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Abstract

We consider the heat equation in dimension one with singular drift and inhomogeneous space–
time white noise. In particular, the quadratic variation measure of the white noise is not required
to be absolutely continuous w.r.t. the Lebesgue measure, neither in space nor in time. Under
some assumptions we give statements on strong and weak existence as well as strong and weak
uniqueness of continuous solutions.
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1. Introduction

We consider the following stochastic partial di:erential equation (SPDE):

@
@t

u(t; x) =
1
2
?u(t; x) + b(t; x; u(t; x))

�(dt dx)
dt dx

(t; x) + a(t; x; u(t; x))
@2

@t@x
w%(t; x);

u(0; x) = �(x); t¿ 0; x∈R;
(1)

whose precise meaning will be given in DeAnition 2.1 below. Here ?= @2=@x2, a and
b : [0;∞)× R× R→ R as well as � : R→ R are continuous functions, �(dt dx) and
%(dt dx) are positive Radon measures on [0;∞) × R, �(dt dx)=dt dx is the Lebesgue
density—possibly only existing as a generalized function (distribution)—of �(dt dx)
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and w% : [0;∞) × R × 
 → R is an inhomogeneous two-parameter Brownian motion
on [0;∞)× R based on %(dt dx). The latter object is characterized by the relation

W%((t; t′]× (x; x′]) = w%(t′; x′)− w%(t′; x)− w%(t; x′) + w%(t; x); (2)

where W% is a white noise “measure” based on %(dt dx), that is a real-valued random
function on the algebra A=

⋃
n¿1B([0; n]× [− n; n]) ⊂ B([0;∞)×R) satisfying the

following two assertions for any disjoint sets A; A′ ∈A:

• W%(A) ∼ N (0; %(A)),
• W%(A), W%(A′) are independent and W%(A ∪ A′) =W%(A) +W%(A′).

Walsh (1986, p. 260) constructed W% as a Gaussian process on A. In view of
(2), w% can formally be associated with the “distribution function” and ẇ%(t; x) =
(@2=@t@x)w%(t; x) with the “density” of W%. The latter is usually called white noise
and coincides with W% in distribution sense. If %(dt dx) = �(dt dx) = dt dx, then
(�(dt dx)=dt dx)(t; x) ≡ 1 and w% is just the homogeneous two-parameter Brownian
motion w on [0;∞)× R. In this case, Eq. (1) turns into

@
@t

u(t; x) =
1
2
?u(t; x) + b(t; x; u(t; x)) + a(t; x; u(t; x))

@2

@t@x
w(t; x)

u(0; x) = �(x); t¿ 0; x∈R
(3)

and has been studied several times w.r.t. existence and uniqueness of solutions (see
Walsh, 1986; Iwata, 1987; Mueller and Perkins, 1992; Shiga, 1994; Mytnik, 1998
among others).
One motivation to study Eq. (3) is the link to population systems. If b ≡ 0

and a(t; x; u) =
√

%(t; x)u, Eq. (3) describes the evolution of an inAnitesimal system
(high-density/short-lifetime limit) of critical binary branching Brownian particles where
the branching intensity of an inAnitesimal particle at position x at time t is given by
%(t; x); (see Konno and Shiga, 1988; MQelQeard and Roelly-Coppoletta, 1988 or Reimers,
1989). There the medium %(: ; :) was assumed to be constant or a regular function. But
media occurring in nature often have a more fractal shape. In particular, they should
be modelled as a singular measure %(dt dx). In our example the branching intensity of
a particle is then given by the formal expression (%(dt dx)=dt dx)(t; x). Accordingly,
the whole system evolves according to equation (1) with b ≡ 0 and a(t; x; u)=

√
u, for-

mally justiAed by the following fact. If %(dt dx) has a continuous dt dx-density %(t; x),
then we have (@2=@t@x)w%(t; x)=

√
%(t; x)(@2=@t@x)w(t; x) in the sense of DeAnition 2.1

below. Dawson and Fleischmann (1991) characterized the inAnitesimal particle system
corresponding to a medium of the form %(dt dx) = %t(dx) dt as a measure-valued pro-
cess Su t(dx), the so-called catalytic super-Brownian motion. On the one hand, if u(t; x)
is a continuous solution to SPDE (1) with b ≡ 0 and a(t; x; u) =

√
u, it is also the

dt dx-density of Su t(dx) dt. This follows from the characterization of Su t(dx) as unique
solution to a certain martingale problem (cf. Z'ahle, 2004, Proposition 2.5). On the
other hand, if %t(dx) ≡ �c(dx) with c∈R Axed, Su t(dx) dt possesses a dt dx-density
with discontinuities on [0;∞) × {c} (see Fleischmann and Le Gall, 1995, p. 82). So
we cannot get a continuous solution to SPDE (1) with b ≡ 0 and a(t; x; u)=

√
u for all
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measures %(dt dx) = %t(dx) dt. However, there is a large class of non-atomic singular
measures %t(dx) dt for which Su t(dx) dt has a continuous dt dx-density which solves
the SPDE. In fact, %t(dx) only has to satisfy one of the following two equivalent
conditions

• ∃�∈ (0; 1] ∀T ¿ 0 ∃cT ¿ 0: supt6T supx∈R %t(B(x; r))6 cT r� ∀r ∈ (0; 1];
• ∃�∈ (0; 1] ∀T ¿ 0 ∃cT ¿ 0: supt6T supx∈R

∫
B(x;1) |x − y|−�%t(dy)6 cT

on the concentration of mass (cf. Z'ahle, 2004), where B(x; r) := (x − r; x + r).
In the present paper, we worry about continuous solutions to SPDE (1) with more

general coeTcients (than b ≡ 0, a(t; x; u) =
√
u) under similar conditions on %(dt dx)

and �(dt dx). More precisely, %(dt dx) and �(dt dx) will always be assumed to satisfy
condition (A), respectively (B), cf. DeAnition 1.1. For a metric space E let M(E)
denote the spaces of positive Radon measures on E and deAne Muni(R)={�∈M(R) :
supx∈R �(B(x; 1))¡∞}.

De�nition 1.1. A measure �(dt dx)∈M([0;∞) × R) is said to satisfy condition (A)
(respectively (B)) if �(dt dx) = �1(t; dx)�2(dt), where �1 is a kernel from [0;∞) to
R with �1(t; dx)∈Muni(R) ∀t¿ 0 and �2(dt)∈M([0;∞)), such that: ∃�1; �2 ∈ [0; 1]
∀T ¿ 0 ∃cT ¿ 0 :

(a) supt6T supx∈R �1(t; B(x; r))6 cT r�1 ∀r ∈ (0; 1];
(b) supt6T �2([0;∞) ∩ B(t; r))6 cT r�2 ∀r ∈ (0; 1];
(c) �1=2 + �2¿ 1 (respectively �1=2 + �2¿ 1

2 ).

It is clear that every %(dt dx)∈M([0;∞)×R), that has a bounded space–time Lebesgue
density, fulAlls (A). But %(dt dx) does not need to be absolutely continuous w.r.t.
dt dx. It just may not be too singular. Note that the Hausdor: dimension of the
closed support supp(�) of a measure �(d )∈M(R) must be at least ! if ∃c¿ 0
∀ ∈ supp(�): �(B( ; r))6 cr! ∀r ∈ (0; 1]. To give an example, let C" be the “"-Cantor
measure” on [0; 1], that is C"(:) := H!(: ∩ C(")) where C(") is the "-Cantor set
(cf. Mattila, 1995, 4.13), H! is the !-dimensional Hausdor: measure on R and ! =
log 2=|log "| is C(")’s Hausdor: dimension. C" is a Anite singular measure with closed
support C(") and satisAes: ∃c¿ 0 ∀x∈ supp(C"): C"(B(x; r))6 cr! ∀r ∈ (0; 1]. There-
fore, %(dt dx) = C"1 (dx)C"2 (dt) satisAes condition (A) whenever "1; "2 ∈ (0; 12 ) such
that log 2=|2log "1|+ log 2=|log "2|¿ 1. The mentioned measures also satisfy condition
(B) since condition (A) is stronger than (B). Measures �(dt dx) satisfying condi-
tion (B) may even have spatial atoms (�1 = 0). For instance, �(dt dx) = �0(dx) dt or
�(dt dx) = �0(dx)C"2 (dt) with �2 := log 2=|log "2|¿ 1

2 fulAll (B).

2. Preliminaries and main results

The formulation of Eq. (1) is rather vague. On the one hand, the Lebesgue density
of �(dt dx) might fail to exists. On the other hand, w% is not di:erentiable in general.
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The way out is to regard SPDE (1) as a stochastic integral equation. We shall adopt
the notion of Walsh (1986) involving stochastic integrals against martingale measures.
If M is an orthogonal martingale measure, we denote its quadratic variation measure
by 〈M 〉(dt dx) and the stochastic integral of an admissible integrand f against M by∫ ∫

f(r; y)M (dr dy). Note that the white noise “measure” W% from Section 1 induces
an orthogonal martingale measure, denoted by W% either, with 〈W%〉(dt dx)=%(dt dx).
The probability domain of W% will be denoted by (
;F; (Ft)t¿0;P) where (Ft)t¿0
is a Altration in F satisfying the usual conditions. For an investigation of orthogonal
martingale measures see also El Karoui and MQelQeard (1990).
Let C(R) denote the space of real-valued continuous functions on R. Subscripts

b, c and superscripts +, ∞ refer to the subspaces of bounded, with compact sup-
port, non-negative and inAnitely often di:erentiable (resp.) functions. Set Ctem(R) =
{ ∈C(R): |  |(−")¡∞ ∀"¿ 0} where | |(−") := ‖e−"|:| (:)‖∞ and ‖:‖∞ is the
usual supremum norm. We equip Ctem(R) with the metric dtem(';  )=

∑∞
k=1 2

−k(|'−
 |(−1=k) ∧ 1) and set 〈';  〉= ∫R '(x) (x) dx.

De�nition 2.1. A Ctem(R)-valued continuous process (u(t; :): t¿ 0) is said to be a
strong solution to SPDE (1) with initial condition �∈Ctem(R) if, given the noise
[W%;
;F; (Ft);P], it is (Ft)-adapted and

〈u(t; :);  〉= 〈�;  〉+
∫ t

0

〈
u(r; :);

1
2
? 
〉
dr

+
∫ t

0

∫
R
b(r; y; u(r; y)) (y)�(dr dy)

+
∫ t

0

∫
R
a(r; y; u(r; y)) (y)W%(dr dy) (4)

holds for all t¿ 0 and  ∈C∞
c (R), P-almost surely. We say u is a weak solution to

SPDE (1) with initial condition �∈Ctem(R) if one can And any noise [W%;
;F; (Ft);P]
such that u is (Ft)-adapted and (4) holds.

De�nition 2.2. A solution to SPDE (1) is said to be strongly unique if any two solu-
tions w.r.t. a given noise are indistinguishable. We say a solution is weakly unique if
any two solutions coincide in law.

Let us now turn to our main results. We Arst assume the coeTcients to be Lipschitz
continuous. In this case we can And strongly unique strong solutions. Conditions (A)
and (B) were introduced in DeAnition 1.1.

Theorem 2.3. Let a and b be continuous. Assume for every T ¿ 0 there exist 7nite
constants cT ; LT ¿ 0 such that for all t6T and x; u; u′ ∈R,

|a(t; x; u)|+ |b(t; x; u)|6 cT (1 + |u|); (5)

|a(t; x; u)− a(t; x; u′)|+ |b(t; x; u)− b(t; x; u′)|6LT |u− u′|: (6)
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Let �∈Ctem(R), %(dt dx) satisfy condition (A) with �1; �2 and �(dt dx) satisfy con-
dition (B) with *1; *2. Then SPDE (1) with initial condition � has a strongly unique
strong solution. Moreover, the solution is locally jointly H)older-!-continuous for all
!∈ (0; (�=2) ∧ *) where � := �1=2 + �2 − 1, * := *1=2 + *2 − 1

2 .

Under slightly stronger assumptions we obtain non-negativity of the solution.

Theorem 2.4. Let a and b be continuous and +¿ 0. Suppose ,(dt dx) and �(dt dx)
satisfy condition (A) and (B), respectively. Assume for every T ¿ 0 there exist 7nite
constants cT ; LT ¿ 0 such that for all t6T and x; x′; u; u′ ∈R inequalities (5) and

|a(t; x; u)− a(t; x′; u′)|+ |b(t; x; u)− b(t; x′; u′)|6LT (|x − x′|+ + |u− u′|)
hold. If moreover a(t; x; 0) = 0, b(t; x; 0)¿ 0 (∀t¿ 0; x∈R) and �∈C+tem(R), then the
unique solution from Theorem 2.3 is P-almost surely non-negative.

If one is only interested in weak solutions, condition (6) can be dropped.

Theorem 2.5. Let a(t; x; u)=a(u) and b(t; x; u)=b(u) be continuous and assume there
exists a 7nite constant c¿ 0 such that for all u∈R

|a(u)|+ |b(u)|6 c(1 + |u|): (7)

Let �∈Ctem(R), %(dt dx) satisfy condition (A) with �1; �2 and �(dt dx) satisfy con-
dition (B) with *1; *2. Then SPDE (1) with initial condition � has a weak solution.
The solution is locally jointly H)older-!-continuous for all !∈ (0; (�=2) ∧ *) where
� := �1=2 + �2 − 1, * := *1=2 + *2 − 1=2. If in addition �∈C+tem(R), a(0) = 0 and
b(0)¿ 0, then the solution is P-almost surely non-negative.

In the Lipschitz case strong uniqueness of solutions can be obtained comparatively
easily. In the non-Lipschitz case, however, the question of uniqueness becomes much
more delicate. While statements on strong uniqueness do not exist so far, weak unique-
ness could be established for Eq. (3) with b ≡ 0, a(t; x; u) = u! and !∈ [ 12 ; 1). For the
case ! = 1

2 see Roelly-Coppoletta (1986), the case !∈ ( 12 ; 1) was studied by Mytnik
(1998). We here give a generalization of the result on != 1

2 . As mentioned in Section
1, the interest in this case is due to the relation to the catalytic super-Brownian motion.

Theorem 2.6. Let �∈C+tem(R) and %(dt dx) satisfy condition (A). Then the (non-
negative) weak solution to SPDE (1) with b ≡ 0, a(t; x; u)=

√|u| and initial condition
� is weakly unique.

We will not prove Theorem 2.6 since a very similar result was proved in the appendix
of Z'ahle (2004) with help of the method of duality. There %2(dt) was required to be
the Lebesgue measure dt and the state space of u=(u(t; :):t¿ 0) was the space Cint(R)
of Lebesgue-integrable continuous functions instead of Ctem(R). However, the adaption
of the proof to our setting is not diTcult. In particular, one has to take Lemma 3.6
(stated below) into account and the state space of u’s dual process should be chosen
to be the space Crap(R) of rapidly decreasing continuous functions instead of Cb(R).
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The remainder of the paper is organized as follows. In the next section, we give a
series of auxiliary lemmas. In Section 4, we shall establish the equivalence of SPDE
(1) in the sense of DeAnition 2.1 to both a certain martingale problem and a certain
stochastic integral equation. Sections 5–7 are devoted to the proofs of Theorems 2.3–
2.5, respectively. Note that corresponding results on existence of solutions to SPDE
(3) can be found in Iwata (1987), Mueller and Perkins (1992) and Shiga (1994). The
analogue of the non-negativity result was proved by Shiga (1994).

3. Auxiliary lemmas

In this section, we give basic tools for the proofs of our main results. We start with
two lemmas provided by Shiga (1994, Lemma 6.3) and Iwata (1987, Lemma 5.4).
We equip C([0;∞); Ctem(R)) with the usual metric inducing the topology of compact
uniform convergence. The statements on the H'older-continuity were not explicitly stated
in Shiga (1994) and Iwata (1987) but they are, to some extent, by-products of the
proofs.

Lemma 3.1. Let X=(X (t; x): t¿ 0; x∈R) be a real-valued process such that X (0; :)∈
Ctem(R) P-almost surely. Assume there are constants q; /¿ 0 such that for every
"; T ¿ 0 there exists a 7nite constant c";T ¿ 0 satisfying

E[|X (t; x)− X (t′; x′)|q]6 c";T (|t − t′|2+/ + |x − x′|2+/)e"|x|

for all t; t′6T and x; x′ ∈R with |x−x′|6 1. Then X has a modi7cation X̃ such that
(X̃ (t; :): t¿ 0) is Ctem(R)-valued continuous. Moreover, X̃ is locally jointly H)older-!-
continuous for each !∈ (0; /=q).

Lemma 3.2. Let X1; X2; : : : be the coordinate processes of probability measures P1;
P2; : : : on C([0;∞); Ctem(R)). Assume there are constants /; q¿ 0 such that for every
"; T ¿ 0 there is a 7nite constant c";T ¿ 0 satisfying

sup
n¿1

En[|Xn(t; x)− Xn(t′; x′)|q]6 c";T (|t − t′|2+/ + |x − x′|2+/)e"|x|

for all t; t′6T and x; x′ ∈R with |x− x′|6 1. If (Pn ◦ Xn(0; :)−1) is tight in Ctem(R),
then (Pn) is tight in C([0;∞); Ctem(R)). Also, the coordinate process of any limit
point P is locally jointly H)older-!-continuous for each !∈ (0; /=q).

Lemma 3.3. Let %(dt dx)∈M([0;∞) × R) be as in De7nition 1.1 with �2¿ 0 in-
stead of (c). Then the orthogonal martingale measure W% from Section 2 is a con-
tinuous one. In particular, the stochastic integral

∫ ∫
f(r; y)W%(dr dy) is a continuous

orthogonal martingale measure for every predictable f : [0;∞) × R × 
 → R
with E[

∫ t
0

∫
R f2(r; y)%(dr dy)]¡∞ ∀t¿ 0.

Proof. Let B be a bounded Borel set in R and recall W%(A) ∼ N (0; %(A)) for A∈A.
Then, if W%

t (B) := W%((0; t]× B), we have for t6 t′6T and m¿ 1;

E[|W%
t (B)−W%

t′(B)|2m] = E[|W%(B× (t; t′])|2m]6 cB;T |t − t′|m�2 :
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Hence, for m suTciently large, Kolmogorov’s theorem gives a continuous modiAcation
of (W%

t (B): t ∈ [0; T ]) for every T ¿ 0.

Lemma 3.4. Consider �1(dx)∈Muni(R), �1 ∈ (0; 1], !¿ 0 and

(a) ∃c¿ 0: supx∈R �1(B(x; r))6 cr�1 ; r ∈ (0; 1];
(b) ∃c¿ 0: supx∈R

∫
R e

−(x−y)2=r�1(dy)6 cr�1=2; r ∈ (0; 1];
(c) ∃c" ¿ 0: supx∈R e

−"|x| ∫
R e

−(x−y)2=re"|y|�1(dy)6 c" r�1=2; r ∈ (0; 1];
(d) ∃c" ¿ 0: supx;x′∈R e

−"|x−x′|−"|x| ∫
R e

−(x′−y)2=re"|y|�1(dy)6 c"r�1=2, r ∈ (0; 1].

Then, (a)⇔ (b)⇒ (c); (d) for every "¿ 0.

Proof. (a)⇔ (b) was proved in Z'ahle (2004, Lemma 3.1). The proof of (b)⇒ (c); (d)
is not hard and will be omitted.

Remark 3.5. If we assume (b) of Lemma 3.4, then we also have

(b)’ ∃c¿ 0: supx∈R
∫
R e

−(x−y)2=r�1(dy)6 c(r1=2 ∨ r�1=2); r ¿ 0.

The remark is justiAed by the fact that elements of Muni(R) are globally (i.e.
on balls with radius bigger than one) bounded by a multiple of the Lebesgue
measure.

Lemma 3.6. Let �2(dt)∈M([0;∞)). If there exists an �2 ∈ (0; 1] such that

∀T ¿ 0 ∃cT ¿ 0: sup
t6T

�2([0;∞) ∩ B(t; r))6 cT r�2 ∀r ∈ (0; 1]

holds, then there is for every T ¿ 0 a 7nite cT ¿ 0 such that for all 06 t6T ,

(a)
∫ t
s (t − r)−!�2(dr)6 cT (t − s)�2−! ∀!∈ [0; �2]; 06 s6 t;

(b)
∫ v
s (t − r)−!�2(dr)6 cT (t − v)−(!−�2) ∀!∈ (�2;∞); 06 s6 v¡ t;

(c)
∫ t
0 r

�(t − r)−!�2(dr)6 cT t�+�2−!(3 � + (1− 3)�2−!) ∀!∈ [0; �2]; 3∈ [0; 1]; �¿ 0;

(d)
∫ T
0 e

−!r�2(dr)6 cT !−�2 ∀!¿ 0.

Proof. (a) By means of a substitution v= u−1=! we obtain

∫ t

s

1
(t − r)!

�2(dr) =
∫ ∞

0
�2

(
r: 1[s; t](r)

1
(t − r)!

¿ u
)
du

6
∫ (t−s)−!

0
�2([s; t]) du+

∫ ∞

(t−s)−!
�2

(
r: 1[s; t](r)

1
(t−r)!

¿u
)
du
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6 (t − s)−!cT (t − s)�2 +
∫ ∞

(t−s)−!
�2([t − u−1=!; t]) du

= cT (t − s)�2−! +
∫ t−s

0
!v−!−1�2([t − v; t]) dv

6 cT (t − s)�2−! +
∫ t−s

0
!v−!−1cT v�2 dv6 c′T (t − s)�2−!:

(b) The proof goes along the lines of the proof of (a) with the obvious changes.
(c) Elementary estimates and part (a) yield∫ t

0

r�

(t − r)!
�2(dr) =

∫ 3t

0

r�

(t − r)!
�2(dr) +

∫ t

3t

r�

(t − r)!
�2(dr)

6 (3t)�
∫ 3t

0

1
(t − r)!

�2(dr) + t�
∫ t

3t

1
(t − r)!

�2(dr)

6 (3t)�
∫ t

0

1
(t − r)!

�2(dr) + t�
∫ t

3t

1
(t − r)!

�2(dr)

6 (3t)�cT t�2−! + t�cT ((1− 3)t)�2−!

6 cT t�+�2−!(3 � + (1− 3)�2−!):

(d) With help of a substitution v= log (1=u) we obtain∫ T

0
e−!r�2(dr)=

∫ ∞

0
�2(r: 1[0;T ](r)e−!r¿u) du6

∫ 1

0
�2

([
0; T∧1

!
log

1
u

])
du

=
∫ ∞

0
�2

([
0; T ∧ 1

!
v
])
e−v dv=

∫ T!

0
�2

([
0; T ∧ 1

!
v
])
e−v dv

+
∫ ∞

T!
�2

([
0; T ∧ 1

!
v
])
e−v dv6

∫ T!

0
cT

(
1
!
v
)�2
e−v dv

+cTT�2

∫ ∞

T!
e−v dv6 cT !−�2 + cTT�2e−T!6 cT;�2!

−�2

where the last inequality follows from e−T!6 cT;�2!
−�2 ∀!¿ 0.

DeAne the heat kernel p by pt(x; y) = (25t)−1=2e−(x−y)2=(2t) for t ¿ 0 and x; y∈R.
Also, set pt ≡ 0 for t ¡ 0.

Lemma 3.7. Let %(dt dx) satisfy condition (A) with �1; �2 and �(dt dx) satisfy con-
dition (B) with *1; *2. Set � := �1=2 + �2 − 1 and * := *1=2 + *2 − 1=2. Then
for every "¿ 0 and T ¿ 0 there exists a 7nite constant c";T ¿ 0 such that for all
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06 t6 t′6T and x; x′ ∈R,∫ t′

0

∫
R
(pt−r(x; y)− pt′−r(x′; y))2e"|y|%(dr dy)

6 c";T (|t − t′|� + |x − x′|2�)e"|x|e"|x−x′|; (8)

∫ t′

0

∫
R
|pt−r(x; y)− pt′−r(x′; y)|e"|y|�(dr dy)

6 c";T (|t − t′|* + |x − x′|2*)e"|x|e"|x−x′|: (9)

Proof. Inequality (8) was proved in Z'ahle (2004, Lemma 3.4) for the case %2(dt)=dt
and " = 0. By means of Lemma 3.4(c) and (d) and Lemma 3.6(a) and (b) the proof
can easily be extended to our general setting. Eq. (9) can be obtained analogously.

Lemma 3.8. Let k¿ 1 and �i
2(dt)∈M([0;∞)) (16 i6 k). Assume there exist �i

2 ∈
(0; 1] (16 i6 k) such that

∀T ¿ 0 ∃ĉT ¿ 0: sup
t6T

�i
2([0;∞) ∩ B(t; r))6 ĉT r�

i
2 ∀r ∈ (0; 1]; 16 i6 k:

Let gn : [0;∞)→ [0;∞) be measurable functions (n¿ 1) and assume g1 is bounded.
If there are constants !i ∈ [0; �i

2) (16 i6 k) and c0¿ 0 such that for every T ¿ 0
there exists a constant cT ¿ 0 with

gn+1(t)6 cT

(
c0 +

k∑
i=1

sup
s6t

∫ s

0

1
(s− r)!i

gn(r)�i
2(dr)

)
∀t6T; n¿ 1; (10)

then for every T ¿ 0 there exist constants qT ∈ (0; 1) and c̃T ¿ 0 (depending on T ,
cT , ĉT , �i, !i, ‖g1‖∞, and being independent of c0) such that

sup
t6T

gn(t)6 c̃T (c0 + qn
T ) ∀n¿ 1:

Take note of the following special case. If gn = g ∀n¿ 1, then (10) implies
supt6T g(t)6 c̃T c0 ∀T ¿ 0. Lemma 3.8 is hence a sort of Gronwall lemma. Be aware
that the following proof still works (with the obvious changes) if one replaces
sups6t

∫ s
0 1=(s− r)!

i
by
∫ t
0 1=(t − r)!

i
in the assumptions of the lemma.

Proof of Lemma 3.8. First of all note that in Lemma 3.6(c) the constant cT ¿ 0 is
independent of �¿ 0. Set �=min{�i

2 − !i:16 i6 k}¿ 0. By Lemma 3.6(a) and (c)
we can choose Anite constants c′T ; c

′′
T ¿ 0 such that for all t6T , 16 i6 k, j¿ 1 and

3∈ (0; 1),

sup
s6t

∫ s

0

1
(s− r)!i

�i
2(dr)6 c′T t

�i
2−!i 6 c′′T t

�; (11)
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sup
s6t

∫ s

0

rj�

(s− r)!i
�i
2(dr)6 c′T t

j�+�i
2−!i(3 j� + (1− 3)�

i
2−!i)

6 c′′T t
(j+1)�(3 j� + (1− 3)�): (12)

Set ScT := c′′T ∨ (c′′T‖g1‖∞). By assumption and (11) we obtain for all r2 ∈ [0; T ]

g2(r2)6 cT

(
c0 +

k∑
i=1

sup
s16r2

∫ s1

0

1
(s1 − r1)!

i g1(r1)�
i
2(dr1)

)

6 cT (c0 + k ScT r�2) = c0cT + cT k ScT r�2 :

Using this inequality, the assumption and (12) we obtain for all r3 ∈ [0; T ]

g3(r3)6 cT

(
c0 +

k∑
i=1

sup
s26r3

∫ s2

0

1
(s2 − r2)!

i g2(r2)�
i
2(dr2)

)

6 cT

(
c0 +

k∑
i=1

sup
s26r3

∫ s2

0

1
(s2 − r2)!

i cT (c0 + k ScT r�2)�
i
2(dr2)

)

6 cT

(
c0 + cT c0

k∑
i=1

sup
s26r3

∫ s2

0

1
(s2 − r2)!

i �
i
2(dr2)

+cT k ScT
k∑

i=1

sup
s26r3

∫ s2

0

r�2
(s2 − r2)!

i �
i
2(dr2)

)

6 cT (c0 + cT c0k ScT r�3 + cT k2 Sc2T r
2�
3 (3

� + (1− 3)�))

= c0[cT + c2T k ScT r
�
3] + c2T k

2 Sc2T r
2�
3 (3

� + (1− 3)�):

Going ahead recursively we obtain for all n¿ 1 and rn ∈ [0; T ]

gn(rn)6 cT

(
c0 +

k∑
i=1

sup
sn−16rn

∫ sn−1

0

1
(sn−1 − rn−1)!

i gn−1(rn−1)�i
2(drn−1)

)

6 c0[cT + c2T k ScT r
�
n + c3T k

2 ScT 2r2�n (3
� + (1− 3)�)

+ c4T k
3 ScT 3r3�n (3

2� + (1− 3)�)(3 � + (1− 3)�) + · · ·
+ cn−1T kn−2 ScT n−2r(n−2)�n

× (3 (n−2)� + (1− 3)�)(3 (n−3)� + (1− 3)�) · · · (3 � + (1− 3)�)]

+ cn−1T kn−1 Scn−1T r(n−1)�n

× (3 (n−1)� + (1− 3)�)(3 (n−2)� + (1− 3)�) · · · (3 � + (1− 3)�):
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Setting KT := cT k ScTT� yields for every n¿ 1 and rn ∈ [0; T ]
gn(rn)6 c0[cT + cTKT + cTK2

T (3
� + (1− 3)�) + · · ·

+ cTKn−2
T (3 (n−2)� + (1− 3)�)(3 (n−3)� + (1− 3)�) · · · (3 � + (1− 3)�)]

+Kn−1
T (3 (n−1)� + (1− 3)�)(3 (n−2)� + (1− 3)�) · · · (3 � + (1− 3)�):

(13)

Pick /∈ (0; K−1
T ∧ 2), set 3 = 1 − (/=2)1=� and choose j/¿ 1 in such a manner that

3 j� ≤ /=2 holds for all j¿ j/. Thus (3 j� + (1 − 3)�)6 / holds for all j¿ j/. Set
M/ = supj=1; :::; j/−1(3

j� + (1 − 3)�)(3 ( j−1)� + (1 − 3)�) · · · (3 � + (1 − 3)�)/−( j−1) and
deAne q/;T = /KT (∈ (0; 1)). Then we obtain by (13)

gn(rn)6 cT c0[1 + KT + K2
TM//2 + · · ·+ Kn−2

T M//n−2] + Kn−1
T M//n−1

6 c/;T (c0[1 + KT + K2
T /
2 + · · ·+ Kn−2

T /n−2] + Kn−1
T /n−1)

6 c/;T (c0[1 + KT + q2/;T + · · ·+ qn−2
/;T ] + qn−1

/;T )6 c̃/;T (c0 + qn
/;T )

for all rn ∈ [0; T ] and n¿ 1.

4. SPDE (1) reformulated

This section is devoted to the equivalence of SPDE (1) to both a certain martingale
problem and a certain stochastic integral equation (SIE).

De�nition 4.1. Let �∈Ctem(R). The law of an (Ft)-adapted Ctem(R)-valued continu-
ous process (u(t; :): t¿ 0) on any Altered probability space (
;F; (Ft)) is said to be
solution to the (a; b; �)-martingale problem if under this law

Mt( ) = 〈u(t; :);  〉 − 〈�;  〉

−
∫ t

0

〈
u(r; :);

1
2
? 
〉
dr −

∫ t

0

∫
R
b(r; y; u(r; y)) (y)�(dr dy); t¿ 0

is a square-integrable continuous (Ft)-martingale having

〈M ( )〉t =
∫ t

0

∫
R
a2(r; y; u(r; y)) 2(y)%(dr dy); t¿ 0

as its quadratic variation process for all  ∈C∞
c (R). We say the solution is unique if

any two solutions coincide (in law).

Let (Pt)t¿0 denote the (heat) semigroup corresponding to the heat kernel p, that
is Pt (x) =

∫
R pt(x; y) (y) dy for all t ¿ 0, x∈R and  ∈Ctem(R). Note that 1

2; is
the generator of (Pt)t¿0 on C0(R) where C0(R) is the space of real-valued continuous
functions on R vanishing at inAnity.
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De�nition 4.2. A Ctem(R)-valued continuous process (u(t; :):t¿ 0) is said to be solu-
tion to SIE (14) with initial condition �∈Ctem(R) if, given the noise [W%;
;F; (Ft);P],
it is (Ft)-adapted and

u(t; x) = Pt�(x) +
∫ t

0

∫
R
pt−r(x; y)b(r; y; u(r; y))�(dr dy)

+
∫ t

0

∫
R
pt−r(x; y)a(r; y; u(r; y))W%(dr dy) (14)

holds for all t¿ 0 and x∈R, P-almost surely. We say the solution is unique if any
two solutions w.r.t. a given noise are indistinguishable.

Proposition 4.3. Every weak solution to SPDE (1) with initial condition � in the sense
of De7nition 2.1 is a solution to the (a; b; �)-martingale problem and vice versa.

Proof. A solution to the SPDE is easily seen to be a solution to the martingale problem.
For the other direction one can generalize Section 4.2 of Z'ahle (2004). Note that the
equivalence of an SPDE and a martingale problem has been considered much earlier
(see El Karoui and MQelQeard, 1990).

Proposition 4.4. Assume (5) and supt6T supx∈R �(B(x; 1)×B(t; 1))¡∞ for all T ¿ 0
and �∈{%; �}. Then every strong solution to SPDE (1) with initial condition � in
the sense of De7nition 2.1 is a solution to SIE (14) with initial condition � and vice
versa.

Proof. The proof goes along the lines of the proof of Theorem 2.1 in Shiga (1994)
with the obvious changes.

5. Proof of Theorem 2.3

We shall prove that SIE (14) has a unique solution and so, by Proposition 4.4,
the same is true for SPDE (1). Given the continuous orthogonal martingale measure
W%=[W%;
;F; (Ft);P], let P be the space of (Ft)-predictable functions u : [0;∞)×
R× 
 → R with ‖u‖";T;m ¡∞ for all "; T ¿ 0 and m¿ 1 where

‖u‖";T;m :=
(
sup

t∈[0;T ]
sup
x∈R

e−"|x|E[|u(t; x)|2m]
)1=(2m)

:

We identify u; u′ ∈P if u(t; x) = u′(t; x) holds P-almost surely for every Axed (t; x)∈
[0;∞)×R. Then dP(f;f′)=

∑∞
k; l;m=1 2

−(k+l+m)(1∧‖f−f′‖1=k; l;m) provides a metric
on P w.r.t. which P is complete. For the sake of a Picard–Lindel'of iteration we
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introduce the functional

=(u)(t; x) := Pt�(x) +
∫ t

0

∫
R
pt−r(x; y)b(r; y; u(r; y))�(dr dy)

+
∫ t

0

∫
R
pt−r(x; y)a(r; y; u(r; y))W%(dr dy)

=: Pt�(x) + =2(u)(t; x) + =3(u)(t; x):

For u∈P the stochastic integral is well deAned since the integrand is admissible w.r.t.
W%. This is guaranteed by the following estimate:

E
[∫ t

0

∫
R
p2t−r(x; y)a

2(r; y; u(r; y))〈W%〉(dr dy)
]

6
∫ t

0

∫
R
p2t−r(x; y)e

|y|e−|y|cE[(1 + |u(r; y)|)2]%(dr dy)

6 c′(1 + ‖u‖21; t;1)
1
25

∫ t

0

1
t − r

∫
R
e−(x−y)2=(t−r)e|y|%1(r; dy)%2(dr)

6 c′t

∫ t

0

1
t − r

e|x|(t − r)�1=2%2(dr)6 ctt�1=2+�2−1e|x| ¡∞ ∀t¿ 0

for which we used (5), Lemma 3.4(a)⇒ (c) and Lemma 3.6(a). In Step 2 below we
will also see that =(P) ⊂ P.
Step 1: We Arst prove that =(u) may be assumed to be Ctem(R)-valued continu-

ous whenever u∈P. Using Burckholder–Davis–Gundy’s inequality, H'older’s inequality
((m− 1)=m+1=m=1), (5) and (8), we get for all "¿ 0, 06 t6 t′6T and x; x′ ∈R:

E[|=3(u)(t; x)− =3(u)(t′; x′)|2m]

6 cE

[∣∣∣∣∣
∫ t′

0

∫
R
(pt−r(x; y)− pt′−r(x′; y))2a2(r; y; u(r; y))%(dr dy)

∣∣∣∣∣
m]

6 c

(∫ t′

0

∫
R
(pt−r(x; y)− pt′−r(x′; y))2%(dr dy)

)m−1 ∫ t′

0

∫
R
e"|y|e−"|y|

×
∫ t′

0

∫
R
(pt−r(x; y)− pt′−r(x′; y))2E[c′(1 + u(r; y))2m]%(dr dy)

6 c′T (|t − t′|� + |x − x′|2�)m−1

×
∫ t′

0

∫
R
(pt−r(x; y)− pt′−r(x′; y))2e"|y|(1 + ‖u‖2m";r;m)%(dr dy)

6 c";T (|t − t′|� + |x − x′|2�)me"|x−x′|e"|x|:
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For m suTciently large, Lemma 3.1 thus provides a Ctem(R)-valued continuous modi-
Acation of =3(u). Proceeding analogously and using (9) instead of (8) we also get the
following estimate for all "¿ 0, 06 t6 t′6T and x; x′ ∈R

E[|=2(u)(t; x)− =2(u)(t′; x′)|2m]6 c";T (|t − t′|* + |x − x′|2*)2me"|x−x′|e"|x|

and so a Ctem(R)-valued continuous modiAcation of =2(u). By Iwata (1987,
Lemma 3.1) (Pt�(:):t¿ 0) is Ctem(R)-valued continuous, too. Hence =(u) has a
Ctem(R)-valued continuous modiAcation. Also, due to the obtained estimates, =(u) is
locally H'older-!-continuous on (0;∞)× R for all !∈ (0; (�=2) ∧ *).
Step 2: As already mentioned, we intend a Picard–Lindel'of iteration w.r.t. the func-

tional =. Set u0 =P:�(:) and un+1 ==(un) for every n¿ 0. We shall show that un ∈P
for every n¿ 0 and, in particular, that

sup
n¿1

‖un‖";T;m6 c";T;m ¡∞ ∀"; T ¿ 0; m¿ 1 (15)

holds whenever �∈Ctem(R).
To show un ∈P for every n¿ 0 it is enough to show =(u)∈P whenever u∈P

since u0=P:�(:)∈P. By Step 1, =(u) is jointly continuous. Thus u is (Ft)-predictable
since it is also (Ft)-adapted. If we also had

‖=(u)‖2m";T;m6 c";T;m

{
1 + sup

t∈[0;T ]

∫ t

0

1
(t − r)1−�1=2

‖u‖2m";r;m%2(dr)

+ sup
t∈[0;T ]

∫ t

0

1
(t − r)1=2−*1=2

‖u‖2m";r;m�2(dr)
}

(16)

for all "; T ¿ 0 and m¿ 1, then =(u)∈P would follow from Lemma 3.6(a). We
prove (16). It is not hard to show ‖P:�(:)‖2m";T;m6 c";T;m ¡∞. By Burckholder–Davis
–Gundy’s inequality, H'older’s inequality ((m− 1)=m+1=m=1), Lemma 3.4(a)⇒ (c)
and (5) we can estimate ‖=3(u)‖2m";T;m by

c sup
t6T

sup
x∈R

e−"|x|E
[∣∣∣∣
∫ t

0

∫
R
p2t−r(x; y)a

2(r; y; u(r; y))%(dr dy)
∣∣∣∣
m]

6 c sup
t6T

sup
x∈R

e−"|x|
(∫ t

0

∫
R
p2t−r(x; y)%(dr dy)

)m−1

×
∫ t

0

∫
R
e"|y|p2t−r(x; y)e

−"|y|E[(1 + u(r; y))2m]%1(r; dy)%2(dr)

6 cT;m

{
1 + sup

t6T
sup
x∈R

∫ t

0

(
e−"|x|

∫
R
e"|y|p2t−r(x; y)%1(r; dy)

)
‖u‖2m";r;m%2(dr)

}

6 c";T;m

{
1 + sup

t6T

∫ t

0

1
(t − r)1−�1=2

‖u‖2m";r;m%2(dr)
}

:
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In the same way we get the analogous estimate for ‖=2(u)‖2m";T;m. On the whole, we
reach (16) and so =(u)∈P. In particular, un ∈P for every n¿ 0. The uniform estimate
(15) is an immediate consequence of (16) and Lemma 3.8.
Step 3: We here intend to show limn→∞ ‖un+1 − un‖";T;m = 0 for all "; T ¿ 0 and

m¿ 1. By Lemma 3.8 it suTces to show that for every "; T ¿ 0 and m¿ 1 there
exists a constant c";T;m ¿ 0 (being independent of n) such that

‖un+1 − un‖2m";T;m6 c";T;m

{
sup
t6T

∫ t

0

1
(t − r)1−�1=2

‖un − un−1‖2m";r;m%2(dr)

+sup
t6T

∫ t

0

1
(t − r)1=2−*1=2

‖un − un−1‖2m";r;m�2(dr)
}

(17)

holds for all n¿ 0. Proceeding as in Step 2 we obtain

‖=2(un)− =2(un−1)‖2m";T;m6 c";T;m sup
t6T

∫ t

0

1
(t − r)1=2−*1=2

‖un − un−1‖2m";r;m�2(dr);

‖=3(un)− =3(un−1)‖2m";T;m6 c";T;m sup
t6T

∫ t

0

1
(t − r)1−�1=2

‖un − un−1‖2m";r;m%2(dr);

where we used the Lipschitz condition (6) instead of (5). This proves (17).
Step 4: By Steps 2 and 3, (un) is a Cauchy sequence in (P; dP). So there exists

u∞ ∈P such that limn→∞‖u∞ − un‖";T;m = 0 ∀"; T ¿ 0; m¿ 1. Then it is not hard to
show that u := =(u∞) satisAes ‖u − =(u)‖";T;m = 0, and so u(t; x) = =(u)(t; x) holds
for all (t; x) from a Axed countable dense subset of [0;∞) × R, P-almost surely. By
Step 1, u may be assumed to be Ctem(R)-valued continuous and so u(t; x) ==(u)(t; x)
even holds for all (t; x), P-almost surely. Consequently, u is a solution of SIE (14).
Step 1 also gives the desired local H'older-continuity.
Step 5: It remains to show strong uniqueness of solutions. Let u; u′ be two solutions

to SPDE (1) and so to u = =(u). Fix some "¿ 0 and deAne for every K ¿ 0 the
stopping time

>K = inf
{
t ¿ 0: sup

x∈R
|u(t; x)|e−("=2)|x|¿K or sup

x∈R
|u′(t; x)|e−("=2)|x|¿K

}

and uK (t; :) = 1t¡>K u(t; :), u
′
K (t; :) = 1t¡>K u

′(t; :). As in Step 3 we get

‖uK − u′K‖2"; t;1 = ‖=(uK)− =(u′K)‖2"; t;1

6 c";T;1

{
sup
s6t

∫ s∧>K

0

1
(s− r)1−�1=2

‖uK − u′K‖2"; r;1%2(dr)

+sup
s6t

∫ s∧>K

0

1
(s− r)1=2−*1=2

‖uK − u′K‖2"; r;1�2(dr)
}

for all t6T and T ¿ 0. Since |uK (t; x) − u′K (t; x)|26 4K2e"|x| for all (t; x), Lemma
3.8 gives ‖uK − u′K‖"; t;1 = 0 for all t¿ 0. In particular, uK (t; x) = u′K (t; x) holds for all
(t; x) from any Axed countable dense subset of [0;∞)×R, P-almost surely. But u and
u′ are Ctem(R)-valued continuous, in particular >K → ∞ as K → ∞, P-almost surely.
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Thus, u(t; x) = u′(t; x) holds for all (t; x), P-almost surely. This completes the proof of
Theorem 2.3.

6. Proof of Theorem 2.4

Shiga (1994, Theorem 2.3) established non-negativity of solutions to SPDE (3). In
order to prove Theorem 2.4 we adapt his arguments. We Arst prepare the actual proof.
DeAne

?/ := /−1(P/ − I);

P/
t := e

t?/ = e−t=/et=/P/ = e−t=/
∞∑
n=0

(t=/)n

n!
Pn/ = e−t=/I + Q/

t ;

Q/
t f :=

∫
R
q/
t (:; y)f(y) dy; q/

t (x; y) := e
−t=/

∞∑
n=1

(t=/)n

n!
pn/(x; y)

for all t¿ 0 and /¿ 0. Since P/ is a non-negative, conservative and contractive linear
operator on (C0(R); ‖:‖∞), (P/

t )t¿0 provides a Feller semigroup on (C0(R); ‖:‖∞) with
generator ?/.

Lemma 6.1. There exists a 7nite constant c¿ 0 such that e−h∑∞
n=1 (h

n=n!)(h!=n!)6 c
holds for all !∈ [0; 1] and h¿ 0.

Proof. For h∈ [0; 1] the claim is trivial. Suppose h¿ 1. DeAne [h] to be the unique
integer satisfying [h]6 h¡ [h] + 1. We plainly have (h=n)!6 h=n if h=n¿ 1 (i.e.
n6 [h]6 h) and (h=n)!6 1 if h=n¡ 1 (i.e. n¿ [h] + 1¿h). Therefore,

e−h
∞∑
n=1

hn

n!
h!

n! 6 e−h


 [h]∑

n=1

hn

n!
h
n
+

∞∑
[h]+1

hn

n!




6 e−h


 [h]∑

n=1

hn+1

(n+ 1)!
n+ 1
n

+
∞∑
[h]+1

hn

n!




6 e−h

( ∞∑
n=2

hn

n!
2+

∞∑
n=1

hn

n!

)
6c:

Lemma 6.2. Let i∈{1; 2}. For every "¿ 0 and R¿ 0 there exists a 7nite constant
c";R ¿ 0 such that for all x∈R, t ¿ 0 and /∈ (0; 1],

sup
r∈[0;R]

∫
R

∫
R
q/
t (x; z)

ip/(z; y)e"| | dz%1(r; dy)6 c";R
1

ti=2−�1=2
e"|x|;  ∈{y; z}:
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Proof. We only prove the case i= 2 and  = z. The other cases can be shown analo-
gously. Using Lemma 6.1, H'older’s inequality, Lemma 3.4 and Remark 3.5 we obtain
the following estimate:∫

R

∫
R
q/
t (x; z)

2p/(z; y)e"|z| dz%1(r; dy)

=
∫
R

∫
R
e−2t=/

( ∞∑
n=1

(t=/)n

n!
pn/(x; z)

)2
p/(y; z)e"|z| dz%1(r; dy)

6 e−t=/
∞∑
n=1

(t=/)n

n!

∫
R

∫
R
pn/(x; z)p/(z; y)e"|z| dz%1(r; dy)

e−t=/

t1=2

∞∑
n=1

(t=/)n

n!
(t=/)1=2

n1=2

6 e−t=/
∞∑
n=1

(t=/)n

n!

∫
R

(∫
R
pn/(x; z)p/(z; y) dz

)1=2

×
(∫

R
pn/(x; z)p/(z; y)e2"|z| dz

)1=2
%1(r; dy)

c
t1=2

6 c
1
t1=2

e−t=/
∞∑
n=1

(t=/)n

n!

∫
R
pn/+/(x; y)1=2

1
(25n/)1=4

e"|y|%1(r; dy)

6 c′
1
t1=2

e−t=/
∞∑
n=1

(t=/)n

n!
c";R

1
(n/+ /)1=4−�1=2

e"|x|
1

(25n/)1=4

6 c′";R
1

t1−�1=2

(
e−t=/

∞∑
n=1

(t=/)n

n!
(t=/)1=2−�1=2

n1=2−�1=2

)(
n/

n/+ /

)1=4−�1=2

e"|x|

6 c′′";R
e"|x|

t1−�1=2

for all r ∈ [0; R].

Lemma 6.3. For every �¿ 0 and T ¿ 0 we have

lim
/↓0

sup
x;y∈R

sup
t6T

t1=2+�

∣∣∣∣
∫
R
q/
t (x; z)p/(y; z) dz − pt(x; y)

∣∣∣∣= 0:
Lemma 6.4. Let !¿ 0 and "¿ 0. Then we have for all /∈ (0; 1]

supx∈R

∫
R
p/(x; y)|x − y|!e"|x−y| dy6 c"/!=4:

The technical proofs of Lemmas 6.3 and 6.4 will be omitted.
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Proof of Theorem 2.4. DeAne time measures �/
x(dt) :=

∫
R p/(x; y)�(dt dy) and time

white noises W/
x (dt):=

∫
R p/(x; y)W%(dt dy) (formally) for every /¿ 0. Note that �/

x(t)
:=
∫ t
0 �

/
x(dr) provides a (deterministic) non-decreasing continuous process and W/

x (t)=∫ t
0 W

/
x (dr) :=

∫ t
0

∫
R p/(x; y)W%(dr dy) provides a continuous square-integrable martin-

gale with quadratic variation process 〈W/
x 〉(t) =

∫ t
0

∫
R p2/ (x; y)%(dr dy) for all /¿0.

Then the strategy is as follows. First (Step 1) we shall prove that for every Axed
/¿ 0 the following family of SODEs with index x∈R:

u/(t; x) = �(x) +
∫ t

0
?/u/(r; x) dr

+
∫ t

0
b(r; x; u/(r; x))�/

x(dr) +
∫ t

0
a(r; x; u/(r; x))W/

x (dr) (18)

has a unique Ctem(R)-valued continuous solution u/. Then we established that this
solution is non-negative (Step 2). In Step 3 we approximate the unique solution u
of SPDE (1) by u/ (/ ↓ 0) whereby the desired non-negativity of u will follow. The
approximation of u by u/ is not surprising since the equation family (18) is equivalent
to the following molliAed version of SPDE (1):

〈u/(t; :);  〉= 〈�;  〉+
∫ t

0
〈u/(r; :);?/ 〉 dr

+
∫ t

0

∫
R

∫
R
b(r; z; u/(r; z)) (z)p/(y; z) dz�(dr dy)

+
∫ t

0

∫
R

∫
R
a(r; z; u/(r; z)) (z)p/(y; z) dzW%(dr dy) (19)

for every t¿ 0 and  ∈C∞
c (R). The key for the proof of the equivalence is that

〈P/';  〉 = 〈'; P/ 〉 (and so 〈?/';  〉 = 〈';?/ 〉) holds for all '∈Ctem(R) and  ∈
C∞

c (R). We omit the details.
Step 1: We here establish a unique solution to (18). The crucial point is that (19),

and so (18), is equivalent to the following molliAed version of SIE (14):

u/(t; x) = P/
t �(x) +

∫ t

0

∫
R
e−(t−r)=/b(r; x; u/(r; x))p/(x; y)�(dr dy)

+
∫ t

0

∫
R

∫
R
q/
t−r(x; z)b(r; z; u/(r; z))p/(y; z) dz�(dr dy)

+
∫ t

0

∫
R
e−(t−r)=/a(r; x; u/(r; x))p/(x; y)W%(dr dy)

+
∫ t

0

∫
R

∫
R
q/
t−r(x; z)a(r; z; u/(r; z))p/(y; z) dzW%(dr dy): (20)

The proof of the equivalence works analogously to the proof of Proposition 4.4 (recall
that ?/ was the generator of (P/

t )). Then mimic the proof of Theorem 2.3 to obtain a
unique Ctem(R)-valued continuous solution to SIE (20). This time one has to choose
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=/(u) := P/
: �(:)+=/

2;1(u)+=/
2;2(u)+=/

3;1(u)+=/
3;2(u) := r.h.s. of (20). Note that the

essential technical tools are Lemmas 3.4 and 3.6 as before, as well as Lemma 6.2 and
an analogue of Lemma 3.7. In particular, one obtains sup/∈(0;1]‖u/‖";T;m ¡∞ for all
"; T ¿ 0 and m¿ 1.
Step 2: Let us turn to the non-negativity of solutions to (18). Choose a sequence

(xn) ⊂ (−∞; 0) in such a manner that x0 = −1, xn ↑ 0 and ∫ xn

xn−1
x−2 dx = n. For

every n¿ 1 pick a real-valued continuous function gn on R such that supp(gn) ⊂
(xn−1; xn), 06 gn(x)6 2x−2=n and

∫ xn

xn−1
gn(x) dx=1. Set fn(x)=

∫ 0
x

∫ 0
y gn(z) dz dy for

all x¡ 0 and fn(x) = 0 for all x¿ 0. The functions fn are obviously in C2(R). We
have f′

n(x) =− ∫ 0x gn(y) dy and f′′
n (x) = gn(x) for every x¡ 0 and f′

n(x) =f′′
n (x) = 0

for every x¿ 0. One should interpret fn, f′
n and f′′

n as approximations of f(x) :=
−min{0; x}, “f′(x)”=− 1(−∞;0](x) and “f′′(x)”=�0(x), respectively. In particular, we
have 06f(x)− fn(x)6− xn−1 ↓ 0 as n → ∞ and −f′

n(x)∈ [0; 1] for all x∈R. Set
ũ /(t; x)=e−|x|u/(t; x). Then ũ /(t; x)=e−|x|[�(x)+A/

x(t)+M/
x (t)] := e

−|x|[r.h.s. of (18)]
is a semimartingale for every x∈R and Itô’s formula yields

fn(ũ /(t; x)) =fn(e−|x|�(x)) +
∫ t

0
f′
n(ũ /(r; x))e−|x| dA/

x(r)

+
∫ t

0
f′
n(ũ /(r; x))e−|x| dM/

x (r) +
1
2

∫ t

0
f′′
n (ũ /(r; x))e−2|x| d〈M/

x 〉(r):

Taking expectation and using f′′
n=gn, f′

n(u)=0 for u¿ 0, −b(r; y; u)6LT |u| for u∈R,
|a(r; y; u)|6LT |u| for u∈R, −f′

n(u)∈ [0; 1] for u∈R, Lemma 3.4 and −u6f(u) for
u∈R we obtain

E[fn(ũ /(t; x))]

=E
[∫ t

0
f′
n(ũ /(r; x))e−|x| dA/

x(r)
]
+
1
2
E
[∫ t

0
f′′
n (ũ /(r; x))e−2|x| d〈M/

x 〉(r)
]

=E
[∫ t

0
f′

n(ũ /(r; x)) (?/u/(r; x)) e−|x| dr
]

+E
[∫ t

0

∫
R
f′

n(ũ /(r; x))b(r; x; u/(r; x))p/(x; y)e−|x|�(dr dy)
]

+
1
2
E
[∫ t

0

∫
R
f′′

n (ũ /(r; x))a2(r; x; u/(r; x))p2/ (x; y)e
−2|x|%(dr dy)

]

=
1
/
E
[∫ t

0
f′

n(ũ /(r; x))
∫
R
p/(x; y)ũ /(r; y)e(|y|−|x|) dy dr

−
∫ t

0
f′

n(ũ /(r; x))ũ /(r; x) dr
]
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+E
[∫ t

0

∫
R
(−f′

n(ũ /(r; x)))(−b(r; x; u/(r; x)))e−|x|p/(x; y)�(dr dy)
]

+
1
2
E
[∫ t

0

∫
R
gn(ũ /(r; x))a2(r; x; u/(r; x))p2/ (x; y)e

−2|x|%(dr dy)
]

6
1
/
E
[∫ t

0
f′

n(ũ /(r; x))
∫
R
p/(x; y)ũ /(r; y)e|y| dy dr

]
e−|x|

+E
[∫ t

0

∫
R
(−f′

n(ũ /(r; x))LT |ũ /(r; x)|)p/(x; y)�(dr dy)
]

+
1
2
E
[∫ t

0

∫
R

2|ũ /(r; x)|−2
n

L2T |ũ /(r; x)|2p2/ (x; y)%(dr dy)
]

6
1
/
E
[∫ t

0
(−f′

n(ũ /(r; x)))
∫
R
p/(x; y)e|y|(−ũ /(r; y)) dy dr

]
e−|x|

+ c/;TE
[∫ t

0
(−f′

n(ũ /(r; x)))(−ũ /(r; x))�2(dr)
]

+
L2T
n

∫ t

0

∫
R
p2/ (x; y)%(dr dy)

6 c/

∫ t

0
sup
y∈R

E[f(ũ /(r; y))] dr + c/;T

∫ t

0
sup
x∈R

E[f(ũ /(r; x))]�2(dr) +
Sc/;T
n

for all t6T and x∈R, for each T ¿ 0. Letting n → ∞ we infer by the dominated
convergence theorem and the convergence of fn to f that

‖E[f(ũ /(t; :))]‖∞6c/

∫ t

0
‖E[f(ũ /(r; :))]‖∞ dr + c/;T

∫ t

0
‖E[f(ũ /(r; :))]‖∞�2(dr)

holds for all t6T , for each T ¿ 0. Therefore, we deduce by Lemma 3.8 that
supt6T‖E[f(ũ /(t; :))]‖∞=0 holds for each T ¿ 0. Since f¿ 0, we conclude f(ũ /(t; x))
= 0 P-almost surely, for all (t; x). Hence, f(ũ /(t; x)) = 0 holds for all rational couples
(t; x), P-almost surely. The joint continuity of ũ / Anally implies ũ /(t; x)¿ 0 (and so
u/(t; x)¿ 0) for all (t; x), P-almost surely.
Step 3: We now approximate u by the u/. Plainly,

e−"|x|E[|u/(t; x)− u(t; x)|2]6 e−"|x|2
{|P/

t �(x)− Pt�(x)|2

+E

[∣∣∣∣
∫ t

0

∫
e−(t−r)=/b(r; x; u/(r; x))p/(x; y)�(dr dy)

∣∣∣∣
2
]

+E

[∣∣∣∣
∫ t

0

∫∫
q/
t−r(x; z)(b(r; z; u/(r; z))− b(r; z; u(r; z)))p/(y; z) dz�(dr dy)

∣∣∣∣
2
]
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+E

[∣∣∣∣
∫ t

0

∫∫
q/
t−r(x; z)(b(r; z; u(r; z))− b(r; y; u(r; y)))p/(y; z) dz�(dr dy)

∣∣∣∣
2
]

+E

[∣∣∣∣
∫ t

0

∫ (∫
R
q/
t−r(x; z)p/(y; z) dz − pt−r(x; y)

)
b(r; y; u(r; y))�(dr dy)

∣∣∣∣
2
]

+E

[∣∣∣∣
∫ t

0

∫
e−(t−r)=/a(r; x; u/(r; x))p/(x; y)W%(dr dy)

∣∣∣∣
2
]

+E

[∣∣∣∣
∫ t

0

∫∫
q/
t−r(x; z)(a(r; z; u/(r; z))− a(r; z; u(r; z)))p/(y; z) dzW%(dr dy)

∣∣∣∣
2
]

+E

[∣∣∣∣
∫ t

0

∫∫
q/
t−r(x; z)(a(r; z; u(r; z))− a(r; y; u(r; y)))p/(y; z) dzW%(dr dy)

∣∣∣∣
2
]

+E

[∣∣∣∣
∫ t

0

∫ (∫
R
q/
t−r(x; z)p/(y; z) dz−pt−r(x; y)

)
a(r; y; u(r; y))W%(dr dy)

∣∣∣∣
2
]}

=: e−"|x|2{I /1(t; x) + · · ·+ I /9(t; x)}:
By Lemmas 3.4, 3.6, 6.2 (i = 2,  = z), 6.4 and H'older’s inequality we obtain for all
t6T ;

I /6(t; x) = E
[∫ t

0

∫
R
e−2(t−r)=/a2(r; x; u/(r; x))p2/ (x; y)%(dr dy)

]

6 c
∫ t

0
e−2(t−r)=/

∫
R
p2/ (x; y)e

"|x|%1(r; dy)c̃(1 + ‖u/‖"; r;1)2%2(dr)

6 c
∫ t

0
e−2(t−r)=/ 1

25/

∫
R
e−(x−y)2=/%1(r; dy)c̃";T %2(dr)e"|x|

6 c̃";T
1

/1−�1=2

∫ t

0
e−2(t−r)=/%2(dr)e"|x|6 c";T /�1=2+�2−1e"|x|;

I /7(t; x) = E
[∫ t

0

∫
R

(∫
R
q/
t−r(x; z)

× (a(r; z; u/(r; z))− a(r; z; u(r; z)))p/(y; z) dz)
2 %(dr dy)

]

6 cE
[∫ t

0

∫
R

∫
R
q/
t−r(x; z)

2e"|z|p/(y; z) dz

×
∫
R
p/(y; z)e−"|z||u/(r; z)− u(r; z)|2 dz%(dr dy)

]
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6
∫ t

0

∫
R

∫
R
q/
t−r(x; z)

2e"|z|p/(y; z) dz%1(r; dy)‖u/ − u‖2"; r;1%2(dr)

6 c";T

∫ t

0

1
(t − r)1−�1=2

‖u/ − u‖2"; r;1%2(dr)e"|x|

and

I /8(t; x) = E
[∫ t

0

∫
R

(∫
R
q/
t−r(x; z)

× (a(r; z; u(r; z))− a(r; y; u(r; y)))p/(y; z) dz
)2

%(dr dy)

]

6 c
∫ t

0

∫
R

∫
R
q/
t−r(x; z)

2e"|z|p/(y; z) dz

×
∫
R
p/(y; z)2L2t (|z − y|2+ + E[|u(r; z)− u(r; y)|2])e−"|z| dz%(dr dy)

6 c′T

∫ t

0

∫
R

∫
R
q/
t−r(x; z)

2e"|z|p/(y; z) dz

×
∫
R
p/(y; z)(|z − y|2+ + cT |z − y|2�e"|z−y|e"|z|)e−"|z| dz%(dr dy)

6 c′′T

∫ t

0

∫
R

∫
R
q/
t−r(x; z)

2e"|z|p/(y; z) dz

×
(∫

R
p/(y; z)|z − y|2+ dz +

∫
R
p/(y; z)|z − y|2�e"|z−y| dz

)
%(dr dy)

6 c";T e"|x|(/+=2 + /�=2):

For the estimate of I8 we used

E[|u(r; z)− u(r; y)|2]6 cT |z − y|2�e"|z−y|e"|z| ∀r6T and z; y∈R
which follows from Step 1 of the proof of Theorem 2.3. Further, using Lemmas 6.3
and 6.2 (i = 1,  = y) we can estimate I /9(t; x) by

E

[∫ t

0

∫
R

(∫
R
q/
t−r(x; z)p/(y; z) dz − pt−r(x; y)

)2
a2(r; y; u(r; y))%(dr dy)

]

6 c
∫ t

0

∫
R

(∫
R
q/
t−r(x; z)p/(y; z) dz − pt−r(x; y)

)2

×e"|y|e−"|y|E[(1 + u(r; y))2]%(dr dy)
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6 c′
∫ t

0

∫
R

(∫
R
q/
t−r(x; z)p/(y; z) dz−pt−r(x; y)

)2
e"|y|%1(r; dy)‖u‖2"; r;1%2(dr)

6 c′T

∫ t

0

∫
R
(t − r)1=2+�

∣∣∣∣
∫
R
q/
t−r(x; z)p/(y; z) dz − pt−r(x; y)

∣∣∣∣
× 1
(t − r)1=2+�

(∫
R
q/
t−r(x; z)p/(y; z) dz + pt−r(x; y)

)
e"|y|%1(r; dy)%2(dr)

6 c′";T

∫ t

0

∫
R
h�;T (/)× c′′T

1
(t − r)1=2+�+1=2−�1=2

e"|x|%2(dr)6 c";T e"|x|h�;T (/)

for any �∈ (0; �1=2 + �2 − 1), where h�;T (/) ↓ 0 as / ↓ 0.
Proceeding in the same way we get analogous estimates for I /2(t; x), I

/
3(t; x), I

/
4(t; x)

and I /5(t; x). On the whole, we obtain

‖u/ − u‖2"; t;16 c";T

{
hT (/) + sup

s∈[0; t]

∫ s

0

1
(s− r)1−�1=2

‖u/ − u‖2"; r;1%2(dr)

+ sup
s∈[0; t]

∫ s

0

1
(s− r)1=2−*1=2

‖u/ − u‖2"; r;1�2(dr)
}

for all t6T , for any "¿ 0 and some hT (:) satisfying hT (/) ↓ 0 as / ↓ 0. Lemma 3.8
then gives ‖u/ − u‖";T;16 c̃";T hT (/) (↓ 0 as / ↓ 0) for every T ¿ 0. Since u/ and u are
jointly continuous and u/ is non-negative for every /¿ 0, u is non-negative, too. We
are done.

7. Proof of Theorem 2.5

We may and do pick two sequences (an) and (bn) of Lipschitz continuous functions
approximating a and b, respectively, uniformly on compacts. Also, an and bn can be
chosen in such a manner that they fulAll (7) with a common constant c for all n¿ 1.
By Theorem 2.3 there is for every n¿ 1 a unique strong Ctem(R)-valued solutions un

to SPDE (1) with a; b replaced by an; bn. Let (Pn) denote the sequence of probability
measures on C([0;∞); Ctem(R)) induced by (un) and set Xn(t; x)=∫ t

0

∫
R
pt−r(x; y)bn(un(r; y))�(dr dy) +

∫ t

0

∫
R
pt−r(x; y)an(un(r; y))W%(dr dy)

for every n¿ 1. As in Step 1 of the proof of Theorem 2.3 one can show that

sup
n¿1

En[|Xn(t; x)− Xn(t′; x′)|2m]

6 c";T;m(|t − t′|(�m)∧(*2m) + |x − x′|2((�m)∧(*2m)))e"|x|

holds for all t; t′6T , x; x′ ∈R:|x − x′|6 1, "¿ 0 and m¿ 1. Thus, for m suT-
ciently large, Lemma 3.2 implies tightness of (Pn)n¿1. Any weak limit point is locally
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H'older-!-continuous on (0;∞) × R for each !∈ (0; (�=2) ∧ *) which is also a conse-
quence of Lemma 3.2. In order to complete the proof of Theorem 2.5 it remains to
show that any weak limit point u is a weak solution to SPDE (1). By Proposition 4.3 it
suTces to show that any weak limit point u solves the martingale problem in DeAnition
4.1. However, it is more or less standard to conclude the martingale characterization
(DeAnition 4.1) of u from the one of un. We omit the details. Note, however, that
an essential step is to show supn¿1‖un‖";T;m ¡∞ (for some "¿ 0 and m¿ 1, and all
T ¿ 0).
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