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Abstract 3

In this paper we show that the empirical eigenvalue distribution of any sample covariance matrix gener- 4

ated by independent samples of a stationary regular sequence has a limiting distribution depending only on 5

the spectral density of the sequence. We characterize this limit in terms of Stieltjes transform via a certain 6

simple equation. No rate of convergence to zero of the covariances is imposed, so, the underlying process 7

can exhibit long memory. If the stationary sequence has trivial left sigma field the result holds without any 8

other additional assumptions. This is always true if the entries are functions of i.i.d. 9

As a method of proof, we study the empirical eigenvalue distribution for a symmetric matrix with inde- 10

pendent rows below the diagonal; the entries satisfy a Lindeberg-type condition along with mixingale-type 11

conditions without rates. In this nonstationary setting we point out a property of universality, meaning that, 12

for large matrix size, the empirical eigenvalue distribution depends only on the covariance structure of the 13

sequence and is independent on the distribution leading to it. These results have interest in themselves, 14

allowing to study symmetric random matrices generated by random processes with both short and long 15

memory. 16
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1. Introduction and the main result1

Due to the fact that random matrices appear in many applied fields, their empirical spectral2

distribution is a subject of intense research. Earlier works, pioneered by the celebrated paper byQ33

Wigner [46], deal with symmetric matrices having independent entries below the diagonal. Only4

in the last three decades there has been an intense effort to weaken the hypotheses of indepen-5

dence and various forms of weak dependence have been considered. The progress was in general6

achieved first for Gaussian random matrices. For this case the joint distribution of eigenvalues is7

tractable. Among the papers for symmetric Gaussian matrices with correlated entries we mention8

the works of Khorunzhy and Pastur [29], Boutet de Monvel et al. [13], Boutet de Monvel and9

Khorunzhy [12], Chakrabarty et al. [17].10

Our paper is essentially motivated by the study of large sample covariance matrices, which is11

a very important topic in multivariate analysis and signal processing.12

The spectral analysis of large-dimensional sample covariance matrices has been actively13

studied starting with the seminal work of Marc̆enko and Pastur [32] who considered independent14

random samples from an independent multidimensional vector. Later, also for the independent15

case, Wachter [45] established the almost sure results and recently Jin et al. [28] generalized it to16

auto-cross covariance matrix. A big step forward was the study of the dependent case represented17

in numerous papers. Basically, the entries of the matrix were allowed to be linear combinations18

of an independent sequence. The first paper where such a model was considered is by Yin and19

Krishnaiah [50] followed by important contributions by Yin [49], Silverstein [40], Silverstein20

and Bai [41], Hachem et al. [26], Pfaffel and Schlemm [35], Yao [48], Davis et al. [20], Pan21

et al. [34], Liu et al. [30], Bhattacharjee and Bose [8] among others.22

A departure from linear models was considered by Bai and Zhou [3] who derived the limiting23

spectral distribution of large sample covariance matrices provided that the true covariance matrix24

has bounded spectral norm and the entries satisfy a dependence type condition. This dependence25

condition, sometimes called “good vector condition” is satisfied for Gaussian vectors or for26

isotropic vectors with log-concave distribution as shown in [33]. Note that the circular law for27

random matrices with independent isotropic unconditional log-concave rows has been proved28

by Adamczak [1]. As applications of their main result, Bai and Zhou [3] exhibited the limiting29

spectral distributions of Spearman’s rank correlation matrices, sample correlation matrices and30

sample covariance matrices from finite populations. When applied to linear models the conditions31

imposed in the paper by Bai and Zhou can be verified when the innovations are square integrable32

and the coefficients are absolutely summable as shown in [48,34]. It should be mentioned that33

the bounded spectral norm condition imposed to the true covariance matrix does not allow to34

derive the limiting spectral distribution of large sample covariance matrices associated with linear35

processes exhibiting long range dependence.36

Recently, Banna and Merlevède [4] considered samples from a stationary process whose37

variables are functions of i.i.d. and proved, under a dependence condition implying the absolute38

summability of the covariances, that the asymptotic behavior of the empirical eigenvalue39

distribution can be obtained by analyzing a Gaussian matrix with the same covariance structure.40

In [5], this result has been improved and extended to large covariance matrices associated with41

square integrable variables that are functions of an i.i.d. random field. In this latter paper, it is42

proved that no extra assumptions are needed to reduce the study of empirical spectral distribution43

to the one of a Gaussian matrix with the same covariance structure.44

Even if many models encountered in time series analysis can be rewritten as functions of an45

i.i.d. sequence, this assumption is not completely satisfactory since many stationary processes46
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even with trivial left sigma field cannot be in general represented as a function of an i.i.d. se- 1

quence, as shown for instance in [38]. The main goal of our paper is then to study the asymptotic 2

behavior of the empirical eigenvalue distribution of large sample covariance matrices associated 3

with stationary processes with variables which are not necessarily functions of an i.i.d. sequence, 4

and to exhibit the spectral limiting distribution even for the case when they have long memory. 5

In Theorem 1, we find the limiting empirical eigenvalue distribution for the sample covariance 6

matrix of a stationary process which is regular. The regularity is an ergodic-type property and 7

includes many classes of stochastic processes which are not functions of i.i.d. (see Section 3). 8

Our result also shows that the limit can be obtained much beyond the situation of short range 9

dependent case which corresponds to continuous and bounded spectral densities or absolutely 10

summable covariances. It also applies to long range dependent stationary stochastic processes. 11

We show that the limit of the empirical spectral distribution exists and we also characterize the 12

limit in terms of its Stieltjes transform. This limit depends only on the spectral density of the 13

process, even for the case when it is not continuous or even square integrable. The limit can also 14

be characterized via the free multiplicative convolution which potentially gives further insight in 15

the process spectral density. 16

Furthermore, the technical theorems leading to Theorem 1 are also important. They reduce 17

the study of the empirical spectral distribution of symmetric matrices with independent regular 18

rows, below diagonal, to the study of the sequence of the expected value of Stieltjes transforms 19

associated to a Gaussian matrix with the same covariance structure. These results are set in 20

the non-stationary case for variables satisfying a certain Lindeberg condition. Their proofs are 21

complicated by the fact that our intention was to avoid the use of rates of decay of the covariances. 22

In order to stress the importance of our results we include several applications to regular 23

processes, functions of i.i.d. random variables and linear processes with martingale differences 24

innovations. As we shall see, Theorem 1 applies to large sample covariance matrices constructed 25

from independent copies of any stationary process whose entries are functions of i.i.d. random 26

variables which are centered and has finite second moments. In particular the theorem applies to 27

any causal linear process with i.i.d. innovations as soon as the process exists in L2, so it could 28

have long memory. 29

Our proofs are a blend of probabilistic techniques for dependent structures such as the big and 30

small block argument, martingale approximations and properties of Gaussian processes. Because 31

our variables are correlated the method of proof is based on the Stieltjes transform, which is well 32

adapted to handle dependent entries. The Stieltjes transform is also useful to characterize the 33

limit. 34

Here are some notations used all along the paper. The notation [x] is used to denote the integer 35

part of a real x . The notation 0p means a row vector of size p with components equal to zero. 36

When no confusion is possible concerning the size of a null vector 0 we will omit the index of 37

its size. For a matrix A, we denote by AT its transpose matrix, by Tr(A) its trace. We shall also 38

use the notation ∥X∥r for the Lr -norm (r ≥ 1) of a real-valued random variable X . 39

For any sequence of square matrices An of order n with only real eigenvalues λ1,n ≤ · · · ≤ 40

λn,n , the spectral distribution function is defined by 41

F An (x) =
1
n

n
k=1

I (λk,n ≤ x), 42

where I (B) denotes the indicator of an event B. The general problem is to find a distribution 43

function F such that F An → F at all points of continuity of F , or equivalently d(F An , F) → 0, 44
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where the Lévy distance between two distribution functions F and G is defined by1

d(F, G) = inf{ε > 0 : F(x − ε) − ε ≤ G(x) ≤ F(x + ε) + ε ∀x ∈ R}.2

The Stieltjes transform of F An is given by3

S An (z) =


1

x − z
d F An (x) =

1
n

Tr(An − zIn)−1,4

where z = u + iv ∈ C+ (the set of complex numbers with positive imaginary part), and In is5

the identity matrix of order n. It is well-known that limn→∞ d(F An , F) = 0 if and only if for6

all z ∈ C+, SAn (z) → SF (z). We can also see, for instance, in Proposition 2.1 in [11], that the7

estimate of the Lévy distance between empirical spectral distribution functions associated with8

two matrices can be also given in terms of their Stieltjes transforms.9

Let N and p be two positive integers and consider the N × p matrix10

X N ,p =

X i j


1≤i≤N ,1≤ j≤p, (1)11

where X i j ’s are real-valued random variables. Define now the symmetric matrix BN of order p12

by13

BN =
1
N

X T
N ,p X N ,p. (2)14

The matrix BN is usually referred to as the sample covariance matrix associated with the process15

(Xu)u∈Z2 . It is also known under the name of Gram random matrix.16

In Theorem 1, we consider N independent copies (X i j ) j∈Z, i = 1, . . . , N of a stationary17

sequence (X i )i∈Z of real-valued random variables in L2 and give sufficient conditions to18

characterize the limiting distribution of FBN (also known under the name of spectral limiting19

distribution of BN ) when p/N → c ∈ (0, ∞).20

Relevant to this characterization is the notion of spectral distribution function induced21

by the covariances of (X i )i∈Z. By Herglotz’s Theorem (see e.g. [16]), there exists a non-22

decreasing function G (the spectral distribution function) on [−π, π] such that, for all j ∈23

Z, Cov(X0, X j ) =
 π

−π
exp(i jθ)dG(θ). If G is absolutely continuous with respect to the24

normalized Lebesgue measure λ on [−π, π], then the Radon–Nikodym derivative f of G with25

respect to the Lebesgue measure is called the spectral density, it is a nonnegative, even and26

integrable function on [−π, π] which satisfies27

c j = Cov(X0, X j ) =

 π

−π

exp(i jθ) f (θ)dθ, j ∈ Z.28

This setting is very natural for statistical interpretation. For instance let X be a p × 1 random29

vector. In order to estimate its covariance structure (c j )1≤ j≤p we consider N independent30

observations from X which are the i.i.d. vectors Xi = (X i j )1≤ j≤p. If we form a matrix having31

the vectors Xi as columns, then the covariance matrix is estimated as BN defined in (2). When32

p is fixed and N → ∞ this estimator is consistent. However when p/N → c ∈ (0, ∞) this33

is no longer true. We intend to understand the limiting spectral distribution of FBN when the34

observations are generated by a stationary sequence (X i )i∈Z and its covariance structure which35

is encapsulated in the process’ spectral density.36
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We shall introduce the following regularity conditions. Define the left tail sigma field of 1

(X i )i∈Z by G−∞ =


k∈Z Gk where Gk = σ(X j , j ≤ k) 2

E(X0|G−∞) = 0 a.s. (3) 3

and for every integer k 4

E(X0 Xk |G−∞) = E(X0 Xk) a.s. (4) 5

We point out that if (3) holds, then the process (Xk)k∈Z is purely non deterministic. Hence, by a 6

result of Szegö (see for instance [10, Theorem 3]) if (3) holds, the spectral density f of (Xk)k∈Z 7

exists and if X0 is non degenerate, 8 π

−π

log f (t) dt > −∞; 9

in particular, f cannot vanish on a set of positive measure. 10

Theorem 1. Consider N independent copies (X i j ) j∈Z, i = 1, . . . , N of a stationary sequence 11

(X i )i∈Z of real-valued random variables centered and in L2 and that satisfies the conditions (3) 12

and (4). Assume p/N → c ∈ (0, ∞). Then there is a nonrandom probability distribution F 13

such that d(FBN , F) → 0 a.s. Furthermore, the Stieltjes transform S = S(z), z ∈ C+, of F is 14

uniquely determined by the equation 15

z = −
1
S

+
c

2π

 π

−π

1

S + (2π f (λ))−1 dλ, (5) 16

where S := −(1 − c)/z + cS and f (·) is the spectral density of (Xk)k∈Z. 17

When the variables (X i j ) are i.i.d. the spectral density is f (λ) = σ 2/2π where σ 2
= E(X2

00) 18

and the solution to Eq. (5) is the well-known Marčenko–Pastur distribution, M P , whose density 19

is given by 20

gy(x) =
1

2πcσ 2x


(a − x)(x − b)I (a ≤ x ≤ b) 21

and a point mass 1 − 1/c at the origin if c > 1, where a = σ 2(1 −
√

c)2 and b = σ 2(1 +
√

c)2. 22

As a consequence or our proof, we can make the following remark which will be justified at 23

the end of the paper: 24

Remark 2. The probability measure F which appears as the limit in Theorem 1 can also be 25

described as the free multiplicative convolution µ f ⊗ M P of the probability distribution µ f 26

of the variable 2π f (U ) where U is uniformly distributed on [−π, π] with Marčenko–Pastur 27

distribution. F has compact support if and only if f has compact support. 28

Potentially, via some newly developed numerical free deconvolution methods (see for 29

instance [39]) from the limiting spectral distribution F we can find the distribution of f (U ) 30

where U is uniformly distributed on [−π, π]. If the spectral density is monotonous on [0, π] 31

the distribution of f (U ) will uniquely determine the spectral density f . We shall not pursue the 32

numerical methods in this paper. 33

Note that if G−∞ is trivial then the conditions (3) and (4) hold. Therefore we can immediately 34

formulate the following corollary to Theorem 1: 35
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Corollary 3. Consider N independent copies (X i j ) j∈Z, i = 1, . . . , N of a stationary sequence1

(X i )i∈Z of real-valued random variables centered and in L2 with trivial left tail sigma field,2

G−∞. Then the conclusion of Theorem 1 holds.3

2. Some technical results for symmetric matrices4

A key step in the proof of Theorem 1 is to show that the study of the limiting spectral5

distribution function of BN can be reduced to studying the same problem as for a Gaussian6

matrix with the same covariance structure. This step will be achieved with the help of some7

preliminary technical results concerning symmetric matrices with independent rows below the8

diagonal. These technical results have interest in themselves since they show that, for symmetric9

matrices with independent rows below the diagonal, very simple regularity conditions on the10

entries of each row allow to reduce the study of their limiting spectral distribution function to11

the one of a symmetric Gaussian matrix with the same covariance structure. In particular, this12

applies when the rows, below the diagonal, are independent and generated by the same stationary13

sequence provided it is regular, i.e. has a trivial left tail sigma-field.14

To state the results of this section, let us introduce some notations. Let (Xu)u∈N2 be real-valued
random variables on a probability space (Ω , F , P). In what follows, we consider the symmetric
n × n random matrix Xn defined as follows: for any i and j in {1, . . . , n},

(Xn)i j = X i j for i ≥ j and (6)

(Xn)i j = X j i for i < j.

Define15

Xn :=
1

n1/2 Xn, (7)16

and set17

L(A) =
1

n2

n
i=1

i
j=1

E(X2
i j I (|X i j | > A)),18

where A is a positive number.19

We shall introduce now a Lindeberg’s type condition:20

Condition A. (1) E(Xu) = 0 for all u ∈ N 2.21

(2) There is σ > 0 such that supu∈N2 ∥Xu∥2 ≤ σ .22

(3) For every ε > 0 we have L(εn1/2) → 0 as n → ∞.23

Clearly the items (2) and (3) of this condition are satisfied as soon as the family (X2
u) is24

uniformly integrable or the random field is stationary.25

Next result, in the nonstationary setting, shows that two mild regularity-like conditions26

without rates, are sufficient for reducing the study of the limiting spectral distribution of a27

symmetric matrix with independent rows below the diagonal to the corresponding problem for a28

Gaussian matrix having the same covariance structure. This result indicates that for large matrix29

size, the empirical distribution of the eigenvalues is universal, in the sense that it is determined30

only by the covariance structure of the process.31
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Theorem 4. Assume that Condition A is satisfied and in addition that the random vectors 1

(Ri )i≥1, where Ri = (X i j ) j∈N, are mutually independent. For any i ≥ 1 fixed, let Gik = 2

σ(X i j , 1 ≤ j ≤ k) and, by convention, for k ≤ 0, Gik = {∅,Ω}. Then, under the following 3

two additional assumptions: 4

ηm = sup
i≥ j≥m

∥E(X i j |Gi, j−m)∥2 → 0 (8) 5

and 6

γm = sup
i≥ℓ≥k≥m

∥E(X ik X iℓ|Gi,k−m) − E(X ik X iℓ)∥1 → 0, (9) 7

the following convergence holds: for all z ∈ C+, 8

SXn (z) − ESYn (z) → 0 almost surely, as n → ∞, (10) 9

where Xn is defined by (7) and Yn = Yn/
√

n, Yn being the symmetric matrix defined as 10

in (6) and constructed from a centered real-valued Gaussian random field (Yu)u∈N2 having the 11

same covariance structure as (Xu)u∈N2 . 12

Remark 5. Since Yn is constructed from a centered real-valued Gaussian random field (Yu)u∈N2 13

having the same covariance structure as (Xu)u∈N2 , we have in particular that the random vectors 14

(Gi )i≥1, where Gi = (Yi j ) j∈N, are mutually independent. Therefore relation (15) in the proof of 15

Theorem 4 also holds for Yn . Hence, in addition to the conclusion of Theorem 4, we also have 16

SXn (z) − SYn (z) → 0 almost surely, as n → ∞, 17

provided that (Xu)u∈N2 and (Yu)u∈N2 are defined on the same probability space. 18

Remark 6. Theorem 4 also holds if we allow the random variables X i j to depend on the matrix 19

size n. In this context we write X (n)
i j instead of X i j , we adapt in a natural way Condition A and 20

we modify conditions (8) and (9) as follows: 21

sup
n≥1

sup
i≥ j≥m

∥E(X (n)
i j |G(n)

i, j−m)∥2 →m→∞ 0 22

and 23

sup
n≥1

sup
i≥ℓ≥k≥m

∥E(X (n)
ik X (n)

iℓ |G(n)
i,k−m) − E(X (n)

ik X (n)
iℓ )∥1 →m→∞ 0. 24

Comment 7. Compare to Theorem 5 in [5], we do not assume in our Theorem 4 that the entries 25

are functions of an i.i.d. random field but rather that they satisfy the regularity assumptions 26

(8) and (9). As a counterpart we assume that the rows of Xn are mutually independent. The 27

importance of this independence assumption appears at least twice in the proof of Theorem 4. 28

Indeed our proof consists first of reducing the almost sure convergence to zero of SXn (z) − 29

ESYn (z) to the one of ESXn (z) − ESYn (z). The fact that the rows are independent allows to use 30

either the Burkholder–Rosenthal inequality for martingales (see for instance the arguments in the 31

proof on page 34 in [2]) or concentration inequalities based on the Hoeffding–Azuma inequality 32

for martingales (see for instance Theorem 1(ii) of Guntuboyina and Leeb [25]). In case where 33

the entries are functions of an i.i.d. random field, the problem can be reduced first to study 34

symmetric matrices associated with m-dependent random fields and then suitable concentration 35
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inequalities can also be obtained. However for general random fields, the situation is not easy1

to handle. The second step where the independence of the rows plays a crucial role is in the2

comparison of ESXn (z) with ESYn (z). To handle this step we use a blockwise Lindeberg-type3

method applied to martingale approximations of the matrices Xn and Yn (see Step 3 of the proof).4

In our Lindeberg-type method, because of the martingale structure, the terms of the first order in5

the Taylor expansion vanish and the terms of the third order are easy to handle. However to deal6

with the terms of the second order more work is needed and, in order to weaken the dependence,7

another Taylor expansion is applied. The independence of the rows then plays a crucial role to8

get the upper bound (46). Without this independence assumption of the rows, we do not think9

that the conclusion of Theorem 4 holds without imposing rates of convergence to zero on the10

covariances.11

Next corollary applies to stationary sequences and shows that the conclusion of Theorem 412

holds under simple regularity conditions.13

Corollary 8. Let (X i j ) j∈Z, i = 1, . . . , n be n independent copies of a stationary sequence14

(Xk)k∈Z of real-valued random variables which are centered and in L2. Then the conclusion15

of Theorem 4 holds under the regularity conditions (3) and (4).16

Theorem 4 and its Remark 6 allow us to formulate the following result for Gram matrices. It17

will be the key step in the proof of Theorem 1.18

Theorem 9. Under the conditions of Theorem 4 and if p/N → c ∈ (0, ∞), the following19

convergence holds: for all z ∈ C+,20

SBN (z) − ESHN (z) → 0 almost surely, as N → ∞,21

where BN is defined by (2) and HN is a Gram random matrix associated with a centered real-22

valued Gaussian process (Yu)u∈Z2 having the same covariance structure as (Xu)u∈Z2 .23

3. Examples24

As we mentioned before, conditions (3) and (4) are satisfied for a stationary sequence if the25

left tail sigma field G−∞ is trivial. Processes with trivial tail sigma field are called regular (see26

Chapter 2, Volume 1 in [15]). It should be noted that Wiener conjectured that a necessary and27

sufficient condition for a stationary process to be representable as a one-sided function of a28

sequence of independent, identically distributed random variables is that left tail sigma field be29

trivial. However this conjecture was proven to be false. See for instance [38].30

We give next examples of regular processes.31

1. Mixing sequences. The strong mixing coefficient is defined in the following way:32

α(A, B) = sup{|P(A ∩ B) − P(A)P(B)| : A ∈ A, B ∈ B},33

where A and B are two sigma algebras.34

The ρ-mixing coefficient, also known as maximal coefficient of correlation, is defined as35

ρ(A, B) = sup{Cov(X, Y )/∥X∥2∥Y∥2 : X ∈ L2(A), Y ∈ L2(B)}.36

For the stationary sequence of random variables (Xk)k∈Z, G n denotes the σ -field generated by37

X i with indices i ≥ n, and Gm denotes the σ -field generated by X i with indices i ≤ m. Then we38

define the sequences of mixing coefficients39

αn = α(G0, G n) and ρn = ρ(G0, G n).40
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A sequence is called strongly mixing if αn → 0. It is well-known that for strongly mixing 1

sequences the left tail sigma field is trivial; see Claim 2.17a in [15]. Examples of this type include 2

Harris recurrent Markov chains. 3

If limn→∞ ρn < 1, then the tail sigma field is also trivial according to Section 2.5 in [14]. 4

Note that our conditions (8) and (9) also hold without the assumptions of stationarity and of 5

regularity. For instance, if 6

α2,n := sup
i≥1

sup
j≥k

α

σ(X i1, . . . , X ik), σ (X i,k+n, X i, j+n)


→ 0, 7

and if the variables are centered and (X2
u)u∈Z2 is uniformly integrable, then (8) and (9) are 8

satisfied. Note that the condition α2,n → 0 is not enough for regularity. 9

Furthermore, even a weaker degree of dependence for stationary sequences lead to the 10

conditions (8) and (9), namely ᾱ2,n → 0 where 11

ᾱ2,n = sup
v≥u≥n

sup
x1,x2∈R

∥P (Xu ≤ x1, Xv ≤ x2|G0) − P (Xu ≤ x1, Xv ≤ x2)∥1 . 12

In case of a homogeneous Markov chain (X i )i∈Z with transition operator K and invariant 13

measure ν, ᾱ2,n → 0 as soon as 14

sup
k≥n

sup
g∈BV1

Eν |K
k(g) − ν(g)| → 0, as n → ∞ 15

and there exists a positive constant C such that for any n > 0 and any bounded variation function 16

g, 17

∥d K n(g)∥ ≤ C2∥dg∥. 18

Above BV1 is the set of bounded variation functions g with ∥dg∥ ≤ 1 where ∥dg∥ is the total 19

variation norm of the measure dg. For instance, if (X i )i∈Z is the extended Markov chain whose 20

transition operator K is the Perron–Frobenius operator of the so-called Liverani–Saussol–Vaienti 21

map Tγ of parameter γ ∈ (0, 1) (see [31]), then K satisfies the two above mentioned conditions 22

and we can say that exist two positive constants C and D such that, for any n > 0, 23

D

n(1−γ )/γ
≤ ᾱ2,n ≤

C

n(1−γ )/γ
. 24

(See [21] for more details.) Note that this example of Markov chain is known not to be strong 25

mixing. 26

2. Functions of i.i.d. random variables. Let (εu)u∈Z2 be i.i.d. and g : RZ
→ R be a 27

measurable function such that, for any i, j in Z, X i j = g(εi,k, k ≤ j) is well defined in 28

L2 and E(X i j ) = 0. These are regular random fields since each row has a trivial left sigma 29

field. Therefore for these processes, conditions (3) and (4) are satisfied. Examples include linear 30

processes, functions of linear processes and iterated random functions (see for instance [47], 31

among others). 32

For example let X i j =


∞

k=0 akεi, j−k , where (εi, j ) are i.i.d. with mean 0 and finite variance, 33

and ak are real coefficients with


∞

k=1 a2
k < ∞. In this case X i j is well-defined, the process 34

is regular, and therefore the conclusion of Theorem 1 holds. The limiting empirical eigenvalue 35

distribution of Gram matrices associated with linear processes was investigated in several papers 36

(see for instance [35,48,34,4]) but, all the previous known results treat only the short memory 37

case meaning that the ak’s are absolutely summable. 38
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For a nonstationary example we shall look at a more general linear process, based on1

martingale difference innovations satisfying Lindeberg’s condition.2

3. Linear processes with martingale entries. Assume that for any 1 ≤ j ≤ i ≤ n, the3

(i, j)th entry of Xn is given by a linear process of the form4

X i j =

∞
ℓ=0

aiℓdi, j−ℓ, (11)5

where (au)u∈Z2 is a sequence of real numbers and (du)u∈Z2 is a sequence of real-valued random6

variables satisfying the conditions below:7

A1. An,i =
n

j=0 a2
i j < ∞ is convergent as n → ∞ uniformly in i ≥ 1.8

A2. There is σ > 0 such that supu∈Z2 ∥du∥2 < σ and for every ε > 0,9

1

n2

n
i=1

i
j=1

E(d2
i j I (|di j | > ε

√
n)) → 0 as n → ∞.10

A3. Setting Fi j = σ(dik, k ≤ j), E(di j |Fi, j−1) = 0 a.s. for any (i, j) in Z2 and11

sup
i≥1

sup
j≥n

∥E(d2
i j |Fi, j−n) − E(d2

i j )∥1 → 0 as n → ∞.12

Corollary 10. Assume that (X i j ) is a linear process as defined in (11) such that the conditions13

A1, A2 and A3 hold. Assume in addition that the random vectors (di.)i≥1, where di. = (di j ) j∈Z,14

are mutually independent. Then the conclusion of Theorem 4 holds.15

The proof of this corollary is based on standards arguments for martingales and is left to the16

reader.17

4. Proofs18

All along the proofs, we shall use the fact that the Stieltjes transform of the spectral measure19

is a smooth function of the matrix entries. To formalize things in a way that is suitable for20

our purpose, we shall adopt the same notations as in [18] and introduce the following map A21

which “constructs” Wigner-type matrices. Let N = n(n + 1)/2 and write elements of RN as22

x = (xi j )1≤ j≤i≤n . For any x in RN , let A(x) be the matrix defined by23

(A(x))i j =


1

√
n

xi j i ≥ j

1
√

n
x j i i < j.

(12)24

Let z ∈ C+ and sn := sn,z be the function defined from RN to C by25

sn(x) =
1
n

Tr(A(x) − zIn)−1, (13)26

where In is the identity matrix of order n.27

The function sn , as defined above, admits partial derivatives of all orders that are uniformly28

bounded. In particular, denoting for any u ∈ {(i, j)}1≤ j≤i≤n , ∂usn for ∂sn/∂xu, it follows29
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from [18] that the following upper bounds hold: for any u, v, w in {(i, j)}1≤ j≤i≤n , there exist 1

universal positive constants c1, c2 and c3 depending only on the imaginary part of z such that 2

|∂usn| ≤
c1

n3/2 , |∂u∂vsn| ≤
c2

n2 and |∂u∂v∂wsn| ≤
c3

n5/2 . (14) 3

4.1. Proof of Theorem 4 4

The proof of this theorem requires several steps. First we reduce the problem to studying 5

the difference of expected values. Next, in order to weaken the dependence, we partition the 6

variables in each row in big and small blocks. The big blocks are approximated by vector-valued 7

martingale differences. Then, we replace one by one these martingale differences by Gaussian 8

random vectors having the same covariance structure with the help of a blockwise Lindeberg- 9

type method. 10

All along the proof z = x + iy will be a complex number in C+. Also, the notation a ≪ b 11

means that there is a constant C depending only on Im z = y such that a ≤ Cb. 12

Step 1: Reduction of the problem to a difference of expected values. 13

Since the random vectors (Ri )1≤i≤n , where Ri = (X i j )1≤ j≤i , are mutually independent, it is 14

well-known (see for instance the arguments in the proof on page 34 in [2]) that 15

SXn (z) − ESXn (z) → 0 a.s. (15) 16

Hence, in order to prove Theorem 4, it suffices to show that 17

ESXn (z) − ESYn (z) → 0. (16) 18

To prove the above convergence, notice that there is no loss of generality in assuming that the 19

entries (Yu) of Yn are independent of the entries (Xu) of Xn . Therefore, from now on, we assume 20

that Yn is a symmetric matrix constructed from a real-valued centered Gaussian random field 21

(Yu) having the same covariance structure as (Xu) and independent of (Xu). 22

We write SXn (z) and SYn (z) as a function of the entries on and below the diagonal, arranged 23

row after row. More exactly, using the notation (13), we write 24

SXn (z) = sn

L X 

and SYn (z) = sn

LY 

, 25

where L X
= (L X

i )1≤i≤n and LY
= (LY

i )1≤i≤n with L X
i = (X i1, . . . , X i i ) and LY

i = 26

(Yi1, . . . , Yi i ). Also, in the sequel, to further simplify the notation we shall skip the index n 27

from sn and we put s = sn := sn,z . 28

Step 2: Martingale approximation. 29

We shall introduce a martingale structure on each row. We start from the celebrated Bernstein 30

big and small blocks argument which weakens the dependence. We partition the variables in 31

each row in big and small blocks and show that the variables in large blocks have a dominant 32

contribution. The large blocks are then decomposed in martingale differences and a rest which 33

also has a smaller contribution. 34

Let p and q be two integers fixed for the moment. Fix i in {1, . . . , n} and let ki = [i/(p +q)]. 35

We partition the set {1, . . . , i} in big and small blocks with the following restriction: a big 36

block of size p is followed by a small block of size q. We shall have the set of indexes 37

Ii1, Ji1, Ii2, Ji2, . . . ., Iiki , Jiki Ji,ki +1 where each index set Ii j is of size p, each index set Ji j 38
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is of size q and the last block has a size at most p + q . More precisely, for any i in {1, . . . , n}1

and for any j ∈ {1, . . . , ki },2

I ′

j = {( j − 1)(p + q) + 1, . . . , ( j − 1)(p + q) + p} and3

J ′

j = {( j − 1)(p + q) + p + 1, . . . , j (p + q)}4

and5

Ii j = {(i, k); k ∈ I ′

j } and Ji j = {(i, k); k ∈ J ′

j }.6

Corresponding to this index decomposition, the vectors L X
j and LY

j are partitioned in ki + 17

consecutive vectors. Setting8

Bi j = (Xu)u∈Ii j , bi j = (Xu)u∈Ji j , B∗

i j = (Yu)u∈Ii j and b∗

i j = (Yu)u∈Ji j9

we write10

L X
i = (Bi1, bi1, Bi2, bi2, . . . , Biki , biki , bi,ki +1) and11

LY
i = (B∗

i1, b∗

i1, B∗

i2, b∗

i2, . . . , B∗

iki
, b∗

iki
, b∗

i,ki +1).12

We introduce now the following vectors13

B X
i = (Bi1, 0q , Bi2, 0q , . . . , Biki , 0q , 0r ) and14

BY
i = (B∗

i1, 0q , B∗

i2, 0q , . . . , B∗

iki
, 0q , 0r ),15

where r = i−ki (p+q). Note that B X
i (resp. BY

i ) is derived from L X
i (resp. LY

i ) where we replace16

the variables in bi j (resp. b∗

i j ) by 0’s. In addition, for A a positive real, fixed for the moment, we17

set for any u ∈ Z2
18 Xu := Xu I (|Xu| ≤ A),19

and, for any i ∈ {1, . . . , n},20 B X
i = (Bi1, 0q , Bi2, 0q , . . . , Biki , 0q , 0r ) where Bi j = (Xu)u∈Ii j for j ∈ {1, . . . , ki }.21

Next, for any i ∈ {1, . . . , n}, we consider the sigma algebras F X
i0 = F Y

i0 = {∅,Ω} and for22

1 ≤ ℓ ≤ ki , F X
iℓ = σ(Bi j ; 1 ≤ j ≤ ℓ) and F Y

iℓ = σ(B∗

i j ; 1 ≤ j ≤ ℓ). Then, for any23

ℓ ∈ {1, . . . , ki }, we define24

Diℓ = Biℓ − E(Biℓ|F X
i,ℓ−1), (17)25

and26

D∗

iℓ = B∗

iℓ − E(B∗

iℓ|F Y
i,ℓ−1). (18)27

By E(Biℓ|F X
i,ℓ−1) (resp. E(B∗

iℓ|F Y
i,ℓ−1)) we understand a vector of dimension p where each28

component is a component of the vector Biℓ (resp. B∗

iℓ) conditioned with respect to F X
i,ℓ−129

(resp. F Y
i,ℓ−1). Note that (Diℓ)1≤ℓ≤ki and (D∗

iℓ)1≤ℓ≤ki are vector valued martingale differences30

adapted respectively to (F X
iℓ )1≤ℓ≤ki and (F Y

iℓ)1≤ℓ≤ki . We then define the vectors DX
i and DY

i31
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with dimension i and with a similar structure as B X
i as follows: 1

DX
i = (Di1, 0q , Di2, 0q , . . . , Diki , 0q , 0r ) and

DY
i = (D∗

i1, 0q , D∗

i2, 0q , . . . , D∗

iki
, 0q , 0r ).

(19) 2

Setting DX
= (DX

i )1≤i≤n , we first compare Es(L X ) to Es(DX ). We write 3

Es(L X ) − Es(DX ) = E∆1(s) + E∆2(s) + E∆3(s), 4

where 5

∆1(s) = s(L X ) − s(B X ), ∆2(s) = s(B X ) − s(B X ) 6

and 7

∆3(s) = s(B X ) − s(DX ), 8

with the notations B X
= (B X

i )1≤i≤n and B X
= (B X

i )1≤i≤n . To control each of the E∆i (s) for 9

i = 1, 2, 3, we apply Lemma 11. Therefore, we get 10

|E∆1(s)|
2

≪
1

n2

n
i=1

ki +1
j=1


u∈Ji j

E(X2
u) ≪

 q

p
+

q + p

n


σ 2, 11

|E∆2(s)|
2

≪
1

n2

n
i=1

ki
j=1


u∈Ii j

E(X2
u I (|Xu| > A)) ≪ L(A), 12

and 13

|E∆3(s)|2 ≪
1

n2

n
i=1

ki
j=1


u∈Ii j

∥E(Xu|F X
i, j−1)∥2

2 ≤ 2


L(A) + max
1≤ j≤i≤n

∥E(Xi j |Gi, j−q )∥2
2


14

≪


L(A) + η2

q


. 15

We proceed in a similar way with the matrix Yn . Therefore, setting DY
= (DY

i )1≤i≤n , we write 16

Es(LY ) − Es(DY ) = E∆′

1(s) + E∆′

2(s), 17

with the notations 18

∆′

1(s) = s(LY ) − s(BY ) and ∆′

2(s) = s(BY ) − s(DY ), 19

where BY
= (BY

i )1≤i≤n . Applying Lemma 11 and using the fact that (Yu) has the same 20

covariance structure as (Xu), we derive 21

|E∆′

1(sn)|2 ≪

 q

p
+

q + p

n


sup E(Y 2

u ) ≪

 q

p
+

q + p

n


σ 2. 22

On another hand, Lemmas 11 and 13 imply that

|E∆′

2(s)|
2

≪
1

n2

n
i=1

ki
j=1


u∈Ii j

∥E(Yu|F Y
i, j−1)∥

2
2 ≪

1

n2

n
i=1

ki
j=1


u∈Ii j

∥E(Xu|F X
i, j−1)∥

2
2

≪ max
1≤ j≤i≤n

∥E(X i j |Gi, j−q)∥2
2 ≪ η2

q .
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Overall we have the decomposition1

ESXn (z) − ESYn (z) = Es(DX ) − Es(DY ) + En(p, q, A), (20)2

with3

|En(p, q, A)| ≪

 q

p
+

q + p

n

1/2
σ + L1/2(A) + ηq


.4

Step 3: The study of Es(DX ) − Es(DY ).5

The aim of this step is to prove the following upper bound:6

Es(DX ) − Es(DY )
 ≪

1

n1/2 p2σ 2(A + a A + σ) + pL(A) + η2
q + pγaq . (21)7

With this aim, we shall proceed as in the Lindeberg method, that is first write Es(DX )−Es(DY )8

as telescoping sums and then treat each term in the sums with the help of the Taylor expansion.9

Step 3.1. Writing the difference as telescoping sums. To study Es(DX ) − Es(DY ) we first10

decompose the difference according to the rows and after that we study the rows separately.11

With this aim we introduce a telescoping sum where each term is a difference of two functions12

whose arguments differ only by one row. Namely we write13

Es(DX ) − Es(DY )14

=

n
i=1


Es

DX
[1,i−1]

, DX
i , DY

[i+1,n]


− Es

DX
[1,i−1]

, DY
i , DY

[i+1,n]


, (22)15

where DX
[a,b]

= (DX
a , . . . DX

b ) and DY
[a,b]

= (DY
a , . . . DY

b ) with DX
i and DY

i defined in (19). Now16

for every i fixed denote by17

si (x) := s
DX

[1,i−1]
, x, DY

[i+1,n]


.18

Note that si is a random function from Ri to C. With this notation19

Es(DX ) − Es(DY ) =

n
i=1

E(si (DX
i ) − si (DY

i )).20

From now on, for easier notation, it will be convenient to extend the vectors (Diℓ)1≤ℓ≤ki and21

(D∗

iℓ)1≤ℓ≤ki defined in (17) and (18) as follows:22

D′

iℓ = (Diℓ, 0q) and D′∗

iℓ = (D∗

iℓ, 0q) for 1 ≤ ℓ ≤ ki − 1 (23)23

and24

D′

iki
= (Diki , 0q+r ) and D′∗

iki
= (D∗

iki
, 0q+r ). (24)25

With these notations, as in the Lindeberg’s method, we write now another telescoping sum
where we change one by one the vectors D′

iℓ by D′∗

iℓ in the argument of si . With this aim we
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write Q4

si (DX
i ) − si (DY

i ) = si (D′

i1, . . . ,
D′

iki
) − si (D′∗

i1, . . . , D′∗

iki
)

=

ki
u=1


si (D′

i,[1,u−1]
, D′

iu, D′∗

i,[u+1,ki ]
) − si (D′

i,[1,u−1]
, D′∗

iu, D′∗

i,[u+1,ki ]
)


:=

ki
u=1


si,u(D′

iu) − si,u(D′∗

iu)

, (25)

where D′

i,[k,ℓ] := (D′

ik, . . . ,
D′

iℓ) and D′∗

i,[k,ℓ] := (D′∗

ik, . . . , D′∗

iℓ). Note that the si,u’s defined 1

above are random functions from Rp+q to C if 1 ≤ u ≤ ki − 1 and from Rp+q+r to C if u = ki 2

(where r = i − ki (p + q)). 3

Hence starting from (22) and taking into account (25), we derive 4

Es(DX ) − Es(DY ) =

n
i=1

ki
u=1


Esi,u(D′

iu) − Esi,u(D′∗

iu)

. (26) 5

Step 3.2. Taylor expansion of each term in the double sum (26). In this step, we shall treat 6

separately each term in the double sum (26) corresponding to the i th row by using a Taylor 7

expansion. So, in the following, i is fixed. Let us first write 8

si,u(D′

iu) − si,u(D′∗

iu) = si,u(D′

iu) − si,u(0) + si,u(0) − si,u(D′∗

iu), 9

and make a Taylor expansion of order three of both si,u(D′

iu)−si,u(0) and si,u(D′∗

iu)−si,u(0). As 10

we shall see the expectations of the terms of the first order will be zero whereas the expectations 11

of the terms of the third order will be easy to handle. This will lead to the following upper bound: 12

for any i ∈ {1, . . . , n} and any u ∈ {1, . . . , ki }, 13Esi,u(D′

iu) − Esi,u(D′∗

iu) −

p
j,ℓ=1

E


E(d( j)
iu d(ℓ)

iu |F X
i,u−1) − E(g( j)

iu g(ℓ)
iu )


∂ j∂ℓsi,u(0)

 14

≪
1

n5/2 p3σ 2(A + σ), (27) 15

where d( j)
iu is the j th component of the vector D′

iu and g( j)
iu the j th component of the vector D′∗

iu . 16

The next step will consist of proving that for any i ∈ {1, . . . , n}, 17 ki
u=1

p
j,ℓ=1

E


E(d( j)
iu d(ℓ)

iu |F X
i,u−1) − E(g( j)

iu g(ℓ)
iu )


∂ j∂ℓsi,u(0)

 ≪
1
n
η2

q +
1

n3/2 (Aap2)σ 2
18

+
p

n2

i
j=1

∥X2
i j I (|X i j | > A)∥1 +

1

n2 ki p2γaq . (28) 19

Starting from (26) and taking into account (27) and (28), the upper bound (21) will follow. 20

The rest of this step consists of proving (27) and (28). Using Taylor’s expansion of order three, 21

we get 22

si,u(D′

iu) − si,u(0) = R1 + R2 + R3, (29) 23



16 F. Merlevède, M. Peligrad / Stochastic Processes and their Applications xx (xxxx) xxx–xxx

where1

R1 =

p
j=1

d( j)
iu ∂ j si,u(0), R2 =

1
2

 p
j=1

d( j)
iu ∂ j

2
si,u(0)2

and3

R3 =
1
6

 p
j=1

d( j)
iu ∂ j

3
si,u(θ D′

iu) with θ ∈]0, 1[.4

Similarly, we get5

si,u(D′∗

iu) − si,u(0) = R∗

1 + R∗

2 + R∗

3 , (30)6

where7

R∗

1 =

p
j=1

g( j)
iu ∂ j si,u(0) and R∗

2 =
1
2

 p
j=1

g( j)
iu ∂ j

2
si,u(0)8

and9

R∗

3 =
1
6

 p
j=1

g( j)
iu ∂ j

3
si,u(θ D′∗

iu) with θ ∈]0, 1[.10

Now notice that, for any u ∈ {1, . . . , ki } and any j ∈ {1, . . . , p},11

d( j)
iu = X i,(u−1)(p+q)+ j − E(X i,(u−1)(p+q)+ j |F X

i,u−1) := X ( j)
iu − E(X ( j)

iu |F X
i,u−1), (31)12

and13

g( j)
iu = Yi,(u−1)(p+q)+ j − E(Yi,(u−1)(p+q)+ j |F Y

i,u−1) := Y ( j)
iu − E(Y ( j)

iu |F Y
i,u−1). (32)14

Therefore15

∥d( j)
iu ∥

3
3 ≤ 23

∥X ( j)
iu ∥

3
3 ≪ Aσ 2,16

and since Yn has the same covariance structure as Xn and is a Gaussian vector,17

∥g( j)
iu ∥

3
3 ≤ 23

∥Y ( j)
iu ∥

3
3 ≤ 24

∥Y ( j)
iu ∥

3
2 ≪ σ 3.18

Taking into account the two previous inequalities and the upper bound on the partial derivatives19

of order three of s given in (14), we infer that20

|E(R3) + E(R∗

3)| ≪
1

n5/2 p3σ 2(A + σ). (33)21

On another hand, we notice that for any j, ℓ in {1, . . . , p}, ∂ j si,u(0) and ∂ j∂ℓsi,u(0) are complex-22

valued random variables measurable with respect to the sigma algebra Hi,u defined by23

Hi,u = F X
i,u−1 ∨ σ


(L X

j )1≤ j≤i−1, (LY
k )i+1≤k≤n


∨ σ


D∗

i,u+1, . . . , D∗

iki


. (34)24

Hence25

E(R1) =

p
j=1

E

∂ j si,u(0)E(d( j)

iu |Hi,u)

,26
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and 1

E(R2) =
1
2

p
j,ℓ=1

E

∂ j∂ℓsi,u(0)E(d( j)

iu d(ℓ)
iu |Hi,u)


. 2

Since the rows of Xn are assumed to be independent and Yn is assumed to be independent of Xn , 3

then σ(d(1)
iu , . . . , d(p)

iu ) ∨ F X
i,u−1 is independent of 4

σ

(L X

j )1≤ j≤i−1, (LY
k )i+1≤k≤n


∨ σ


D∗

i,u+1, . . . , D∗

iki


. 5

Therefore, by the properties of the conditional expectation, E(d( j)
iu |Hi,u) = E(d( j)

iu |F X
i,u−1) = 0 6

and E(d( j)
iu d(ℓ)

iu |Hi,u) = E(d( j)
iu d(ℓ)

iu |F X
i,u−1). Hence, 7

E(R1) = 0 and E(R2) =
1
2

p
j,ℓ=1

E

E(d( j)

iu d(ℓ)
iu |F X

i,u−1)∂ j∂ℓsi,u(0)

. (35) 8

We handle now the terms E(R∗

1) and E(R∗

2). With this aim we notice that by definition (D∗

iu : 1 ≤ 9

u ≤ ki )1≤i≤n is a centered Gaussian vector such that Cov(D∗

iu, D∗

i ′u′) = 0p,p if (i, u) ≠ (i ′, u′). 10

Therefore D∗

i,u , i = 1, . . . , n, u = 1, . . . , ki are centered Gaussian random variables in Rp which 11

are mutually independent. In addition they are independent of (Xu). Therefore, 12

E(R∗

1) =

p
j=1

E(g( j)
iu )E


∂ j si,u(0)


= 0, (36) 13

and 14

E(R∗

2) =
1
2

p
j,ℓ=1

E(g( j)
iu g(ℓ)

iu )E

∂ j∂ℓsi,u(0)


. (37) 15

So, taking into account (29), (30), (33) and (35)–(37), the upper bound (27) follows. 16

We turn now to the proof of (28). Recalling the notations (31) and (32), we first write 17

E(d( j)
iu d(ℓ)

iu |F X
i,u−1) − E(g( j)

iu g(ℓ)
iu ) = E(X ( j)

iu
X (ℓ)

iu |F X
i,u−1) − E(Y ( j)

iu Y (ℓ)
iu ) 18

− E(X ( j)
iu |F X

i,u−1)E(X (ℓ)
iu |F X

i,u−1) + E

E(Y ( j)

iu |F Y
i,u−1)E(Y (ℓ)

iu |F Y
i,u−1)


. 19

Therefore, by the triangle inequality and Jensen’s inequality, ki
u=1

p
j,ℓ=1

E


E(d( j)
iu d(ℓ)

iu |F X
i,u−1) − E(g( j)

iu g(ℓ)
iu )


∂ j∂ℓsi,u(0)


≤

ki
u=1

p
j,ℓ=1

E
E(X ( j)

iu
X (ℓ)

iu |F X
i,u−1) − E(Y ( j)

iu Y (ℓ)
iu )


∂ j∂ℓsi,u(0)


+

ki
u=1

E
 p

j,ℓ=1

E(X ( j)
iu |F X

i,u−1)E(X (ℓ)
iu |F X

i,u−1)∂ j∂ℓsi,u(0)


+

ki
u=1

 p
j,ℓ=1

E

E(Y ( j)

iu |F Y
i,u−1)E(Y (ℓ)

iu |F Y
i,u−1)


E


∂ j∂ℓsi,u(0)


:= T1 + T2 + T3. (38)
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As we shall see the terms T2 and T3 will be handled by using Lemma 12 whereas to give a1

suitable upper bound for the term T1 we will use an additional Taylor expansion.2

Let us first handle T3. Recalling the notation (23) and (24) and setting3

Ci,u =
DX

[1,i−1]
, D′

i1, . . . ,
D′

i,u−1, 0, D′∗

i,u+1, . . . , D′∗

i,ki
, DY

[i+1,n]


, (39)4

we note that E(Y ( j)
iu |F Y

i,u−1)E(Y (ℓ)
iu |F Y

i,u−1) is independent of ∂ j∂ℓsi,u(Ci,u). This is because5

of the independence between Yn and Xn together with the independence between the6

vectors (E(Y ( j)
iu |F Y

i,u−1), E(Y (ℓ)
iu |F Y

i,u−1)) and (D′∗

i,u+1, . . . , D′∗

i,uki
, DY

[i+1,n]
). To prove the latter7

independence, it suffices to notice that (E(Y ( j)
iu |F Y

i,u−1), E(Y (ℓ)
iu |F Y

i,u−1), D′∗

i,u+1, . . . , D′∗

i,uki
,8

DY
[i+1,n]

) is a Gaussian vector and that (E(Y ( j)
iu |F Y

i,u−1), E(Y (ℓ)
iu |F Y

i,u−1)) and (D′∗

i,u+1, . . . ,9

D′∗

i,uki
, DY

[i+1,n]
) are uncorrelated. So, we can bound T3 as follows:10

T3 ≤

ki
u=1

E
 

j,k∈I ′
u

E(Yi j |F Y
i,u−1)E(Yik |F Y

i,u−1)∂i j∂iks(Ci,u)

,11

where we recall that I ′
u = {(u − 1)(p + q) + 1, . . . , (u − 1)(p + q) + p}. An application of12

Lemma 12 gives13  
j,k∈I ′

u

E(Yi j |F Y
i,u−1)E(Yik |F Y

i,u−1)∂i j∂iks(Ci,u)

 ≪
1

n2


j∈I ′

u


E(Yi j |F Y

i,u−1)
2

.14

Whence, using in addition Lemma 13, we derive15

T3 ≪
1

n2

ki
u=1


j∈I ′

u

∥E(Yi j |F Y
i,u−1)∥

2
2 ≪

1

n2

ki
u=1


j∈I ′

u

∥E(X i j |F X
i,u−1)∥

2
2.16

Since F X
i,u−1 ⊂ Gi,ℓ−q for any ℓ ∈ {(u − 1)(p + q)+ 1, . . . , (u − 1)(p + q)+ p}, it follows that17

T3 ≪
1

n2

i
j=1

∥E(X i j |Gi, j−q)∥2
2 ≪

1
n
η2

q . (40)18

To treat T2 we proceed as in the proof of relation (40), and infer that19

T2 ≪
1

n2

i
j=1

∥E(X i j |Gi, j−q)∥2
2 ≪

1
n
η2

q +
1

n2

i
j=1

∥X2
i j I (|X i j | > A)∥1. (41)20

We handle now the term T1 in (38). Using the notation (39) and the fact that Yn has the same
covariance structure as Xn , we start by rewriting T1 as follows:

T1 =

ki
u=1


j,ℓ∈I ′

u

E
E(X i j X iℓ|F X

i,u−1) − E(X i j X iℓ)

∂i j∂iℓs(Ci,u)


=

ki
u=1


j,ℓ∈I ′

u

EX i j X iℓ − E(X i j X iℓ)

∂i j∂iℓs(Ci,u)

, (42)
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where for the second equality we used the fact that ∂i j∂iℓs(Ci,u) is measurable with respect to 1

Hi,u defined by (34) and that σ

(X i,(u−1)(p+q)+ j )1≤ j≤p


∨ F X

i,u−1 is independent of 2

σ

(L X

j )1≤ j≤i−1, (LY
k )i+1≤k≤n


∨ σ


D∗

i,u+1, . . . , D∗

iki


. 3

To treat the summands in (42), we further weaken the dependence by suppressing some variables 4

in Ci,u which are “close” to X i j X iℓ. Let a be a positive integer fixed for the moment. Then, 5

setting, 6

C (a)
i,u =

DX
[1,i−1]

, D′

i1, . . . ,
D′

i,u−a, 0, D′∗

i,u+1, . . . , D′∗

i,ki
, DY

[i+1,n]


if u ≥ a + 1, 7

and 8

C (a)
i,u =

DX
[1,i−1]

, 0, D′∗

i,u+1, . . . , D′∗

i,ki
, DY

[i+1,n]


if 1 ≤ u ≤ a, 9

we write 10EX i j X iℓ − E(X i j X iℓ)

∂i j∂iℓs(Ci,u)

 ≤ I1 + I2 (43) 11

where 12

I1 =
EX i j X iℓ − E(X i j X iℓ)


∂i j∂iℓ


s(Ci,u) − s(C (a)

i,u )
 13

and 14

I2 =
EX i j X iℓ − E(X i j X iℓ)


∂i j∂iℓs(C (a)

i,u )
. 15

By using the multivariate Taylor expansion of first order for ∂i j∂iℓs, taking into account the 16

definitions of Ci,u and C (a)
i,u and then by using (14), we derive, after simple computations, that 17

for any j and ℓ in I ′
u , 18

I1 ≪
1

n5/2


1u≥a+1

u−1
v=u−a+1


r∈I ′

v

∥
X i j X iℓ − E(X i j X iℓ)

X ir − E(X ir |F X
i,v−1)


∥1 19

+ 1u≤a

u−1
v=1


r∈I ′

v

∥
X i j X iℓ − E(X i j X iℓ)

X ir − E(X ir |F X
i,v−1)


∥1


, 20

leading to 21

I1 ≪
1

n5/2 (Aap)σ 2. (44) 22

Next, using (14) again and the definition of the conditional expectation, we infer that 23

I2 ≪
1

n2 ∥E
X i j X iℓ|σ(C (a)

i,u )

− E(X i j X iℓ)∥1. 24

Notice now that, since Xn and Yn are assumed to be independent and since the rows of Xn are 25

independent, E
X i j X iℓ|σ(C (a)

i,u )


= E
X i j X iℓ|F X

i,u−a


. Therefore, after simple computations 26

based on the definition of X i j and on the fact that A∥X i j I (|X i j | > A)∥1 ≤ ∥X2
i j I (|X i j | > A)∥1, 27



20 F. Merlevède, M. Peligrad / Stochastic Processes and their Applications xx (xxxx) xxx–xxx

we obtain1

I2 ≪
1

n2 ∥E

X i j X iℓ|F X

i,u−a


− E(X i j X iℓ)∥12

+
1

n2 ∥X i j I (|X i j | > A)∥2∥X iℓ I (|X iℓ| > A)∥2. (45)3

Starting from (42) and taking into account (43)–(45), we get4

T1 ≪
1

n3/2 (Aap2)σ 2
+

p

n2

i
j=1

∥X2
i j I (|X i j | > A)∥1 +

1

n2 ki p2γaq . (46)5

So, overall, starting from the decomposition (38) and taking into account the upper bounds (40),6

(41) and (46), the upper bound (28) follows. This ends the proof of Step 3.7

Step 4: End of the proof.8

Starting from (20), taking A = ε
√

n and considering the upper bound (21), we get9 ESXn (z) − ESYn (z)
 ≪ p2σ 2


ε + aε +

1

n1/2 σ


+ pL(ε

√
n) + η2

q + pγaq10

+

 q

p
+

q + p

n

1/2
σ + L1/2(ε

√
n) + ηq .11

Therefore, when n → ∞, we obtain for all p, q, a, and ε,12

lim sup
n→∞

ESXn (z) − ESYn (z)
 ≪ p2σ 2(ε + aε) + η2

q + ηq + pγaq + (q/p)1/2 σ.13

Now we let ε → 0 and obtain14

lim sup
n→∞

ESXn (z) − ESYn (z)
 ≪ η2

q + ηq + pγaq + (q/p)1/2 σ.15

Then we let a → ∞, and, by our hypotheses, for any p and q we obtain16

lim sup
n→∞

ESXn (z) − ESYn (z)
 ≪ η2

q + ηq + (q/p)1/2 σ.17

Now we can let p and q tend to ∞ in such a way q/p → 0 to obtain the desired result. ♦18

4.2. Proof of Corollary 819

By the reverse martingale convergence theorem and condition (3), we get that limn→∞ E20

(X0|G−n) = E(X0|G−∞) = 0 a.s. So, since X0 belongs to L2, this last convergence implies that21

condition (8) holds. We prove now that under the conditions of the corollary, condition (9) is22

satisfied. Note first that, by stationarity, this latter condition reads as23

sup
u

∥E(X0 Xu |G−n) − E(X0 Xu)∥1 → 0 as n → ∞. (47)24

To prove that (47) holds we shall prove that25

lim
p→∞

lim sup
n→∞

sup
u≥p+1

∥E(X0 Xu |G−n) − E(X0 Xu)∥1 = 0, (48)26

and that27

lim
p→∞

lim sup
n→∞

max
1≤u≤p

∥E(X0 Xu |G−n) − E(X0 Xu)∥1 = 0. (49)28



F. Merlevède, M. Peligrad / Stochastic Processes and their Applications xx (xxxx) xxx–xxx 21

To prove (48), we note that

sup
u≥p+1

∥E(X0 Xu |G−n) − E(X0 Xu)∥1 ≤ sup
u≥p+1

∥E(X0 Xu |G0) − E(X0 Xu)∥1

= sup
u≥p+1

∥X0E(Xu |G0) − E(X0 Xu)∥1

≤ 2∥X0∥2 · sup
u≥p+1

∥E(Xu |G0)∥2 ≤ 2∥X0∥2 · ∥E(X0|G−p)∥2.

This shows that (48) holds since (8) does under (3). We turn now to the proof of (49). By the 1

reverse martingale convergence theorem 2

lim
n→∞

max
1≤u≤p

∥E(X0 Xu |G−n) − E(X0 Xu)∥1 = max
1≤u≤p

lim
n→∞

∥E(X0 Xu |G−n) − E(X0 Xu)∥1 3

= sup
1≤u≤p

∥E(X0 Xu |G−∞) − E(X0 Xu)∥1, 4

which is equal to zero by condition (4). This ends the proof of (49) and then of the corollary. ♦ 5

4.3. Proof of Theorem 9 6

It is well-known that for deriving the limiting spectral distribution of BN it is enough to study 7

the Stieltjes transform of the following symmetric matrix of order n = N + p: 8

Xn =
1

√
N


0p,p X T

N ,p
X N ,p 0N ,N


. 9

Indeed the eigenvalues of X2
n are the eigenvalues of N−1 X T

N ,p X N ,p together with the eigenvalues 10

of N−1 X N ,p X T
N ,p. Since these two latter matrices have the same nonzero eigenvalues, the 11

following relation holds: for any z ∈ C+, SBN (z) = z−1/2 n
2p SXn (z

1/2) +
N−p
2pz (see, for 12

instance, page 549 in [37] for additional arguments leading to the relation above). Obviously 13

a similar equation holds for the Gram random matrix HN associated with (Yu)u∈Z2 , namely: 14

SHN (z) = z−1/2 n
2p SYn (z

1/2) +
N−p
2pz , where Yn is defined as Xn but with Xu replaced by Yu. 15

Therefore, in order to prove the theorem, it suffices to show that, for any z ∈ C+, 16

lim
N→∞

SXn (z) − E(SYn (z))
 = 0 a.s. (50) 17

Note now that Xn := n−1/2
[x (n)

i j ]
n
i, j=1 where x (n)

i j =


n
N X i−p, j 1i≥p+111≤ j≤p if 1 ≤ j ≤ i ≤ n, 18

and x (n)
i j = x (n)

j i if 1 ≤ i < j ≤ n. Similarly we can write Yn := n−1/2
[y(n)

i j ]
n
i, j=1 where the 19

y(n)
i j ’s are defined as the x (n)

i j ’s but with X i−p, j replaced by Yi−p, j . The theorem then follows by 20

applying Remark 6 of Theorem 4 to the matrices Xn and Yn defined above. ♦ 21

4.4. Proof of Theorem 1 22

According to Theorem B.9. in Bai and Silverstein [2], Theorem 1 will follow if one can prove 23

that Q5 24

P

SBN (z)


→ S(z), ∀z ∈ C+

= 1, (51) 25
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where S(z) is the Stieltjes transform of a non-random measure F which is uniquely determined1

by Eq. (5). On the other hand, by well-known arguments involving Vitali’s convergence theorem2

(see also Lemma 2.14 in [2]), to prove (51), it is enough to prove that for any z ∈ C+,3

lim
N→∞

SBN (z) = S(z) a.s.4

According to Theorem 9, this last convergence is reduced to show that, for any z ∈ C+
5

lim
N→∞

E(SHN (z)) = S(z), (52)6

where HN is the Gram matrix associated with a Gaussian random field (Yu)u∈Z2 having the same7

covariance structure as (Xu)u∈Z2 .8

With this aim, we shall apply Theorem 1.1 in [40]. Consider N independent copies (gi j ) j∈Z,9

i = 1, . . . , N of a sequence (gk)k∈Z of i.i.d. standard normal random variables. Set10

Γp :=


c0 c1 · · · cp−1
c1 c0 cp−2
...

...
...

...

cp−1 cp−2 · · · c0

 where ck = Cov(X0, Xk).11

Using the stationarity of the Gaussian process (Yu)u∈Z2 , we can easily verify that the random12

vector ((Y1 j )1≤ j≤p, . . . , (YN j )1≤ j≤p) has the same distribution as (g1Γ
1/2
p , . . . , gN Γ 1/2

p ) where13

for any i ∈ {1, . . . , N }, gi = (gi j )1≤ j≤p and Γ 1/2
p is the symmetric non-negative square root of14

Γp. Therefore, for any z ∈ C+,15

E(SHN (z)) = E(SΓ
1/2
p GN Γ

1/2
p (z)), (53)16

where GN =
1
N G T

N ,p G N ,p with G N ,p = (gi j )1≤i≤N ,1≤ j≤p.17

By a version of the Szegö’s theorem for Toeplitz forms generated by real-valued integrable18

functions (see Theorem 3 in [43] or Theorem 1 in [42]) we obtain that19

FΓp converges to a probability distribution H as p → ∞, (54)20

where H is the distribution of 2π f (U ) with U a uniformly distributed random variable on21

[−π, π). Therefore, for any ϕ which is continuous and bounded,22 
ϕ(x)d H(x) =

1
2π

 π

−π

ϕ(2π f (λ))dλ. (55)23

Now, according to Theorem 1.1 in [40], if p/N → c ∈ (0, ∞) there is a nonrandom probability24

distribution F such that25

d(FΓ
1/2
p GN Γ

1/2
p , F) → 0 a.s. (56)26

Furthermore, the Stieltjes transform S = S(z), z ∈ C+, of F satisfies the equation27

S =


1

x(1 − c − czS) − z
d H(x).28
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Setting S := −(1 − c)/z + cS, this last equation becomes 1

z = −
1
S

+ c


x

1 + x S
d H(x). (57) 2

Let us mention that S is also a Stieltjes transform (see relation (1.3) in [40] or [23]), so Im S > 0 3

for z ∈ C+. 4

Combining (56) with (53), it follows that for any z ∈ C+, the convergence (52) holds and that 5

S is the Stieltjes transform of a probability distribution that is determined by Eq. (57). Since the 6

function ϕ(x) := x/(1 + x S) is continuous and bounded by 1/Im S, the relation (57) can be then 7

rewritten via identity (55) as in Eq. (5). ♦ 8

4.5. Comments on Remark 2 9

In the proof of Theorem 1 we have shown that the limiting spectral distribution F coincides 10

to that one of the matrices of the form Γ 1/2
p GN Γ 1/2

p where Γp is a symmetric Toeplitz matrix 11

whose entries are the Fourier coefficients of f (x). Also GN is the Wishart matrix formed by 12

i.i.d. real-valued standard normal variables. Since the Wishart matrix has eigenvectors that are 13

uniformly distributed with Haar measure, the matrices Γp and GN are asymptotically free. The 14

limiting distribution F can be expressed by using the notion of free multiplicative convolution 15

µ f ⊗ M P between µ f the limiting spectral distribution of Γp, which is the distribution 16

of 2π f (U ) where U is a random variable uniformly distributed on [−π, π), with M P , the 17

Marčenko–Pastur distribution. For further details on the computation of free multiplicative Q6 18

convolution and deconvolution see [44,7,22,36,39,6]. 19

Also note that F has compact support if and only if µ f has compact support (see Proposition 20

3.4 in [19]). By the definition of µ f this happens if and only if f has compact support. 21

We also mention that by the Proposition 1 in [48] one can describe precisely the support of 22

the LSD F in case where the spectral density f is associated with a linear process with short 23

memory. 24

5. Conclusion 25

The sample covariance matrix based on repeated independent samples from a vector is a 26

consistent estimator of the real covariances when the number of samples is increasing. When 27

the number of dimensions is increasing this is no longer the case. However, if the number of 28

variables in the vector grows proportionally with the number of samples, the limiting spectral 29

distribution (LSD for short) for the sample covariance matrix exists under mild conditions. This 30

always holds if the stationary sequence is regular in the sense described in this paper. For instance 31

the LSD exists if the entries of the process are functions of i.i.d. and even less, if the stationary 32

process has trivial sigma field. This is important because many statistics in multivariate analysis 33

can be expressed as a function of the eigenvalues. Furthermore, the LSD of the sample covariance 34

matrix indicates a strong and fascinating relationship between the LSD and the process’ spectral 35

distribution. The LSD has the form of the free convolution of two distributions, one generated 36

by the process’ spectral density with Marčenko–Pastur distribution. It is expected that, via free 37

deconvolution methods the process’ spectral distribution could be recovered in some cases. For 38

instance, if the spectral density is monotone on [0, π) then it can be obtained from the LSD and 39

in this class of spectral densities, the process’ spectral density is in one to one correspondence to 40

the LSD. 41
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It will be interesting to investigate whether the LSD exists for any covariance matrix1

constructed based on a stationary and ergodic sequence and to express it in function of the2

process’ spectral measure.3
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Appendix11

In this section, we collect several results useful for our proofs.12

The first result we mention is Lemma 2.1 in [24] that allows to compare the difference between13

two Stieltjes transforms.14

Lemma 11. Let A and B be two symmetric n × n matrices with real entries. Then, for any15

z = x + iy ∈ C \ R,16

|SA(z) − SB(z)| ≤
1

y2
√

n
|Tr(A − B)2

|
1/2.17

In addition, concerning the partial derivatives of second order, the following lemma will be18

also useful. We could not find this lemma in the literature, so we shall provide a short proof.19

Lemma 12. Let z ∈ C+ and sn := sn,z be defined by (13). Let (ai j )1≤ j≤i≤n and (bi j )1≤ j≤i≤n20

be real numbers. Then, there exists an universal positive constant c4 depending only on the21

imaginary part of z such that for any subset In of {(i, j)}1≤ j≤i≤n and any element x of RN ,22 
u∈In


v∈In

aubv∂u∂vsn(x)

 ≤
c4

n2


u∈In

a2
u


v∈In

b2
v

1/2
.23

Proof. Setting G = (A(x) − zIn)−1, we have24

∂u∂vsn =
1
n

Tr(G∂u AG∂v AG) +
1
n

Tr(G∂v AG∂u AG).25

(See the equality (20) in [18].) Whence, with the notations26 A :=


u∈In

au∂u A and B :=


u∈In

bu∂u A,27

it follows that28 
u∈In


v∈In

aubv∂u∂vsn =
1
n

Tr(G2 AGB) +
1
n

Tr(G AG2B).29
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Recall now the following facts: Let B and C be two complex valued matrices of order n. 1

Then, |Tr(BC)| ≤ ∥B∥2∥C∥2 where ∥B∥
2
2 =

n
i=1

n
j=1 b2

i j (the bi j ’s being the entries of 2

B) and max{∥BC∥2, ∥C B∥2} ≤ max1≤i≤n |ηi |. ∥C∥2 if B admits a spectral decomposition 3

with eigenvalues η1, . . . , ηn . Therefore using the above facts, together with the facts that 4

(∂u A)i j = n−1/2 if (i, j) = u or ( j, i) = u and 0 otherwise, and that G admits a spectral 5

decomposition with eigenvalues bounded by 1/y with y = Im (z), we get 6

1
n
|Tr(G2 AGB)| ≤ ∥G2 A∥2∥GB∥2 ≤

1

y3

2

n2


u∈In

a2
u


v∈In

b2
v

1/2
. 7

A similar bound being valid for n−1Tr(G AG2B), the lemma follows. ♦ 8

Another key result we use for dealing with Gaussian vectors is: 9

Lemma 13. Let X = (Xk)1≤k≤n and Y = (Yk)1≤k≤n be two vectors in L2 which have the same 10

covariance structure. Assume in addition that Y is Gaussian. Then, for all u ≤ k we have 11

∥E(Yk |F Y
u )∥2 ≤ ∥E(Xk |F X

u )∥2, 12

where F Y
u = σ(Yi , i ≤ u) and F X

u = σ(X i , i ≤ u). 13

Proof. To prove the inequality above, it suffices to notice the following facts. Let 14

V Y
u = span(1, (Y j , 1 ≤ j ≤ u)) and V X

u = span(1, (X j , 1 ≤ j ≤ u)), 15

where the closure is taken in L2. Denote by ΠV Y
u
(·) the orthogonal projection on V Y

u and by 16

ΠV X
u
(·) the orthogonal projection on V X

u . Since (Y j )1≤ j≤n is a Gaussian vector E(Yk |F Y
u ) = 17

ΠV Y
u
(Yk) a.s. and in L2. On another hand, since (Yk)1≤k≤n has the same covariance structure as 18

(Xk)1≤k≤n , we observe that 19

∥ΠV Y
u
(Yk)∥2 = ∥ΠV X

u
(Xk)∥2. 20

But, by the definition of the conditional expectation, ∥Xk − E(Xk |F X
u )∥2 ≤ ∥Xk − ΠV X

u
(Xk)∥2. 21

Hence, by Pythagoras theorem, 22

∥ΠV X
u
(Xk)∥2 ≤ ∥E(Xk |F X

u )∥2. 23

Combining all the observations above, the lemma follows. ♦ 24
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