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Abstract

The estimation of local characteristics of Itô semimartingales has received a great deal of attention
in both academia and industry over the past decades. In various papers limit theorems were derived
for functionals of increments and ranges in the infill asymptotics setting. In this paper we establish the
asymptotic theory for a wide class of statistics that are built from the incremental process of an Itô
semimartingale. More specifically, we will show the law of large numbers and the associated stable central
limit theorem for the path dependent functionals in the continuous setting, and discuss the asymptotic theory
for range-based statistics in the discontinuous framework. Some examples from economics and physics
demonstrate the potential applicability of our theoretical results in practice.
c⃝ 2015 Published by Elsevier B.V.
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1. Introduction

In the last decade limit theory for high frequency observations of Itô semimartingales has re-
ceived a lot of attention in the scientific literature. Such observation schemes of semimartingales,
also called infill asymptotics, naturally appear in financial, biological and physical applications
among many others. For instance, a seminal work of Delbaen and Schachermayer [8] states that
price processes must follow a semimartingale model under no arbitrage conditions.
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A general Itô semimartingale exhibits a representation of the form

X t = X0 +

 t

0
µs ds +

 t

0
σs dWs + Z t ,

where µ represents the drift, σ is the volatility, W is a Brownian motion and Z denotes a pure
jump process. Irrespective of the application field, researchers are interested in understanding the
fine structure of the underlying Itô semimartingale model based on high frequency observations

X0, X∆n , X2∆n , . . . , X∆n⌊t/∆n⌋,

where ∆n → 0, which refers to infill asymptotics. For various testing and estimation problems,
the class of generalised multipower variations turned out to be a very important probabilistic tool.
In their most general form, generalised multipower variations are defined as

⌊t/∆n⌋−d+1
i=1

f


an(X i∆n − X(i−1)∆n ), . . . , an(X(i+d−1)∆n − X(i+d−2)∆n )

,

where f : Rd
→ R is a smooth function and the scaling an depends on whether the process X has

jumps or not. In the continuous case the proper scaling is an = ∆−1/2
n . Probabilistic properties

of generalised multipower variations in continuous and discontinuous settings have been studied
in [4,14,17] among many others. We refer to a recent book [15] for a comprehensive study of
high frequency asymptotics for Itô semimartingales. Such probabilistic results found manifold
applications in the statistical analysis of semimartingale models. Estimation of the quadratic
variation (see e.g. [14]), volatility forecasting (see e.g. [2,3]), and tests for the presence of the
jump component (see e.g. [1,5]) are the most prominent applications among many others.

The aim of this paper is to study the asymptotic behaviour of path dependent high frequency
functionals of Itô semimartingales. This framework is motivated by the fact that in some situa-
tions we cannot directly observe the semimartingale X , but only its path dependent functional
over short time windows. Let us give two examples. In various applied sciences integrated diffu-
sions (i.e. integrated Itô semimartingales) appear as a natural class of models for a given random
phenomena. For example in physics, when a medium’s surface (such as the arctic sea ice) is
modelled as a stochastic process, a sonar’s measurement of the reflection of this surface is given
by the local time of the surface’s slope process (see e.g. [19,10]). Since this local time process
is typically an Itô process again (see e.g. [21,18]), limit theorems for local averages are required
in order to make inference on the structure of the original surface process (see e.g. [11] for a
detailed discussion). Because only discrete (high frequency) observations of such integrated dif-
fusions are available, one cannot recover the original path of the underlying Itô semimartingales
from it. Another example of path dependent functionals are ranges whose statistical properties
have been studied in [12,20] in the case of low frequency observations of a scaled Brownian mo-
tion. We also refer to an early result by William Feller [9], which characterises the distribution
of the range of the Brownian motion.

In this paper we will consider functionals of the incremental process built from X , i.e.

V (X, g)nt = ∆n

⌊t/∆n⌋
i=1

g


an

X(i−1+s)∆n − X(i−1)∆n


; s ∈ [0, 1]


,

where g is now operating on C([0, 1]) and the scaling an equals ∆−1/2
n when X is a continuous

Itô semimartingale. Obviously, this class of statistics extends the classical concept of power
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variations to path dependent functionals. The function g(x) = supt∈[0,1] x(t) − inft∈[0,1] x(t)
recovers the case of realised ranges as have been considered in [6,7] in the context of quadratic
variation estimation. In this work we will prove the law of large numbers for the functional
V (X, g)nt and show the associated stable central limit theorem in the continuous framework. We
remark that extending the analysis to general path dependent functionals increases the complexity
of the proofs, which is due to the topological structure of the space C([0, 1]). Furthermore, a
general asymptotic statement in the discontinuous case seems to be out of reach (in contrast to
very general results for classical power variations studied in [14]). For this reason, we restrict our
attention to range statistics of discontinuous Itô semimartingales where the jump process follows
a compound Poisson process, as they seem to be useful in financial applications (see [7]). Finally,
we present some applications of the probabilistic results, in particular in the context of integrated
diffusions and realised ranges.

The paper is organised as follows. In Section 2 we state the two main theorems for general
functionals of continuous Itô semimartingales, establishing the limits in probability as well as
the associated stable central limit theorem. In Section 3 we apply the limit theory to three most
prominent practical examples including general range statistics and integrated diffusions. Sec-
tion 4 is devoted to the limit theorems for realised ranges of discontinuous Itô semimartingales.
The proofs of the main results are collected in Section 5.

2. Limit theorems for continuous Itô semimartingales

Before we present the main results we start by introducing some notation. We denote by
C([0, 1]) the space of continuous real valued functions on the interval [0, 1], and by ∥ · ∥∞ the
supremum norm on C([0, 1]). A function f : C([0, 1]) → R is said to have polynomial growth
if | f (x)| ≤ C(1 + ∥x∥

p
∞) for some C, p > 0. For any x, y ∈ C([0, 1]) and f : C([0, 1]) → R,

the expression f ′
y(x) denotes the Gâteaux derivative of f at point x in the direction of y,

i.e. f ′
y(x) := limh→0( f (x + hy)− f (x))/h whenever this limit exists.

For any processes Y n, Y we denote by Y n ucp
→ Y the uniform convergence in probability,

i.e. supt∈[0,T ] |Y
n
t − Yt |

P
→ 0 for all T > 0. Throughout this paper we frequently use the notion

of stable convergence, which is due to Renyi [22]. A sequence of random variables (Yn)n≥1 on

(Ω ,F ,P) with values in a Polish space (E, E) is said to converge stably in law to Y (Yn
dst
→ Y ),

where Y is defined on an extension (Ω ′,F ′,P′) of the original probability space, if and only if
for any bounded, continuous function f and any bounded F -measurable random variable Z it
holds that

E[ f (Yn)Z ] → E′
[ f (Y )Z ], n → ∞. (2.1)

Typically, we will deal with spaces E = D([0, T ],R) equipped with the uniform topology
when the process Y is continuous. Notice that stable convergence is a stronger mode of

convergence than weak convergence. In fact, the statement Yn
dst
→ Y is equivalent to the joint

weak convergence (Yn, Z)
d
→ (Y, Z) for any F -measurable random variable Z .

2.1. Law of large numbers

Throughout this section we are considering a stochastic process X defined on a filtered prob-
ability space (Ω ,F ,F = (Ft )t≥0,P) satisfying the usual conditions that follows the distribution
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of a diffusion

X t = X0 +

 t

0
µs ds +

 t

0
σs dWs

for t ≥ 0, where X0 is a constant, W is a Brownian motion, µ is a predictable, locally bounded
process and σ is an adapted, cádlág process. Given a function g : C([0, 1]) → R and a vanishing
sequence (∆n)n∈N we define the sequence of processes

V (X, g)nt := ∆n

⌊t/∆n⌋
i=1

g

∆

−
1
2

n dn
i (X)


, (2.2)

dn
i (X) :=


X(i−1+s)∆n − X(i−1)∆n


s∈[0,1]

. (2.3)

For any z ∈ R and g ∈ C([0, 1]) we introduce the quantity

ρz(g) := E [g({z Ws; s ∈ [0, 1]})] , (2.4)

whenever the latter expectation is finite. Our first result is the law of large numbers for the func-
tional V (X, g)nt .

Theorem 2.1 (Law of Large Numbers). Let g be a locally uniformly continuous functional,
i.e. for x, y ∈ C([0, 1]),

(i) given K , ϵ > 0 there exists δ > 0 such that for ∥x∥∞, ∥y∥∞ ≤ K , ∥x − y∥∞ ≤ δ it follows
that |g(x)− g(y)| ≤ ϵ,

and have polynomial growth. Then it holds that

V (X, g)nt
ucp
→ V (X, g)t :=

 t

0
ρσs (g) ds, (2.5)

where the quantity ρz(g) is defined at (2.4).

Remark 2.1. Our notion of locally uniform continuity is slightly unusual. Instead of requiring
uniform continuity on neighbourhoods or compact sets we demand it on balls B≤K (0) = {x ∈

C([0, 1]); ∥x∥∞ ≤ K } for K > 0, which are not compact with respect to the uniform topology.
This type of locally uniform continuity is not required in the classical limit theory for functionals
of increments of X (see e.g. [4]) since on finite dimensional spaces continuity on closed balls
implies uniform continuity. We remark that our locally uniform continuity assumption is satisfied
whenever

|g(x)− g(y)| ≤ C∥x − y∥
δ
∞

for all x, y ∈ C[0, 1] and some C, δ > 0. This condition is satisfied for all practical examples.

Remark 2.2. The law of large numbers in Theorem 2.1 extends to a multivariate setting in a
straightforward manner. Assume that X is a d-dimensional continuous Itô semimartingale, where
µ is Rd -valued predictable, locally bounded process, σ is Rd×d -valued adapted, cádlág process
and W is a d-dimensional Brownian motion. For a function g : C([0, 1])d → Rk , define the
statistic V (X, g)nt as at (2.2). Furthermore, for any matrix Σ ∈ Rd×d , we set

ρΣ (g) := E [g({Σ Ws; s ∈ [0, 1]})] .
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Then, under assumptions of Theorem 2.1, it holds that

V (X, g)nt
ucp
→ V (X, g)t :=

 t

0
ρσs (g) ds.

This convergence is proved exactly in the same manner as in the univariate case.

2.2. Central limit theorem

Having determined the limit in probability we now turn to the associated stable central limit
theorem.

Theorem 2.2 (Central Limit Theorem). Let g satisfy the conditions of Theorem 2.1. Moreover,
we assume that

(ii) given K , ϵ > 0 there exists δ > 0 such that for ∥x∥∞, ∥y∥∞ ≤ K , ∥x−y∥∞ ≤ δ, ∥v∥∞ ≤ 1
it follows that |g′

v(x)− g′
v(y)| ≤ ϵ,

(iii) there exist C, p > 0 such that |g′
v(x)| ≤ C(1 + ∥x∥

p
∞) for ∥v∥∞ ≤ 1.

Let σ be a continuous Itô semimartingale of the form

σt = σ0 +

 t

0
µ̃s ds +

 t

0
σ̃s dWs +

 t

0
ṽs dVs,

where µ̃, σ̃ and ṽ are adapted, cádlág processes and V is another Brownian motion independent
of W . Then it follows that

∆
−

1
2

n

V (X, g)n − V (X, g)

 dst
→ U (X, g) (2.6)

where U (X, g)t :=
 t

0 u1
s ds +

 t
0 u2

s dWs +
 t

0 u3
s dW ′

s with

u1
s := µsρ

(2)
σs
(g′)+

1
2
σ̃sρ

(3)
σs
(g′)−

1
2
σ̃sρ

(2)
σs
(g′)

u2
s := ρ(1)σs

(g),

u3
s :=


ρσs (g2)− ρ2

σs
(g)− (ρ

(1)
σs (g))2,

and, for z ∈ R and f (x, y) := g′
y(x),

ρ(1)z (g) := E

g

{z Ws; s ∈ [0, 1]}


W1


,

ρ(2)z ( f ) := E


f

{z Ws; s ∈ [0, 1]} , {s; s ∈ [0, 1]}


,

ρ(3)z ( f ) := E


f

{z Ws; s ∈ [0, 1]} , {W 2

s ; s ∈ [0, 1]}

.

Furthermore, W ′ is a Brownian motion defined on an extension of (Ω ,F ,F,P), which is
independent of F .

Some remarks on the application of this probabilistic result are in order.

Remark 2.3. When g(x) ≡ f (x(1)) for some function f : R → R such that f, f ′ have poly-
nomial growth, we recover the stable central limit theorem for functionals of increments of X .



1200 M. Duembgen, M. Podolskij / Stochastic Processes and their Applications 125 (2015) 1195–1217

More precisely, it holds that

ρ(1)z (g) = E[ f (zW1)W1], ρ(2)z (g′) = E[ f ′(zW1)], ρ(3)z (g′) = E[ f ′(zW1)W
2
1 ],

and we obtain the one-dimensional analogue of the asymptotic theory presented in [17].

Remark 2.4. The assumption on the structural form of σ in Theorem 2.2 is necessary for the
proof of the central limit theorem. It can be extended to include general discontinuous Itô
semimartingales, without affecting the limit, at the costs of more complicated proof. Such more
general assumption has been used in e.g. [4].

Remark 2.5. In general, Theorem 2.2 cannot be applied for statistical inference, since the
distribution of the limit U (X, g)t is unknown. However, when g is an even functional, i.e. g(x) =

g(−x) for all x ∈ C([0, 1]), things become different. In this case it holds that

ρ(1)z (g) = ρ(2)z (g′) = ρ(3)z (g′) = 0

for all z ∈ R, since W
d
= −W and expectations of odd functionals of W are 0. Hence, the limiting

process U (X, g) has the form

U (X, g)t =

 t

0


ρσs (g2)− ρ2

σs
(g) dW ′

s,

which is, conditionally on F , a Gaussian martingale with mean 0. For a fixed t > 0, the result of
Theorem 2.2 can be transformed into a standard central limit theorem when g is even. A slight
modification of Theorem 2.1 shows that

V n
t := ∆n

⌊t/∆n⌋−1
i=1


g2∆−

1
2

n dn
i (X)


− g


∆

−
1
2

n dn
i (X)


g

∆

−
1
2

n dn
i+1(X)


ucp
→

 t

0
ρσs (g

2)− ρ2
σs
(g) ds.

(This should be compared with the asymptotic theory for bipower variation established in [4].)
For any fixed t > 0, we then deduce a standard central limit theorem

∆
−

1
2

n

V (X, g)nt − V (X, g)t


V n

t

d
→ N (0, 1)

by properties of stable convergence. The latter can be used to obtain confidence regions for the
quantity V (X, g)t .

Remark 2.6. We continue with the multivariate extension as in Remark 2.2. We do not present
the proofs as they follow along the lines of the univariate case. Recalling the notation of the
multivariate setting in Remark 2.2, we will again require a structural assumption on σ from
Theorem 2.2, except the process σ̃ is now Rd×d×d -valued (and also the processes µ̃, ṽ attain the
corresponding dimension). For a function h : C([0, 1])d → R, we set fh(x, y) = h′

y(x) and
define

ρ
(1)
Σ (h) := E


h

{z Ws; s ∈ [0, 1]}


W1


,

ρ
(2)
Σ ,ν(h) := E


fh

{Σ Ws; s ∈ [0, 1]} , {sν; s ∈ [0, 1]}


,
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ρ
(3)
Σ ,Υ (h) := E


fh


{Σ Ws; s ∈ [0, 1]} ,

 s

0
ΥWudWu; s ∈ [0, 1]


,

with ν ∈ Rd ,Σ ∈ Rd×d ,Υ ∈ Rd×d×d . Then, under assumptions of Theorem 2.2, we obtain the
stable convergence

∆
−

1
2

n

V (X, g)n − V (X, g)

 dst
→

 t

0
u1

s ds +

 t

0
u2

s dWs +

 t

0
u3

s dW ′
s,

where W ′ is a k-dimensional Brownian motion defined on an extension of (Ω ,F ,F,P), which is
independent of F , and the processes u1, u2, u3 are Rk,Rk×d ,Rk×k-valued respectively, which
are defined as follows:

u1, j
s = ρ(2)σs ,µs

(g j )+ ρ
(3)
σs ,σ̃s

(g j ),

u2,( j,l)
s = ρ(1),lσs

(g j ),

u3
s (u

3
s )
⋆

= ws − u2
s (u

2
s )
⋆,

w
( j, j ′)
s = ρσs (g j g j ′)− ρσs (g j )ρσs (g j ′),

where g = (g1, . . . , gk) and 1 ≤ j, j ′ ≤ k, 1 ≤ l ≤ d. When all involved processes are
univariate we readily deduce the result of Theorem 2.2, since the derivative h′

y(x) is linear in y

and it holds that 2
 s

0 WudWu = W 2
s − s in the one-dimensional case.

3. Examples and applications

In this section we present some examples that demonstrate the applicability of the limit theory
for path dependent functionals of continuous Itô semimartingales. For comparison reasons we
start with the classical results on power variations.

Example 1. Here we consider the power variation case which corresponds to g(x) ≡ f (x(1))
with f (x) = |x |

p, p > 0. Recalling the asymptotic theory from [4] we conclude that

∆
1−

p
2

n

⌊t/∆n⌋
i=1

X i∆n − X(i−1)∆n

p ucp
→ λ1,p

 t

0
|σs |

p ds

where λ1,p
= E[|W1|

p
]. Moreover, the following stable central limit theorem holds

∆
−

1
2

n


∆

1−
p
2

n

λ1,p

⌊t/∆n⌋
i=0

X i∆n − X(i−1)∆n

p
−

 t

0
|σs |

p ds


dst
→


Λ1,p

 t

0
|σs |

p dW ′
s,

where Λ1,p
:=

λ1,2p
−(λ1,p)2

(λ1,p)2
. Later on we will compare the efficiency of power variation with

other estimators presented in the following examples.

Example 2. Let g : C([0, 1]) → R be defined as g(x) := f (
 1

0 x(s) ds) for a continuously
differentiable function f : R → R such that f, f ′ have polynomial growth. Then condition (i)
of Theorem 2.1 is obviously satisfied. Furthermore, it holds that

g′
y(x) = f ′

 1

0
x(s) ds

 1

0
y(s) ds, ∀x, y ∈ C([0, 1]),
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and conditions (ii) and (iii) of Theorem 2.2 are fulfilled since f ′ is continuous and has polynomial
growth. In particular, for f (x) = |x |

p with p > 0 we obtain that

∆
1−

p
2

n

⌊t/∆n⌋
i=1

∆−1
n

 i∆n

(i−1)∆n

Xs ds − X(i−1)∆n

p ucp
→ λ2,p

 t

0
|σs |

p ds

where λ2,p
= E[|

 1
0 Ws ds|p

]. Furthermore, for p > 1 we deduce the corresponding stable
central limit theorem (cf. Remark 2.5)

∆
−

1
2

n


∆

1−
p
2

n

λ2,p

⌊t/∆n⌋
i=0

∆−1
n

 i∆n

(i−1)∆n

Xs ds − X(i−1)∆n

p
−

 t

0
|σs |

p ds


dst
→


Λ2,p

 t

0
|σs |

p dW ′
s,

with Λ2,p
:=

λ2,2p
−(λ2,p)2

(λ2,p)2
.

Example 3. Range-based statistics have been recently successfully applied in financial econo-
metrics. Nowadays, not only asset prices are recorded at moderate frequencies (5–10 min),
but also the highs and the lows over the same periods. It turns out that using the observed
ranges instead of the observed returns results in more efficient estimation procedures. The infill
asymptotics of range-based functionals have been originally studied in [6]. Here the functional
g : C([0, 1]) → R is a function of the range, i.e. g(x) = f (supt∈[0, 1] x(t)− inft∈[0, 1] x(t)) for a
continuously differentiable function f : R → R, such that f, f ′ have polynomial growth. Then
the law of large numbers in Theorem 2.1 readily applies, but the central limit theorem cannot be
directly deduced from Theorem 2.2, because the range is not Gâteaux differentiable in general.

However, we may apply the following result: Let x, y ∈ C([0, 1]) be functions such that the
set M := {t ∈ [0, 1] : t = argmaxs∈[0,1]x(s)} is finite, then it holds that (cf. [6])

1
h


sup

0≤s≤1


x(s)+ hy(s)


− sup

0≤s≤1
x(s)


= max

t∈M
y(t).

In the proofs (see again [6]) the function x plays the role of the Brownian motion, which attains
its maximum (resp. minimum) at a unique point almost surely. Let tmax := arg maxs∈[0,1] Ws
and tmin := arg mins∈[0,1] Ws . Then the assertion of Theorem 2.2 remains valid in the range case
when σ is everywhere invertible (cf. [7]) with

ρ(1)x (g) = E


f


x


sup
0≤t≤1

Ws − inf
0≤s≤1

Ws


W1


,

ρ(2)x (g′) = E


f ′


x


sup
0≤t≤1

Ws − inf
0≤s≤1

Ws


tmax − tmin


,

ρ(3)x (g′) = E


f ′


x


sup
0≤t≤1

Ws − inf
0≤s≤1

Ws


W 2

tmax
− W 2

tmin


,

which extends the asymptotic theory presented in [7] to general functions of the range. In partic-
ular, for f (x) = |x |

p with p > 0 we obtain that

∆
1−

p
2

n

⌊t/∆n⌋
i=1

sup
s,u∈[(i−1)∆n , i∆n ]

(Xs − Xu)
p ucp

→ λ3,p
 t

0
|σs |

p ds (3.1)
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Fig. 1. The parameters Λ1,p
= Λ2,p , Λ3,p and their ratio.

where λ3,p
= E[sups,u∈[0,1](Ws − Wu)

p
]. Furthermore, since the function f is even, we deduce

the following central limit theorem

∆
−

1
2

n


∆

1−
p
2

n

λ3,p

⌊t/∆n⌋
i=0

sup
s,u∈[(i−1)∆n , i∆n ]

(Xs − Xu)
p

−

 t

0
|σs |

p ds


dst
→


Λ3,p

 t

0
|σs |

p dW ′
s

where Λ3,p
:=

λ3,2p
−(λ3,p)2

(λ3,p)2
. This recovers the analysis presented in [7].

Comparison of Examples 1–3

When comparing different estimators of integrated powers of volatility presented in the
previous examples, we see that Λi,p, i = 1, 2, 3 serve as a convenient measure of their efficiency.
We remark however that this comparison is not fair as the sampling schemes of Example 1 and
Examples 2–3 are not comparable.

Since
 1

0 Ws ds ∼ N (0, 1/3), it follows that

λ1,p
= 3p/2 λ2,p

and Λ1,p coincides with Λ2,p. However, Λ3,p is considerably smaller so as expected, range based
estimation is asymptotically superior. For example in the case p = 2 we find Λ1,p,Λ2,p

= 2,
whereas Λ3,p

≈ 0.4. The smaller p is, the more pronounced this relative difference becomes.
Fig. 1 illustrates these relationships.

Example 4. In various applied sciences integrated diffusions appear as a natural model of a
random phenomena. For example in physics, when a medium’s surface (such as the arctic sea
ice) is modelled as a stochastic process, a sonar’s measurement of the reflection of this surface
is given by the local time of the surface’s slope process (see e.g. [19,10]). Since this local time
process is typically an Itô process again (see e.g. [21,18]) and since the observations are given as
local averages, limit theorems for local averages are required in order to make inference on the
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structure of the original surface process (see e.g. [11]). So let us define the local averages of an
Itô process X as

X
n
i :=

1
∆n

 i∆n

(i−1)∆n

Xsds.

A natural candidate estimator for the quadratic variation of X is given by

⌊t/∆n⌋
i=2


X

n
i − X

n
i−1

2
.

We note that this estimator does not directly exhibit a representation as in Example 2. However,
when we use the decomposition

X
n
i − X

n
i−1 =

1
∆n

 i∆n

(i−1)∆n

Xs − X(i−1)∆n ds −

 (i−1)∆n

(i−2)∆n

Xs − X(i−2)∆n ds

+ (X(i−1)∆n − X(i−2)∆n )

,

Theorem 2.1, and the bipower concept of Remark 2.5, we deduce the ucp convergence

⌊t/∆n⌋
i=2


X

n
i − X

n
i−1

2 ucp
→

2
3

 t

0
σ 2

s ds.

This clearly provides a way of estimating the quadratic variation of X from observations of an
integrated diffusion.

4. Limit theorems for Itô semimartingales with jumps

In this section we study the behaviour of certain path-dependent functionals of discontinuous
Itô semimartingales. As the general theory is much more difficult to establish compared to the
work of [14], we restrict our attention to ranges of Itô semimartingales with jumps. For simplicity
of exposition, we will further restrict ourselves to finite activity jump processes. For more general
jump specifications we refer to a much more complex routine of [14], which might be also
applicable to range statistics after modifications.

4.1. Law of large numbers

Consider now a stochastic process X defined on a filtered probability space (Ω ,F ,F =

(Ft )t≥0,P) satisfying the usual conditions that follows the distribution of a diffusion with a
jump component in the form of a compound Poisson process Z t =

Nt
i=1 Ji where N is a Poisson

process with intensity λ and i.i.d. jump sizes Ji , i.e.

X t = X0 +

 t

0
µs ds +

 t

0
σs dWs + Z t ,

where W is a Brownian motion independent of N , µ is a predictable, locally bounded process
and σ is an adapted, cádlág process. For a positive exponent p > 0 we define

R(X, p)nt :=

⌊t/∆n⌋
i=1

sup
s,u∈[(i−1)∆n ,i∆n ]

|Xs − Xu |
p

for t ≥ 0, n ∈ N. Our first result is the following law of large numbers.
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Theorem 4.1. We have that

R(X, p)nt
P
→ R(X, p)t :=


λ3,2

 t

0
σ 2

s ds +

Nt
i=1

J 2
i p = 2

Nt
i=1

|Ji |
p p > 2

(4.1)

where λ3,2
= E[sups,u∈[0, 1] |Ws − Wu |

2
].

For p < 2 we obtain infinity in the limit whenever
 t

0 σ
2
s ds > 0. We remark that the

first convergence of Theorem 4.1 has been already proved in [7] in the context of range based
estimation of quadratic variation. Very similar results have been established for the classical
power variations in [14].

4.2. Central limit theorem

Having determined the limit in probability we now turn our attention to the associated stable
central limit theorems. In order to introduce the weak limit theory we require some further
notation. We denote by (Ti )i≥1 the successive jump times of the Poisson process N . Furthermore,
we introduce two Brownian motions (W ′

t )t≥0, (Wt )t≥0 and a sequence (κi )i≥1 of i.i.d. U([0, 1])-
distributed random variables, which are mutually independent, and independent of F . Finally,
we introduce the process

U (X, p)t = p
Nt

i=1

|Ji |
p−1

 sup
0≤s≤κi
κi ≤u≤1


(Wi+κi − Wi+s)σTi − + (Wi+u − Wi+κi )σTi


1{Ji>0}

+ sup
0≤s≤κi
κi ≤u≤1


−(Wi+κi − Wi+s)σTi − − (Wi+u − Wi+κi )σTi


1{Ji<0}

 (4.2)

that is defined on the extension of the original space (Ω ,F ,F,P). The central limit theorem is
as follows.

Theorem 4.2 (Central Limit Theorem). (i) For p > 3 and fixed t > 0 we obtain the stable
convergence

∆
−

1
2

n

R(X, p)nt − R(X, p)t

 dst
→ U (X, p)t . (4.3)

(ii) Let p = 2. Assume that the invertible volatility process σ follows the distribution of a
discontinuous Itô semimartingale

σt = σ0 +

 t

0
µ̃s ds +

 t

0
σ̃s dWs +

 t

0
ṽs dVs + Z̃ t ,

where µ̃, σ̃ and ṽ are adapted, cádlág processes, V is another Brownian motion independent of

W and Z̃ t =
Ñt

i=0 J̃i is a compound Poisson processes with Ñ being independent of W (Ñ and
N are possibly correlated). Then, for any fixed t > 0, we obtain the stable convergence

∆
−

1
2

n

R(X, 2)nt − R(X, 2)t

 dst
→ U (X, 2)t +


λ3,4 − (λ3,2)2

 t

0
σ 2

s dW ′
s . (4.4)
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We remark that Theorem 4.2 is similar in fashion to central limit theorems for classical
power variations; see [14]. We do believe that Theorem 4.2 remains valid for a rather general
Itô semimartingale model (i.e. not only in the finite activity case), but the proofs become
considerably longer.

After local estimation of σ and jump sizes Ji , the conditional law of U (X, p)t given F can
be simulated. However, unlike for the mixed normal case in the classical power variation frame-
work, the knowledge of the conditional law of U (X, p)t is not sufficient for statistical inference
(e.g. construction of confidence regions).

5. Proofs

First of all, note that without loss of generality we may assume that the processes µ, σ, µ̃, σ̃ , ṽ
are bounded. This follows from a standard localisation procedure (see e.g. [4]). Below, all
positive constants are denoted by C or C p if they depend on an external parameter p, although
they may change from line to line.

Proof of Theorem 2.1. We begin with some preliminary observations. Denoting

At :=

 t

0
µs ds, Mt :=

 t

0
σs dWs,

we find that for p > 0,

E


∆
−

1
2

n ∥dn
i (X)∥∞

p
≤ C p∆

−
p
2

n


E

∥dn

i (A)∥
p
∞


+ E


∥dn

i (M)∥
p
∞


≤ C p


∆

p
2
n ∥µ∥

p
∞ + ∆

−
p
2

n E
 i∆n

(i−1)∆n

σ 2
s ds

 p
2


≤ C p


∆

p
2
n ∥µ∥

p
∞ + ∥σ∥

p
∞


< ∞ (5.1)

where we used the Burkholder–Davis–Gundy inequality and the boundedness of µ and σ . Now,
by the assumption of polynomial growth, |g(x)| ≤ C(1 + ∥x∥

p
∞) for p > 0 so

E


g(∆
−

1
2

n dn
i (X))


≤ C


1 + ∆

−
p
2

n E

∥dn

i (X)∥
p
∞


< ∞. (5.2)

Define βn
i := ∆

−
1
2

n σ(i−1)∆n dn
i (W ), an approximation of ∆

−
1
2

n dn
i (X). As in (5.1), (5.2) we find

that

E

∥βn

i ∥
p
∞


≤ C p, p > 0, (5.3)

E
g(βn

i )
 ≤ C. (5.4)

βn
i will serve as a convenient approximation because of its simple form and

E

∥βn

i − ∆
−

1
2

n dn
i (X)∥

p
∞


= ∆

−
p
2

n E


sup
[(i−1)∆n ,i∆n ]

 t

(i−1)∆n

µs ds +

 t

(i−1)∆n


σs − σ(i−1)∆n


dWs

p

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≤ C


∥µ∥

p
∞∆

p
2
n + ∆

−
p
2

n E
 i∆n

(i−1)∆n


σs − σ(i−1)∆n

2 ds
 p

2


→ 0, (5.5)

where we used again the Burkholder–Davis–Gundy inequality and for the last step that σ is
cádlág. Returning to the claimed convergence in ucp, let

U n
t := ∆n

⌊t/∆n⌋
i=1

E

g(βn

i ) | F(i−1)∆n


,

R1,n
t := ∆n

⌊t/∆n⌋
i=1


g(βn

i )− E

g(βn

i )
F(i−1)∆n


,

R2,n
t := ∆n

⌊t/∆n⌋
i=1


g(∆

−
1
2

n dn
i (X))− g(βn

i )

,

for all t ≥ 0, n ∈ N. Clearly, V (X, g)nt = U n
t + R1,n

t + R2,n
t . In order to prove (2.5), we will

first show that the approximation U n converges to V (X, g) and afterwards that the error terms
R1, R2 vanish. By definition, E


g(βn

i )
F(i−1)∆n


= ρσ(i−1)∆n

(g), and therefore

U n
t = ∆n

⌊t/∆n⌋
i=1

ρσ(i−1)∆n
(g)

ucp
→ V (X, g)t =

 t

0
ρσs (g) ds

due to continuity of the function ρ(g). Turning to the claimed disappearance of R1,n we exploit
its martingale property and apply Doob’s maximal inequality to get that

P


sup

0≤t≤T

R1,n
t

 > ϵ


≤ C

∆2
n

ϵ2

⌊T/∆n⌋
i=1

E

g(βn

i )
2


≤ CT ∆nϵ
−2

→ 0

for each ϵ > 0. Regarding R2,n , Chebyshev’s inequality gives that for ϵ > 0,

P


sup
0≤t≤T

R2,n
t

 > ϵ


≤

∆n

ϵ

⌊T/∆n⌋
i=1

E
g(∆−

1
2

n dn
i (X))− g(βn

i )
 .

Now we make use of the locally uniform continuity of g. For K , ϵ̂ > 0 choose δ > 0 as in

(i). Defining Ai,n,K
:= {∥βn

i ∥∞ + ∥∆
−

1
2

n dn
i (X)∥∞ ≤ K } as well as Ai,n,K ,δ

:= Ai,n,K
∩

{∥βn
i − ∆

−
1
2

n dn
i (X)∥∞ ≤ δ} and denoting ∆n

i g := g(∆
−

1
2

n dn
i (X))− g(βn

i ), we find that

E

|∆n

i g|


= E

|∆n

i g|

1Ai,n,K ,δ + 1Ai,n,K \Ai,n,K ,δ + 1Ω\Ai,n,K


≤ ϵ̂ + C


E

∥βn

i − ∆
−

1
2

n dn
i (X)∥∞


δ + 1/K


. (5.6)

Hence, choosing K and n large, and then ϵ̂ small, we see that P

sup0≤t≤T |R2,n

t | > ϵ


vanishes

as n → ∞ and we are done. �
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Proof of Theorem 2.2. Thanks to σ following a diffusion process the approximation βn
i is now

sharper than in (5.5):

∆
−

p
2

n E

∥βn

i − ∆
−

1
2

n dn
i (X)∥

p
∞


= ∆−p

n E


sup
t∈[(i−1)∆n ,i∆n ]

 t

(i−1)∆n

µs ds +

 t

(i−1)∆n


σs − σ(i−1)∆n


dWs

p


≤ ∆−p
n C


∥µ∥

p
∞∆p

n + C E
 i∆n

(i−1)∆n


σs − σ(i−1)∆n

2 ds
 p

2


≤ C

∥µ∥

p
∞ + ∆

−
p
2

n E


sup
s∈[(i−1)∆n ,i∆n ]

|σs − σ(i−1)∆n |
p


≤ C


∥µ∥

p
∞ + ∆

p
2
n ∥µ̃∥∞ + ∆

−
p
2

n E
 i∆n

(i−1)∆n

(σ̃s − σ̃(i−1)∆n )
2 ds

 p
2


≤ C. (5.7)

Again, we used the Burkholder–Davis–Gundy inequality and the cádlág property of σ̃ . In order

to prove (2.6) we split up the original term ∆
−

1
2

n

V (X, g)nt − V (X, g)t


into an approximation

and several error terms:

∆
−

1
2

n

V (X, g)nt − V (X, g)t


= ∆

−
1
2

n


∆n

⌊t/∆n⌋
i=1

g(∆
−

1
2

n dn
i (X))−

 t

0
ρσs (g) ds



=: U n
t + R1,n

t + R2,n
t + R3,n

t + R4,n
t ,

where

U n
t = ∆

1
2
n

⌊t/∆n⌋
i=1


g(βn

i )− E

g(βn

i )
F(i−1)∆n


,

R1,n
t = ∆

1
2
n

⌊t/∆n⌋
i=1


g(∆

−
1
2

n dn
i (X))− g(βn

i )− E


g(∆
−

1
2

n dn
i (X))− g(βn

i )
F(i−1)∆n


,

R2,n
t = ∆

1
2
n

⌊t/∆n⌋
i=1

E


g(∆
−

1
2

n dn
i (X))− g(βn

i )
F(i−1)∆n


,

R3,n
t = ∆

−
1
2

n

⌊t/∆n⌋
i=1


∆nE


g(βn

i )
F(i−1)∆n


−

 i∆n

(i−1)∆n

ρσs (g) ds


,

R4,n
t = ∆

−
1
2

n

 t

⌊t/∆n⌋∆n

ρσs (g) ds.

Obviously, R4,n
t

ucp
→ 0 due to the boundedness of σ and the continuity of ρ. Furthermore, we also

have
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Lemma 5.1. Under conditions of Theorem 2.2 we obtain

(i) U n
t

dst
→

 t
0 ρ

(1)
σs (g) dWs +

 t
0


ρσs (g2)− ρσs (g)2 − (ρ

(1)
σs (g))2 dW ′

s ,

(ii) R1,n
t

ucp
→ 0,

(iii) R2,n
t

ucp
→

 t
0 µsρ

(2)
σs (g

′) ds +
1
2

 t
0 σ̃sρ

(3)
σs (g

′) ds −
1
2

 t
0 σ̃sρ

(2)
σs (g

′) ds,

(iv) R3,n
t

ucp
→ 0.

Proof. (i) Defining ξn
i := ∆

1
2
n (g(βn

i )−E[g(βn
i )
 F(i−1)∆n ]) we have U n

t =
⌊t/∆n⌋

i=1 ξn
i . Now

we will verify the conditions of Jacod’s theorem of stable convergence for semimartingales
(see [13]). Introducing the notation ∆n

i W := Wi∆n − W(i−1)∆n we find that

E[ξn
i

F(i−1)∆n ] = 0,
⌊t/∆n⌋

i=1

E[(ξn
i )

2
F(i−1)∆n ]

= ∆n

⌊t/∆n⌋
i=1


E[g(βn

i )
2
F(i−1)∆n ] − E[g(βn

i )
F(i−1)∆n ]

2


= ∆n

⌊t/∆n⌋
i=1


ρσ(i−1)∆n

(g2)− ρσ(i−1)∆n
(g)2


ucp
→

 t

0


ρσs (g

2)− ρσs (g)
2


ds,

⌊t/∆n⌋
i=1

E[ξn
i ∆n

i W
F(i−1)∆n ] = ∆

1
2
n

⌊t/∆n⌋
i=1

E[g(βn
i )∆

n
i W

F(i−1)∆n ]

= ∆n

⌊t/∆n⌋
i=1

E[g({x Ws; s ∈ [0, 1]})W1]|x=σ(i−1)∆n

ucp
→

 t

0
ρ(1)σs

(g) ds,

⌊t/∆n⌋
i=1

E[(ξn
i )

21{|ξn
i |>ϵ}

F(i−1)∆n ]

≤
∆2

n

ϵ2

⌊t/∆n⌋
i=1

E[(g(βn
i )− E[g(βn

i )
F(i−1)∆n ])4

F(i−1)∆n ] ≤ ∆nC/ϵ2
→ 0.

Finally, let N ∈ Mb(W )⊥, the space of all bounded (P,F)-martingales that have zero
quadratic covariation with W . Define Mu := E[g(βn

i )|Fu] for u ≥ ( j − 1)∆n . By the
martingale representation theorem we deduce the identity

Mu = M(i−1)∆n +

 u

(i−1)∆n

ηs dWs

for a suitable predictable process η. By the Itô isometry we conclude that

E[g(βn
i )∆

n
i N |F(i−1)∆n ] = E[Mi∆n ∆

n
i N |F(i−1)∆n ]

= E[∆n
i M∆n

i N |F(i−1)∆n ] = 0.
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Hence, Jacod’s convergence theorem (see [16, Theorem IX.7.28]) gives

U n
t

dst
→

 t

0
ρ(1)σs

(g) dWs +

 t

0


ρσs (g2)− ρσs (g)2 − (ρ

(1)
σs (g))2 dW ′

s . �

(ii) Let ηn
i := ∆

1
2
n (g(∆

−
1
2

n dn
i (X)) − g(βn

i )) so R1,n
t =

⌊t/∆n⌋

i=1 (ηn
i − E[ηn

i |F(i−1)∆n ]). Since
R1,n is a martingale we may apply Doob’s inequality to obtain

P


sup
t≤T

R1,n
t

 > ϵ


≤ C

∆n

ϵ2

⌊T/∆n⌋
i=1

E


g(∆
−

1
2

n dn
i (X))− g(βn

i )
2
.

By the same argument as in (5.6), making use of the locally uniform continuity of g, we find
that the last term converges to 0. �

(iii) By the assumed Gâteaux differentiability of g the mean-value theorem gives

g(y)− g(x) = g′
y−x (x + t̂(y − x))

for some t̂ ∈ [0, 1]. Let us again use the notation f (x; y) := g′
y(x). We expand R2,n

=

R2.1,n
+ R2.2,n where

R2.1,n
t := ∆

1
2
n

⌊t/∆n⌋
i=1

E


f ′(βn
i ;∆

−
1
2

n dn
i (X)− βn

i )
F(i−1)∆n


,

R2.2,n
t := ∆

1
2
n

⌊t/∆n⌋
i=1

E

×


f ′(χn

i ;∆
−

1
2

n dn
i (X)− βn

i )− f ′(βn
i ;∆

−
1
2

n dn
i (X)− βn

i )
 F(i−1)∆n


,

with χn
i = βn

i + t̂n
i (∆

−
1
2

n dn
i (X)−β

n
i ) and t̂n

i ∈ [0, 1]. Decompose also ∆
−

1
2

n dn
i (X)−β

n
i =

V n
i (1)+ V n

i (2) where

V n
i (1)t := ∆

−
1
2

n


t ∆n µ(i−1)∆n

+

 (i−1+t)∆n

(i−1)∆n


σ̃(i−1)∆n (Ws − W(i−1)∆n )+ ṽ(i−1)∆n (Vs − V(i−1)∆n )


dWs


= ∆

−
1
2

n


t ∆n µ(i−1)∆n +

1
2
σ̃(i−1)∆n ((W(i−1+t)∆n − W(i−1)∆n )

2
− t ∆n)

+ ṽ(i−1)∆n

 (i−1+t)∆n

(i−1)∆n

(Vs − V(i−1)∆n ) dWs


,

V n
i (2)t : = ∆

−
1
2

n

 (i−1+t)∆n

(i−1)∆n


µs − µ(i−1)∆n


ds

+

 s

(i−1)∆n


ṽu − ṽ(i−1)∆n


dVu


dWs

+

 s

(i−1)∆n

µ̃u du +

 s

(i−1)∆n

(σ̃u − σ̃(i−1)∆n ) dWu


dWs


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for t ∈ [0, 1]. Now, by the linearity of f in the second argument

∆
1
2
n

⌊t/∆n⌋
i=1

E


f (βn
i ; V n

i (1))
F(i−1)∆n



= ∆n

⌊t/∆n⌋
i=1


µ(i−1)∆n E


f ({x Ws; s ∈ [0, 1]}; {s; s ∈ [0, 1]})


x=σ(i−1)∆n

+
1
2
σ̃(i−1)∆n E


f ({x Ws; s ∈ [0, 1]}; {W 2

s − s; s ∈ [0, 1]})


x=σ(i−1)∆n



= ∆n

⌊t/∆n⌋
i=1


µ(i−1)∆n ρ

(2)
σ(i−1)∆n

( f )+
1
2
σ̃(i−1)∆n


ρ(3)σ(i−1)∆n

( f )− ρ(2)σ(i−1)∆n
( f )


ucp
→

 t

0
µs ρ

(2)
σs
( f ) ds +

1
2

 t

0
σ̃s ρ

(3)
σs
( f ) ds −

1
2

 t

0
σ̃s ρ

(2)
σs
( f ) ds,

where we used the independence of W and V . Due to linearity we observe the identity

f (βn
i ; V n

i (2)) = f (βn
i ; V n

i (2)/∥V n
i (2)∥∞)∥V n

i (2)∥∞,

whenever ∥V n
i (2)∥∞ > 0 and 0 otherwise. Hence, we deduce that

∆
1
2
n

⌊t/∆n⌋
i=1

E
 f (βn

i ; V n
i (2))



= ∆
1
2
n

⌊t/∆n⌋
i=1

E
 f (βn

i ; V n
i (2)/∥V n

i (2)∥∞)
∥V n

i (2)∥∞



≤ ∆
1
2
n C

⌊t/∆n⌋
i=1

E
V n

i (2)
2

∞

 1
2

≤ C

⌊t/∆n⌋
i=1

E
V n

i (2)
2

∞

 1
2

→ 0

by the Cauchy–Schwarz inequality and the polynomial growth of f . So we are only left to

prove that R2.2,n ucp
→ 0. Defining ξn

i :=
∆

−
1
2

n dn
i (X)−β

n
i

∥∆
−

1
2

n dn
i (X)−β

n
i ∥∞

for ∥∆
−

1
2

n dn
i (X)− βn

i ∥∞ > 0 and

0 otherwise, we getR2.2,n
t


≤ ∆

1
2
n

⌊t/∆n⌋
i=1

E
 f (χn

i ; ξn
i )− f (βn

i ; ξn
i )
∆−

1
2

n dn
i (X)− βn

i


∞

F(i−1)∆n


.
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Therefore,

P

sup
t≤T

R2.2,n
t

 > ϵ


≤
∆

1
2
n

ϵ

⌊T/∆n⌋
i=1

E
 f (χn

i ; ξn
i )− f (βn

i ; ξn
i )
∆−

1
2

n dn
i (X)− βn

i


∞


≤ C

∆n

ϵ

⌊T/∆n⌋
i=1


E


f (χn
i ; ξn

i )− f (βn
i ; ξn

i )
2

→ 0,

where again we used Jensen’s and Cauchy–Schwarz inequality and the local Hölder
continuity of f (uniformly on the unit circle in the second argument). Putting everything
together, we have thus proven (iii). �

(iv) We want to show that

R3,n
t = ∆

−
1
2

n

⌊t/∆n⌋
i=1


∆nE


g(βn

i )
F(i−1)∆n


−

 i∆n

(i−1)∆n

ρσs (g) ds


ucp
→ 0.

Define µn
i := ∆

−
1
2

n
 i∆n
(i−1)∆n

(ρσ(i−1)∆n
(g) − ρσs (g)) ds so R3,n

t =
⌊t/∆n⌋

i=1 µn
i . Thanks to

the differentiability of g and the polynomial growth of g and g′, we find that

lim
h→0

ρx+h(g)− ρx (g)

h
= E[g′

W (xW )],

so the derivative of ρx (g) =: ψ(x) exists. Similarly, using that g′ is continuous, linear
in the second argument and of polynomial growth in the first argument, we see that ψ ′ is
continuous. This allows us to expand µn

i =: µn
i (1)+ µn

i (2) where

µn
i (1) = ∆

−
1
2

n ψ ′(σ(i−1)∆n )

 i∆n

(i−1)∆n

(σ(i−1)∆n − σs) ds,

µn
i (2) = ∆

−
1
2

n

 i∆n

(i−1)∆n

(ψ ′(χn
s )− ψ ′(σ(i−1)∆n ))(σ(i−1)∆n − σs) ds

with
χn

s − σ(i−1)∆n

 ≤
σi∆n − σ(i−1)∆n

. Now, decompose −µn
i (1) into a martingale

increment µn
i (1.2) and a remainder term µn

i (1.1), i.e. −µn
i (1) = µn

i (1.1)+ µn
i (1.2) with

µn
i (1.1) = ∆

−
1
2

n ψ ′(σ(i−1)∆n )

 i∆n

(i−1)∆n

 s

(i−1)∆n

µ̃u du


ds,

µn
i (1.2) = ∆

−
1
2

n ψ ′(σ(i−1)∆n )

 i∆n

(i−1)∆n

 s

(i−1)∆n

σ̃u dWu +

 s

(i−1)∆n

ṽu dVu


ds.

Observing that µn
i (1.1) ≤ ∆

3
2
n sup|x |≤|σ | ψ

′(x) ∥µ̃∥∞, its convergence to 0 follows imme-
diately. With the help of Doob’s inequality,
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P

sup
t≤T

 ⌊t/∆n⌋
i=1

µn
i (1.2)

 > ϵ


≤ C/ϵ2 E
⌊t/∆n⌋

i=1

µn
i (1.2)

2
= C/ϵ2

⌊t/∆n⌋
i=1

E

µn

i (1.2)
2

≤ C
∆

1
2
n

ϵ2 sup
|x |≤∥σ∥∞

ψ ′(x)

∥σ̃∥

2
+ ∥ṽ∥2

→ 0

so
⌊t/∆n⌋

i=1 µn
i (1)

ucp
→ 0. Regarding µn

i (2), since ψ ′ is uniformly continuous on
[−∥σ∥∞, ∥σ∥∞] choose δ > 0 for a given ϵ > 0 such that for all s, t ≤ T we have
|σs − σt | ≤ δ ⇒

ψ ′(σs)− ψ ′(σt )
 ≤ ϵ. Now,

µn
i (2)

 ≤ ∆
−

1
2

n ϵ

 i∆n

(i−1)∆n

σ(i−1)∆n − σs
 ds

+ 2 ∆
−

1
2

n /δ sup
|x |≤∥σ∥∞

ψ ′(x)
  i∆n

(i−1)∆n

σ(i−1)∆n − σs
2 ds,

leading to

P

sup
t≤T

⌊t/∆n⌋
i=1

µn
i (2)

 > ϵ̂


≤ ∆
−

1
2

n ϵ/ ϵ̂ E
 T

0

σ(i−1)∆n − σs
 ds


+ 2 ∆

−
1
2

n sup
|x |≤∥σ∥∞

ψ ′(x)
E T

0

σ(i−1)∆n − σs
2 ds


/(ϵ̂δ)

≤ CT


ϵ / ϵ̂ + ∆

1
2
n sup

|x |≤∥σ∥∞

ψ ′(x)
 / (ϵ̂δ),

where we used Fubini’s theorem. So choosing first ϵ small and then n large finishes the
proof of (iv), the last step in the proof of (2.6). �

Proof of Theorems 4.1 and 4.2. As in the previous proof we may assume without loss of
generality that the processes µ, σ, µ̃, σ̃ , ṽ as well as the jump sizes J, J̃ are uniformly bounded
in (ω, t). This is again justified by a standard localisation procedure (see e.g. [4]). Moreover, by
the same localisation procedure, we may assume without loss of generality that the jump sizes J
are bounded from below, i.e.

|Ji | > ϵ, 1 ≤ i ≤ Nt ,

for some ϵ > 0. Now, let I n
i = [(i − 1)∆n, i∆n] and Ωn := {ω ∈ Ω : #{ j ∈ N : T j ∈ J n

i } ≤ 1},
where T j denotes the arrival time of the j’th jump of the Poisson process N . We clearly have

lim
n→∞

P[Ωn] = P[Ω ] = 1.

Note that each interval I n
i contains at most one jump of X on Ωn and each jump is at least of

size ϵ.

Proof of Theorem 4.1. The assertion R(X, p)nt
P
→ R(X, p)t for p = 2 has been already proved

in [7], so we show the result for p > 2. We write X t = X c
+Z t , where X c denotes the continuous
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part X and Z stands for the jump part. We define

Kn = {i ≤ ⌊t/∆n⌋ : ∃T j ∈ I n
i }.

Note that the cardinality of Kn is finite almost surely as it is bounded by Nt . We decompose the
statistic R(X, p)nt as

R(X, p)nt =


i∈K c

n

sup
s,u∈I n

i

|X c
s − X c

u |
p

+


i∈Kn

sup
s,u∈I n

i

|Xs − Xu |
p. (5.8)

By Burkholder–Davis–Gundy inequality we conclude that E[sups,u∈I n
i

|X c
s − X c

u |
p
] ≤ C p∆

p/2
n ,

and since p > 2, we obtain the convergence
i∈K c

n

sup
s,u∈I n

i

|X c
s − X c

u |
p P

→ 0.

Moreover, on Ωn , we have that
i∈Kn

sup
s,u∈I n

i

|Zs − Zu |
p

− R(X, p)t =

Nt
i=N∆n⌊t/∆n⌋

|Ji |
p P

→ 0.

Finally, we obtain by mean value theorem that

E


i∈Kn

sup
s,u∈I n

i

|Zs − Zu |
p

− sup
s,u∈I n

i

|Xs − Xu |
p


≤ pE


i∈Kn

sup
s,u∈I n

i

max(|Zs − Zu |, |Xs − Xu |)p−1 sup
s,u∈I n

i

|X c
s − X c

u |

P
→ 0,

since the set Kn is finite. Due to Ωn → Ω , we thus conclude the assertion of Theorem 4.1. �

Proof of Theorem 4.2. (i) We again use the decomposition (5.8) of R(X, p)nt . It holds that

∆−1/2
n E


i∈K c

n

sup
s,u∈I n

i

|X c
s − X c

u |
p


≤ ∆(p−1)/2−1
n → 0,

since p > 3. On the other hand we also have

∆−1/2
n


i∈Kn

sup
s,u∈I n

i

|Zs − Zu |
p

− R(X, p)t


P
→ 0.

Now, since all jump sizes |Ji | are bounded by ϵ from below and X c is continuous, we obtain by
mean value theorem for all i ∈ Kn on Ωn :

sup
s,u∈I n

i

(Xs − Xu)
p

− sup
s,u∈I n

i

(Zs − Zu)
p

= p|∆ZTi |
p−1

 sup
s,u∈I n

i
s<T n

i ≤u

(X c
u − X c

s )1{∆ZTi>0} + sup
s,u∈I n

i
u<T n

i ≤s

(X c
u − X c

s )1{∆ZTi<0}


+ oP(∆

1/2
n ),
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where T n
i denotes the jump time of Nt in the interval I n

i . Hence, we deduce the decomposition

∆−1/2
n


i∈Kn


sup

s,u∈I n
i

(Xs − Xu)
p

− sup
s,u∈I n

i

(Zs − Zu)
p


=


i∈Kn

(ζ n
i + ζ

n
i )+ oP(1),

where

ζ n
i = p∆−1/2

n |∆ZT n
i
|
p−1

 sup
s,u∈I n

i
s<T n

i ≤u

(σT n
i −(WT n

i
− Ws)+ σT n

i
(Wu − WT n

i
))1{∆ZT n

i
>0}

+ sup
s,u∈I n

i
u<T n

i ≤s

(−σT n
i −(WT n

i
− Wu)− σT n

i
(Ws − WT n

i
))1{∆ZT n

i
<0}


and the quantity ζ

n
i is defined via the identity

ζ n
i + ζ

n
i = p∆−1/2

n |∆ZT n
i
|
p−1

×

 sup
s,u∈I n

i
s<T n

i ≤u

(X c
u − X c

s )1{∆ZT n
i
>0} + sup

s,u∈I n
i

u<T n
i ≤s

(X c
u − X c

s )1{∆ZT n
i
<0}

 .
Obviously the term ζ n

i serves as the first order approximation while ζ
n
i is the error term. Since

N and W are independent, we obtain the stable convergence

(κn
i ,
W n

i )i≥1 :=


∆−1

n {Ti − ∆n⌊Ti/∆n⌋},∆−1/2
n {W(i−1+s)∆n − W(i−1)∆n }s∈[0,1]


i≥1

dst
→


κi , {Wi−1+s − Wi−1}s∈[0,1]


i≥1
, (5.9)

where κi and W were defined in Section 4.2. This result is an immediate consequence of
[15, Lemma 6.2], but it can be easily shown in a straightforward manner. Now, by properties
of stable convergence and continuous mapping theorem, we conclude that

i∈Kn

ζ n
i

dst
→ U (X, p)t

for any fixed t > 0. Indeed this can be deduced from the stable convergence in (5.9), by defining
the function fi , : R3

× [0, 1] × C([0, 1]) via

fi (x, y, z) = px1 sup
0≤s<y≤u≤1


x2(z(y)− z(s))+ x3(z(u)− z(y))


and observing that

ζ n
i = fi


(|∆ZT n

i
|
p−11{∆ZT n

i
>0}, σT n

i −, σT n
i
), κn

i ,
W n

i


+ fi


(|∆ZT n

i
|
p−11{∆ZT n

i
<0}, σT n

i −, σT n
i
), κn

i ,−
W n

i


.
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Hence, to complete the proof we need to show that


i∈Kn
ζ

n
i

P
→ 0. Since the processes µ, σ and

the jump sizes Ji are uniformly bounded, we deduce by Burkholder–Davis–Gundy inequality
that

E[|ζ
n
i |

2
] ≤ C∆−1

n


∆2

n +

 i∆n

T n
i

(σu − σT n
i
)2du +

 T n
i

(i−1)∆n

(σu − σT n
i −)

2du


,

where the right side converges to 0, because σ is cádlág. This completes the proof since Kn is
finite. �

(ii) Now let us consider the case p = 2. According to the previous proof and the limiting
results of [6] for the continuous case, we obtain the following asymptotic decomposition

∆−1/2
n (R(X, 2)nt − R(X, 2)t ) =


i∈Kn

ζ n
i +


i∈K c

n

ζ̃ n
i + oP(1),

where ζ n
i has been defined in the previous step (now with p = 2) and ζ̃ n

i serves as the first order
approximation in the continuous case, i.e.

ζ̃ n
i = ∆−1/2

n σ 2
(i−1)∆n


sup

s,u∈I n
i

(Wu − Ws)
2
− ∆−1

n λ3,2


.

Now, we need to prove joint stable convergence of the vector


i∈Kn
ζ n

i ,


i∈K c
n
ζ̃ n

i


. This prob-

lem is closely related to [14, Lemma 5.8]. Indeed, following exactly the same proof steps, which
are based on certain conditioning arguments, it is sufficient to prove the stable central limit theo-
rem for each component of the vector (indeed, the two stable limits are independent conditionally
on F ). But the stable convergence for the first component follows from the previous step and the
stable convergence for the second component has been shown in [6] under the conditions of
Theorem 4.2. This completes the proof. �
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