is a Markov process that has
the strong Feller property in R2,◦

+ ; see [1, Theorem 2.2.12].
• Since the diffusion is nondegenerate in R2,◦

+ , if the process (S(t), X (t)) has an invariant
probability measure in R2,◦

+ , the invariant measure is unique, denoted by ηv . In this case,
the control v is said to be stable. Denote by ΠS RM the set of stable relaxed Markov
controls.

• Let P(X ) be the space of probability measures on a metric space X . For any stable
relaxed Markov control v, define

πv(dz × du) = [v(z)(du)] × ηv(du) ∈ P(R2,◦
+ × [0, M]),

and

G = {πv : v is a stable relaxed Markov control } ⊂ P(R2,◦
+ × [0, M]).

We need the following lemma whose proof is analogous to [7, Lemma 2.3].

Lemma 4.1. There exist a sufficiently small p > 0 and positive constants K1, K2, and K3
such that

Lm(2κ0s + x) ≤ K1 − K2(2κ0s + x), (4.3)

Lm(2κ0s + x)1+p
≤ K1 − K2(2κ0s + x)1+p

− K2(2κ0s + x)px f1(s, x), (4.4)

and

Lm(2κ0s + x)4
≤ K3(1 + 2κ0s + x)4, (4.5)

for any admissible relax control m(·). Consequently, it holds for any admissible relaxed control
m(·) that

Em
s,x

(
2κ0S(t) + X (t)

)1+p
≤ (2κ0s + x)1+pe−K2t

+
K2

K1
for s > 0, x ≥ 0, (4.6)

Em
s,x

∫ T

0

(
2κ0S(t) + X (t)

)p X (t) f1(S(t), X (t))dt ≤ (2κ0s + x)1+p
+ K1T, (4.7)

and

Em
s,x

(
2κ0S(t) + X (t)

)4
≤ (1 + 2κ0s + x)4eK3t for s > 0, x ≥ 0, t ≥ 0. (4.8)

As a result, we have∫
R2,◦

+

(2κ0s + x)1+pηv(ds, dx) ≤
K2

K1
and∫

R2,◦
+

(2κ0s + x)px f1(s, x)ηv(ds, dx) ≤
K2

K1
for all v ∈ ΠRM .

(4.9)

Define the following sets

H0 :=

{
(s, x) ∈ R2,◦

+ : 2κ0s + x ≤
K1 + 1

K2
+ 2κ0 := K4

}
, (4.10)
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and

H =

{
(s, x) ∈ R2,◦

+ : 2κ0s + x ≤ K4 and s ≥ δ0

}
⊂ H0,

where δ0 is a positive constant to be determined in the proof of Lemma 4.2. For a closed
set K ∈ R2,◦

+ , define τK = inf{t ≥ 0 : (S(t), X (t)) ∈ K}. Since Lu(2κ0s + x) ≤ −1 for
(s, x) /∈ H0, u ∈ [0, M], we have

Em
s,xτH0 ≤ 2κ0s + x for any admissible relaxed control m(t). (4.11)

We have the following lemmas whose proofs are given in the Appendix.

Lemma 4.2. There is a constant C1 > 0 depending only on H and H0 such that

Ev
s,xτH ≤ C1 for (s, x) ∈ H0, v ∈ ΠRM .

Moreover,

Ev
s,xτH ≤ 2κ0s + x + C1, (s, x) ∈ R2,◦

+ , v ∈ ΠRM . (4.12)

With the constant control vc ≡ M, we have

Evc
s,xτH∗

≤ 2κ0s + x + Ĉ1, (s, x) ∈ R2,◦
+ , (4.13)

where H∗ is a compact subset of H0, and Ĉ1 is a positive constant depending on H0 and H∗.

Lemma 4.3. For any L1 > 0 and ε > 0, there exists a δ > 0 such that

Pv
s,ε{X (τH) ≥ δ} ≥

1
2
, for any s ≤ L1, v ∈ ΠRM . (4.14)

With these lemmas, let

ρv :=

∫
R2,◦

+
×[0,M]

sπv(ds × dx × du) and ρ∗
= inf

v∈ΠS RM
{ρv} .

Since (4.13) implies the existence of an invariant probability measure for (S(t), X (t)) under
control vc, we claim that ΠS RM ̸= ∅. Moreover, for any admissible relaxed control m(t), we
have that

Em
s,x S(T ) − S(0)

T
= Em

s,x
1
T

∫ T

0

(
S0 − S(t)

θ
− X (t) f1

(
S(t), X (t)

))
dt.

In view of (4.6), we have

lim
T →∞

Em
s,x

1
T

∫ T

0

(
S0 − S(t)

θ
− X (t) f1

(
S(t), X (t)

))
dt = lim inf

T →∞

Em
s,x S(T ) − S(0)

T
= 0,

(4.15)

which leads to∫
R2,◦

+

(
S0 − s ′

θ
− x ′ f1(s ′, x ′)

)
ηv(ds ′, dx ′) = 0 for any v ∈ ΠS RM . (4.16)
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As a result,

ρ∗
≤ lim

T →∞

Evc
s,x

1
T

∫ T

0
S(t)dt =

∫
R2,◦

+

s ′ηvc (ds ′, dx ′)

=θ

[
S0

θ
−

∫
R2,◦

+

x ′ f1(s ′, x ′)ηvc (ds ′, dx ′)

]
<S0.

(4.17)

To proceed, we derive a lemma, which allows us to find an optimal control in ΠS RM .

Lemma 4.4. For any admissible relaxed control m, define an empirical measure ζ m
T as a

P(R2,◦
+ × [0, M])-valued process satisfying that∫

R2,◦
+

×[0,M]
f dζ m

T = Em
s,x

1
T

∫ T

0

(∫ M

0
f (St , X t , u)m t (du)

)
dt.

Then, with probability 1, every limit point of ζ m
T as T → ∞ can be decomposed as

ζ̂ = δζ ′
+ (1 − δ)ζ ′′, (4.18)

where ζ ′
∈ G and ζ ′′

∈ P((0, ∞) × {0} × [0, M]) satisfying∫
(0,∞)×{0}×[0,M]

sζ ′′(ds, dx, du) = S0.

As a result, for any admissible relaxed control m,

lim inf
T →∞

1
T
Em

s,x

∫ T

0
S(t)dt ≥ ρ∗. (4.19)

Lemma 4.4 enables us to find an optimal control that is a Markov relaxed control. To find the
Markov control, we need to establish the HJB equation associated to the control problem (4.2).
Let C1+p be the class of functions V : R2,◦

+ ↦→ R such that V (s, x) ≤ cV (1+s +x)1+p′

, (s, x) ∈

R2,◦
+ for some constants cV > 0 and p′

∈ (0, p). The rest of this section aims to prove a theorem
on the existence and uniqueness of solutions to the HJB equation.

Theorem 4.2. There is a unique pair (V, ρ), where V ∈ C2(R2,◦
+ )∩C1+p and ρ ∈ R satisfying

the equation

min
u∈[0,M]

{
Lu V (s, x) + s

}
= ρ.

Moreover, we have ρ = ρ∗ and v∗
∈ ΠRM is an optimal control if and only if it is a measurable

selector from the minimizer

min
u∈[0,M]

{
Lu V (s, x) + s

}
.

In fact, we can choose

v∗(s, x) =

⎧⎨⎩0 if
∂V (s, x)

∂x
≥ 0,

M otherwise.

In [1], the HJB equation is obtained under either of the following two assumptions: (a) the
cost function satisfies the so-called near-monotone condition, or (b) any relax Markov control
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is stable and the set {ηv, v ∈ ΠRM} is tight. However, neither of these conditions are satisfied
for our system. Thus the results in [1] are not directly applicable.

To prove the existence and uniqueness of solutions to the HJB equation, we use an idea that
might be called a vanishing discount argument. That is, we examine the cost and value functions
of the corresponding discounted control problem and look at the limit when the discount factor
tends to 0. We also need to estimate the value function in different parts of R2,◦

+ to obtain desired
properties of the value functions, which is key to prove Theorem 4.2. That is the most difficult
task of this section.

Let Vγ (s, x) be the optimal γ -discounted cost, that is

Vγ (s, x) = inf
{
Em

s,x

∫
∞

0
e−γ t S(t) : m runs over the set of relaxed controls

}
,

(s, x) ∈ R2,◦
+ .

Then it follows from [1, Theorem 3.5.6 & Remark 3.5.8] that Vγ (s, x) ∈ C2(R2,◦
+ ) ∪ Cb(R2,◦

+ )
satisfies

min
u∈[0,M]

{
Lu Vγ (s, x) + s

}
= γ Vγ (s, x). (4.20)

and the optimal Markov control vγ is a selector of minu∈[0,M]
{
Lu Vγ (s, x) + s

}
. The following

lemma is from [1, Lemma 3.7.8].

Lemma 4.5. Fix (s∗, x∗) ∈ R2,◦
+ . For any sequence γn ↓ 0, there exists a subsequence, which

is still denoted by {γn}, and a function V ∈ C(R2,◦
+ ) and a constant ρ such that as n → ∞,

we have

γn Vγn (s∗, x∗) → ρ and V γn (s, x) := Vγn (s, x) − Vγn (s∗, x∗) → V (s, x) (4.21)

uniformly on each compact subset of R2,◦
+ . Moreover, we have

min
u∈[0,M]

{
Lu V (s, x) + s

}
= ρ ≤ ρ∗, (s, x) ∈ R2,◦

+ .

We aim to show that a limit function V in Lemma 4.5 belongs to the family C1+p.

Proposition 4.1. Let V be any limit in (4.21). Then

sup
(s,x)∈H

|V (s, x)| < ∞.

Proof. Denoted by vγ the optimal Markov control of the γ -discounted control problem. Let
ε∗ =

S0−ρ∗

5 , and ρ = ρ∗
+ ε∗ = S0 − 4ε∗ and C1 be as in Lemma 4.2. By (4.6), there exists a

C2 > 0 depending only on H0 such that

Evγ
s,x (2κ0S(t) + X (t)) ≤ C2, for any (s, x) ∈ H0, v ∈ ΠRM , t ≥ 0. (4.22)

By Itô’s formula, we have that

Evγ
s,x [S(t + h) − S(t)] =

∫ t+h

t

[
S0 − Evγ

s,x S(y)
θ

− Evγ
s,x X (y) f1

(
S(y), X (y)

)]
dy.

Letting h → 0, we obtain

d
dt

Evγ
s,x S(t) =

S0 − Evγ
s,x S(t)

θ
− Evγ

s,x X (t) f1
(
S(t), X (t)

)
. (4.23)
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Consider the differential equation

dz(t) =
S0 − ε∗ − z

θ
dt. (4.24)

It is easy to show that z(t) converges to S0 − ε∗ uniformly for each initial value belonging to
any bounded set. Thus, there is a T ∗ >

ρ(C1+C2)+1
ε∗

such that∫ T ∗

0
z(t)dt ≥ (S0 − 2ε∗)T ∗, for any z(0) ≥ 0. (4.25)

In view of (4.21), we can choose γ∗ sufficiently small such that

(1 − e−γ∗T ∗

)C2 ≤ ε∗, (4.26)

and

γ Vγ (s∗, x∗) ≤ ρ, for γ < γ∗. (4.27)

We divide H into two subsets (one of which can be empty):

Hγ

1 =

{
(s, x) ∈ H : Evγ

s,x X (t) f1
(
S(t), X (t)

)
≤

ε∗

θ
, for all t ∈ [0, T ∗]

}
and

Hγ

2 = H \ Hγ

1 .

Step 1: Consider (s, x) ∈ Hγ

1 . It follows from (4.23), (4.25), and a comparison argument of
differential inequalities that

Evγ
s,x

∫ T ∗

0
S(t)dt ≥ (S0 − 2ε∗)T ∗, (s, x) ∈ Hγ

1 . (4.28)

Then, we derive from (4.22) and (4.26) that

Evγ
s,x

∫ T ∗

0
(1 − e−γ t )S(t)dt ≤ ε∗T ∗, (s, x) ∈ Hγ

1 , γ < γ∗. (4.29)

As a result of (4.28) and (4.29)

Evγ
s,x

∫ T ∗

0
e−γ t S(t)dt ≥ (S0 − 3ε∗)T ∗, for (s, x) ∈ Hγ

1 , γ < γ∗. (4.30)

In view of (4.27), we have that

0 ≤ inf
(s,x)∈H

Vγ (s, x) ≤
ρ

γ
< ∞ for γ ≤ γ∗,

which combined with the strong Markov property of (S(t), X (t)) under a Markov control,
implies

Vγ (s, x) =Evγ
s,x

∫ τ T ∗

H

0
e−γ t S(t)dt + Evγ

s,x

[
e−γ τ T ∗

H Vγ

(
S(τ T ∗

H ), X (τ T ∗

H )
)]

≥Evγ
s,x

∫ τ T ∗

H

0
e−γ t S(t)dt +

(
inf

(s,x)∈H
Vγ (s, x)

)
Evγ

s,x e−γ τ T ∗

H

≥Evγ
s,x

∫ τ T ∗

H

0
e−γ t S(t)dt + inf

(s,x)∈H
Vγ (s, x) −

ρ

γ
Evγ

s,x (1 − e−γ τ T ∗

H )

for (s, x) ∈ R2,◦
+ ,

(4.31)
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where τ T ∗

H = inf{t ≥ T ∗
: (S(t), X (t)) ∈ H}. By the Markov property of (S(t), X (t)), (4.22),

and (4.12), we have
1
γ
Evγ

s,x (1 − e−γ τ T ∗

H ) ≤Evγ
s,xτ

T ∗

H ≤ T ∗
+ Evγ

s,x (τ T ∗

H − T ∗)

=T ∗
+ Evγ

s,xE
vγ

S(T ∗),X (T ∗)τH

≤T ∗
+ C1 + C2.

This together with (4.30) and (4.31) implies

Vγ (s, x) ≥ inf
(s,x)∈H

Vγ (s, x) + (S0 − 3ε∗)T ∗
− ρ(T ∗

+ C1 + C2)

≥ inf
(s,x)∈H

Vγ (s, x) + ε∗T ∗
− ρ(C1 + C2) (since ρ = S0 − 4ε∗)

> inf
(s,x)∈H

Vγ (s, x) + 1 (since T ∗ >
ρ(C1 + C2) + 1

ε∗

),

which leads to

V γ (s, x) ≥ inf
(s,x)∈H

V γ (s, x) + 1, (s, x) ∈ Hγ

1 , γ ≤ γ∗.

As a result,

inf
(s,x)∈H

V γ (s, x) = inf
(s,x)∈Hγ

2

V γ (s, x) for γ ≤ γ∗. (4.32)

Step 2: Consider (s, x) ∈ Hγ

2 . In view of (4.8), there is a C3 > 0 depending only on H and
T ∗ such that

Evγ
s,x (S4(t) + X4(t)) ≤ C3, for any t ∈ [0, T ∗], (s, x) ∈ H, v ∈ ΠRM . (4.33)

For (s, x) ∈ Hγ

2 , there is a ts,x ∈ [0, T ∗] such that Evγ
s,x X (ts,x ) f1(S(ts,x ), X (ts,x )) ≥

ε∗

θ
. Since

f1(s, x) ≤ κ0(s + 1),[
Evγ

s,x X (ts,x ) f1(S(ts,x ), X (ts,x ))
]2

≤ κ2
0E

vγ
s,x X2(ts,x )Evγ

s,x (S(ts,x ) + 1)2,

which together with (4.33) implies

Evγ
s,x X2(ts,x ) ≥ ε̂∗,

for some ε̂∗ ∈ (0, 1
2 ) depending on ε∗ and C3. Then

Evγ
s,x

[
1

{X2(ts,x )< ε̂∗
2 }

X2(ts,x )
]

+ Evγ
s,x

[
1

{X2(ts,x )≥ ε̂∗
2 }

X2(ts,x )
]

≥ ε̂∗,

which leads to

Evγ
s,x

[
1

{X2(ts,x )≥ ε̂∗
2 }

X2(ts,x )
]

≥
ε̂∗

2
.

By Hölder’s inequality and (4.33), we have(
Evγ

s,x

[
1

{X2(ts,x )≥ ε̂∗
2 }

X2(ts,x )
])2

≤Pvγ
s,x

{
X2(ts,x ) ≥

ε̂∗

2

} [
Evγ

s,x X4(ts,x )
]

≤C3P
vγ
s,x

{
X2(ts,x ) ≥

ε̂∗

2

}
.

Thus,

Pvγ
s,x

{
X2(ts,x ) ≥

ε̂∗

2

}
≥

ε̂2
∗

4C3
=: 4q, for (s, x) ∈ Hγ

2 ,
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which implies that

Pvγ
s,x {η ≤ T ∗

} ≥ 4q, for (s, x) ∈ Hγ

2 , (4.34)

where

η = inf
{

t ≥ 0 : X2(t) ≥
ε̂∗

2

}
.

On the other hand, we have from Itô’s formula that

Evγ
s,x S(η ∧ T ∗) =s + Evγ

s,x

∫ η∧T ∗

0

[
S0 − S(t)

θ
− X (t) f1(S(t), X (t))

]
dt

≤s +
S0

θ
Evγ

s,x (η ∧ T ∗)

≤K4 +
S0T ∗

θ
:= H1.

(4.35)

Defining

τ
η

H = inf{t ≥ η ∧ T ∗
: (S(t), X (t)) ∈ H},

we have

Evγ
s,xτ

η

H =Evγ
s,x (η ∧ T ∗) + Evγ

s,x (τ η

H − (η ∧ T ∗))

≤T ∗
+ Evγ

s,x

[
Evγ

S(η∧T ∗),X (η∧T ∗)τH

]
≤T ∗

+ Evγ
s,x
[
2κ0S(η ∧ T ∗) + X (η ∧ T ∗) + C2

]
≤T ∗

+ 2κ0 H1 + 1 + C2.

(4.36)

It follows from (4.34), (4.35), and Markov’s inequality that

Pvγ
s,x

{
η ≤ T ∗ and S(η) ≤

H1

2q

}
≥ 2q, for (s, x) ∈ Hγ

2 . (4.37)

By Lemma 4.3, there exists a δ∗ > 0 depending only on H1
2q and ε̂∗ such that

Pvγ
s,x {X (τH) ≥ δ∗} >

1
2
, for s ≤

H1

2q
, x2

≥
ε̂∗

2
, γ ∈ (0, 1). (4.38)

We can choose δ∗ < x∗ and define H3 = {(s, x) ∈ H : x ≥ δ∗}. Then H3 is a compact subset
of R2,◦

+ . We have from the strong Markov property of (S(t), X (t)) under Markov control vγ

and from (4.37) and (4.38) that

Pvγ
s,x
{
(S(τ η

H), X (τ η

H)) ∈ H3
}

≥Evγ
s,x

[
1{

η≤T ∗ and S(η)≤ H1
2q

}1
{(S(τη

H),X (τη
H))∈H3}

]
=Evγ

s,x

[
1{

η≤T ∗ and S(η)≤ H1
2q

}Evγ

S(η),X (η)1{X (τH)≥δ∗}

]
≥

1
2
Evγ

s,x

[
1{

η≤T ∗ and S(η)≤ H1
2q

}]
≥q.

(4.39)
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With A =
{
(S(τ η

H), X (τ η

H)) ∈ H3
}

and Ac
= Ω \ A, we have the estimate

V γ (s, x) =Evγ
s,x

∫ τ
η
H

0
e−γ t S(t)dt + Evγ

s,x

[
e−γ τ

η
HVγ

(
S(τ η

H), X (τ η

H)
)]

− Vγ (s∗, x∗)

≥Evγ
s,x

[
1Ae−γ τ

η
H inf

(s′,x ′)∈H3
Vγ (s ′, x ′)

]
+ Evγ

s,x

[
1Ac e−γ τ

η
H inf

(s′,x ′)∈H
Vγ (s ′, x ′)

]
− Vγ (s∗, x∗)

=Evγ
s,x

[
1A

(
inf

(s′,x ′)∈H3
Vγ (s ′, x ′) − Vγ (s∗, x∗)

)]
+ Evγ

s,x

[
1Ac

(
inf

(s′,x ′)∈H
Vγ (s ′, x ′) − Vγ (s∗, x∗)

)]
− Evγ

s,x

[
1A(1 − e−γ τ

η
H ) inf

(s′,x ′)∈H3
Vγ (s ′, x ′)

]
− Evγ

s,x

[
1Ac (1 − e−γ τ

η
H ) inf

(s′,x ′)∈H
Vγ (s ′, x ′)

]
.

Since V γ (s, x) = Vγ (s, x) − Vγ (s∗, x∗) → V (s, x) as γ → 0 uniformly in each compact set,
there exists an H2 > 0 such that |V γ (s, x)| < H2 for (s, x) ∈ H3 when γ is sufficiently small.
We also have 0 ≤ inf(s′,x ′)∈H3 Vγ (s ′, x ′) ≤ V (s∗, x∗) ≤

ρ

γ
when γ is sufficiently small. This

together with (4.36), (4.39), and inf(s,x)∈H V γ (s, x) ≤ 0 yields that

V γ (s, x) ≥ − H2P
vγ
s,x (A) + inf

(s′,x ′)∈H
V γ (s ′, x ′)Pvγ

s,x (Ac) − ρEvγ

s′,x ′

[
1 − e−γ τ

η
H

γ

]
≥ − H2P

vγ
s,x (A) + inf

(s′,x ′)∈H
V γ (s ′, x ′)Pvγ

s,x (Ac) − ρEvγ
s,xτ

η

H

≥ − H2 − ρ
(
T ∗

+ 2κ0 H1 + 1 + C2
)
+ inf

(s′,x ′)∈H
V γ (s ′, x ′)Pvγ

s,x (Ac),

≥ − H2 − ρ
(
T ∗

+ 2κ0 H1 + 1 + C2
)
+ inf

(s′,x ′)∈H
V γ (s ′, x ′)(1 − q),

for any (s, x) ∈ Hγ

2 ,

which combined with (4.32) leads to

inf
(s,x)∈H

V γ (s, x) ≥ −H2 − ρ
(
T ∗

+ 2κ0 H1 + 1 + C2
)
+ inf

(s,x)∈H
V γ (s, x)(1 − q),

or

inf
(s,x)∈H

V γ (s, x) ≥ −
1
q

(
H2 + ρ

(
T ∗

+ 2κ0 H1 + 1 + C2
))

=: −H3. (4.40)

Let vc ≡ M be the constant control. Similar to the proof of Lemma 4.2, we can show that

H4 := sup
(s,x)∈H

Evc
s,xτH3 < ∞.

We have

Evc
s,x S(τH3 ) ≤ s +

S0

θ
Evc

s,xτH3 −
1
θ
Evc

s,x

∫ τH3

0
S(t),

which implies

Evc
s,x

∫ τH3

0
S(t) ≤ θs + S0Evc

s,xτH3 ≤ θ K4 + S0 H4, (s, x) ∈ H. (4.41)



4634 D.H. Nguyen, N.N. Nguyen and G. Yin / Stochastic Processes and their Applications 130 (2020) 4608–4642

By [1, Eq. (3.7.47)],

V (s, x) ≤Evc
s,x

[∫ τH3

0
S(t)dt + V (S(τH3 ), X (τH3 ))

]
≤θ K4 + S0 H4 + sup

(s′,x ′)∈H3

V (s ′, x ′).
(4.42)

From (4.40) and (4.42), we obtain that

sup
(s,x)∈H

|V (s, x)| < ∞. □

Proof of Theorem 4.2. For any (s, x) ∈ R2,◦
+ , we have

V γ (s, x) =Evγ
s,x

∫ τH

0
e−γ t S(t)dt + Evγ

s,x
[
e−γ τHVγ

(
S(τH), X (τ T

H)
)]

− Vγ (s∗, x∗)

≥ inf
(s′,x ′)∈H

V γ (s ′, x ′) − Evγ
s,x

ρ

γ
(1 − e−γ τH )

≥ inf
(s′,x ′)∈H

V γ (s ′, x ′) − Evγ
s,xτH

≥ − (H3 + 2κ0s + x + C1) due to (4.40) and (4.12).

(4.43)

As a result,

V (s, x) ≥ −(H3 + 2κ0s + x + C1 + 1).

Similar to (4.41) and (4.42), we have

V (s, x) ≤Evc
s,x

[∫ τH

0
S(t)dt + V (S(τH), X (τH))

]
≤ sup

(s′,x ′)∈H
|V (s ′, x ′)| + θs + S0Evc

s,xτH

≤ sup
(s′,x ′)∈H

|V (s ′, x ′)| + θs + S0(2κ0s + x + Ĉ1).

(4.44)

In view of (4.43) and (4.44), we have V (s, x) ∈ C1+p. Then, we can use arguments similar
to [1, Theorem 3.7.11 and Theorem 3.7.12] and Lemma 4.4 to obtain the desired result. □

5. Concluding remarks

To validate and to improve model (1.2), verification using real data is needed. To verify the
model, the parameters of the system need to be estimated first. A statistical estimator can be
constructed. To estimate the parameters using real data, we observe the solutions of (1.2) in
discrete epoch, and carry out the estimation accordingly. That is, view the observation (the real
data) as solution of (1.2), then use the explicit Euler method to discretize the diffusion process
(1.2), and utilize for example, the maximum likelihood method to estimate the parameter. An
alternative approach is to use the generalized method of moments.

The simplified model (1.2) may not be sufficient to perceive the complicated process of
wastewater treatment. Considering more complex models renders better understanding but also
poses more challenges.

In Section 4, we worked with controlled diffusions without switching for notational sim-
plicity. The proofs carry over if one considers the controlled switching diffusion counterpart of
(4.1). We have proved the existence and uniqueness of solutions to the HJB equation for (4.1).
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For the controlled switching diffusions, we need to deal with a system of HJB equations. While
the optimal Markov control can be obtained theoretically using the system of HJB equations,
it is quite difficult to find a closed-form solution explicitly. Constructing a numerical scheme
is a viable alternative.
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Appendix A. Proofs of Theorem 2.1

Proof of Theorem 2.1. Since the coefficients of (1.3) are locally Lipschitz continuous in
(s, x, i) ∈ R2

+
×M, the system given by (1.3) and (1.4) has a unique continuous solution up to

explosion time τe, where τe = inf{t ≥ 0 : S(t) ∨ X (t) = ∞}, with the convention inf ∅ = ∞.
The solution is also a strong Markov process; see [22,41]. If we define

τk = inf
{

t ≥ 0 : S(t) ∨ X (t) > k
}
,

then τe = limk→∞ τk . Consider V̂1(s, x, i) = κ0s + x then, by the generalized Itô formula, we
have

LV̂1(s, x, i) =
S0κ0

θ
−

κ0

θ
f0(s, i) − k̃d (i)x + x( f2(s, x, i) − κ0 f1(s, x, i))

≤
S0κ0

θ
.

Hence,

Es,x,i V̂1
(
S(τk ∧ t), X (τk ∧ t), α(τk ∧ t)

)
≤ V̂1(s, x, i) +

S0κ0t
θ

,

which implies that

Ps,x,i
{
τk < t

}
≤ Ps,x,i

{
V̂1
(
S(τk ∧ t), X (τk ∧ t), α(τk ∧ t)

)
≥ k

}
≤

V̂1(s, x, i) +
S0κ0t

θ

k
→ 0 as k → ∞.

Therefore, we have Ps,x,i {τe ≤ t} = 0 or Ps,x,i {τe > t} = 1 ∀t > 0. As a consequence,
Ps,x,i {τe = ∞} = 1. Hence, the system given by (1.3) and (1.4) has a unique global continuous
solution.

Now, we move to the part of positivity of solutions. First, suppose that s, x > 0. For any
n ∈ Z+, we define the following truncated functions

f (n)
0 (s, i) = f0(s ∧ n, i) ; f (n)

1 (s, x, i) = f1(s ∧ n, x ∧ n, i) ;

f (n)
2 (s, x, i) = f2(s ∧ n, x ∧ n, i),
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and let
(
S(n)(t), X (n)(t)

)
be the solution of Eqs. (1.3) and (1.4) with f0, f1, f2 replaced by

f (n)
0 , f (n)

1 , f (n)
2 , respectively. Denote

η(n)
= inf

{
t ≥ 0 : S(n)(t) ∧ X (n)(t) ≤ 0

}
,

η
(n)
k = inf

{
t ≥ 0 : S(n)(t) ∧ X (n)(t) <

1
k

}
.

Then η(n)
= limk→∞ η

(n)
k . Consider

V̂ (n)
2 (s, x, i) = s − c(n)

1 − c(n)
1 ln

s

c(n)
1

+ c2(x − 1 − ln x),

where

c2 =
1
κ0

and c(n)
1 =

c2ǩd

maxi∈M sups>0
f (n)
1 (s,x,i)

s

.

Let

c(n)
2 := max

i∈M
sup
s>0

f (n)
0 (s, i)

s
.

Since f (n)
1 (s, x, i) is global Lipschitz and f (n)

1 (0, x, i) = 0, it is readily seen that sups>0
f (n)
1 (s,x,i)

s

< ∞. Similarly, we also obtain sups>0
f (n)
0 (s,i)

s < ∞, so the above constants are well-defined.
By the generalized Itô formula, we have

L(n)V̂ (n)
2 (s, x, i) =

(
1 −

c(n)
1

s

)( S0

θ
−

f (n)
0 (s, i)

θ
− x f (n)

1 (s, x, i)

)
+

c(n)
1 σ 2

1 (i)
2

+

(
c2 −

c2

x

) (
x f (n)

2 (s, x, i) − xk̃d (i)
)

+
c2σ

2
2 (i)
2

≤
S0 + c(n)

1 c(n)
2

θ
+ c2k̂d +

c(n)
1 σ̂ 2

1 + c2σ̂
2
2

2

+ x
(

c2 f (n)
2 (s, x, i) − f (n)

1 (s, x, i)
)

+ x
(c(n)

1 f (n)
1 (s, x, i)

s
− c2kd (i)

)
≤

S0 + c(n)
1 c(n)

2

θ
+ c2k̂d +

c(n)
1 σ̂ 2

1 + c2σ̂
2
2

2
:= K (n) for s, x > 0,

,

where the operator L(n) is defined as L with f0, f1, and f2 replaced by f (n)
0 , f (n)

1 , and f (n)
2 ,

respectively. Applying Itô’s formula again, we have

Es,x,i V̂
(n)

2

(
S(n)(η(n)

k ∧ t), X (n)(η(n)
k ∧ t), α(η(n)

k ∧ t)
)

=V̂ (n)
2 (s, x, i) + Es,x,i

∫ η
(n)
k ∧t

0
LV̂ (n)

2

(
S(n)(u), X (n)(u), α(u)

)
du

≤V̂ (n)
2 (s, x, i) + K (n)t.

Since the definition of V̂ (n)
2 , we observe that if η

(n)
k < t , then

V̂ (n)
2

(
S(n)(η(n)

k ∧ t), X (n)(η(n)
k ∧ t), α(η(n)

k ∧ t)
)

≥
(
c(n)

1 ln kc(n)
1 − c(n)

1

)
∧
(
c2 ln k − c2

)
.
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Hence, we obtain that

Ps,x,i {η
(n)
k < t} ≤

V̂ (n)
2 (s, x, i) + K (n)t(

c(n)
1 ln kc(n)

1 − c(n)
1

)
∧
(
c2 ln k − c2

) → 0 as k → ∞.

As a result, for any n ∈ Z+, Ps,x,i {η
(n)
∞ = ∞} = 1. That is,

Ps,x,i
{

S(n)(t), X (n)(t) > 0 : ∀t > 0
}

= 1 for any n ∈ Z+,

and hence

Ps,x,i
{

S(n)(t), X (n)(t) > 0 : ∀t > 0, n ∈ Z+

}
= 1.

Now, for any t > 0 and

ω ∈ {τe = ∞} ∩
{

S(n)(t), X (n)(t) > 0 : ∀t > 0, n ∈ Z+

}
,

there exists n0 = n0(ω, t) such that

S(y)(ω) ∨ X (y)(ω) < n0 ∀0 ≤ y ≤ t.

As a consequence, S(t)(ω) = S(n0)(t)(ω) > 0 and X (t)(ω) = X (n0)(t)(ω) > 0. This, combined
with Ps,x,i {τe = ∞} = 1, implies that

Ps,x,i
{

S(t) > 0 : t > 0
}

= Ps,x,i
{

X (t) > 0 : t > 0
}

= 1 ∀s, x > 0. (A.1)

If s > 0, x = 0, the result Ps,x,i
{

S(t) > 0 : t > 0
}

= 1 is similar proved by choosing c2 = 0.
Moreover, it is obvious that Ps,x,i

{
X (t) = 0 : t > 0

}
= 1.

Consider the case when the initial value s = 0 and x ≥ 0. Let ε > 0 be sufficiently small
such that

S0 − f0(s̃, i)
θ

− x̃ f1(s̃, x̃, i) ≥
S0

2θ
, (A.2)

for any (s̃, x̃, ĩ) ∈ R2
× M satisfying s̃ + |x̃ − x | < ε. Let

τ̃1 = inf{t > 0 : S(t) + |X (t) − x | ≥ ε}.

By the continuity of (S(t), X (t)), P0,x,i {τ̃1 > 0} = 1. Using the variation of constants formula
(see [22, Chapter 3]), we can write S(t) in the form

S(t) = Φ(t)

[∫ t

0
Φ−1(u)

(
S0 − f0

(
S(u), α(u)

)
θ

− X (u) f1
(
S(u), X (u), α(u)

))
du

]
for t ∈ [0, τ̃1),

(A.3)

where Φ(t) = exp
(

−
∫ t

0
σ 2

1 (α(u))
2

du +
∫ t

0 σ1(α(u))dW2(u)
)

. It follows from (A.2) that

S0 − f0
(
S(u), α(u)

)
θ

− X (u) f1
(
S(u), X (u), α(u)

)
> 0 if t ∈ (0, τ̃1].

This and (A.3) imply that

P0,x,i {S(t) > 0, t ∈ (0, τ̃1]} = 1,

which combined with (A.1) and the strong Markov property of (S(t), X (t), α(t)) yields that

P0,x,i {S(t) > 0, t ∈ (0, ∞)} = 1.

The theorem is therefore proved. □
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Appendix B. Proof of lemmas in Section 4

Proof of Lemma 4.2. Since f1(0, x) = 0, we can choose δ1 > 0 such that s +θx f1(s, x) ≤
S0
2

for s ≤ δ1, x ≤ K4, where K4 is defined in (4.10). Due to the uniform bound from (4.3) and
the stochastic continuity of S(t), (which can be seen to be uniform in v since the equation of
S(t) does not depend directly on v), there exist t1 ∈ (0, 1

2 ) and δ̂1 ∈ (0, δ1) such that

Pv
s,x {S(t) < δ1, X (t) ≤ K4 + 1, t ∈ [0, t1]} ≥

3
4
, (s, x) ∈ H0, s < δ̂1. (B.1)

Let K5 be sufficiently large such that

P
{
Φ(t) ∨ Φ−1(t) < K5, t ∈ [0, t1]

}
≥

3
4
, (B.2)

where in this section, Φ(t) = exp
(

−
σ 2

1
2 t +

∫ t
0 σ1dW1(u)

)
. If Φ(t) ∨ Φ−1(t) < K5 and

S(t) + θ X (t) f1(S(t), X (t)) ≤
S0
2 for t ∈ [0, t1], we have

S(t1) = Φ(t)
∫ t

0
Φ−1(t)

(
S(u) − S0

θ
− X (u) f1(S(u), X (u))

)
du ≥

t1S0

2θ K 2
5
. (B.3)

Let δ0 :=
t1 S0

2θ K 2
5

∧ δ̂1 and H = {(s, x) : 2κ0s + x ≤ K4, s ≥ δ0}. Since the diffusion is

nondegenerate on R2,◦
+ , it is well-known (see e.g., [1, Lemma 2.6.5]) that there exist t2 > 0

and p1 > 0 such that

Pv
s,x {τH < t2} > 2p1, provided δ0 ≤ s ≤ δ1, K4 − 2κ0δ1 ≤ x ≤ K4 + 1.

Because of the definition of H,

Pv
s,x {τH < t2} > 2p1, provided δ0 ≤ s ≤ δ1, x ≤ K4 + 1.

This together with (B.1), (B.2), (B.3), and the definition of δ0 implies

Pv
s,x {τH < t1 + t2} ≥ p1, (s, x) ∈ H0. (B.4)

Define stopping times

τ
(1)
H0

= inf{t ≥ t1 + t2 : (S(t), X (t)) ∈ H0},

τ
(n+1)
H0

= inf{t ≥ τ n
H + t1 + t2 : (S(t), X (t)) ∈ H0}.

In view of (4.3)

Ev
s,x

(
2κ0S(t1 + t2) + X (t1 + t2)

)
≤ (2κ0s + x) + K1(t1 + t2) ≤ K4 + K1(t1 + t2),

which together with (4.11) implies

Ev
s,xτ

(1)
H0

≤ K4 + K1(t1 + t2), (s, x) ∈ H0.

Then the strong Markov property implies that

Ev
s,x

[
τ

(n+1)
H0

− τ
(n)
H0

− 1
⏐⏐⏐F

τ
(n)
H0

+1

]
≤ K4 + K1(t1 + t2), (s, x) ∈ H0, n ≥ 1. (B.5)

Let

Bk =

{(
S(t), I (t)

)
∈ H for some t ∈

[
τ

(k)
H0

, τ
(k)
H0

+ 1
)}

, k ≥ 0.



D.H. Nguyen, N.N. Nguyen and G. Yin / Stochastic Processes and their Applications 130 (2020) 4608–4642 4639

Let σ (1)
= τ

(1)
H0

, σ (k)
= τ

(k)
H0

− τ
(k−1)
H0

− 1, k ≥ 2. Note that if Bk occurs, then τH ≤ τ
(k)
H0

+ 1. By
the strong Markov property of

(
S(t), X (t)

)
Pv

s,x {∩
n+1
k=1 Bc

k } =Ev
s,x

[
1{∩

n
k=1 Bc

k }E
[
Bc

n+1

⏐⏐Fτ (n+1)
]]

≤p1Ev
s,x

[
1{∩

n
k=1 Bc

k }

]
=p1Pv

s,x {∩
n
k=1 Bc

k }.

By induction, we have

Pv
s,x {∩

n+1
k=1 Bc

k } ≤ pn−1
1 ,

which leads to

Pv
s,x {∩

∞

k=1 Bc
k } = 0.

As a result,
∞∑

n=1

Pv
s,x {Bn ∩

n−1
k=1 Bc

k } = 1, (B.6)

and

Ev
s,xτH =

∞∑
n=1

Ev
s,x

[
τH1

{Bn∩
n−1
k=1 Bc

k }

]
≤

∞∑
n=1

Ev
s,x

[
[τ (n)

+ 1]1
{Bn∩

n−1
k=1 Bc

k }

]
≤1 +

∞∑
n=1

Ev
s,x

[
n∑

l=1

σ (l)1
{Bn∩

n−1
k=1 Bc

k }

]

=1 +

∞∑
l=1

Ev
s,x

[
σ (l)

∞∑
n=l

1
{Bn∩

n−1
k=1 Bc

k }

]

=1 +

∞∑
l=1

Ev
s,x

[
σ (l)1

{∩
l−1
k=1 Bc

k }

]
(due to (B.6)).

(B.7)

In view of (B.5) we have

Ev
s,x

[
σ (l)1

{∩
l−1
k=1 Bc

k }

]
=Ev

s,x

[
1

{∩
l−1
k=1 Bc

k }
E
[
σ (l)

⏐⏐F
τ l−1
H0

]]
≤ (K4 + K1(t1 + t2))Ev

s,x

[
1

{∩
l−1
k=1 Bc

k }

]
≤ (K4 + K1(t1 + t2)) p1

l−1, l ≥ 1.

(B.8)

Therefore, it follows from (B.7) and (B.8) that

Ev
s,xτH≤ 1 +

∞∑
l=1

Ev
s,x

[
σ (l)1

{∩
l−1
k=1 Bc

k }

]
≤ 1 +

∞∑
l=1

(K4 + K1(t1 + t2)) p1
l−1

:= C1 < ∞.
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This and (4.11) imply (4.12). Under the constant control vc
≡ M , similar to that of S(t), the

drift of X (t) is positive when X (t) is small. As a result, a similar argument can be deployed
to obtain (4.13). □

Proof of Lemma 4.3. We have

Lu
(

ln
1 + x

x

)
= −

1
x(1 + x)

[
u + x f2(s, x) − xk̃d

]
−

σ 2
2 x2

(1 + x)2 +
σ 2

2

2

≤k̃d +
σ 2

2

2
.

Then by Dynkin’s formula and some standard calculations, we can show that

Ev
s,ε ln

1 + X (τH)
X (τH)

≤ ln
1 + x

x
+

(
k̃d +

σ 2
2

2

)
Ev

s,ετH

≤ ln
1 + ε

ε
+

(
k̃d +

σ 2
2

2

)
sup

s′≤L1

Ev
s′,ετH

=:L2 < ∞,

for s ≤ L1. By Markov inequality, we have

Pv
s,ε

{
ln

1 + X (τH)
X (τH)

≤ 2L2

}
≥

1
2
,

which implies (4.14). □

Proof of Lemma 4.4. By Lemma 4.1, the family {ζ m
T , T > 0} is tight on P((0, ∞)× [0, ∞)×

[0, M]) for any admissible relaxed control m. As a result, we can decompose any limit point
ζ̂ ∈ P((0, ∞) × [0, ∞) × [0, M]) as

ζ̂ = δζ ′
+ (1 − δ)ζ ′′,

where ζ ′
∈ P(R2,◦

+ × [0, M]) and ζ ′′
(
(0, ∞) × {0} × [0, M]

)
= 1. Following the arguments

in [1, Lemma 3.4.6], we can show that ζ ′
∈ G. Because of (4.15) and the uniform boundedness

(4.5) and (4.7), we have s + x f1(s, x) is ζ̂ -integrable and∫
R2

+
×[0,M]

(
S0 − s ′

θ
− x f1(s, x)

)
ζ̂ (ds ′, dx ′, du) = 0. (B.9)

Since ζ ′ is in G, we have from (4.16) that∫
R2,◦

+
×[0,M]

(
S0 − s ′

θ
− x f1(s, x)

)
ζ ′(ds ′, dx ′, du) = 0. (B.10)

As a result,∫
(0,∞)×{0}×[0,M]

S0 − s ′

θ
ζ ′′(ds ′, dx ′, du) =

∫
R2

+
×[0,M]

(
S0 − s ′

θ
− x f1(s, x)

)
× ζ ′′(ds ′, dx ′, du) = 0,

or equivalently,∫
(0,∞)×{0}×[0,M]

s ′ζ ′′(ds ′, dx ′, du) = S0.
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To prove (4.19), note that we can find a sequence tn ↑ ∞ satisfying

lim inf
T →∞

1
T
Em

s,x

∫ T

0
S(t)dt = lim

n→∞

1
tn
Em

s,x

∫ tn

0
S(t)dt

and ζ m
tn converges weakly to a probability measure ζ̂ , which can be decomposed as (4.18). By

the weak convergence, the uniform boundedness of Em
s,x (2κ0S(t)+ X (t))1+p in (4.6), and using

(4.17), we obtain

lim
n→∞

1
tn
Em

s,x

∫ tn

0
S(t)dt =δ

∫
R2

+
×[0,M]

s ′ζ ′(ds ′, dx ′, du) + (1 − δ)

×

∫
R2

+
×[0,M]

s ′ζ ′′(ds ′, dx ′, du)

≥δρ∗
+ S0(1 − δ) ≥ ρ∗.

The proof is complete. □
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