
Available online at www.sciencedirect.com

d
a
v
P
b
⃝

M

K

i
i
t
i
a
c

e

ScienceDirect

Stochastic Processes and their Applications 140 (2021) 1–20
www.elsevier.com/locate/spa

Formulae for the derivative of the Poincaré constant of
Gibbs measures

Julian Sieber
Department of Mathematics, Imperial College London, Queen’s Gate, London SW7 2AZ, United Kingdom

Received 6 October 2020; received in revised form 15 May 2021; accepted 6 June 2021
Available online xxxx

Abstract

We establish formulae for the derivative of the Poincaré constant of Gibbs measures on both compact
omains and all of Rd . As an application, we show that if the (not necessarily convex) Hamiltonian is
n increasing function, then the Poincaré constant is strictly decreasing in the inverse temperature, and
ice versa. Applying this result to the O(2) model allows us to give a sharpened upper bound on its
oincaré constant. We further show that this model exhibits a qualitatively different zero-temperature
ehavior of the Poincaré and Log-Sobolev constants.
c 2021 Elsevier B.V. All rights reserved.

SC: primary 60J60; secondary 82B21; 35P15; 47A55
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1. Introduction and main results

The study of functional inequalities such as the Poincaré and Logarithmic Sobolev inequality
s of paramount interest in the stability theory of Markov processes. These functional inequal-
ties can be used to determine the convergence rate of the law of an ergodic Markov process
o the invariant measure. Beginning with Gross’s seminal work linking Log-Sobolev inequal-
ties to hypercontractivity of semigroups [12], functional inequalities have been successfully
pplied in a multitude of areas of mathematics; see the monographs [1–4,13,16,18,25,26] for
omprehensive overviews of the subject.

In this article we consider Gibbs probability measures µβ at inverse temperature β > 0
ither on a bounded domain U ⊂ Rd or on all of Rd . Recall that the Lebesgue density of µβ
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is given by

dµβ(x) =
1

Zβ

e−β H (x)1U (x)dx (1.1)

here the potential H : U → R is such that Zβ ≜
∫

U e−β H (x) dx < ∞.
We say that µβ satisfies a Poincaré inequality with constant αβ ⩾ 0 if

varµβ
( f ) ≜

∫
U

f 2 dµβ −

(∫
U

f dµβ

)2

⩽ αβ

∫
U

|∇ f (x)|2 dµβ (1.2)

or all f ∈ H 1(U, µβ). Here, the weighted Sobolev space H 1(U, µβ) is defined as the collection
f weakly differentiable functions f : U → R for which f, ∇ f ∈ L2(U, µβ). The norm

∥ f ∥H1(U,µβ ) ≜
(
∥ f ∥

2
L2(U,µβ ) + ∥∇ f ∥

2
L2(U,µβ )

)1/2

renders it into a Hilbert space. The optimal (i.e. smallest) constant αβ in (1.2) is called the
Poincaré constant of the measure µβ . Henceforth, αβ shall always denote this sharp constant.
We also write H 2(U ) for the standard Sobolev space of twice weakly differentiable functions
f : U → R with f, ∇ f, ∇2 f ∈ L2(U ). Finally, W 1,∞(U ) shall denote the weakly differentiable
functions f : U → R with f, ∇ f ∈ L∞(U ). It is clear that C1(U ) ⊂ W 1,∞(U ) if U is bounded.

The formulae of the derivative of the mapping β ↦→ αβ are summarized in Theorems 1.1
nd 1.2. Together with Theorem 1.4, these are the main results of this article.

heorem 1.1 (Bounded Domain). Let U ⊂ Rd be a bounded domain. Assume further that
H ∈ W 1,∞(U ). If the smallest, non-zero eigenvalue of the infinitesimal generator Lβ0 is
on-degenerate for some β0 ⩾ 0, then the Poincaré constant is analytic near β0 and

∂βαβ

⏐⏐
β=β0

= −α2
β0

∫
U

ϕβ0 (x)∇ H (x) · ∇ϕβ0 (x) µβ0 (dx), (1.3)

here ϕβ0 is the normalized eigenfunction of the smallest, non-zero eigenvalue of the infinites-
mal generator Lβ0 = △ − β0∇ H · ∇.

For simplicity, we only consider the whole space as unbounded domain:

heorem 1.2 (Unbounded Domain). Let H : Rd
→ R be twice weakly differentiable. Assume

urthermore that

sup
x∈Rd

△H (x) < ∞ and lim
|x |→∞

(
|∇ H (x)|2 − △H (x)

)
= ∞.

hen the Poincaré constant is analytic near any β0 > 0 and the identity (1.3) holds.
lternatively, we also have

∂βαβ

⏐⏐
β=β0

= −
α2

β0

2

∫
Rd

ϕ2
β0

(x)
(
β0|∇ H (x)|2 − △H (x)

)
µβ0 (dx). (1.4)

xample 1.3. There are only a handful of Gibbs measures for which the Poincaré constant
s explicitly known. The most prominent example is of course the Gaussian distribution

β(dx) ∝ e−
βx2

2 on R. It is very well known that this measure exhibits the sharp Poincaré
onstant α = β−1 and the inequality (1.2) is saturated by constant multiples of the function
β

2
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ϕβ(x) =
√

βx . The identities (1.3) and (1.4) yield

∂βαβ = −
1
β

∫
R

x2 µβ(dx) = −
1
β2 ,

s expected. By tensorization, the case of a d-dimensional standard Gaussian distribution can
e verified similarly.

As an application of the formula (1.3) we would like to investigate the monotonicity of
he mapping β ↦→ αβ . If the Hamiltonian H is κ-semi-convex for some κ > 0, that is,

x ↦→ H (x) −
κ
2 ∥x∥

2 convex (or equivalently ∇
2 H ⩾ κ if H ∈ C2), then the Bakry–Émery

riterion [3] tells us that

αβ ⩽
1

βκ
. (1.5)

his provides a strong indication that the Poincaré constant is strictly decreasing in this setting.
The main difficulty we face in establishing this is the fact that the relationship between

he potential H and the eigenfunction ϕβ is unclear in general. If we however work in one
imension and impose certain symmetry assumptions, we can deduce a connection between H
nd the monotonicity of the Poincaré constant. This is our final main result. To formulate it,
et us recall that we say H : I → R, I ⊂ R an interval, is piecewise C1 if it is continuous and
here is a finite subset of kinks K ⊂ I such that H ↾I\K is continuously differentiable. At the
xceptional points K, we require the left- and right-sided derivative to exist.

heorem 1.4. Assume that U = (−a, a) for some a > 0 and H : U → R is non-constant,
ven, and piecewise C1 with kinks K. Then the sharp Poincaré constant αβ is a strictly{

decreasing, if H ′(x) ⩾ 0 for all x ∈ (0, a) ∩ Kc,

increasing, if H ′(x) ⩽ 0 for all x ∈ (0, a) ∩ Kc,

unction of β ⩾ 0.

The following corollary makes the decay hinted by (1.5) rigorous.

orollary 1.5. Let U = (−a, a) and H ∈ C1(U ) be even and κ-semi-convex for some κ > 0.
hen the Poincaré constant αβ is strictly decreasing in β.

roof. Since H is even and continuously differentiable, we must have H ′(0) = 0. By
-semi-convexity, it follows that H ′(x) ⩾ κx for all x ∈ (0, a). □

There are, however, a variety of Gibbs measures of practical importance that are not
comprised by Corollary 1.5, but which do fall in the regime of Theorem 1.4 (see Fig. 1 for the
illustration of such a potential).

The article is structured as follows: In Section 2 we recall some results from the perturbation
theory of self-adjoint operators. Section 3 establishes symmetry properties of the eigenfunction
ϕβ which are then used to deduce Theorem 1.4. There, we also provide an example illustrating
that the statement fails for the Log-Sobolev constant. One of the prime applications of
Theorem 1.4 might be to prove bounds on the Poincaré constant which are uniform in β.
We illustrate this in Section 4 on the example of the O(2) model. We conclude this article in
Section 5 with another noteworthy property of the O(2)-model: The Poincaré constant vanishes

as β → ∞, whereas the Log-Sobolev constant saturates at a strictly positive value.

3



J. Sieber Stochastic Processes and their Applications 140 (2021) 1–20

h

2

o(
o
h
o
p
e
s

2

Fig. 1. A prototypical function satisfying the assumptions of Theorem 1.4. Notice that the Hamiltonian H may
ave saddle points or even flat passages. Furthermore, H need not be convex.

. Derivative of the Poincaré constant

Without further notice, in the sequel we always require that the domain of any unbounded
perator (or a quadratic form) is dense. Remember that the resolvent set ρ(L) of an operator
L ,D(L)

)
consists of the values ρ ∈ C such that ρ − L is bounded invertible. The spectrum

f L is defined as the complement of the resolvent set: σ (L) ≜ C \ ρ(L). The operator L
as compact resolvent if for some (and hence all) ρ ∈ ρ(L), (ρ − L)−1 defines a compact
perator. It is standard that, if in addition

(
L ,D(L)

)
is self-adjoint, this is equivalent to a

urely discrete spectrum which may only accumulate at ±∞. In fact, sufficiency is known to
ven hold for closed operators on Banach spaces and necessity is an easy consequence of the
pectral theorem.

.1. The Poincaré constant as eigenvalue problem

Let U ⊂ Rd . Recall that the Poincaré constant is given by

αβ = sup
f ∈H1(U,µβ )

f ⊥1

Eβ( f )
∥ f ∥

2
β

,

where Eβ( f ) ≜
∫

U |∇ f |
2 dµβ , f ⊥ 1 indicates that f is centered with respect to µβ ,

and ∥ · ∥L2(U,µβ ) denotes the norm on L2(U, µβ). We also write ⟨·, ·⟩β for the associated
inner product. Up to subtleties regarding the form domain of Eβ , which we shall address
below, the Poincaré constant is therefore nothing but the minimizer of the Rayleigh quotient,
characterizing the second smallest eigenvalue of a suitable self-adjoint operator. In fact, if we
define

A ≜

{{
f ∈ C∞(U ) :

∂ f
∂n = 0 on ∂U

}
, U ⊂ Rd bounded,

C∞
c (Rd ), U = Rd ,

where ∂ f
∂n denotes the normal derivative of f , then it is easy to check that

L ≜ △ − β∇ H · ∇, D(L ) = A,
β β

4
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is a non-positive, densely defined, symmetric operator with Eβ( f ) = −⟨ f, Lβ f ⟩
β

its Dirichlet
orm. In a slight abuse of notation, we denote its self-adjoint Friedrichs extension of Lβ by the
ame symbol. Remember that the domain of the associated Dirichlet form is precisely given by
(Eβ) = A∥·∥Eβ where the closure is taken with respect to the form norm ∥ f ∥Eβ

= ∥ f ∥H1(U,µβ ).
In case U = Rd , the operator

(
Lβ,D(Lβ)

)
is of course the infinitesimal generator of the

verdamped Langevin (or stochastic gradient) diffusion

d Xβ
t = −β∇ H (Xβ

t ) dt +
√

2 dWt

with (Wt )t⩾0 a d-dimensional Wiener process. If U ⊂ Rd is bounded, the question of the
associated Markov process is much more delicate because of boundary effects encoded in the
construction of

(
Lβ,D(Lβ)

)
. The natural candidate diffusion is given by

d Xβ
t = −β∇ H (Xβ

t ) dt +
√

2 dWt − ℓ
β
t , (2.1)

where the bounded variation process ℓβ is implicitly defined by

ℓ
β
t =

∫ t

0
n(Xβ

s ) d|ℓβ
|s, |ℓβ

|t =

∫ t

0
1∂U (Xβ

s ) d|ℓβ
|s

with the total variation process |ℓβ
|. Well-posedness of (2.1) (in the weak sense) is related to

the unique solvability of the celebrated Skohorod problem [27,28]. Under additional regularity
assumptions on both the potential H and the domain U , this can indeed be established
[17,29]. The existence of the associated Markov process is however not pertinent to questions
investigated in this article.

It turns out the operator Lβ is unitarily equivalent to a Schrödinger operator L̃β on the
unweighted space L2(U ). To see this, we define the inverse ground state transformation (or
h-transform) Uβ : L2(U ) → L2(U, µβ), Uβ f (x) =

√
Zβeβ H (x)/2 f (x). It is easy to check that

β is unitary and

L̃β f (x) ≜ U ∗

β LβUβ f (x) = △ f (x) −
1
2

(
β2

2
|∇ H (x)|2 − β△H (x)

)
f (x). (2.2)

The following result summarizes the connection of the Poincaré constant with the spectrum
f the operator Lβ , taking into account the due domain considerations. Without further notice,
e shall tacitly assume the conditions of Theorems 1.1 and 1.2, respectively, on the regularity
f the domain U and the potential H .

roposition 2.1. Let
(
Lβ,D(Lβ)

)
be the Friedrichs extension of the operator Lβ = △−β∇ H ·

with domain A as above. This operator has a discrete spectrum for any β ⩾ 0 (for any β > 0
f U = Rd ) and the Poincaré constant is given by αβ = −(λβ

1 )−1 where λ
β

1 = sup{λ ∈ σ (Lβ) :

< 0}. Moreover, the inequality (1.2) is saturated if and only if f ∈ H 1(U, µβ) is in the
ssociated eigenspace. If U = Rd , the eigenvalue λ

β

1 is non-degenerate.

roof. Consider first the setting of Theorem 1.1. Because of the boundedness of the potential
H , it is clear that the spaces H 1(U, µβ) and H 1(U ) coincide for each β ⩾ 0. Moreover, the
espective norms are equivalent. It is known that, under mild regularity assumptions on ∂U
which certainly comprise a piecewise smooth boundary), D(Eβ) = A

∥·∥H1(U ) = H 1(U ) =

H 1(U, µβ), see e.g. [21, p. 263]. Consequently, Lβ is a second-order elliptic differential
perator with Neumann boundary conditions. Discreteness of the spectrum is thus ensured
y standard results. The remaining claims are immediate from a well-known variational
5
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characterization of the eigenvalues and continuity of both sides in the inequality (1.2) with
respect to the norm ∥ · ∥H1(U,µβ ).

If U = Rd , we employ [21, Theorem XIII.47] to deduce that L̃β (see (2.2)) has discrete
pectrum and the largest non-zero eigenvalue λ

β

1 is non-degenerate. The remaining claims are
hen immediate. □

In view of Proposition 2.1 we are led to compute the derivative of the first non-vanishing
igenvalue of Lβ . If we forget about the technical details for a moment, then Theorems 1.1 and
.2 can be proven by the following formal computation: Let ϕβ be a normalized eigenvector
f Lβ with eigenvalue λβ . Then

∂βλβ = ∂β

∫
U

ϕβ(x)Lβϕβ(x) µβ(dx)

= 2
∫

U

(
∂βϕβ

)
(x)Lβϕβ(x) µβ(dx) +

∫
U

ϕβ(x)Lβϕβ(x)
(
∂βϱβ

)
(x) dx

−

∫
U

ϕβ(x)∇ H (x) · ∇ϕβ(x) µβ(dx),

where ϱβ(x) ≜ Z−1
β e−β H (x). Since

2
∫

U

(
∂βϕβ

)
(x)Lβϕβ(x) µβ(dx) +

∫
U

ϕβ(x)Lβϕβ(x)
(
∂βϱβ

)
(x) dx

= λβ∂β∥ϕβ∥
2
L2(U,µβ ) = 0,

the identity (1.3) follows. It is clear that this computation is problematic in a number of ways.
The next section is therefore devoted to provide a rigorous backing of these manipulations.

2.2. Perturbation theory of infinitesimal generators

Consider a family operators (Lβ,D(Lβ))β∈D on a Hilbert space H indexed by a parameter
β with values in a non-empty domain D ⊂ C. By this we mean that D is open and connected.
Of course, eventually we will be interested in taking β ∈ DR ≜ D ∩R, but for now it is more
convenient to allow complex β.

Let us begin with a definition:

Definition 2.2. Let D ⊂ C be a non-empty domain. We say that (Lβ)β∈D defines a holomorphic
family if the following hold:

(i) For each β ∈ D, Lβ is closed and has a non-empty resolvent set,
(ii) for each β0 ∈ D, there is a ρ0 ∈ ρ(Lβ0 ) such that ρ0 ∈ ρ(Lβ) for β near β0 and

β ↦→ (ρ0 − Lβ)−1 defines a holomorphic function at β0.

If we can choose D = C, we call (Lβ)β∈C an entire family.

Note that if (Lβ)β∈D is a holomorphic family on H and U : H → H′ is unitary, then
(U LβU ∗)β∈D is a holomorphic family on H′, see [21, p. 20]. In many applications, it turns out
to be notoriously difficult to check Definition 2.2 directly. Instead, it is often more convenient
to work with quadratic forms. We recall that a quadratic form

(
E,D(E)

)
is called sectorial if

there are a base point y ∈ R and a semi-angle θ ∈ [0, π
2 ) such that the numerical range of E

s contained in the sector Sy,θ :

{E( f ) : f ∈ D(E)} ⊂ S ≜ {w ∈ C : | arg(w − y)| ⩽ θ}.
y,θ

6
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Observe that this is equivalent to

Re
(
E( f )

)
⩾ y∥ f ∥

2 and
⏐⏐⏐Im(E( f )

)⏐⏐⏐ ⩽ tan(θ )
(

Re
(
E( f )

)
− y∥ f ∥

2
)

∀ f ∈ D(E). (2.3)

e have the following well-known generalization of the Friedrichs extension: For any closed,
ectorial form

(
E,D(E)

)
, there is a unique closed operator

(
L ,D(L)

)
with E( f ) = − ⟨ f, L f ⟩

or all f ∈ D(L) ⊂ D(E) and D(L) is a form core of E .

efinition 2.3. Let D ⊂ C be a non-empty domain. We say that (Eβ)β∈D defines a holomorphic
amily of type (a) if the following hold:

(i) For each β ∈ D,
(
Eβ,D(Eβ)

)
is a closed, sectorial form,

(ii) D(Eβ) = D(E) is independent of β ∈ D,
(iii) for each f ∈ D(E), β ↦→ Eβ( f ) is holomorphic on D.

he associated operators (Lβ)β∈D are called a holomorphic family of type (B).

One can check (see [15, Theorem VII.4.2]) that a holomorphic family of type (B) is holo-
orphic in the sense of Definition 2.2. The following result is proven in [15, Theorem VII.4.8]:

emma 2.4. Suppose that
(
E1,D(E1)

)
is a closed, non-negative form. Let

(
E2,D(E2)

)
be a

uadratic form with D(E1) ⊂ D(E2). If there are a, b > 0 such that

E2( f ) ⩽ aE1( f ) + b∥ f ∥
2

or all f ∈ D(E1), then there is a domain 0 ∈ D ⊂ C such that Eβ ≜ E1 +βE2 is closable and
ts closure defines a holomorphic family of type (a). If a > 0 can be chosen arbitrarily small,
hen (Eβ)β∈C is actually an entire family of type (a).

It is well known that, if (Lβ)β∈D is a holomorphic family of type (B) and has compact
esolvent for some β0 ∈ D, then the same holds for any β ∈ D, see [15, Theorem VII.2.4].
n the setting of Theorem 1.2 we can therefore not expect that the family of infinitesimal
enerators is analytic near β0 = 0. In fact, the Ornstein–Uhlenbeck operator Lβ = △−

1
2β|x |

2

is well known to be of compact resolvent for any β > 0 and, as we shall see below, (Lβ)β∈D is
holomorphic family of type (B) on a neighborhood of (0, ∞). However, it is very well known

hat the spectrum of the Laplacian is continuous, whence it cannot be of compact resolvent.
We say that two inner products on a linear space are equivalent if the induced norms are

quivalent. Our main abstract result in this section is as follows:

roposition 2.5. Let D ⊂ C be a domain and let H be a Hilbert space equipped with a family
f pairwise equivalent inner products {⟨·, ·⟩β}β∈DR . Let (L ,D(L)), (V1,D(V1)), and (V2,D(V2))
e densely defined operators on H. Suppose that Lβ ≜ L + βV1 + β2V2, β ∈ D, defines a
olomorphic family and, for each β ∈ D, Lβ has compact resolvent. If Lβ is self-adjoint with
espect to ⟨·, ·⟩β for each β ∈ DR, then the following are true:

(i) The eigenvalues {λn(β)}n∈N (counted with multiplicity) are analytic near each β0 ∈ DR.
(ii) If λn(β0) is non-degenerate, then we have the formula

d
dβ

λn(β)
⏐⏐⏐
β=β0

= ⟨ϕn(β0), (V1 + 2β0V2)ϕn(β0)⟩β0
, (2.4)

where ϕn(β) is the associated normalized eigenfunction.
7
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Remark 2.6. We insist that under the assumptions of Proposition 2.5 crossings of the
eigenvalues may occur. In other words, if we assume that λ1(0) ⩽ λ2(0) ⩽ · · · , this may
not hold for arbitrary β ∈ DR! The Poincaré constant is in general not differentiable at a
crossing of the smallest non-zero eigenvalue.

Proof of Proposition 2.5. Without any loss of generality, we may assume that 0 ∈ D and
β0 = 0. We also drop the index of the eigenvalue and the eigenvector for brevity throughout the
proof. Since L has compact resolvent, we can find an ε > 0 such that σ (L)∩Bε

(
λ(0)

)
= {λ(0)},

albeit with possible degeneracy. The projection-valued function

Pβ =
1

2π i

∮
∂ Bε(λ(0))

(
z − Lβ

)−1 dz (2.5)

is thus holomorphic near 0 and projects on the (potentially multi-dimensional) eigenspace of
λ(β). In other words, we have that σ

(
Pβ Lβ Pβ

)
= σ (Lβ) ∩ Bε

(
λ(0)

)
. Moreover, for real β,

Pβ is symmetric with respect to ⟨·, ·⟩β . A classical result of Kato [14] (see also [15, p. 386])
states that there is a holomorphic family of bounded, invertible operators {Uβ} for β near
0 such that Pβ = Uβ P0U−1

β and, for real β, Uβ is unitary with respect to ⟨·, ·⟩β . We now
set L̄β ≜ P0U−1

β LβUβ P0. This defines a finite-dimensional holomorphic family, which is
symmetric for real β. Analyticity of the eigenvalues therefore follows by a standard argument,
see e.g. [15, Theorem II.6.1]. This concludes the proof of (i).

For point (ii) we compute the series expansion for non-degenerate λ(0). To this end, we
write L̄ , V̄1, and V̄2 for the restrictions of these operators to the range of P0. Let ϕ(0) be the
normalized eigenvector with eigenvalue λ(0). For β near 0, we see that P(β)ϕ(0) ̸= 0 (since
P(β)ϕ(0) → ϕ(0) as β → 0). Consequently,

λ(β) =
⟨ϕ(0), L̄β P(β)ϕ(0)⟩0

⟨ϕ(0), P(β)ϕ(0)⟩0

= λ(0) + β
⟨ϕ(0), V̄1 P(β)ϕ(0)⟩0

⟨ϕ(0), P(β)ϕ(0)⟩0
+ β2 ⟨ϕ(0), V̄2 P(β)ϕ(0)⟩0

⟨ϕ(0), P(β)ϕ(0)⟩0
.

The integrand in (2.5) is holomorphic on the contour of integration and, iterating the second
resolvent identity, we can expand(

z − (L̄ + β V̄1 + β2V̄2)
)−1

=
(
z − L̄

)−1
+ β

(
z − L̄)

−1
V̄1
(

z − L̄)
−1

+ O(β2),

hence

λ(β) = λ(0) + β
⟨ϕ(0), V̄1ϕ(0)⟩0 + O(β)

1 + O(β)
+ O(β2)

= λ(0) + β⟨ϕ(0), V1ϕ(0)⟩0 + O(β2).

Here, we used that
1

2π i

∮
∂ Bε(λ(0))

(z − L)−1ϕ(0) dz =
1

2π i

∮
∂ Bε(λ(0))

(
z − λ(0)

)−1
ϕ(0) dz = ϕ(0). □

. Proofs of the main results

Given a self-adjoint operator
(
L ,D(L)

)
let
(
EL ,D(EL )

)
denote the unique, closed quadratic

orm such that EL ( f ) ≜ − ⟨ f, L f ⟩ for all f ∈ D(L). Combining the results of the previous
ection, it is now easy to deduce Theorem 1.1:
8
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Proof of Theorem 1.1. We choose H = L2(U ) and observe that, since H is bounded,

⟨ f, g⟩β =
1

Zβ

∫
U

f (x)g(x)e−β H (x) dx

defines a family of pairwise equivalent inner products. Define V ≜ −∇ H · ∇. Since ∇ H is
ounded, it follows that

EV ( f ) ⩽ ∥∇ H∥∞

(
ε

2
E△( f ) +

1
2ε

∥ f ∥
2
)

or any ε > 0. Owing to Lemma 2.4, Lβ defines an entire family. Standard results in the theory
f partial differential equations tell us that Lβ has compact resolvent for any β ⩾ 0, see e.g.
11, Theorem 3.5.1]. The theorem is now an immediate consequence of Proposition 2.5. □

For unbounded domains the situation becomes of course much more delicate. While on
ounded domains Lβ actually has compact resolvent for all β ∈ C, this is now no longer true.
owever, we shall see below that, under the assumptions of Theorem 1.2, the spectrum is still
iscrete for β > 0. Before that, let us check that (L̃β)β∈D constitutes a holomorphic family of
ype (B) for

D ≜
{

z ∈ C \ {0} : | arg z| <
π

6

}
.

o this end, we observe that the operator (2.2) naturally decomposes as

L̃β f (x) = △ f (x) −
1
2

(
β2

2
|∇ H (x)|2 − β△H (x)

)
f (x)

≜ △ f (x) −
(
β2V1(x) − βV +

2 (x) + βV −

2 (x)
)

f (x),

here

V1(x) ≜
1
4
|∇ H (x)|2, V +

2 (x) ≜
1
2

(
0 ∨ △H (x)

)
, V −

2 (x) ≜ −
1
2

(
0 ∧ △H (x)

)
.

Without further notice, we shall assume the conditions of Theorem 1.2 in the following two
lemmas:

Lemma 3.1. Let E
△+βV +

2
≜ E△ + βEV +

2
with domain D(E

△+βV +

2
) ≜ D(E△). Then, for each

∈ D and θ ∈ (0, π
2 ), there is a y < 0 such that the numerical range of E

△+βV +

2
is contained

n Sy,θ .

roof. It is clear that |V +

2 (x)| ⩽ 1
2

(
supx∈Rd △H (x) ∨ 0

)
≜ a. Therefore,⏐⏐⏐Im(E△+βV +

2
( f )
)⏐⏐⏐ =

⏐⏐Im(β)
⏐⏐⏐⏐EβV +

2
( f )
⏐⏐ ⩽ a

⏐⏐Im(β)
⏐⏐∥ f ∥

2

nd recalling (2.3) the lemma follows at once. □

emma 3.2. For each β ∈ D, the quadratic form Ẽβ( f ) ≜ − ⟨ f, L̃β f ⟩, D(Ẽβ) ≜ D(E△) ∩

(E−V1 ) ∩ D(E
−V −

2
), is densely defined, closed, and sectorial.

Proof. Recall that, for any function V : Rd
→ R, the multiplication operator (V f )(x) ≜

V (x) f (x) is self-adjoint on the domain D(L) ≜
{

f ∈ L2(Rd ) : V f ∈ L2(Rd )
}
. Therefore, we

ertainly have that C∞(Rd ) ⊂ D(Ẽ ) and hence the latter is dense. Fix θ ∈
(
0, π

−3 arg(β)
)

and
c β 2

9
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let y < 0 be the associated base point furnished by Lemma 3.1. The forms β2EV1 and βEV −

2
re sectorial with Sy,2 arg(β) and Sy,arg(β) respectively. Since Sy,θ + Sy,θ̃ ⊂ Sy,θ+θ̃ , it follows that
Ẽβ = E

△+βV +

2
− β2EV1 − βEV −

2
is sectorial.

It remains to show that Ẽβ is closed. To this end, we recall that – without loss of generality
we may consider the form norm

||| f |||Ẽβ
≜
⏐⏐⏐ ⟨ f, (△ − β2V1 − βV −

2 + βV +

2 + Re(β)a + 1
)

f
⟩
L2(Rd )

⏐⏐⏐,
here, as before, a > 0 is chosen such that |V +

2 | ⩽ a. It is now easy to see that ||| fn|||Ẽβ
→ 0

mplies ||| fn|||E♯
≜
⟨
fn,
(
−♯ + 1

)
fn
⟩
→ 0 for each ♯ ∈ {△, −V1, −V −

2 }. Hence,
(
Ẽβ,D(Ẽβ)

)
is

losed. □

We can now prove our second main result:

roof of Theorem 1.2. Owing to [21, Theorem XIII.47], for each β > 0, the spectrum of
L̃β (and hence Lβ) is discrete and the ground state is non-degenerate. Moreover, it follows
rom Lemma 3.2 that (L̃β)β∈S constitutes a holomorphic family of type (B). The theorem is
herefore an immediate consequence of Proposition 2.5. □

It remains to establish Theorem 1.4. To this end, we of course show that the right-hand
ide of (1.3) is strictly positive (negative). This will be based on the following essentially
ell-known result:

roposition 3.3. Let β ⩾ 0 and U = (−a, a), a > 0. Moreover assume that H : U → R is
iecewise C1. Consider the Sturm–Liouville problem

f ′′(x) − β H ′(x) f ′(x) = λβ f (x),

f ′(−a) = f ′(a) = 0,

n U. Denote its kth eigenvalue and normalized eigenfunction by λ
β

k and ϕ
β

k , respectively. Then
he following hold true:

(i) The mapping x ↦→ ϕ
β

k (x) is differentiable and

(ϕβ

k )′(x) =
λ

β

k

e−β H (x)

∫ a

x
ϕ

β

k (t)e−β H (t) dt (3.1)

for all k ∈ N0 and Lebesgue-a.e. x ∈ U.
(ii) The eigenfunction ϕ

β

1 is strictly monotone and odd.

The representation (3.1) follows immediately from the fact that H 1(µβ, U ) consists precisely
of all absolutely continuous functions. Item (ii) is then an easy consequence. The interested
reader may also consult [8,19,24] for similar results.

Proof of Theorem 1.4. It is enough to assume H ′ ⩾ 0 on (0, a) ∩ Kc. The other case then
follows by considering −H .

It follows from Theorem 1.1 and Proposition 3.3(i) that

∂βαβ = −
α2

β

∫ a

ϕ
β

1 (x)H ′(x)
(∫ a

ϕ
β

1 (t)e−β H (t) dt
)

dx .

Zβ −a x

10
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We now claim that∫ a

−a
f (x)H ′(x)

(∫ a

x
f (t)e−β H (t) dt

)
dx > 0 (3.2)

or all continuous, strictly monotone, and odd functions f : U → R. Upon establishing this
laim, we can deduce the theorem thanks to Proposition 3.3(ii).

To prove (3.2), we first observe that there is no loss of generality in assuming f to be
trictly increasing (consider − f otherwise). We further notice that, since H is not constant,

there are an ε > 0 and an x0 ∈ (0, a) such that H ′(x) > 0 for all x ∈ (x0 − ε, x0 + ε) ∩ Kc.
Finally, elementary manipulations exploiting symmetry properties of the integrands show that
the left-hand side of (3.2) becomes

2
∫ a

0
f (x)H ′(x)

(∫ a

x
f (t)e−β H (t) dt

)
dx,

which is strictly positive by the observations above. □

4. Application: The Poincaré constant of the O(2) model

Let Λ be a finite set of nodes and let M = (mi, j )i, j∈Λ be a positive definite matrix with
operator norm ∥M∥ < c for some c < 2. We further denote the unit circle in R2 by S1. The
O(2) model is the probability measure ν with density

ν(dξ ) ∝ e−
1
2 qM (ξ )dξ, ξ ∈ (S1)Λ, (4.1)

where the quadratic form qM acts as

qM (ξ ) =

∑
i, j∈Λ

mi, j ⟨ξi , ξ j ⟩ .

In recent work Bauerschmidt and Bodineau proved the following result [6]:

Proposition 4.1. Let M ∈ RΛ×Λ be positive definite and assume ∥M∥ < 2. Then the O(2)
odel (4.1) satisfies a Poincaré inequality uniformly with respect to the set Λ. More precisely,

here is an η > 0 independent of Λ such that

varν( f ) ⩽ η

(
1 +

4∥M∥

2 − ∥M∥

)∑
i∈Λ

∫
|∇ξi f |

2 dν (4.2)

for all f ∈ H 1
ν

(
(S1)Λ

)
. Here, |∇σi f | denotes the length of the gradient of f with respect to

the i th argument, both taken in the Riemannian sense.

Theorem 1.4 allows us to strengthen Proposition 4.1 by improving the value of the Poincaré
constant:

Corollary 4.2. We can choose η = 4 in (4.2):

varν( f ) ⩽ 4
(

1 +
4∥M∥

2 − ∥M∥

)∑
i∈Λ

∫
|∇ξi f |

2 dν. (4.3)

roof. The argument is for the most part similar to [6]. Nonetheless, we give the full proof for
ompleteness. Details for some of the computations can be found in the work of Bauerschmidt
nd Bodineau.
11



J. Sieber Stochastic Processes and their Applications 140 (2021) 1–20

w

F

N
t
L
a

f

B

T
E
I

O

S

Fix c ∈
(
∥M∥, 2

)
. Then we can write M−1

= c−1 id +B−1 for some positive definite matrix
B. This immediately shows that

e−
1
2 qM (ξ )

= C
∫

(R2)Λ
e−

c
2 |φ−ξ |

2
e−

1
2 qB (φ) dφ

for some numerical constant C > 0. In particular, for any f : (S1)Λ → R, we can write∫
(S1)Λ

f (ξ ) ν(dξ ) =

∫
(R2)Λ

(∫
(S1)Λ

f (ξ ) ν̄φ(dξ )
)

ν̄r (dφ), (4.4)

here

ν̄r (dφ) ∝ e−
1
2 qB (φ) dφ, φ ∈ (R2)Λ

and ν̄φ(dξ ) =
∏

i∈Λ ν̄φi (dξi ) for

ν̄φi (dξi ) ∝ e−
c
2 |φi −ξi |

2
, ξi ∈ S1.

or β ⩾ 0 define the Gibbs measure

µβ(dx) =
1

Zβ

eβ cos t dt, t ∈ [−π, π]. (4.5)

ote that the Poincaré constants of the measures ν̄φi and µc|φi | coincide. Applying Theorem 1.4
o µβ , we can therefore bound the Poincaré constant of ν̄φi by the Poincaré constant of the
ebesgue measure µ0. It is well known that the latter is η = 4. In particular, η also provides
n upper bound on the Poincaré constant of the measure ν̄φ by the tensorization principle.

We can now prove (4.3). To this end, let f ∈ H 1
(
(S1)Λ

)
and abbreviate µ( f ) ≜

∫
f dµ. It

ollows from the law of total variance and (4.4) that

varν( f ) =

∫
(R2)Λ

varν̄φ
ν̄r (dφ) + varν̄r

(
ν̄φ( f )

)
. (4.6)

y the Poincaré inequality with constant η for ν̄φ , we get∫
(R2)Λ

varν̄φ
ν̄r (dφ) ⩽ η

∑
i∈Λ

∫
(S1)Λ

|∇ξi f |
2 dν.

o bound the second term in (4.6), we first notice that, by [10, Theorem D.2] and the Bakry–
´ mery criterion [3], the measure ν̄r satisfies a Poincaré inequality with constant α =

(
c−

c2

2

)−1.
n particular, we get

varν̄r

(
ν̄φ( f )

)
⩽ α

∑
i∈Λ

ν̄r
(
|∂φi ν̄φ( f )|2

)
. (4.7)

ne can check that

∂φi ν̄φ( f ) = c
∫

(S1)Λ

(
f (ξ ) − ν̄φ( f )

)(
ξi − ν̄φ(ξi )

)
ν̄φ(dξ ) ≜ covν̄φ

( f, ξi ).

ince covν̄φ
(·) = ν̄φ

(
covφi (·)

)
, it is enough to bound

⏐⏐ covν̄φi
( f, ξi )

⏐⏐. To this end, we estimate

⏐⏐ covν̄φi
( f, ξi )

⏐⏐ ⩽ √
varν̄φi

( f )
(

1
2

∫
S1×S1

⏐⏐ξi − ξ̃i
⏐⏐2 ν̄φi (dξi ) ν̄φi (d ξ̃i )

) 1
2

⩽
√

2 varν̄φi
( f ),
12
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where the second inequality uses that |ξi − ξ̃i | ⩽ 2. Applying once more the Poincaré inequality
or ν̄φi , we have shown that⏐⏐∂φi ν̄φ( f )

⏐⏐2 ⩽ 2c2ν̄φ

(√
varν̄φi

( f )
)2

⩽ 2c2ν̄φ

(
varν̄φi

( f )
)
⩽ 2c2ην̄φ

(
|∇ξi f |

2).
e plug this back into (4.7) and finally find from (4.6) and another application of (4.4)

varν( f ) ⩽ η
(
1 + 2c2α

)∑
i∈Λ

∫
(S1)Λ

|∇ξi f |
2 dν = η

(
1 +

4c
2 − c

)∑
i∈Λ

∫
(S1)Λ

|∇ξi f |
2 dν.

ecalling that η = 4, the proof is concluded by letting c ↓ ∥M∥. □

The argument given by Bauerschmidt and Bodineau [6] actually applies to the Log-Sobolev
nequality, too. Recall that we say that a measure µ on U satisfies a Logarithmic Sobolev
nequality with constant ϖ ⩾ 0 if

entµ( f 2) ≜
∫

U
f 2 log

(
f 2

∥ f ∥
2
L2(U,µ)

)
dµ ⩽ ϖ

∫
U

( f ′)2 dµ (4.8)

or all f ∈ H 1(U, µ). The quantity entµ(·) is called the entropy of the measure µ and we
gree on the convention entµ(0) = 0. Note that the inequality (4.8) implies in particular
ntµ( f 2) < ∞ for all f ∈ H 1(U, µ). Again, we shall denote the optimal constant in (4.8)

by ϖ in the sequel. It turns out that the Logarithmic Sobolev inequality is stronger than the
Poincaré inequality (1.2) [9,22,23].

The main obstacle in transferring Corollary 4.2 to the Log-Sobolev constant is the fact that
Theorem 1.4 cannot hold in the same generality, see Example 4.3. Of course, we do not really
need a result as strong as Theorem 1.4 in order to derive Corollary 4.2 for the Log-Sobolev
inequality but only wish to show monotonicity of the Log-Sobolev constant of the single-spin
measure µβ in (4.5). Unfortunately, this currently seems to be out of reach.

Example 4.3. Let U = (−1, 1). Given a cutoff γ ∈ (0, 1), we consider the Hamiltonian

Hγ (x) = |x | ∧ γ.

Then the associated Gibbs measure clearly falls in the regime of Theorem 1.4 and the Poincaré
constant is thus strictly monotone decreasing in the inverse temperature β. Defining the
functions

fβ(x) ≜
∫ 1

x
e−β Hγ (t) dt = e−βγ (1 − (x ∨ γ )) +

e−β(x∧γ )
− e−βγ

β
,

gβ(x) ≜
∫ x

0
eβ Hγ (t) dt = eβγ (x − (x ∧ γ )) +

eβ(x∧γ )
− 1

β

or x ⩾ 0, we see that the quantities (5.2) and (5.3) become

bβ = sup
0⩽x⩽1

fβ(x) log
(

1 +
fβ(0)
fβ(x)

)
gβ(x),

Bβ = sup
0⩽x⩽1

fβ(x) log
(

1 +
2e2 fβ(0)

fβ(x)

)
gβ(x).

Evaluating these two expressions numerically, we find the plot depicted in Fig. 2. Thus
appealing to Proposition 5.3, we can conclude that the Log-Sobolev constant of this measure
is not monotone.
13
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Fig. 2. Plot of the lower and upper bounds on the Log-Sobolev constant of the measure dµ
γ
β (x) ∝ e−β(|x |∧γ )dx for

γ = .95. As indicated by the dashed horizontal line, the constant cannot be monotone in β. The inset shows the
respective bounds for the Poincaré constant provided by Proposition 5.2. Notice that the x-axes admit logarithmic
scaling.

5. Saturation of the Log-Sobolev constant

In this final section we show that the measure µβ defined in (4.5) exhibits a noteworthy
property: The Log-Sobolev constant saturates at a strictly positive value in the zero-temperature
limit whereas the Poincaré constant vanishes:

Theorem 5.1. Let αβ and ϖβ denote the Poincaré and Log-Sobolev constants of the Gibbs
measure

µβ(dx) ∝ eβ cos x1[−π,π ](x) dx .

Then there are constants 0 < c1 < c2 independent of β such that

c1 ⩽ ϖβ ⩽ c2 (5.1)

for all β ⩾ 0. Similarly, there exists a uniform constant c3 > 0 such that

αβ ⩽
c3

β

for all β > 0.

We give the proof of Theorem 5.1 in Section 5.2. It relies on the bounds presented in the
following section.

5.1. Muckenhoupt’s bounds

The following bounds on the Poincaré constant follow from the work of Muckenhoupt [20],
see e.g. [1,7]. The version we state below features improved numerical factors and was obtained
by Miclo [19], see also [8].

Proposition 5.2. Let U = [−a, a], a > 0, be a symmetric interval and assume that the function
H : U → R in the definition of the Gibbs measure µ is even. Then the sharp constant α in
β β

14
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(1.2) satisfies

Aβ ⩽ αβ ⩽ 4Aβ,

where

Aβ = sup
0⩽x⩽a

(∫ a

x
e−β H (t) dt

)(∫ x

0
eβ H (t) dt

)
.

There is an analogous result for the Log-Sobolev constant, which is originally due to Bobkov
nd Götze [7]. We state the criterion in a sharpened version by Barthe and Roberto [5].

roposition 5.3. Let U = [−a, a], a > 0, be a symmetric interval and assume that the function
H : U → R in the definition of the Gibbs measure µβ is even. Then the sharp constant ϖβ in
1.2) satisfies

bβ ⩽ ϖβ ⩽ 4Bβ,

here

bβ = sup
0⩽x⩽a

(∫ a

x
e−β H (t) dt

)
log

(
1 +

Zβ

2
∫ a

x e−β H (t) dt

)(∫ x

0
eβ H (t) dt

)
, (5.2)

Bβ = sup
0⩽x⩽a

(∫ a

x
e−β H (t) dt

)
log

(
1 +

e2 Zβ∫ a
x e−β H (t) dt

)(∫ x

0
eβ H (t) dt

)
(5.3)

ith the convention 0 · ∞ = ∞ · 0 = 0. Furthermore, we have Bβ ⩽ 4bβ and therefore
β ⩽ ϖβ ⩽ 16bβ .

.2. Proof of Theorem 5.1

This section is devoted to the proof of Theorem 5.1. Let us first derive estimates on the
artition function Zβ ≜

∫ π

−π
eβ cos t dt of the Gibbs measure (4.5):

emma 5.4. We have that

πe
2β
π ⩽ Zβ ⩽ 2πeβ

or all β ⩾ 0. Moreover, β ↦→ Zβ is increasing.

Proof. The upper bound is immediate. For the lower bound we make use of Jensen’s inequality
to estimate∫ π

−π

eβ cos t dt ⩾ 2
∫ π/2

0
eβ cos t dt ⩾ π exp

(
2β

π

∫ π/2

0
cos t dt

)
= πe

2β
π .

o see that β ↦→ Zβ is increasing, we take the derivative

d
dβ

Zβ = 2
∫ π

0
cos(t)eβ cos t dt = 2

(∫ π/2

0
cos(t)eβ cos t dt −

∫ π/2

0
cos(t)e−β cos t dt

)
⩾ 0

ince eβ cos t ⩾ e−β cos t for any t ∈ [0, π/2]. □

Next, we give a technical lemma from which we then, in combination with Propositions 5.2
nd 5.3, deduce Theorem 5.1 effortlessly.
15
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Lemma 5.5. Let β > 0. Then for x ∈ [0, π] the following bounds hold:

(i) We have the lower bounds∫ π

x
eβ cos t dt ⩾

1
√

2βeβ

∫ β(1+cos x)

0

et

√
t

dt, (5.4)∫ x

0
e−β cos t dt ⩾

eβ

√
2β

∫ 2β

β(1+cos x)

e−t

√
t

dt. (5.5)

(ii) Furthermore, the following explicit bounds hold:

√
2e−β

√
1 + cos x ⩽

∫ π

x
eβ cos t dt ⩽

4eβ cos x

√
β

, (5.6)∫ x

0
e−β cos t dt ⩽

4
eβ cos x

√
β

. (5.7)

If β > 1, the upper bound of (5.6) can be tightened as follows:∫ π

x
eβ cos t dt ⩽

4eβ cos x

√
β

(
1 ∧

√
β(1 + cos x)

)
. (5.8)

We provide a proof of Lemma 5.5 at the end of this section.

roof of Theorem 5.1. The theorem is proven by deriving suitable bounds on the quantities
Aβ and bβ from Propositions 5.2 and 5.3 respectively.

We shall begin with the lower bound on bβ and thus on the Log-Sobolev constant ϖβ .
ince we are interested in a lower bound on the supremum, we can certainly assume that

x ∈ [π/2, π). We treat the cases β ⩽ 1 and β > 1 separately.
β > 1: Invoking Lemma 5.4 and (5.6), we obtain

log

(
1 +

Zβ

2
∫ π

x eβ cos t dt

)
⩾ log

(
1 +

π
√

βe
2β
π

8eβ cos x

)
⩾ log

(
1 +

πe
2β
π

8

)

⩾ log

(
1 +

πe
πβ
8

8

)
⩾

β

2 +
π
4

niformly in x ∈ [π/2, π). Here, we used that β > 1, cos x ⩽ 0, and the elementary inequality
og
(
1 + ae

x
a
)
⩾ x

2(1+a) for a, x > 0. To see the latter, note that the inequality holds at x = 0

and check that 1
2(1+a) ⩽

e
x
a

1+ae
x
a

=
d

dx log
(
1 + ae

x
a
)

for all a, x > 0.

To see that bβ ⩾ c1 > 0 uniformly in β > 1, it is enough to show that

inf
β>1

1
β

inf
x∈[π/2,π )

(∫ π

x
eβ cos t dt

)(∫ x

0
e−β cos t dt

)
> 0.

n view of (5.4) and (5.5), this follows upon proving that infβ>1 ηβ > 0 where

ηβ ≜ sup
π/2⩽x⩽π

(∫ β(1+cos x)

0

et

√
t

dt
)(∫ 2β

β(1+cos x)

e−t

√
t

dt
)

.
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But this in turn easily follows from the observation

ηβ = sup
0⩽x⩽1

(∫ βx

0

et

√
t

dt
)(∫ 2β

βx

e−t

√
t

dt
)

= 4 sup
0⩽x⩽1

(∫ √
βx

0
et2

dt

)(∫ √
2β

√
βx

e−t2
dt

)

⩾ 4

(∫ 1/
√

2

0
et2

dt

)(∫ √
2

1/
√

2
e−t2

dt

)
≃ .814157.

n summary, we found bβ ⩾
ηβ

4+
π
2
≜ d1 > 0 uniformly in β > 1.

β ⩽ 1: Here, we just take x = π/2 to find

π

2e
⩽
∫ π

π/2
eβ cos t dt =

∫ π/2

0
e−β cos t dt ⩽

π

2
.

Consequently, we obtain

bβ ⩾
( π

2e

)2
log

(
1 +

Zβ

2
∫ π

π/2 eβ cos t dt

)
⩾
( π

2e

)2
log(3) ≜ d2 > 0

here we used that Zβ ⩾ Z0 = 2π for all β ⩾ 0, see Lemma 5.4.
Setting c1 ≜ d1 ∧ d2, we thus deduced ϖβ ⩾ c1 uniformly in β ⩾ 0.
Let us now turn to the upper bound on ϖβ . Again, we distinguish the cases β > 1 and
⩽ 1.
β ⩽ 1: The function [0, ∞) × [0, ∞) ∋ (x, ζ ) ↦→ x log(1 + ζ/x) is strictly increasing in

oth arguments. It follows

bβ ⩽

(∫ π

0
ecos t dt

)2

log

(
1 +

Z1

2
∫ π

0 ecos t dt

)
≜ d1.

β > 1: Using Lemma 5.4 and the lower bound from (5.6), we obtain

log

(
1 +

Zβ

2
∫ π

x eβ cos t dt

)
⩽ log

(
1 +

πe2β

√
2(1 + cos x)

)
⩽ 2β+log

(
1 +

π
√

2(1 + cos x)

)
or x ∈ [0, π). Invoking the upper bounds (5.7) and (5.8) one has

bβ ⩽ 32 +
16
β

√
1 + cos x log

(
1 +

π
√

2(1 + cos x)

)
⩽ 32 + 16

√
2 log

(
1 +

π

2

)
≜ d2.

e choose c2 ≜ 16(d1 ∨d2) to establish the upper bound on the Logarithmic Sobolev constant.
This finishes the proof of the first part of the theorem. Similar arguments establish the

sserted upper bound on the Poincaré constant. We leave the details to the reader. □

We conclude the article with the elementary integral bounds employed in the preceding
proof.
17
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Proof of Lemma 5.5. We first note that the substitution y = cos t gives∫ π

x
eβ cos t dt =

∫ cos x

−1

eβy√
1 − y2

dy. (5.9)

The denominator can be bounded by
√

1 − y2 ⩽
√

2(1 + y), y ∈ [−1, 1]. We use this and the
ubstitution z = β(1 + y) to find∫ π

x
eβ cos t dt ⩾

1
√

2βeβ

∫ β(1+cos x)

0

ez

√
z

dz (5.10)

or all x ∈ [0, π]. This is the lower bound (5.4). A similar computation establishes (5.5).
Let us now turn to part (ii) of the lemma. We first observe the elementary bound

2
√

r ⩽
∫ r

0

ez

√
z

dz ⩽ 2er (1 ∧
√

r ) (5.11)

for all r ⩾ 0. Applying this to (5.10) immediately yields the lower bound in (5.6). For the
upper bound, we have to distinguish two cases. Let us first assume x ∈ [π/2, π]. Then using

1 − y2 ⩾
√

1 − |y|, y ∈ [−1, 1], for the denominator in (5.9) followed by the substitution
z = β(1 + y), we arrive at∫ π

x
eβ cos t dt ⩽

1
√

βeβ

∫ β(1+cos x)

0

ez

√
z

dz ⩽
2eβ cos x

√
β

(
1 ∧

√
β(1 + cos x)

)
(5.12)

here the last step used (5.11). This establishes the upper bounds in (5.6) and (5.8) in this
ase.

If x ∈ [0, π/2), we first follow the same chain of manipulations as before – but now with
he substitution z = β(1 − y) – to find∫ π/2

x
eβ cos t dt ⩽

eβ

√
β

∫ β

β(1−cos x)

e−z

√
z

dz ⩽
2eβ cos x

√
β

here we used
∫

∞

r e−z/
√

z dz ⩽ 2e−r for all r ⩾ 0. Combining this with (5.12), we can deduce
the upper bound in (5.6):∫ π

x
eβ cos t dt ⩽

2
√

β
+

2eβ cos x

√
β

⩽
4eβ cos x

√
β

.

If, in addition, β > 1, then certainly (1 ∧
√

β(1 + cos x)) = 1 and (5.8) follows.
For (5.7), we compute analogously∫ x

0
e−β cos t dt ⩽

2
√

βeβ cos x
, x ∈ [0, π/2],

∫ x

π/2
e−β cos t dt ⩽

2
√

βeβ cos x
, x ∈ (π/2, π],

rom which the asserted upper bound easily follows. □
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