
Stochastic Processes and their Applications 42 (1992) 49-72 

North-Holland 

49 

Multivariate subexponential distributions 

Daren B.H. Cline” 
Department of Statistics, Texas A&M University, College Station, TX, USA 

Sidney I. Resnick”” 
Department of Operations Research, Cornell University, Ithaca, NY, USA 

Received 15 October 1990 

Revised 13 February 1991 and 20 February 1991 

We present a formulation of subexponential and exponential tail behavior for multivariate distributions. 

The definitions are necessarily in terms of vague convergence of Radon measures rather than of ratios 

of distribution tails. With the proper setting, we show that if all one dimensional marginals of a 

d-dimensional distribution are subexponential, then the distribution is multivariate subexponential. 

Known results for univariate subexponential distributions are extended to the multivariate setting. Point 

process arguments are used for the proofs. 
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1. Introduction 

A one-dimensional subexponential distribution is defined by the property that the 

distribution tail is asymptotically equivalent to the tails of the convolution powers 

of the distribution. The class of one dimensional subexponential distributions has 

proven useful in a variety of contexts where the subexponential property provides 

a necessary and sufficient condition for some sort of tail equivalence. (See, for 

example, the surveys by Embrechts, 1985; Bingham, Goldie and Teugels, 1989, 

pp. 429-432, and the references therein.) Tail equivalence is a useful property because 

for instance when a distribution is in a domain of attraction (either in the sense of 

extreme values or of partial sums of i.i.d. random variables) any tail equivalent 

distribution will also be in the domain of attraction and the normalizing constants 

will be the same (cf. Resnick, 1971). Our goal is to see what sensible generalizations 

of these concepts are possible in higher dimensions. 
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In one dimension, the definitions are as follows: a distribution function F on [w 

is in the class Z(a) for cr 3 0 if its tail F = 1 - F satisfies 

(1.1) 

and the distribution F is in the class Y’(a) if FE Z(a) and 

lim F* F(x)=D<a;. 
r-a F(x) 

(1.2) 

The constant D is known to equal 2 5 e”“F(dx), which was proved for the case 

F(0) = 0 by Chover, Ney and Wainger (1973) and by Cline (1987) and extended to 

the case that F concentrates on [w by Willekens (1986). When F(0) = 0 and D = 2, 

(1.2) implies (1.1) with (Y = 0 (Chistyakov, 1964) and in this case the class Y(0) has 

been called the subexponential class. For our purposes, it is not natural to restrict 

distributions to [0, a). Examples include the log normal, generalized inverse 

Gaussian, Pareto and distributions with tails of the form kxy ee”, O<p < 1. 

For d-dimensions (d 2 1) we propose the following definitions. Let 

E = [-co, w]~\{-co} 

be the compactified Euclidean space punctured by the removal of the bottom point. 

Relatively compact sets are thus those which are bounded away from -co. Let v be 

a Radon measure on E such that: 

(a) uf0. 

(b) Each one dimensional marginal (1 d is d), 

V,( .):= U([+Z, co]Zm’ x (.) x[-03, coy _‘) 

(where we interpret [-a, CO]“X A = A) has the property v,((x, ~1) > 0, for all x E R. 

Also let b(t) = (b,(t), . . , b,,(t)) b e a function satisfying b,(t) + ~0 as t+ 00 for 

i=l,..., d. For a distribution F on Iw” we say FE -ip( v; b) if, as t + ~0, 

tF(b(t)+.): v (1.3) 

where ‘hi’ denotes vague convergence of measures on E and v satisfies (a) and (b) 

above. We say the distribution F is in the class .Y( V; b) if FE 2’( v; b) and 

tF* F(b(r)+.)& Y”) (1.4) 

for some Radon measure v(“. (This will entail v(” satisfies (a) and (b) above and 

thus that F * FE 2!( v’~); b).) In Section 2 we show that Y”) = 2~ * F. 

The formulation of the multivariate subexponential property in terms of vague 

convergence of measures rather than convergence of distribution functions is advan- 

tageous because, first of all, multivariate distribution functions are much more 

awkward to deal with than are one dimensional distribution functions and, secondly, 

vague convergence of measures allows access to point process techniques for proving 

vague and weak convergence (Resnick, 1987). 
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Pick x > --CO and continuous functions with compact supports on E and which 

approximate the indicator of a set of the form (x, 001 x [-a, a]d-l. By inserting 

these functions into the vague convergence given in (1.3) and (1.4) we may deduce 

marginal vague convergence. Thus, at continuity points of the limit 

!~~ tFi(X+ hi(t)) = Vi(X) := Yi((X, co]) (1.3’) 

and 

!i+? tF, * F;(x+b,(t))= vj2’(x):= vl”((X,q, (1.4’) 

where F, and vi are the ith one-dimensional marginals of F and V, respectively. 

From Bingham, Goldie and Teugels (1989, Theorem 1.10.3; cf. also de Haan, 1970; 

Feller, 1970; Resnick, 1987, Proposition 0.4) we have that (1.3’) implies Fi(lOg x) 

is regularly varying with some index -q, (Y, 3 0. That is, (1.3’) implies, for x E [w, 

lim fi(t+x) _aX 
,‘cc Fi(f) =e I (1.9 

so that F, satisfies (1.1) and F, E Z(q). Also, we have for X,, X2 independent with 

distribution F, that 

F;*F;(x)~P[X,+X,~x,X,s~x]+P[X,+X,~x,X,~~x] 

I 

x/2 
= 2 F;(x-s)F,(ds) 

-cc 

and therefore 

I 

(x+b,(t))/2 
tF, * F;(x+b,(t))s2 tE;(x-s+bi(t))Fi(ds). 

--co 

If (1.4’) holds, then by Fatou’s lemma, 

I 

cc 
lim tF, * Fi(x+bi(t))a2 Pi(X_S)Fi(dS)=2Vi * F~(x), 
1’00 --oc 

where vi * F,(x) := vi * Fi( (x, a]). Since we assumed iii(x) > 0 for x E R and since 

lim,,, tFi * Fi(x + bi( t)) = Vi”(x) at points of continuity, we conclude 1$2’(x) > 0. 

From (1.4’) we get therefore that Fi * Fi(lOg x) is regularly varying, and since bi( t) 

is the same in both (1.3’) and (1.4’) we conclude that for some constant D > 0, 

Fi * F,(t)-DDl’,(t) 

and hence that (1.2) holds. Thus we infer the important fact that (1.3) and (1.4) 

imply that each marginal distribution F, satisfies (1.1) and (1.2) for some (Y, 20. 

We will write F, E T(a;), and F, E Y(q) for the marginal properties. The purpose 

of Section 2 is to prove that the converse is true in the sense that if (1.3) holds and 

each marginal F, satisfies (1.2), then (1.4) holds. 

We now present a slight elaboration of the previous discussion, showing that our 

formulation subsumes the univariate definitions. We make use of results to be proven 

in Section 4. 



52 D.B.H. Cline, S.I. Resnick / Multivariate .subexponentiality 

Proposition 1.1. (i) FE T( v; 6) for some b implies F, E Z(a,) for each i and the latter 

is true if and only if (1.3’) holds. 

(ii) FE 2’( v; b) and GE Z(p; b) for some u, t_~ and b implies 

,im <(t) Y,(O) -=- 
I-+= G,(t) t-%(O) 

for each i. 

(iii) FE Y( v; b) for some b implies F, E Y’(a,) for each i and the latter is true if 

and only tf both (1.3’) and (1.4’) hold. 

Proof. (i) We have already pointed out that (1.3) implies (1.3’) and that (1.3’) implies 

F, E .Z(oi). Conversely, if F, E ,ip(oyi) we let g(t) = l/F,(t). The function g is right- 

continuous and its left-continuous version g-(t) = sup,,,g(x) satisfies 

F(t) 
1=suplim~~lim-. 

gm(t)<l 

F -0 l-x F,(t--F) ‘-m g(t) . 

Let g’(t) = inf{x: g(x) 2 t}. By Lemma 4.l(iii), 

lim tF,(g’(t)+ u) = lim 
F,(g’(r)+u) r _,I,, 

,+in 1-r F,(g’(t)) g(g’(t))=e ” 

So F, E _ip(o,) implies (1.3’) with b, = g’. 

(ii) For each i, 

!im tc(b,(t)) = F,(O) 

and 

f;: tCi(b,(t)) =/--k(O). 

The result follows as a consequence of Lemma 4.l(iv). 

(iii) Suppose FE Y( v; b). This means FE .Z( v; b) and F * FE 2’( vt2’; b). By (ii), 

lim F, * F,(t) i?*‘(O) 
,+a? E.(t) =- &(O) . 

(1.6) 

and F, E 9( a,). 

Next, suppose (1.3’) and (1.4’) hold. By (i) this is true only if F, E Z(q) and 

F, * F, E ~(LY,). Since the same norming sequence bi( t) is used, Lemma 4.l(iv) gives 

the further implication that (1.6) holds. That is, F, E Y(cu,). 

Finally, suppose F, E Y(ai). Then F, E 2’(ai) and choosing g and b, as in part (i), 

(1.3’) holds. Also, (1.4’) holds as an immediate consequence of (1.2) and (1.3’). 0 

In case (Y, > 0 for each i, Y can be considered as the exponent measure of a 

multivariate max-stable distribution. De Haan and Resnick (1977), Cline (1988) 

and Omey (1989) provide characterizations of such measures. 
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When LY~ = 0, for all i = 1, . . . , d, the form of the limit measure v in (1.3) is 

distinctive. From (1.5) there exists ci > 0 such that for all x E [w, 

vi((x, co]) = lim tF,(x+ b,(t)) = ci. 
,-m 

Thus v,(R) = 0 and 

( 

d 

Y ,p, [--CO,~]i-‘XRX[--OO,co]d~i 

so that v concentrates on 

E .- E .- \( ; [-ccp]i-‘XRX[--cO,CO]d-i ={-OO,cQ}d\{-co} 
i=, ) 

That is, v concentrates on the 2d - 1 points whose coordinates are *cc but not all 

of whose coordinates are --oo. Thus v is of the form 

p) := c W&, . (1.7) 
at= 

where 

WC7 = v(A,, x . . * x A,,) = lim tF(A,, x. . . x A,, + b(t)) 
,-ZC 

and 

A = (l,aJl, iffl=co, 

C [-co,l], ifa=-m. 

If in addition (1.4) holds, then the limit measure vC2) in (1.4) (we will show) is equal 

to2v*F=2v.Weemphasize(1.7)isforthecasea,=Oforalli=l,...,d. 

In case some, but not all, of the ai’s are zero, the limit measure v cannot in 

general be expressed as a mixture between the two types (see Section 3). 

Additional special cases of interest are when (1.3) holds with F being a product 

measure and when (1.3) holds with F concentrating on {x: x(l) = . . . = xcd)}. These 

cases are taken up in Section 3. 

In Section 2 we prove that if FE 2?( v) with marginal properties (1.4’), then 

FE Yp( u) and that (1.4) holds. The limit measure vC2) in (1.4) is shown to satisfy 

v(*) = 2v * F. 

The mode of proof uses a point process transform technique which equates tail 

properties of measures with weak convergence of a sequence of induced point 

processes to limiting Poisson processes. In Section 2 we also show that for multivari- 

ate subexponential distributions, domains of attraction are preserved by taking 

convolution powers. 

In Section 3 we consider a variety of applications, extensions and examples. We 

show that if F is a multivariate distribution which is regularly varying at co (Resnick, 

1987; Omey, 1989) then FE Y( v(O); b) where v(O) is specified in (1.7). Also, we prove 
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that, if FE ,Ce( V; b) and F”” E Y( v(~‘; b) for some n and Y(“‘, then FE Y(V). Finally 

we consider compound distributions and some specific examples. Section 4 presents 

a discussion of the normalizing function b(t) and proves lemmas used elsewhere 

in the paper. 

2. Marginal and global properties; domains of attraction 

In this section we show that an Y(Y; 6) distribution F whose one dimensional 

marginals F, are in Y(cui), 1 G id d, is also in Y( V; b) and that the limit measure 

Y (*I in (1.4) is 2u * F. 

First a word about notation. Operations on vectors are to be interpreted com- 

ponent-wise. Thus if x, = (x,,r, . . . , x,+) E lRd, n = 1,2, we have 

-6 = ((x,,l)a,. . . , (%,d)n), 

~,+~2=(~,,1+~2,,, . . ,Xl,d+X2,d), 

XI ” x2 = txI,l ” x2,I,. . . > Xl,d ” X2.d)> 

x1x2 = (XI,P2,1, . . . , X,,dX,,d) 

and 

x1 -=(‘” Xl,d 
> . . . 3 

x2 x2, I %,d 1. 

Similarly, x, d x2 means x,,; G x2,,, i = 1,. . . , d, and if x, s x2 we write [x,, x2] = 

{x:x~~xGx,}. We write -co=(--CO ,..., --CO) and co=(co ,..., co). 

We proceed by means of a point process transform technique (Resnick, 1987, 

1986; see also Davis and Resnick, 1985a,b, 1986, 1988; Kallenberg, 1983). Suppose 

E’ is a LCCB space (i.e., locally compact with a countable basis). We set M,(E’) 

equal to the space of point measures on E’ and metrize M,(E’) by the vague metric 

(denoted p). A point measure on E’ is a Radon measure on E’ of the form xi F,, 

wherexiEE’andforaBorelsubsetBcE’wehave&,(B)=1ifxEBande,(B)=O 

otherwise. A Poisson process on E’ with mean measure p will be denoted PRM(,u); 

i.e., a Poisson random measure with mean measure p. Recall from Section 1 that 

we are primarily interested in the LCCB space E = [-CO, ~]~\{-m}. Lebesgue 

measure on [0, ~0) will be denoted with A. 

Proposition 2.1. Let F and G be probability measures on IWd and let v and t_~ be Radon 

measures on E satisfying (a) and (b) of the de$nition of the multivariate class Z’given 

inSection 1. Supposea(t)EIW’:,b(t)EIWdarefunctionssuch thatb(t)+m anda( 

y-’ E (0, aId and suppose 

tF(a(t) .+b(t))A V, (2.1) 

tG(a(t) .+b(t)): /.L, (2.2) 
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on E. Suppose also, for i = 1,. . . , d that the marginals of F and G satisfy: Fi E y(oi), 

G, E Y(o,)_ Let {X,, k 3 1) be i.i.d. random vectors with distribution F and let { Yk, k 2 

l} be i.i.d. random vectors with distribution G and independent of {X,}. Then as t + m, 

: e~k,r,(~l+y,~h(r)),o(,)~jPRM(A x (u * G(y-’ . )+F * Fty-’ . 1)) (2.3) 
k=l 

in M,([O, m) x E) and so equivalently (Resnick, 1987, Proposition 3.21) 

tF*G(a(t).+b(t))L:,*GC(y-‘.)+p* F(y-I.). (2.4) 

Remark. The following are the cases of interest: 

(a) FE~?(u; 6) and GE~?(P.; b). Then a(t)=1 and y=l. 

(b) F and G are regularly varying so that a(t) = b(t). 

(c) F and G are in a type III multivariate domain of attraction and each marginal 

F, and Gi is in the univariate domain of attraction of A(x) := exp( -e-“). x E [w. Then 

assuming also that F,(x)<l, G,(x)<1 for all XE[W, we have F,ED(A)nY(a,), 

G,sD(A)nY(a,) and a(t)+y-‘=a-‘. 

Proof of Proposition 2.1. We proceed in a series of steps which are somewhat 

analogous to those in Goldie and Resnick (1988). Recall first that (2.1) and (2.2) 

are equivalent respectively to 

and 

in M,([O, co) x E) (Resnick, 1987, p. 154). 

For what follows we need the following variant of Proposition 3.21 in Resnick 

(1987). 

Lemma 2.2. Suppose E, and E, are LCCB spaces and for each n, {&, Wnk, k 2 l} 

are i.i.d. random elements of E, x E, defined on thesameprobability space. Thefollowing 

statements (a), (b) and (c) are equivalent: 

(a) For all compact A and B, 

nP[Z,,, E A, W,, E B] + 0, 

nP[W,,E .]&pcLz. 

(b) Ln M,(E,) x M,(E,), 

(2.7) 

(2.8) 
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where the limits are independent Poisson random measures with mean measures F, 

and pz, respectively. 

(c) In M,([O, a) x 6) X M,([O, a) X b), 

(2.9) 

where the limits are independent Poisson random measures with mean measures A x p, 

and h xt~, respectively. 

Proof. Letf, E C,(E,),fz E C,(E,). Taking joint Laplace functionals at (fi,f;) shows 

that (2.8) is equivalent to 

lim (E e -(l,(z,,,l+1,( rv,E,,) n 
1 n+,x 

(l-em’;)dp,+ (1 - e~-‘z) dpz . 
El 3 

The left side of (2.10) is rewritten as 

lim l- 
( 

nE[l _e-‘,‘=,,“-“‘w!,,’ I" 
n-a3 n > 

and so (2.10) is equivalent to 

lim 
fl’W 

(l-e- ‘~(Z)-f~(*‘))nP[Z,,, E dz, W,,, E dw] 

= I (l-e-‘l)dp,+ 
I 

(1 -e-“) dpz. 
El E2 

Let Ai be the support of J;, i = 1,2. Decompose the left side of (2.11) as 

(2.10) 

(2.11) 

= I, + II, + III, + IV,. 

Suppose (a) holds. Then 

I, = 
i 

(1 -eY’l”‘)nPIZ,,, E dz] 
A, 

- 
I 

A xA (1 -e”l’Z’)nPIZ,,, E dz, W,,, E dw]. 
I 2 

Since 1 -exp{-f,} i 1, the second term is bounded above by nP[.Z,, E A,, W,,, f A,] 

whose limit is zero. So 1, + p,(f,). Similarly, II, + &fz), III,, + 0 and IV, = 0. This 

verifies (2.11). 

Conversely, suppose (2.11) holds so that 

(2.12) 
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Then applying (2.12), 

lim nE[(l -e -fJ=J)(l _e-&‘Y,J)] 
n-m 

= 0, 

for any f; E C,(E,), i = 1,2 and this is equivalent to (a). 

We have verified, therefore, that (a) and (b) are equivalent. The rest of the proof 

is similar to the proof of Resnick (1987, Proposition 3.21). 0 

Proof of Proposition 2.1 (continued). We now apply Lemma 2.2 with 

where both z,k and w,k live in E X [-Co, ~1~. For A,, A, compact in E, AZ, A, 

arbitrary, 

lim tP 
K 

-%-b(t) yk 

flee 
att> 9~) tn,xA,,( “,p:“,$) tA,xA,] 

S lim tP 
x,-b(t)EA yk-b(t)EA 

Lr 2 
f-rcc 

a(t) a(t) 1 
= fim v(A,)p(AJ/ t = 0. 

So (2.7) is satisfied. Furthermore since & and Yk are independent and since 

a(t) + y-l it is clear 

tP x,-b(t) yk 

a(t) - E ’ a(t) ) I 

. 4 vxG(y-‘.) 

and 

tP K Yk-b(t) x, . a(t) ’ a(t) > 1 E 43 /_L x F(f’ *). 
So it follows from Lemma 2.2 that as t + ~0, 

( 
F &(klt,(XI-b(r))lo(r),Yl/a(l)), z &~k/r,(Y,-b(t))/a(r),X,/o(t)) 

k=l k=l ) 

* 
( 

; “( rbii”,yYL 13 T EbJi*‘.rXi 1 
) 

(2.13) 

in (M,([O, ~0) x E x [-00, CO]~))~ where the limit consists of two independent Poisson 

processes with mean measures A x v x G(y-’ *) and A x p x F(y-’ .), respectively. 

Because addition is vaguely continuous we get from (2.13), 

:I E(k/r,(XI-b(r))l=(r).yl/n(r))+E (klt,(Y,-b(r))/a(r),X~/a(t)) 1 
k=l 

(2.14) 
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in M,([cc, co) x E x [-co, a]<‘) where the limit is Poisson with mean measure 

hxvxG(y~‘~)+hx~x~(y~‘~)=hx(vxG(y~’~)+~x~(y-I.)). 

Now let lv’, l:? be the indicators of the events 

[ 

XL -b$ _81 c 
a(t) - 3 [ ’ 

wbw<_ol c 
a(t) i 1 ’ 

respectively, and restrict the state space in (2.14) to the compact set [0, T] x 

[-a, -011’ x [-a, ml“. With the state space so restricted we may add the X and 

Y components in (2.14) to get (via Proposition 3.18 of Resnick, 1987) 

(2.15) 

Call this latter limit NH. As 0-a we have, almost surely, 

and so by Billingsley (1968, Theorem 4.2) we need to show for 6>0, 

lim lim sup P[p( N,,H, N,) > 6]= 0 
,,+<x ,_* 

(2.16) 

where p is the vague metric and 

For (2.16) it is enough to prove that for any h E C,(E) and any n > 0, 

lim lim sup P 
x/,+ Y,-b(t) 

(l:“+l:l’) 
H-w ,+x a(t) 

X,-t Y,-b(r) 
- a(t) >i 1 >v =o. 

The difference referred to in (2.17) is bounded by 

(2.17) 
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and so the probability in (2.17) is bounded by 

Suppose the support of h is contained in [ -00, --Ml]‘. Then the previous probability 

is bounded by 

xk+ Yk-b(t) 

a(t) ) 1 >o n([l jil’=O=l’,2’]“[l(kl)=l=l(k2)]) 

xk+Y,-b(r)<_M1 ’ I[ -&-b(t) a(t) . 
n 

Yk-W)<_oI 
a(r) a(t) . II 

+tTP Xk+Y,-b(t)<_Ml ’ 
a(t) . I[ n x,-b(t)<_o1 ' 

a(t) . I[ n 
Yk-b(t)<_81 ' 

a(t) . II 
= I,, + IL,,. 

Now 

lim sup II,,, s lim sup tTP 
x,--b(t) ’ 

G-01 n I[ K-b(t)<_o1 = =. 
r-m ,+LX a(t) a(t) . II ' 

because of (2.1), (2.2) and the independence of xk and Yk. 

As for I,,Or it is dominated: 

I,, s tT 5 P 
xk,i+ yk,i-b,(f)>_M 

ai 

2 

i=, 

xk,i-bt(t)<_o Yk.i-bi(t)<_B 

a,(t) . ’ a,(r) . I . 

Once bi( t) > 26 - M, the ith term within this sum is bounded by 

p xk,i+ yk,i - h(f) 
dt) 

>-M,(~&X-M] 
xk,,+yk,,-bi(t)>_M 

a,(t) I 
_p xk,i+ yk,, -hi(t) > _M xk,i 

-se-M 

a,(t) ’ a,(t) I 

xk,r+ Yk,t-hi(d)> _M yk,s 
-se-M. 

ai(t) ’ ai(t) I 
By Lemma 4.l(iv) and by the exponential tails of vi and pi, 

Iim G,(t) Pt(O) Pi(-M) ~=- =p 
f-CC F,(t) fii(0) u,(-M)’ 

(2.18) 

(2.19) 
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where the limit is actually independent of M. Using a standard result (cf. Embrechts 

and Goldie, 1982), the first term on the right in (2.19) satisfies 

lim tP 
xk.i+ yk,t -b,O>_M 

,+aj a;(t) I 

=lim F, * G(h(t)-4t)W - 

r+uj F,(b,(t)-a,(t)M) 
tK(bAt) -a,(t)M) 

cn 
= 

-!X 

CT 

LIZ C;(-M) 
i 

e”,‘G,(dy)+$,(-M) 
--CT i 

‘x 

e”c”E;(dx). (2.20) 
-0z 

By Fatou’s lemma and the fact that E;, Gi E 9(ai), the two terms subtracted in 

(2.19) satisfy 

lim inf tP 
Xk,,+ Yk,i-bi(t)>_M &se_M 

,-rm a,(t) ’ a,(t) I 

Xk,r+ Yk,,-hi(t) Y +tp 

a;(t) 
>-M,-. k,’ <o-M 

a,(t) I 

I 
a,(r)(H-M) 

= lim inf t%&(t) -a,(t)M-y)G,(dy) 
1-m -X 

a,(r)(H~M) 
+ 

I 
tc;(b,(t)-a,(t)M-x)F;(dx) 

-3; 

I 

yJ’(H-M) 

3 fii(-M) e”,‘Gi(dy) 
-I 

+/L--M) 
I 

y;‘(HmM) 

e”z”F, (dx). (2.21) 
--x, 

Combining (2.20) and (2.21) into (2.18) and (2.19) and letting B+a yields the 

desired result that 

lim lim sup I,., = 0. 
0-r ,+z 

Cl 

Corollary 2.3. Suppose FE 6p(v; b),G E Lf(pu; b). Zf also F, E 9(q), Gi E Y(a;), i = 

1 ,... 3 d, then as t + a, 

F &~k,r,Xi+Yi--h(r~~~PRM(~ X(v * G+P * F)) 
k=l 

so that 
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Proof. Set a(t) = 1 in Proposition 2.1. q 

Corollary 2.4. Suppose FE d;p( V; b) and the marginals of F satisfy F, E L/‘(cui), i = 

1 ‘., d. Suppose also that {X,} and { Yk} are independent i.i.d. sequences with common 

distribution F. Then 

k=l 

so that 

tF * F( . + b(t)) 4 2~ * F. 

ThusFEY(v,b) andv’*‘=2v*F. 

Proof. Set F = G, a(t) = 1 and apply Proposition 2.1. 0 

The next result shows how domains of attraction in extreme value theory may be 

preserved by convolution. 

Corollary 2.5. Suppose Fand G are in a domain of attraction of a multivariate extreme 

value distribution (Resnick, 1987) and that (2.1) and (2.2) hold with V, t_~ the exponent 

measures of multivariate extreme value distributions with marginals of the type A(x) = 

exp{-epx}, x E Iw. Suppose further that F, E y(ai), Gi E L?‘(q), i = 1, . . . , d. Then as 

t + ~0, (2.3) and (2.4) hold so that F * G is in the domain of attraction of the multivariate 

extreme value distribution 

exp{-v* G(cw~‘[--oo,~]~)--~ * F(C’[-co,x]‘)} 

which also has marginals of the type A(x). 

Proof. Apply Theorem 2.1 with y = a. That the marginals of the limit distributions 

are of type A(x) follows from Resnick (1987, Proposition 1.19). 0 

3. Examples and extensions 

In this section we provide several examples in addition to the Type III domain of 

attraction example given above. We also extend known results about the univariate 

classes Y(cq) to the multivariate setting. 

A simple example is the case where the components of X are independent or, 

more generally, for 1 s i #j < d, 

lim tPIX,>xj+bi(t),Xj>x,+bj(t)]=O. 
,+u? 

One may easily show that F, E Z’(cq) for each i implies FE Z( V; b) where 

F(u):= v([-co, u]‘)= t emarul. 
i=L 
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Note that v therefore concentrates on the axes, 0, = {u: U, > -co, U, = -00, j # i}, 

i=l,...,d. 

At the other extreme, suppose X, =. . . = X, almost surely. Then F, E 2?(a,) 

implies FE T( V; b) where v has all its mass on the ray {rl: r E (-CO, 001) and 

C(U) = e-n,(A,YJ. 

We next present an example which is a mixture of the cases a, = 0 and (Y~ > 0 and 

also a mixture of independence and total dependence. Let X, and Xl, be independent 

exponential( 1) random variables and let X2 = exl with probability 6 and X2 = ex; 

with probability 1 - 6. A little computation shows the joint distribution of (X,, X2) 

is in the class 2?( V; (log t, t)) with limiting measure concentrating on (-a, CC) x 

{-a} u r-00, 00) x {CO} and so that 

Y((x,,~~)X{--oO})=lim tP[(X,-log t,X2-t)E(x,,CO)X[--03,x2]] 
,+rx 

and 

=e -“I-S(l Aemxl) 

4(x,, a) x(04) =f& tP[(X,-log t, X*- t)c (XI, 00) x (X,,~ll 

= 6( 1 A ee”l) + (1 - 6)1f_,I(x,). 

This example shows that when some but not all of the exponents CZ, are zero, v 

is not generally expressed as a mixture of the two pure types of exponential measures. 

Regular variation 

A distribution F on rW$ has regularly varying tails on the cone [0, ~]~\{0} with 

limit measure p (written FE %(p; b)) if there exists a sequence b(t) and a Radon 

measure p on [0, ~]~\{0}, satisfying (a) and (b) of the introduction, such that 

@(b(t) .I -h PC . 1 (3.1) 

on [0, CO)~\{O}. (cf. de Haan and Resnick, 1977; Resnick, 1987; Omey 1989.) 

We extend the well known univariate result that regular variation implies sub- 

exponentiality. 

Proposition 3.1. Suppose FE %(p; b). Dejine A,, = (1,03), A_, = (-CO, l] and let 

V(O) to be the discrete measure on E, having all its mass on E := {-CO, CO}~ \{ -CO} given 

in (1.7) and with weights 

~‘~‘({a}) = p(A,, x . . . x A,,), CT E IZ 

Then FEY(u , (“). b) and F * FE %(2~; b) n 972~‘~‘; b). 

Proof. Regular variation of F implies regular variation for the probability tails of 

all subvectors. (To see that i dimensional marginals are regularly varying, take a 
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sequence of functions which are continuous with support compact in E and which 

approximate the indicator function of (x,, CO] X. . * x (xi, 001 x [-CO, coldpi and insert 

these into the definition of multivariate regular variation.) Thus it suffices for what 

follows to take u to be a finite vector. From (3.1) and the locally uniform convergence 

implicit in regular variation, 

1:: ti++b(t))=h& tF(b(t)(l+(ui/b,(t))i)) 

=/i(l) = c .yc+ 
vtE 

This being so for all subvectors as well, it follows that FE Z( V(O); b). 

The argument of Resnick (1986, Proposition 4.1) is easily modified to allow for 

vector scaling. Furthermore it is valid even if some (Y~ = 0. See Resnick (1986, Section 

5). Hence, F * FE ?72(2~; b) and 

f\: tF * F(b(t)u) =2/i(u). 

Applying this to the above argument, F * FE T’(2v’“‘; b) and hence FE Y( v(O); b). 

And applying the last conclusion to F * F, we also have F * FE Y(2v’“‘; b). q 

Multivariate stable laws and Type I max-stable laws are examples of such distribu- 

tions. 

There exist, however, class LZ distributions which do not have multivariate regu- 

larly varying tails even though the marginal tails are regularly varying. As an example 

of this, consider F such that for xi 2 0, 

P[X, > X,, x, > x2] = 
1+ y sin(log r(x)) sin(n4(x)) 

r(x) 
9 (3.2) 

where r(x)=l+x,+x,, 4(x)=(x,-x~)/T(x) and O<I-y\si2. The tails are 

asymptotically Pareto: 

P[X,>x]-x-‘, x+co. 

One may easily show that 

lim tP[X,>x,+t]=l, i-1,2, 
t-CC 

and 

lim tP[X,>~,+t,X~>x,+t]=$. 
r-u3 

But tP[X, > t, X2 > ct] does not generally converge. Since the marginals are subex- 

ponential, this distribution is in fact multivariate subexponential. 

To show that marginal membership in Z’(a,) does not imply membership in 

LY( V; b), consider the related example 

p[x , x, x > x I = I+ Y sin(log r(x)b&d(x)) 
I 92 2 

r(x) 
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Again, the marginals are Pareto. If this distribution is to be in Z( v; b) then we 

could choose b(t) = (c, t, c2t) for some ci > 0. But in this case, tP[X, > c, t, X2 > c,t] 

converges only if COS($~~(C, t, c,t)) + 0, that is, only if either c, = 0 or c2 = 0. 

Higher order convolutions 

Much of the past effort on the univariate class Y(a) has been directed at the behavior 

of F”” and of the distribution of a randomly stopped sum (cf. Chover, Ney and 

Wainger, 1973a; Embrechts and Goldie, 1982; Embrechts, Goldie and Veraverbeke, 

1979; Cline, 1987). These results may now be extended to the multivariate case. 

Proposition 3.2. Suppose FE 2?( v; b). The following are equivalent: 

(i) FE.!?(v; b). 

(ii) F*” E Z(nv * F*‘“-“; b) for some n 3 2. 

(iii) F”” E Y( v (n); a) for some n 2 2, some vcn’, some a. 

When these hold, they hold for all n and with a = b, v’“) = nv * F*‘“P”. 

Proof. (i)+(ii). For each n, (ii) follows by application of Corollary 2.3 and 

induction. 

(i)+(iii). Since by the above F*” E 2?( v(“‘; b) and F*‘” E .2’( v(““; b) for some 

v(“’ and v (“‘), then F”” E Y( v(“); b). 

(ii)=+(i). Since FE 2?( v; b) is assumed, we only need to show that F, E Y(a,) for 

each i. We have 

fiir tF,(l$(t)) = C,(O) 

and 

*n fiir tF (h,(t)) = nv; * FFfl-’ (O)= (I 

n^l n-1 
n e”z”F,(dx) 

> 
I;;(O). 

-x 

By Proposition l.l(ii), 

According to the univariate theory (e.g., Cline, 1987, Corollary 2.11, which is valid 

even if E;(O) > 0), this is sufficient to conclude F, E Y(cy,). 

(iii)+(i). Again, it suffices to show Fi E Y(ayi) for each i. According to Proposition 

l.l(iii), F:“E Y((w,). This implies F, E Y(LY,) (cf. Cline, 1987, Corollary 2.11). 0 

Note that it is necessary to specify the norming sequence b in (ii) of Proposition 

3.2. For example, the gamma(l) and gamma(2) distributions are each in the class 

2 but with non-equivalent norming sequences. Hence neither is in the class 9. 

For the following discussion on compound distributions, let {An} be a probability 

measure on {I, 2,. . .} and define A(z) =Cy==, A,z” for real z and H =I:=‘=, h,F*“, 

H’= Cr==, nA,F*” for the measure F. 
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Proposition 3.3. Let FE Z( v; b) such that F,(O) = 1 for each i, and let WI, = 

jr e*,“F,(dx). Suppose h (m, + e) < a for some E > 0 and for each i. Then the following 

are equivalent: 

(i) FE~‘(v; b). 

(ii) H E _Y( v * H’; b). 

(iii) H E 9’( vH ; a) for some vH and some a; and one of the following holds: 

(a) lim ~up,,~ tHi(bi(t)) <a for each i. 

(b) h(q+E)<CO, where q=Supi h(mi). 

(c) lim sup,,, (A,+,/A,) < infi (l/W). 

Proof. (i)+(ii). Let u E (-a, aId. For each marginal, Cline (1987, Theorem 2.13) 

gives 

lim tH,( bi( t) + ui) = lim 
Ht(f+ui) _ 

~-t~ F;(t) 

vi(o) 
r-LX 

> 
&(O) 

= eeas”s F nA .v, * F:“-‘(O) 
n=, 

Also, 

F*“(u+b(t))c t FT”(ui+bi(t)). 
,=I 

Thus, by Proposition 3.2 and dominated convergence, 

= f nh ,v * F*“-‘(u) 
n=, 

= v * H’(u), 

whenever u E [-CO, cold, ui > --CO for each i. That is, HE Y’( v * H’; b). 

(i)+(iii). This follows by applying the above implication to each of H and 

H * H = A’(F). 

(ii)+(i). As in the corresponding argument for Proposition 3.2, (ii) implies 

l im +f) 
-= A’(m,)vi(0) 

‘-‘x2 Fi(f) 

which is sufficient (Cline, 1987, Theorem 2.13) for F, E Y(a,), every i, and hence 

for FEY’(v; b). 
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(iii)+(i). The assumption (iii) implies H, E 9’(a,). With one of the additional 

assumptions (a), (b) or (c), it follows that Fi E Y((Y,) for each i (cf. Cline, 1987, 

Theorem 2.13 and Corollary 2.14). Thus FE Y( v; b). 0 

Other examples 

Suppose Y - GE %(p’; b’). Then componentwise transformations will give rise to 

a variety of examples. 

For one such example, suppose G; E RV,, with pi > 0 and Y, > 0 a.s. and let F 

be the distribution of 

X=(CjlOg k;)j, Ci>O. 

Here GE %!(p’; b’) is equivalent to FE 2’(p; b), for some p and b, and p has 

exponents a, = p5/ci > 0. Thus F is in Y(v; b) if and only if every F, E Y(ai). Cline 

(1986) gives examples both of F, E 9’(ai) and of F, $ Y((Y~). For instance, if e”,‘F;( t) E 
RV, for some real yi, then FE 9’(p; b) if and only if 

I 

SC 
e”,“Fi(dx) < 00 for every i. 

-co 

As another example, again suppose Y - GE %(p’; b’) and let F, E Y(0) n 9(A). 

(Cf. Goldie and Resnick (1988) for sufficient conditions.) Define 

X, = F;( Gi( y,)). 

By de Haan and Resnick (1977, Theorem 4) F is in the (extreme value) domain of 

attraction of a max-stable law with double exponential (A) marginals. Since the 

marginals of F are also subexponential then F is multivariate subexponential. 

A specific two-dimensional example of this, with lognormal marginals, is for x, 3 0, 

where +z(x)=l-@((logx-~,)/a,)) and @ is the standard normal distribution. 

4. Norming sequences 

In this section we examine the norming function b(t) appearing in definitions (1.3) 

and (1.4) with the intent of describing equivalent versions. When we say two norming 

functions b,(t), b,(t) are equivalent for given distribution F, we mean that either 

could be used in the definitions of the classes given in (1.3) and (1.4). 

Let g be a nondecreasing function and define its left- and right-continuous 

versions: 

g-(t) = sup g(x) and 
XX:, 

g’(t) = $ g(x). 

We will use the left-continuous version of the inverse: 

g’(t) = inf{x: g(x) 2 t}. 
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Note that g(x) 2 t implies x 2 g’(t) and g(x) < t implies x C g’(t). We also observe 

that (8’)’ = gP. Following Geluk and de Haan (1987, p. 32), two functions 

h,, h,: [0, CO) H [w are inversely asymptotic if for every E > 0 there exists t, = to(&) 

such that for t 3 to, 

h*((l-&)t)~h,(t)~AhZ((l+&)t). (4.1) 

If h, and h, are non-decreasing then the relation inversely asymptotic means h; - h;; 

i.e., the inverses are asymptotically equivalent. We start with a lemma about inverse 

asymptotic equivalence. 

Lemma 4.1. (I) Suppose g is nondecreasing. Then g(b(t)) - t if and only if both 

g(g’( t)) - t and g’ and b are inversely asymptotic. 

(ii) Suppose g and b are nondecreasing. Ifg( b( t)) - t then b’(t) - g(t). 

(iii) Suppose g is nondecreasing. Then g(g’( t)) - t if and only ifg’( t) - g-(t). 

(iv) Suppose g,, g, are each nondecreasing. Ifg,( b( t)) - g2( b( t)) - t, then g, - g,. 

Proof. (i) b, and b, be two functions such that g(b,(t)) - t and b, and b, are 

inversely asymptotic so that for each E > 0, 

b,((l-e)t)<b,(t)<b,((l+e)t) 

whenever t is large enough. Then for some t, and all t 2 t,, 

(1-e)2t~g(b,((l-e)t))sg(b~(t))~g(b,((l+e)t))~(l+e)2t. 

Hence g( b2( t)) - t. 

The ‘if’ part is satisfied, therefore, by choosing b, = g’ and b, = b. 

On the other hand suppose g( b( t)) - t. Given E > 0 and large enough t, 

db((l -&It)) < t<g(b((l+ &It)), 

which implies 

b((l-e)t)cg+(t)db((l+e)t). 

This implies (4.1) for some to and the “only if” part follows with b, = b and b, = g’. 

(ii) One may easily show that for any F > 0, 

b((l-e)b’(t))<t~b((l+e)b’(t)), 

so that 

1 _ F = lim g(b((I - s)b’(t))) 
r-00 b’(t) 

g(t) < lim sup - 
f-m b-(t) 

< l im db((l+ &P’(t))) = 1 + e 
t+m b’(t) 

Thus g-b’. 
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(iii) If g(g’( t)) - t then, by (ii), g- = (g’)‘- g. However, the argument for (ii) 

holds equally well if we replace 6’ with the right-continuous version of the inverse, 

b:. Since g+ = (SF):, we also conclude g-g+ and hence g+-- g-. 

Conversely, note that g-(g’( t)) 5 t c g’(g’( t)). Thus g+-- g- implies 

and, since g -s gs g+, we have that g(g’( t)) - t. 

(iv) By (i), g, and g, are each inversely asymptotic to b and thus to each other. 

Therefore, g,(g;(t)) - t. By (ii) and then (iii) g, - (8;)” = g;-- g2. q 

The condition g(g’( t)) - t does not generally hold. It does hold for g = r 0 s 

where r E RV, and s is a continuous l-l function. In particular, it holds for g = l/F,, 

when F, E ~(cu,). Let 

qi(t)=F;-(l/t)== 
( > 

$q 7t) 

An immediate consequence of Lemma 4.1 is that F, E ~‘(cu,) if and only if 

tF,(q,(t)+u)+e-“1” (see Proposition 1.1). 

Proposition 4.2. Suppose FE Z( V; b). 7%en FE 2!( V; a) if and only if a is such that 

a,(t) and b;(t) are inversely asymptotic for each i = 1, . . , d. In particular, we may 

take a,(t) = qi(t/Cx(0)). 

Proof. Suppose ai and b, are inversely asymptotic for each i = 1,. . , , d. Then for 

every E > 0 there is t,, such that for all i and all t 2 to, 

a,((l-e)t)sb,(t)sa;((l+e)t). 

Thus for t 2 t, and any u E (-a, CO]“, 

t’(u+b((l+F)t))~F(u+a(t))~F(u+b((l-F)t)). 

(4.2) 

Hence 

1 
__ G(u)slim+cf tF(u+a(t)) 
l-t& 

Glimyp tF(u+a(t))S& F(u). 
+ 

This shows FE L.?( V; a). 
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In particular, let ai( t) = qi( t/ iii(O)). Since lim,,, tFi(bj(t)) = V,(O) then for large 

enough t, 

=< F.,(b,(t))<&. 
(Ife)t 

Hence a,((l-e)t)s b,(t)sUi((l+E)t), which is (4.2). 

On the other hand, if FE Z( V; a) and we let g(t) = V,(O)/Fi( t) then 

iiir t-‘g(bi(‘))=!& tp’g(a,(t))=l. 

By Lemma 4.1(i), it must be ai and b, are each inversely asymptotic to g’ and hence 

to each other. 0 

Given that FE 2?( u; b), Proposition 4.2 characterizes the possible norming sequen- 

ces a such that FE Z( V; a). However, we would like to characterize the sequences 

a such that FE .56’(~, a) for some p. At least, we want to know when bi( t) may be 

replaced with q,(cit) for an arbitrary positive ci. 

For those marginals whose characteristic exponent (Y, is positive, a characterization 

follows from a multivariate convergence of types result. 

Proposition 4.3. Assume FE 2!( u; b) and let a be such that a,(t) = b;(t) whenever 

ai = 0. Then FE 2?(p; a) for some p if and only if for each i, 

d, = lim (b,(t) - a,(t)) exists jinite. (4.3) I-02 

In this case p( .) = V( * -d). 

Furthermore, (4.3) is satisjied when ai( t) = q,(c,t) for ai > 0 and ci > 0. 

Proof. Let F1 be the marginal distribution for the subvector of those Xi’s having 

(Y~ > 0. Then F1 E x( v,; b,) for corresponding choices of Y, and bl. This is equivalent 

to saying F?(x) = F,((log x,, . . . , log xd)) E %( v,; b,) (see Section 3 or de Haan and 

Resnick, 1977). That is, FT is in a Type I multivariate extreme value domain of 

attraction. By the convergence of types theorem, therefore, we have F, E _Y?(p,; a,) 

if and only if for each i the ratio ebl~“‘/e”l~“’ converges to a finite positive constant, 

that is, if and only if 

d,i=lim (b,,(t)-a,,(t)) exists. 
t+cc (4.4) 

If, therefore, FE x(p, a), then (4.3) follows from (4.4) for each i such that cui>O 

and it follows by assumption for each i such that (Y~ = 0. 

Conversely, if (4.3) holds then by the uniform marginal convergence 

!l_ml(IF(u+a(t))-tF(u+b(t)-d)l 

Hence FE Z( v(. -d); a). 
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Finally, we know from Proposition 4.2 that FE d;p(u; b) with hi(t) = ql(t/Vi(0)). 

But for i such that (Yi > 0, we have for any c > 0, 

log c 
Jim (4i(ct)-4t(t))=~. (4.5) 

(This is again due to the fact that F,(log x) E RV,,,.) Thus for each such i, b,(t) 

may be replaced with ql(c,t). q 

Indeed, if every (Y, > 0, then F E 2?( v(. - d); q) where d, = (log 6,(0))/ai. 

In case the ai’s are zero, one may use a similar argument (convergence of types) 

when F is in a multivariate extreme value domain of attraction (see de Haan and 

Resnick, 1977). A general approach which encompasses all of these is as follows. 

Let M,, = (Vz_, X,,), for an i.i.d. sequence {X,,}. 

Proposition 4.4. Suppose there exists a sequence of vector-valued functions g,,(x) = 

(g,,(x,)), such that P[M, d is,(x)1 converges to a probability distribution H(x) with 

exponential( 1) margin&. Then for each c E [0, a)” \{O}, 

lim tF(q(ct)) = -log H((c;‘, . . , ~a’)). 

Proof. From the assumption we immediately have that for each i, 

L\% nFi(g~;(Xi))=!i_m--log P[M~icg,i(Xj)]=X;. 

By Lemma 4.1(i), it follows that 

lim nFi( qi( n/x,)) = xi. 
n-a2 

Thus, 

hn& nlF(g,(x)) -F(q((nlxi)i))l 

s lim t nJF,(g,i(xl))-F,(qi(nlxl))l 
"-=I(=, 

Hence 

= 0. 

p-5 nRq((nlxi)i))= p_& -log P[M, ~&(x)1 

= -log H(x), 

which is equivalent to the assertion. 0 

Therefore if FE 2’( V; b) with (Y = 0 and F also satisfies the conditions of Proposi- 

tion 4.4, then for x finite, 

fim tF(x+q(t)) = -log H(1). 
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When one or more components of x are equal to +a, and we define e, = 

all,)+ l(-~,oo)(xi)~ then 

!~II tF(x+ q(t)) = -log H(e). 

Furthermore, suppose F satisfies the conditions of Proposition 4.4 and has 

marginal equivalency, i.e., for each i, 

F(u) ci = lim G-- 
U-E F,(u) 

exists finite, positive. 

Then it is clear (by Lemma 4.1 and the argument of Proposition 4.4) that si( t) may 

be replaced with q,(c&) and 

fim tF(q,( t)l) = -log H(c). 

On the other hand, the condition in Proposition 4.4 need not be satisfied, as the 

example in (3.2) shows. 
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