
Stochastic Processes and their Applications 86 (2000) 183–191
www.elsevier.com/locate/spa

Inhomogeneous birth-death and birth–death–immigration
processes and the logarithmic series distribution. Part 2

David Branson∗
Department of Mathematics, University of Essex, Colchester CO4 3SQ, UK

Received 27 April 1998; received in revised form 21 September 1998

Abstract

A simple graphical argument described in a previous paper is used to show that the zero-
modi�ed geometric form of the population-size distribution of a time-inhomogeneous birth-and-
death model is maintained when the death rates of individuals depend on their ages and times
of birth. An explicit form for the population-size distribution is found. Certain models incor-
porating immigration, but again with general lifetime distributions, continue to lead to Fisher’s
logarithmic series distribution for the abundance of families of a particular size. It is shown
that the zero-modi�ed geometric form no longer holds if the model is extended to incorporate
age-dependent birth rates. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In a previous paper, Branson (1991) discussed the generalized birth and death process
in which birth and death rates (per head of population per unit of time) are any speci�ed
functions of time. Kendall (1948) had shown that, for such a model, the population size
at any time, given one original ancestor, has a zero-modi�ed geometric distribution;
Branson showed how this result can be obtained by a simple graphical argument. The
model, although time inhomogeneous, is age independent; that is, all individuals at
a given time have the same birth and death rates, regardless of their age. In this
paper we generalize the model in two respects: we retain the assumptions on birth
rates, but now the death rate of an individual can depend on its age, and the lifetime
distribution of an individual can depend on its time of birth. These assumptions of
course render the population-size process non-Markovian, but, in Section 2, we employ
the same graphical argument to demonstrate that the population-size distribution is
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still zero-modi�ed geometric. In Section 3 we derive an explicit expression for the
probability that a family founded at a particular time has j living members at a later
speci�ed instant.
Karlin and McGregor (1967) proved that if immigrants arrive at times that are the

events of a Poisson process, and if the resulting families evolve independently follow-
ing the laws of a continuous-time Markov chain, then the number of families with
j living members at time t has a Poisson distribution with mean mj(t), say. They
further showed that, for constant birth and death rates, mj(t) is proportional to �j=j,
where � is a known function of t, so that the means mj(t) satisfy Fisher’s (1943)
“logarithmic series distribution” (which is, in fact, a model for means rather than a
probability distribution). Many interesting population properties, including, for exam-
ple, Ewens’, (1972) celebrated formula giving the allelic distribution in a population
of genes, were shown by Watterson (1974a,b) to follow from the logarithmic series
distribution. Branson (1991) demonstrated that the logarithmic series form of the Pois-
son means continues to hold if the birth, death and immigration rates vary with time,
provided that the birth and immigration rates are proportional. In Section 4 we show
that the logarithmic series form (and hence all its consequences) holds also in our
more general context where the evolution of a family is no longer Markovian.
In Branson (1991) we discussed Kendall’s result that the population size has a

zero-modi�ed geometric distribution if the birth and death rates are arbitrary functions
of time. In Section 2 of this paper we extend the result to the case where the death rates
of individuals depend on their ages and times of birth. The question arises whether
the zero-modi�ed geometric form still holds if the model is generalized still further to
incorporate age-dependent birth rates. A simple example discussed in Section 5 shows
that the answer to this question is no.

2. Birth and death processes

Suppose a family is founded by an individual born at time T . We illustrate the
family’s pattern of births and deaths up to time t by a binary planted plane tree, as
in Fig. 1. Time runs up the page and the original ancestor’s birth is represented by
the root of the tree. At each subsequent birth (contrary to the convention of Branson
(1991)) we angle the parent’s branch to the right and the o�spring’s branch to the left.
Vertices corresponding to individuals that are alive at time t are called live vertices and
are distinguished by black discs. It is clear that, ignoring the relative times of births
and deaths, there is a one-to-one correspondence between such trees and the possible
patterns of family development over the interval [T; t].
The leftmost live vertex in a family tree (vertex F in Fig. 1) is called the ex-

treme vertex and the path through the family tree from the root to the extreme vertex
(RABCDEF) is called the extreme path. A tree that has j live vertices at time t is
called a j-tree. For any j, there are countably many di�erent j-trees distinguished by a
label r = 1; 2; 3; : : : . The following result was established in Branson (1991) to which
we refer the reader for details.
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Fig. 1. A typical 4-tree, showing the live vertices as black discs.

Proposition. For j¿1; the complete set of (j + 1)-trees is generated precisely once
by taking every (j-tree; 1-tree) pair; placing the root of the 1-tree in turn on (the
interior of ) each of the edges of the extreme path of the j-tree; aligning the trunk
of the 1-tree to the left; and; if necessary; realigning to the right that part of the
relevant edge of the j-tree which occurs later in time than the root of the 1-tree.

Let the lifetime of an individual born at time s have cumulative distribution function
Fs(t) and survivor function Rs(t) = 1 − Fs(t). Such an individual gives birth to other
individuals with rate �(t), where �(t) is independent of the parent’s age. All births
and deaths occur independently, but all individuals at a given time have the same birth
rate, and all individuals born at the same time have the same lifetime distribution.
Thus, during an individual’s lifetime, the instants at which it gives birth constitute
the events of an inhomogeneous Poisson process, but the time at which it dies may
depend on both its age and its time of birth. Given that an individual was born at time
s and survived until at least time t1, denote by g(s; t1; t2) the probability that it survives
until at least time t2, and gives birth to no o�spring in the interval [t1; t2]. Then the
assumptions above imply that

g(s; t1; t2) = exp
(
−
∫ t2

t1
�(�) d�

)
Rs(t2 − s)
Rs(t1 − s) : (1)

Let Pj(t1; t) be the probability that a family founded at time t1 has j members
living at time t. Let Pj(s; t1; t) be the probability that the subfamily consisting of an
individual that was born at time s (and survived until at least time t1), together with
all its descendants that were born subsequent to time t1, has j members living at time
t; such a subfamily can of course be described by a j-tree as before. Let pj(t1; t; r)
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and pj(s; t1; t; r) respectively be the corresponding probabilities relating to the pattern
of births and deaths illustrated by the rth j-tree, so that

Pj(t1; t) =
∑
r

pj(t1; t; r); Pj(s; t1; t) =
∑
r

pj(s; t1; t; r): (2)

As we trace the extreme path through a j-tree (j¿1) from the root to the extreme
vertex, the other vertices encountered are of two types: an l-vertex (r-vertex) is one
from which the extreme path departs angled to the left (right). At an l-vertex the
extreme path changes from a parent to its o�spring whereas the extreme path represents
the same individual either side of an r-vertex. In Fig. 1, the l-vertices are A,C and D
and the r-vertices are B and E.
Suppose that the rth j-tree has m l-vertices which we label (1; 0); (2; 0); : : : ; (m; 0).

The root and extreme vertex are labelled (0, 0) and (m + 1; 0) respectively. Between
l-vertices (i, 0) and (i+1; 0) there are, say, ni r-vertices labelled (i; 1); (i; 2); : : : ; (i; ni);
i=0; : : : ; m. Then, for j¿1, the probability of the evolution described by the rth j-tree
is given by

pj(T; t; r) =
∫
G01�(t10)pj1 (T; t10; t; r10) dt10

×G12�(t20)pj2 (t10; t20; t; r20) dt20 · · ·
×Gm−1;m�(tm0)pjm(tm−1;0; tm0; t; rm0) dtm0Gm;m+1 (3)

where the factor pji gives the probability of the pattern of descent, from a parent of
age (ti0 − ti−1;0), represented by the branch sprouting to the right of the extreme path
from the l-vertex (i,0), and

Gi; i+1 = g(ti0; ti0; ti1)�(ti1)p0(ti1; t; ri1) dti1

× g(ti0; ti1; ti2)�(ti2)p0(ti2; t; ri2) dti2 · · ·
× g(ti0; ti;ni−1; tini)�(tini)p0(tini ; t; rini) dtini g(ti0; tini ; ti+1;0): (4)

Here the g functions are given by (1) and the p0 factors give the probability of the
branches, headed by new-born individuals, sprouting to the left of the extreme path
at r-vertices. Note that, from the de�nition of the extreme vertex, all the branches
sprouting to the left from r-vertices must be 0-trees as they must be extinct by time t.
The labels on the integration variables tik match the labels on the corresponding vertices,
and the integrations are taken over the regions

ti0¡ti1¡ti2¡ · · ·¡tini ¡ ti+1;0; i = 0; : : : ; m; (5)

T = t00¡t10¡t20¡ · · ·¡tm0¡tm+1;0 = t: (6)

The proposition above implies that, to obtain Pj+1(T; t), we sum the terms obtained
by replacing, in turn, each of the g(ti0; tik ; ti; k+1) factors in (3), k=0; : : : ; ni; i=0; : : : ; m;
by ∫ ti; k+1

tik

g(ti0; tik ; �)�(�)P1(�; t) d� g(ti0; �; ti; k+1)
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(for notational convenience we identify ti;ni+1 with ti+1;0), and by summing over r.
(The sum over 1-trees has already been performed in the factor P1(�; t).) It is easy to
verify from Eq. (1) that

g(ti0; tik ; �)g(ti0; �; ti; k+1) = g(ti0; tik ; ti; k+1)

so we see from (2) and (3) that, for j¿1,

Pj+1(T; t) =
∑
r

pj(T; t; r)
m∑
i=0

ni∑
k=0

∫ ti; k+1

tik

�(�)P1(�; t) d�

= Pj(T; t)
∫ t

T
�(�)P1(�; t) d�

= Pj(T; t)�(T; t)

where

�(T; t) =
∫ t

T
�(�)P1(�; t) d�: (7)

Hence, by induction,

Pj(T; t) = P1(T; t)[�(T; t)]j−1; j = 1; 2; 3; : : : : (8)

This equation assumes that the original ancestor was born at time T , but, of course,
it also holds in the case where it was born before time T if we just replace the
original ancestor’s lifetime distribution by its remaining lifetime distribution at T .
Eq. (8) establishes our desired result, namely, that, with a single ancestor at time
T , the probability that a population has j members at a later time t is given by a
zero-modi�ed geometric distribution. In the next section we obtain an explicit expres-
sion for this probability.

3. Calculation of probabilities

If we sum both sides of (8) from 1 to in�nity we obtain

�P(T; t) = 1− P0(T; t) = P1(T; t)[1− �(T; t)]−1; (9)

where we have denoted by �P(T; t) the probability that a family founded at time T sur-
vives until time t. We can �nd this probability explicitly by summing the probabilities
corresponding to all family trees that possess an extreme path. Eqs. (3) and (4) refer
to a particular family tree with an extreme path, and we can sum over all such trees
by modifying their right-hand sides in the following ways.
(i) In the right-hand side of (3) we must sum over all ri0 and all ji; i = 1; : : : ; m, in

order to take account of all possible developments sprouting to the right from the
l-vertices. The e�ect of this is to replace each factor pji by 1.

(ii) In the right-hand side of (4) we must sum over all rik ; k = 1; : : : ; ni, in order to
take account of all possible 0-trees sprouting to the left from the r-vertices. Using
(2) we see that the e�ect of this is to replace each factor p0(tik ; t; rik) by P0(tik ; t).
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(iii) We must sum over all possible numbers of r-vertices and l-vertices, i.e. we must
sum over ni; i = 0; : : : ; m, and over m.

These modi�cations give

�P(T; t)=
∞∑
m=0

∞∑
n0=0

· · ·
∞∑
nm=0

∫
�G01�(t10) dt10 �G12�(t20) dt20 · · · �Gm−1;m�(tm0) dtm0 �Gm;m+1

(10)

where

�Gi; i+1 = g(ti0; ti0; ti1)�(ti1)P0(ti1; t) dti1

× g(ti0; ti1; ti2)�(ti2)P0(ti2; t) dti2 · · ·
× g(ti0; ti;ni−1; tini)�(tini)P0(tini ; t) dtini g(ti0; tini ; ti+1;0): (11)

Using (1) we can write (11) as

�Gi; i+1 = exp
(
−
∫ ti+1;0

ti0
�(�) d�

)
Rti0 (ti+1;0 − ti0)

× �(ti1)P0(ti1; t) dti1 �(ti2)P0(ti2; t) dti2 · · · �(tini)P0(tini ; t) dtini :
If we substitute this into (10) and integrate it with respect to ti1; ti2; : : : ; tini , where the
integration region is given by (5), we obtain

exp
(
−
∫ ti+1;0

ti0
�(�) d�

)
Rti0 (ti+1;0 − ti0)

[
∫ ti+1;0
ti0

�(�)P0(�; t) d�]ni

ni!
:

Performing the summation over ni and combining the exponentials gives

exp
(
−
∫ ti+1;0

ti0
�(�) �P(�; t) d�

)
Rti0 (ti+1;0 − ti0):

Finally, we can combine the exponentials corresponding to di�erent values of i to
obtain

�P(T; t) = exp
(
−
∫ t

T
�(�) �P(�; t) d�

)
H (T; t) (12)

where

H (T; t) =
∞∑
m=0

∫
RT (t10 − T )�(t10) dt10 Rt10 (t20 − t10)�(t20) dt20 · · ·

×Rtm−1; 0 (tm0 − tm−1;0)�(tm0) dtm0 Rtm0 (t − tm0); (13)

the integration region is again given by (6). To solve Eq. (12) for �P(T; t), we �rst
rearrange it to give

�P(T; t)exp
(∫ t

T
�(�) �P(�; t) d�

)
= H (T; t): (14)

If we multiply both sides of this equation by �(T ) and integrate with respect to T we
obtain

exp
(∫ t

T
�(�) �P(�; t) d�

)
= 1 +

∫ t

T
�(�)H (�; t) d�: (15)



D. Branson / Stochastic Processes and their Applications 86 (2000) 183–191 189

Dividing Eq. (14) by Eq. (15) gives

�P(T; t) =
H (T; t)

1 +
∫ t
T �(�)H (�; t) d�

: (16)

Having found an explicit expression for �P(T; t), we can now derive the other prob-
abilities involved. Di�erentiating Eq. (7) gives

@�(T; t)=@T =−�(T )P1(T; t)
and combining this with Eq. (9) we �nd

−@�(T; t)
@T

1
1− �(T; t) = �(T )

�P(T; t):

Integrating both sides with respect to T and exponentiating gives

�(T; t) = 1− exp
(
−
∫ t

T
�(�) �P(�; t) d�

)

= 1− 1

1 +
∫ t
T �(�)H (�; t) d�

; (17)

where the second equality follows from (15). So now, using (8), (9), (16) and (17)
we can express Pj(T; t) in terms of lifetime distributions and birth rates:

P0(T; t) = 1− H (T; t)

1 +
∫ t
T �(�)H (�; t) d�

;

Pj(T; t) =
H (T; t)

(1 +
∫ t
T �(�)H (�; t) d�)

2

(
1− 1

1 +
∫ t
T �(�)H (�; t) d�

)j−1
; j¿1;

where H (T; t) is given by (13).

4. Birth, death and immigration processes

Suppose now that immigrants appear during the period T¿0 at times which are the
events of an inhomogeneous Poisson process with rate �(T ). Each immigrant is the
original ancestor of an independent family that evolves as described in the previous
sections. We call the time of an immigrant’s arrival a “type j” event if that immigrant’s
subsequent family has j members living at time t. It follows from the independent
increments property of the Poisson process and the independent evolution of each
family that type j events form an inhomogeneous Poisson process with rate �(T )Pj(T; t)
and that processes of di�erent types are independent. Denote by mj(t) the mean number
of type j families. Then it can be shown, exactly as in Branson (1991), that if the
birth and immigration rates are proportional, that is, if �(T )=��(T ) for some constant
�, then

mj(t) = �[�(0; t)] j=j;

so that the means mj(t) possess the “logarithmic series distribution” property. The
implications of this result are discussed in Branson (1991).
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5. Age-dependent birth rates

We now return to a consideration of birth and death processes without immigration,
but generalized to allow time-dependent birth rates. Speci�cally, we investigate the
following model.
(i) Any individual gives birth to o�spring at a constant rate � so long as the individ-

ual’s age is less than a; thereafter the individual is sterile.
(ii) All individuals live for at least a time b (where b is greater than 3a), but we

make no further assumptions concerning their lifetime distributions.
These assumptions imply that the number of o�spring of any individual is a Poisson
variate with mean �a. Consider the size at time t of the family descended from an
individual born at time T , where 3a¡ t − T ¡b. It follows from this inequality and
from assumption (ii) that there have been no deaths by time t. Therefore the population
size at time t is equal to one if the original ancestor has no o�spring during its fertile
period of length a. Hence

P1(T; t) = exp(−�a): (18)

There are two individuals in the population at time t if the original ancestor has one
child who has no o�spring, so

P2(T; t) = [�a exp(−�a)][exp(−�a)]
= �a exp(−2�a): (19)

The population size at time t is equal to three if either the original ancestor has two
children who have no o�spring, or the original ancestor has one child who in turn has
one child who has no o�spring:

P3(T; t) =
[
(�a)2

2
exp(−�a)

]
[exp(−�a)]2 + [�a exp(−�a)]2[exp(−�a)]

=
3
2
(�a)2 exp(−3�a): (20)

It is clear from (18), (19) and (20) that P1(T; t); P2(T; t) and P3(T; t) do not follow
the pattern of the zero-modi�ed geometric distribution given in (8). This shows that
the class of models whose population size has a zero-modi�ed geometric distribution
cannot be extended to include age-dependent birth rates.
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