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Abstract

In this work, we provide sharp bounds on the rate of growth of maximal moments for stationary
ymmetric stable random fields when the underlying nonsingular group action (or its restriction to a
uitable lower rank subgroup) has a nontrivial dissipative component. We also investigate the relationship
etween this rate of growth and the path regularity properties of self-similar stable random fields with
tationary increments, and establish uniform modulus of continuity of such fields. In the process, a new
otion of weak effective dimension is introduced for stable random fields and is connected to maximal
oments and path properties.

c 2021 Elsevier B.V. All rights reserved.
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1. Introduction

A real-valued stochastic process {X (t) : t ∈ Td
} (T = Z or [0, 1] or R) is called a symmetric

α-stable (SαS) random field if each of its finite linear combination follows an SαS distribution.
In general, the parameter α satisfies 0 < α ≤ 2, although in this paper, we assume our
random fields to be non-Gaussian and therefore 0 < α < 2. See, for example, [38] for detailed
discussions on non-Gaussian stable distributions and processes.

Sample path continuity and Hölder regularity of stochastic processes and random fields have
been studied for many years. The main tool behind such investigation has been a powerful
chaining argument that is mainly applicable to Gaussian and other light-tailed processes;
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see [2,14,21,42]. Recently, there has been a significant interest in establishing uniform modulus
of continuity of sample paths for stable and other non-Gaussian infinitely divisible processes;
see, for instance, [4,6,7,45].

Motivated by [15,45] modified the existing chaining argument and made it amenable to
eavy-tailed random fields. This technique uses estimates of the lower order moments of the
aximum increments over the two consecutive steps of the chain to obtain a uniform modulus

f continuity for stable and other heavy-tailed random fields.
In this context, it was stated in [45] (see Page 173 therein) that for a stationary α-stable

equence {ξk : k ≥ 1}, it is an open problem to give sharp upper and lower bounds for
he maximal moment sequence E

(
max1≤k≤n |ξk |

γ
)

for γ ∈ (0, α). [45] also presented two
approaches of partial solution to this open problem: one using results of [42] in this setup
and another one based on his own improvement of Talagrand’s results (more specifically,
Lemma 3.5 of [45]). However both of these methods lead to weaker path continuity results
and we have been able to improve them significantly in this paper as described below.

The dependence structure of a stationary SαS random field is determined, to a large
extent, by the underlying nonsingular (also known as quasi-invariant) group action discovered
by [28]. As a result, various probabilistic facets (e.g., mixing features (see [30,31,37,44]), large
deviations issues (see [11,23]), growth of maxima (see [3,24,34,35]), extremal point processes
(see [27,32,39]), functional central limit theorem (see [13,24]), statistical aspects (see [5]), etc.)
of a stationary SαS random field have been connected to ergodic theoretic properties of the
underlying nonsingular action.

We have been able to extend the connection mentioned in the above paragraph to the
investigation of maximal moments and path properties for stable random fields when the group
action (or its restriction to a lower rank subgroup F ; see Section 2.2) has a nontrivial dissipative
component. In particular, we have partially solved the open problem mentioned above and
derived sharp bounds on the moments of the maximal process for stationary SαS discrete-
parameter random fields generated by dissipative actions; see Theorem 3.1. Our machineries
include structure theorem for finitely generated abelian groups, ergodic theory of quasi-invariant
actions on σ -finite standard measure spaces, and a new notion of weak effective dimension
introduced in this paper. This work easily extends to the continuous parameter case (see
Theorem A.1 and Remark A.2) provided the random field is measurable and stationary.

Partial solution to the open problem in the discrete-parameter case allows us to prove results
on uniform modulus of continuity for a class of self-similar SαS random fields with stationary
increments; see Section 4. To this end, we have introduced a novel notion, namely that of weak
effective dimension, for stable random fields; see Definition 3.3. This notion encompasses the
concept of effective dimension (defined by [34]) as a special case and connects naturally to
maximal moments (see Theorem 3.4) and path properties (see Corollary 4.4) of stable random
fields. In some sense, our new notion is better than the effective dimension, which is always
an integer (and hence more restrictive) whereas weak effective dimension need not be so.

We would like to mention that our bounds (on both growth-rate of maximal moments as
well as uniform modulus of continuity) are significantly better than the existing ones for stable
random fields that are not full-dimensional (see Definition 3.3) to the extent that we improve the
leading (polynomial) term of these bounds. For full-dimensional fields generated by dissipative
actions (i.e., for mixed moving average fields), however, the improvement is in the logarithmic
term. On the other hand, stationary SαS random fields generated by conservative actions have
much more complex structures and hence cannot be put into a unified framework. Instead, it

is better go with a case-by-case approach.
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This paper is organized as follows. In Section 2, we recall a result of [45], explain how it
aturally leads to a problem on rate of growth of the maximal moment sequences and describe
he ergodic theoretic and group theoretic connections to this extreme value theoretic problem.
ection 2.3 contains a brief summary of the contributions of our work. In Section 3, we state

he results on the asymptotic behavior of the maximal moments of stationary SαS random
elds as the index parameter runs over d-dimensional hypercubes of increasing edge-length
ven though the proofs are deferred to Section 6 to increase the readability of this paper. In
ection 4, we establish results on uniform modulus of continuity for self-similar SαS random
elds whose first order increments are stationary. A few important examples are discussed in
ection 5. Finally in the Appendix, we present a result on the growth-rate of maximal moments

n the continuous parameter case.
Throughout this paper, we will use K to denote a positive and finite constant which

ay differ in each occurrence, even in two consecutive ones. Some specific constants will
e denoted by c, c1, c2, . . . , K1, K2, . . ., etc. For two sequences of nonzero real numbers
an}n∈N and {bn}n∈N the notation an ∼ bn means an/bn → 1 as n → ∞. For u, v ∈ Rd ,

= (u1, u2, . . . , ud ) ≤ v = (v1, v2, . . . , vd ) means ui ≤ vi for all i = 1, 2, . . . , d. The
ectors 0 = (0, 0, . . . , 0), 1 = (1, 1, . . . , 1) are elements of Zd . We shall abuse the notation
nd use [u, v] to denote the set {t ∈ Zd

: u ≤ t ≤ v} or the set {t ∈ Rd
: u ≤ t ≤ v}

epending on the context (the former notation is used throughout the main body of the paper
hile latter one is used only in the Appendix). For α ∈ (0, 2) and a σ -finite standard measure

pace (S,S, µ), we define the space Lα(S, µ) := { f : S → R measurable : ∥ f ∥α < ∞}, where
f ∥α :=

(∫
S | f (s)|α µ(ds)

)1/α . Note that ∥ · ∥α is a norm if and only if α ∈ [1, 2) making the
orresponding Lα(S, µ) a Banach space but not a Hilbert space. For two random variables

Y , Z , we write Y L
= Z if Y and Z are identically distributed. For two stochastic processes

Y (t)}t∈T and {Z (t)}t∈T , the notation {Y (t)}t∈T
L
= {Z (t)}t∈T (or simply Y (t) L

= Z (t), t ∈ T )
eans that they have the same finite-dimensional distributions.

. Preliminaries

.1. A chaining argument for path properties

We start with an important special case of the main result of [45]. This result was proved us-
ng a modification of the chaining arguments used in the proofs of Kolmogorov’s continuity the-
rem, Dudley’s entropy theorem and other results on path regularity properties in the light-tailed
ituations; see [2,14,21,42]. To this end, Let {X (t)}t∈T be a random field indexed by T .

We start by introducing some notation. Let T = [0, 1]d be endowed with the metric
(s, t) = max1≤i≤d |si − ti |. Define, for all n ≥ 1, Dn =

{
2−nu : u ∈ [0, (2n

− 1)1] ∩ Zd
}
. For

very u ∈ Dn ,

On−1(u) := {u′
∈ Dn−1 : ρ(u, u′) ≤ 2−n

}.

he following particular case of Theorem 2.1 of [45] will play a significant role in this paper.

roposition 2.1. Let X = {X (t)}t∈T be a real-valued random field indexed by T = [0, 1]d .
uppose σ : R+ → R+ is a nondecreasing continuous function which is regularly varying at
he origin with index δ > 0 (i.e., limh→0+ σ (ch)/σ (h) = cδ for all c > 0). If there are constants
> 0, and K > 0 such that

E
(

max
τ ∈D

max
′

|X (τn) − X (τ ′

n−1)|γ
)

≤ K
(
σ (2−n)

)γ (2.1)

n n τn−1∈On−1(τn )
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for all integers n ≥ 1, then for all ϵ > 0,

lim
h→0+

supt∈T supρ(s,t)≤h |X (t) − X (s)|
σ (h)(log 1/h)(1+ϵ)/γ = 0 (2.2)

lmost surely.

In this paper, we will focus on studying the maximal moments of SαS random fields indexed
y Zd or Rd so that we can apply Proposition 2.1 to self-similar SαS random fields with
tationary increments. Recall that a random field {X (t)}t∈Rd is called H -self-similar (H > 0)
f {X (ct)}t∈Rd

L
= {cH X (t)}t∈Rd for all c > 0. {X (t)}t∈Rd is said to have stationary increments

f {X (t + u) − X (u)}t∈Rd
L
= {X (t) − X (0)}t∈Rd , for each u ∈ Rd .

We shall now apply Proposition 2.1 to a self-similar SαS random field {X (t)}t∈Rd with
tationary increments. Using the self-similarity of {X (t)}t∈Rd , it follows (see the proof of
heorem 4.1) that for all γ ∈ (0, α ∧ 1) and for all n ≥ 1,

E

(
max
τn∈Dn

max
τ ′

n−1∈On−1(τn )
|X (τn) − X (τ ′

n−1)|γ
)

≤ 2−nHγ
∑
v∈V

E
(

max
t∈[1,2n1]∩Zd

|Y (v)(t)|
γ

)
,

(2.3)

here Y(v)
= {Y (v)(t)}t∈Zd is the discrete-parameter increment field defined by

Y (v)(t) = X (t + v) − X (t), t ∈ Zd

n the direction v ∈ V := {−1, 0, 1}
d

\ {0}.
The crucial observation is that due to the stationarity of the increments, each discrete-

arameter field Y(v) is stationary. Therefore, in order to estimate the quantity in (2.3), it suffices
o establish sharp upper bounds on

E
(

max
t∈[0,(2n−1)1]∩Zd

|Y (t)|γ
)
, (2.4)

here Y = {Y (t)}t∈Zd is a stationary SαS random field, n ≥ 1 and γ ∈ (0, α ∧ 1). This
ranslates an investigation of sample path regularity properties into an extreme value theoretic
uestion. Along this direction, some partial results were obtained in [45] which are applicable
o stable random fields with certain specific dependence structures.

.2. Related work on partial maxima of stable fields

In this work, we have improved upon the results in [45] and computed the exact rate of
rowth of the maximal moment sequence (2.4) for a large class of stationary SαS random fields.
e have thus partially solved the problem of characterizing path properties of such random

elds as posed in [45] (see pages 173–174 therein). The main tools used in our solution are
rgodic theoretic and algebraic in nature as described below. We provide an overview of these
echniques and related work below.

It was established by [28,29] that every stationary SαS random field Y = {Y (t)}t∈Zd has an
ntegral representation of the form

Y (t) d
=

∫
ct (s)

(
dµ ◦ φt (s)

)1/α

f ◦ φt (s)M(ds), t ∈ Zd , (2.5)

S dµ
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where M is a SαS random measure on some standard Borel space (S,S) with σ -finite
ontrol measure µ, f ∈ Lα(S, µ), {φt }t∈Zd is a nonsingular Zd -action on (S,S, µ) (i.e., each
t : S → S is a measurable map, φ0 is the identity map on S, φu+v = φu ◦φv for all u, v ∈ Zd

nd each µ◦φt is equivalent to µ), and {ct }t∈Zd is a measurable cocycle for {φt } (i.e., each ct is
±1-valued measurable map defined on S satisfying cu+v(s) = cu(φv(s))cv(s) for all u, v ∈ Zd

nd for all s ∈ S). See, for example, [1,16,43] and [46] for discussions on nonsingular (also
nown as quasi-invariant) group actions.

We say that a stationary SαS random field {Y (t)}t∈Zd is generated by a nonsingular Zd -action
φt } on (S, µ) if it has an integral representation of the form (2.5) satisfying the full support
ondition

⋃
t∈Zd Support( f ◦ φt ) = S, which will be assumed without loss of generality. As

entioned in Section 1, the Rosiński Representation (2.5) is very useful in determining various
robabilistic properties of Y. In this work, we shall use this representation to estimate the
aximal moment (2.4) and uniform modulus of continuity of SαS random fields.
A measurable set W ⊆ S is called a wandering set for the nonsingular Zd -action {φt }t∈Zd

f {φt (W ) : t ∈ Zd
} is a pairwise disjoint collection. The set S can be decomposed into

wo disjoint and invariant parts as follows: S = C ∪ D, where D =
⋃

t∈Zd φt (W ∗) for
ome wandering set W ∗

⊆ S, and C has no wandering subset of positive µ-measure; see [1]
nd [16]. This decomposition is called the Hopf decomposition, and the sets C and D are called
onservative and dissipative parts (of {φt }t∈G), respectively. The action is called conservative
f S = C and dissipative if S = D.

Denote by ft (t ∈ Zd ) the functions on S in the representation (2.5):

ft (s) = ct (s)
(

dµ ◦ φt

dµ
(s)
)1/α

f ◦ φt (s), t ∈ Zd .

The Hopf decomposition of {φt }t∈Zd induces the following unique (in law) decomposition of
the random field Y

Y (t) d
=

∫
C

ft (s)M(ds) +

∫
D

ft (s)M(ds) := Y C(t) + YD(t), t ∈ Zd , (2.6)

here the two random fields YC and YD are independent and are generated by conservative and
issipative Zd -actions, respectively; see [28,29], and [34]. This decomposition reduces the study
f stationary SαS random fields to that of the ones generated by conservative and dissipative
ctions.

It was argued by [35] (see also [34]) that stationary SαS random fields generated by
onservative actions have longer memory than those generated by dissipative actions and
herefore, the following dichotomy were observed:

n−d/α max
∥t∥∞≤n

|Y (t)| ⇒

{
cY Zα, if Y is generated by a dissipative action,
0, if Y is generated by a conservative action (2.7)

s n → ∞. In the limit above, Zα is a standard Fréchet type extreme value random variable
ith distribution

P(Zα ≤ x) = e−x−α
, x > 0, (2.8)

nd cY is a positive constant depending on the random field Y. In fact, this limiting behavior
f the maximal process is closely tied with the limit of the deterministic sequence

{bn}n≥1 =

{(∫
max

0≤t≤(n−1)1
| ft (s)|αµ(ds)

)1/α
}

, (2.9)

S n≥1
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which has been proved by [34,35] to satisfy

n−d/αbn →

{
c̃Y if action is dissipative,
0 if action is conservative, (2.10)

here c̃Y is a positive constant.
For conservative actions, the actual rate of growth of the partial maxima sequence Mn

epends on further properties of the action as investigated in [34].
The work mentioned above hinges on some group theoretic preliminaries, as discussed

riefly below. Let

A =
{
φt : t ∈ Zd}

be a subgroup of the group of invertible nonsingular transformations on (S, µ) and define a
roup homomorphism, Φ : Zd

→ A by Φ(t) = φt for all t ∈ Zd . Let

K = Ker(Φ) =
{
t ∈ Zd

: φt = 1S
}
,

where 1S denotes the identity map on S. Then K is a free abelian group and by the first
isomorphism theorem of groups, we have

A ∼= Zd/K.

Now, by the structure theorem of finitely generated abelian groups (see, for example,
Theorem 8.5 in Chapter I of [18]), we get,

A = F̄ ⊕ N̄ ,

where F̄ is a free abelian group and N̄ is a finite group. Assume rank(F̄) = p ≥ 1 and
N̄ | = l. Since, F̄ is free abelian, there exists an injective group homomorphism,

Ψ : F̄ → Zd ,

uch that Φ ◦ Ψ = 1F̄ . Then F = Ψ (F̄) is a free subgroup of Zd of rank p. The subgroup
F can be regarded as an effective index set and its rank p is an upper bound on effective
dimension of the random field giving more precise information on the rate of growth of the
partial maximum than the actual dimension d . Depending on the nature of the action restricted
to F , the deterministic sequence bn controlling the rate of partial maxima shows the following
asymptotic behavior:

n−p/αbn →

{
c if action restricted to F is not conservative,
0 if action restricted to F is conservative, (2.11)

here c is a positive and finite constant.
We will call p the effective dimension of the field as long as the restricted action {φt }t∈F

s not conservative. Otherwise, p should be regarded as an upper bound on the effective
imension. By Corollary 4.4.6 of [38], the sequence bn is completely determined by the field
nd it does not depend on the choice of the integral representation. Therefore, thanks to (2.11),
he same comment applies to the effective dimension p. However, explicit computation of p
ill need the integral representation to be of the Rosiński form (2.5).
More specifically, Theorem 5.4 in [34] (which is summarized below) sharpens the descrip-

ion of the asymptotic behavior of the partial maxima of a random field when the action is

onservative by observing the behavior of the action when restricted to the free subgroup F of
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Zd , leading to the conclusion that max∥t∥∞≤n |Y (t)| = O(n p/α) when the effective F-action is
ot conservative, and is o(n p/α) in the conservative case. That is,

n−p/α max
∥t∥∞≤n

|Y (t)| ⇒

{
cY Zα if {φt }t∈F is not conservative,
0 if {φt }t∈F is conservative.

imilar rates of growth are computed for continuous-parameter random fields in [8] improving
pon the works of [36] and [33].

.3. Our contributions

This work provides the rates of growth of the βth moment of the partial maxima sequence
enoted as

Mn = max
0≤t≤(n−1)1

|Y (t)| (2.12)

henever 0 < β < α for a stationary SαS process Y = {Y (t)}t∈Zd when the underlying
roup action (or its restriction to the subgroup F) has a nontrivial dissipative component. This
artially solves an open problem mentioned in [45]. Theorem 3.1 in Section 3 shows that the
th moment of maxima of such discrete random fields are O(ndβ/α) for a nonconservative
ction and o(ndβ/α) for a conservative one. In the case of a conservative action we look at
roperties of the underlying action restricted to the free subgroup F with effective dimension

p and obtain a better estimate for the maximal moments; see Theorem 3.6. We also introduce
he concept of weak effective dimension generalizing the notion of effective dimension (see
ection 5 of [34] and also Section 2.2) and relate it to maximal moments (see Theorem 3.4) of
table random fields. We also provide easy extensions of our results to the continuous parameter
ase in the Appendix.

Finally, we use the rates of growth of the partial maxima sequence for stationary random
elds Y(v) to derive path properties of a real valued H -self-similar SαS random field X with
tationary increments. Our main result is Theorem 4.1 which establishes uniform modulus of
ontinuity for a large class of such random fields. As a consequence (see Corollary 4.3), we
rove that the paths of X are uniformly Hölder continuous of all orders < H −

p
α

when the
corresponding increment processes Y(v) are generated by actions with effective dimension p.
Corollary 4.4 connects path properties with weak effective dimension in a natural fashion. The
short memory case (i.e., when the effective dimension p = d), on the other hand, is considered
in Corollary 4.2. These results show that in presence of stronger dependence, the sample paths
of X become smoother because stronger dependence prevents erratic jumps.

3. Maximal moments of stationary SαS random fields

In this section, we give sharp upper and lower bounds on maximal moments of stationary
SαS random fields when the maximum is taken over hypercubes of increasing size. Our results
significantly improve the existing bounds given in Lemma 3.5 of [45] and hence the ones
in [42]. This is achieved through exploitation of underlying nonsingular actions, and their
ergodic theory and group theory. We also introduce the notion of weak effective dimension
of stationary SαS random fields in this section and apply it to estimate maximal moments.

The following is our main result on the asymptotic behavior of the maximal moments of
stationary SαS random fields indexed by Zd . The proof is deferred to Section 6 in order to
increase the readability of our paper.
98



S. Panigrahi, P. Roy and Y. Xiao Stochastic Processes and their Applications 136 (2021) 92–124

a

I
w

w
N
m
m
w
s
w
b

D
b
s

Theorem 3.1. Let Y = {Y (t)}t∈Zd be a stationary SαS random field with 0 < α < 2 and
having integral representation (2.5).

1. If Y is generated by a dissipative action then, for all β ∈ (0, α), there exists C ∈ (0,∞)
such that

n−dβ/αE
[
Mβ

n

]
→ C as n → ∞. (3.1)

2. If Y is generated by a conservative action, then for all β ∈ (0, α),

n−dβ/αE
[
Mβ

n

]
→ 0 as n → ∞. (3.2)

Remark 3.2. When Y is generated by a dissipative action, then by Theorem 3.3 of [34], Y
has a mixed moving average representation (see also [40] and [29]) given by

Y d
=

{∫
W×Zd

f (v, t + s)M(dv, ds)
}

t∈Zd
,

where the function f ∈ Lα(W × Zd , ν ⊗ l), l is the counting measure on Zd , ν is a σ -finite
measure on a standard Borel space W , and M has control measure ν⊗ l. The limiting constant
in (3.1) is

C = c̃βYCβ/α
α E

[
Zβα
]

= c̃βYCβ/α
α E

[
Zα/β

]
, (3.3)

where Zα is an α-Fréchet random variable defined in (2.8),

Cα =

⎧⎪⎨⎪⎩
1 − α

Γ (2 − α) cos(πα/2)
if α ̸= 1,

2
π

if α = 1,
(3.4)

nd c̃Y is the constant in (2.10) (see Proposition 4.1 of [34]) given by

c̃Y =

(∫
W

sup
s∈Zd

| f (v, s)|αν(dv)

)1/α

∈ (0,∞).

n order to compare the convergence of moments in (3.1) with the weak convergence in (2.7),
e would like to mention that cY = c̃Y C1/α

α .

Theorem 3.1 partially solves an open problem mentioned in [45] (see pages 173–174 therein)
hen the underlying group action (or its restriction to a lower rank subgroup) is dissipative.
ote that as long as the action is not conservative, the same asymptotics will hold for the
aximal moment sequence. In the next result, we present a solution to the problem in a
ore general situation. Before we describe the next theorem, we introduce the notion of
eak effective dimension of a stationary SαS random field. This notion should be considered

ignificantly better than the effective dimension (defined by [34]), which is always an integer
hereas weak effective dimension need not be an integer. As we will see in Corollary 4.4
elow, the following rougher estimate on bn suffices for our purpose.

efinition 3.3. We say that a stationary SαS random field has weak effective dimension
ounded by θ2 ∈ (0, d] if there exist constants c1 > 0, c2 > 0 and θ1 ∈ (0, θ2] such that the
equence bn defined by (2.9) satisfies

c nθ1 ≤ bα ≤ c nθ2 (3.5)
1 n 2
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for all sufficiently large n. If (3.5) is satisfied with θ2 = θ1, then we call θ2 the weak effective
imension of the random field. If further weak effective dimension θ2 = d, then we say that
he stationary SαS random field is full-dimensional.

Clearly, Proposition 4.1 in [34] ensures that any stationary SαS random field with a non-
rivial dissipative (equivalently, mixed moving average) part is full-dimensional. The rationale
ehind this nomenclature (and also behind restricting the value of θ2 in the interval (0, d]) can
e explained by the following calculation:

bn =

(∫
S

max
0≤t≤(n−1)1

| ft (x)|αµ(dx)
)1/α

=

(∫
S

max
0≤t≤(n−1)1

[
| f ◦ φt (x)|α

dµ ◦ φt

dµ
(x)
]
µ(dx)

)1/α

.

ounding the maximum by the sum and using Fubini’s Theorem, we get

bαn ≤

∑
0≤t≤(n−1)1

∫
S

[
| f ◦ φt (x)|α

dµ ◦ φt

dµ
(x)
]
µ(dx)

=

∑
0≤t≤(n−1)1

∫
S
| f ◦ φt (x)|αdµ ◦ φt (x)

=

∑
0≤t≤(n−1)1

∫
S
| f (x)|αdµ(x) = nd

∥ f ∥
α
α.

If a stable random field has effective dimension (as described in Section 2) p, then thanks
to Proposition 5.1 in [34], we can take θ1 = θ2 = p in Definition 3.3 making this notion
coincide with its weaker version introduced in Definition 3.3. The connection of weak effective
dimension to asymptotics of maximal moments is given in the following result, which is also
applicable to Y generated by conservative actions although the computation of θ2 has to be
carried out on a case-by-case basis.

Theorem 3.4. Consider a stationary SαS random field with 0 < α < 2, Y = {Y (t)}t∈Zd with
ntegral representation as (2.5). If the field has weak effective dimension bounded by θ2, then
or all n ≥ 1,

n−θ2β/αE
[
Mβ

n

]
≤ K ′, (3.6)

here K ′ is a finite constant.

emark 3.5. By Theorem 2.1 of [20] (see also Equation (3.4) in [35]), as long as α ∈ (0, 1),

E(Mβ
n ) ≤ K2bβn

lways holds for some K2 ∈ (0,∞), for all β ∈ (0, α) and for all n ≥ 1. Therefore, the lower
ound in (3.5) is not required when 0 < α < 1.

Now we consider the case when the underlying group action is conservative and establish
efined results on maximal moments in terms of the effective dimension p of Y. This is the
lace where algebra (more specifically, structure theorem for finitely generated abelian groups)

plays a significant role in the asymptotic properties of maximal moments.
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Theorem 3.6. Let Y = {Y (t)}t∈Zd be a stationary SαS random field with 0 < α < 2, with
ntegral representation written in terms of functions { ft } as in (2.5).

1. If the underlying action {φt }t∈F is dissipative when restricted to free subgroup F with
rank p, then

n−pβ/αE
[
Mβ

n

]
→ C as n → ∞, (3.7)

where C = cβCβ/α
α E

[
Zβα
]

∈ (0,∞), with Zα denoting an α-Fréchet random variable
defined in (2.8), c = limn→∞ n−p/αbn , and Cα as defined in (3.4).

2. If the underlying action {φt }t∈F is conservative when restricted to free subgroup F with
rank p, then

n−pβ/αE
[
Mβ

n

]
→ 0 as n → ∞. (3.8)

emark 3.7. The asymptotic properties of maximal moments can easily be extended to
tationary measurable symmetric α-stable random fields indexed by Rd . This can be done based
n the works of [33,36] and [8]. Since the results (and the proofs) are similar to those presented
n this section, we have included them (only d = 1 case for simplicity of presentation) in the
heorem A.1 in Appendix.

. Uniform modulus of continuity

This section combines the maximal moment estimates in Section 3 with Proposition 2.1
o establish uniform modulus of continuity of self-similar SαS random fields with stationary
ncrements. We would like to mention once again that this is mainly carried out through the
ollowing theorem, which has three corollaries (see Corollaries 4.2, 4.3 and 4.4).

heorem 4.1. Let X =
{

X (t)
}

t∈Rd be a real-valued H-self-similar SαS random field with
tationary increments and with the following integral representation

X (t) d
=

∫
E

ft (s)M(ds), t ∈ Rd , (4.1)

here M is a SαS random measure on a measurable space (E, E) with a σ -finite control
easure m, while ft ∈ Lα(m, E) for all t ∈ Rd .
Let V = {v = (v1, . . . , vd ) : vi ∈ {−1, 0, 1}} \{(0, . . . , 0)} be the set of vertices of unit cubes

n [−1, 1]d , excluding the origin 0. Define for each v ∈ V , the random field Y(v)
= {Y (v)(t), t ∈

d
} by Y (v) (t) = X (t + v)− X (t), with the integral representation given by

Y (v)(t) =

∫
E

f (v)
t (x)M(dx),

here f (v)
t = fv+t − ft for all t ∈ Rd . If either

1. 0 < α < 1 and there exist constants 0 < θ2 < αH and K > 0 such that for all v ∈ V ,

b(v)
n :=

(∫
E

max
0≤t≤(n−1)1

| f (v)
t (x)|

α
m(dx)

)1/α

≤ K nθ2/α

for all sufficiently large n, or
2. 1 ≤ α < 2 and there exists θ2 ∈ (0, αH ) such that for all v ∈ V the increment field

{Y (v) t } has weak effective dimension bounded by θ ,
( ) 2
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then for any 0 < γ < α,

lim sup
h→0+

supt∈T sup|s−t |∞≤h |X (t) − X (s)|

h(H−θ2/α)(log 1/h)1/γ = 0 a.s., (4.2)

here T = [0, 1]d and |s − t |∞ = max1≤ j≤d |s j − t j | is the ℓ∞ metric on Rd .

roof. We first give the proof under condition (2) (i.e., when 1 ≤ α < 2). Recall that
Dn, n ≥ 0} as,

Dn =

{(
k1

2n
,

k2

2n
, . . . ,

kd

2n

)
: 0 ≤ k j ≤ 2n

− 1, 1 ≤ j ≤ d
}
.

bserve that for any 0 < γ < α,

E
(

max
τn∈Dn

max
τ ′

n−1∈On−1(τn )
|X (τn) − X (τ ′

n−1)|γ
)

≤

∑
v∈V

E
(

max
0≤k j ≤2n−1,∀ j=1,...,d

⏐⏐⏐⏐X(( k1

2n
, . . . ,

kd

2n

)
+
v

2n

)
− X

(
k1

2n
, . . . ,

kd

2n

)⏐⏐⏐⏐γ )
= 2−nγ H

∑
v∈V

E
(

max
0≤k j ≤2n−1,∀ j=1,...,d

⏐⏐Y (v) ((k1, . . . , kd )) |γ
)

= 2−nγ H
∑
v∈V

E
[(

M (v)
2n
)γ ]
,

(4.3)

here M (v) is the partial maxima sequence of the stationary SαS random field Y(v), and where
he first equality follows from the self-similarity of X.

Under the assumption of Theorem 4.1 we have that for some positive constants θ1, θ2, c1

nd c2,

c1nθ1/α ≤ b(v)
n ≤ c2nθ2/α.

t follows from Theorem 3.4 that the sequence E
[(

b(v)
n

−1 M (v)
n

)γ ] is bounded above by a constant
K ′ > 0. Hence

E
[(

M (v)
n

)γ ]
≤ K ′

(
b(v)

n

)γ
≤ K nθ2γ /α

or a finite constant K > 0. Noting that the cardinality of V is |V | = 3d
− 1, we have

E
(

max
τn∈Dn

max
τ ′

n−1∈On−1(τn )
|X (τn) − X (τ ′

n−1)|γ
)

≤ (3d
− 1)K 2−nγ (H−θ2/α).

t follows immediately from Proposition 2.1 that for any ϵ > 0 and γ ∈ (0, α),

lim sup
h→0+

supt∈T sup|s−t |∞≤h |X (t) − X (s)|

h(H−θ2/α)(log 1/h)(1+ϵ)/γ = 0 a.s.

ince ϵ > 0 and γ are arbitrary, (4.2) follows.
Under condition (1), the same proof will go through because when 0 < α < 1, the lower

ound on b(v)
n is not needed for establishing E

[(
M (v)

n

)γ ]
≤ K nθ2γ /α for some K > 0 (see

emark 3.5). This completes the proof of Theorem 4.1. □
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The above theorem has three important consequences (see below) that describe how the
niform modulus of continuity changes for self-similar stable random fields with stationary
ncrements as we pass from a dissipative action to a conservative one in the integral represen-
ation of the increment fields. The more the strength of conservativity of the action, the lower
he value of the (weak) effective dimension of the increment fields and the smoother the paths
f the original field due to longer memory will be.

orollary 4.2. Let X =
{

X (t)
}

t∈Rd be a real-valued H-self-similar SαS random field with
tationary increments and with the integral representation (4.1). If, for every vertex v ∈ V ,
he increment process Y(v) defined as in Theorem 4.1 is generated by a dissipative action and

>
d
H

, then for any 0 < γ < α,

lim sup
h→0+

supt∈T sup|s−t |∞≤h |X (t) − X (s)|

h(H−d/α)(log 1/h)1/γ = 0 a.s. (4.4)

roof. Considering the same chaining sequence as in the proof of Theorem 4.1 with the ℓ∞

etric, we may proceed similarly as in (4.3) to derive that for any 0 < γ < α,

E
(

max
τn∈Dn

max
τ ′

n−1∈On−1(τn )
|X (τn) − X (τ ′

n−1)|γ
)

≤ 2−nγ H
∑
v∈V

E
[(

M (v)
2n−1

)γ ]
,

here M (v) is the partial maxima sequence of the stationary SαS random field Y(v). From
heorem 3.1 in Section 3, when Y(v) is generated by a dissipative action, we have

lim
n→∞

E
[
(2n

− 1)−γ d/α(M (v)
2n−1

)γ ]
= c, (4.5)

here c > 0 is a finite constant. Hence, there exists a finite constant K such that

E

(
max
τn∈Dn

max
τ ′

n−1∈On−1(τn )
|X (τn) − X (τ ′

n−1)|γ
)

≤ K 2−nγ (H−d/α),

or all sufficiently large n. It is now clear that (4.4) follows from Proposition 2.1. □

orollary 4.3. Let X =
{

X (t)
}

t∈Rd be a real-valued H-self-similar random field with
tationary increments as in Theorem 4.1. If, for every vertex v ∈ V , the increment process
(v) has effective dimension p ≤ d and α >

p
H

, then for any 0 < γ < α,

lim sup
h→0+

supt∈T sup|s−t |∞≤h |X (t) − X (s)|

h(H−p/α)(log 1/h)1/γ = 0 a.s.

roof. The proof follows similarly along the lines of Corollary 4.2 by using the bound on
oments in terms of the effective dimension in Theorem 3.6. □

orollary 4.4. Let X =
{

X (t)
}

t∈Rd be a real-valued H-self-similar random field with
tationary increments as in Theorem 4.1. If for every vertex v ∈ V , the increment field Y(v)

as weak effective dimension bounded by θ2 ∈ (0, αH ), then for any 0 < γ < α,

lim sup
h→0+

supt∈T sup|s−t |∞≤h |X (t) − X (s)|

h(H−θ2/α)(log 1/h)1/γ = 0 a.s. (4.6)
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Proof. The proof follows immediately by using the same arguments as the second part of
heorem 4.1. □

emark 4.5. (i) If the (weak) effective dimension of the increment fields in Corollaries 4.3
nd 4.4 is strictly less than d (i.e., when we are not in the full-dimensional case), our uniform

modulus of continuity results improves the leading (polynomial) term of the existing ones (see,
for example, [45] and the references therein). On the other hand, in the full-dimensional case
(i.e., in Corollary 4.2), we better the logarithmic term in the modulus of continuity.

(ii) From the proof of Corollary 4.4, it transpires that even when the weak effective
dimension of Y(v) is bounded by θ2(v) (that may depend on v ∈ V ), (4.6) holds with θ2 replaced
by maxv∈V θ2(v) as long as this maximum is strictly less than αH . A similar comment applies
to Corollary 4.3.

5. Examples

The theorems in Section 4 can be applied to various classes of self-similar random fields
with stationary increments. In the following, we give three examples of them: linear fractional
stable motion, linear fractional stable field indexed R2, and harmonizable fractional stable fields
indexed by Rd for any d ≥ 1. For further examples of self-similar processes with stationary
increments, see [25,26,38].

5.1. Linear fractional stable motion

For any given constants 0 < α < 2 and H ∈ (0, 1), we define a SαS process Z H
=

{Z H (t)}t∈R+
with values in R by

Z H (t) = κ

∫
R

{
(t − s)H−1/α

+ − (−s)H−1/α
+

}
Mα(ds), (5.1)

here κ > 0 is a normalizing constant, t+ = max{t, 0} and Mα is a SαS random measure with
ebesgue control measure.

Using (5.1) one can verify that the stable process Z H is H -self-similar and has stationary
ncrements. It is a stable analogue of fractional Brownian motion, and is called a linear
ractional stable motion (LFSM). Many sample path properties of Z H are different from those
f fractional Brownian motion. For example, [19] showed that, if Hα < 1, then Z H has a.s.
nbounded sample functions on all intervals. [41] showed that, if Hα > 1, then the index of
niform Hölder continuity of Z H is H −

1
α

.
In order to apply the results in Section 5, we consider for every v ∈ {−1, 1} the increment

rocess

Y (v)(t) =

∫
R

{
(t + v − s)H−1/α

+ − (t − s)H−1/α
+

}
Mα(ds). (5.2)

hen for any n ≥ 1,

b(v)
n =

(∫
R

max
0≤k≤n−1

⏐⏐⏐(k + v − s)H−1/α
+ − (k − s)H−1/α

+

⏐⏐⏐α ds
) 1/α

.

or simplicity, we only consider the case of v = 1 and write b(v)
n as bn . The case of v = −1

an be treated the same way. For integers k ∈ {0, 1, . . . , n − 1}, let g (s) = (k + 1 − s)H−1/α

k +
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− (k − s)H−1/α
+ . It is easy to see that for each fixed s ≤ k, the sequence gk(s) is non-negative

nd non-increasing in k. We write bαn as

bαn =

∫ 0

−∞

max
0≤k≤n−1

gk(s)αds +

n−1∑
ℓ=0

∫ ℓ+1

ℓ

max
0≤k≤n−1

gk(s)αds

=

∫ 0

−∞

g0(s)αds +

n−1∑
ℓ=0

∫ ℓ+1

ℓ

max
{

gℓ(s), gℓ+1(s)
}α

ds,

(5.3)

here gn ≡ 0. Now it is elementary to verify that each of the (n + 1) integrals on the right
and side of (5.3) is a positive and finite constant depending only on α and H . Except the
rst and the last integral, all the other integrals are equal. Consequently, there is a positive and
nite constant K such that

lim
n→∞

n−1/αbn = K .

ence, for v ∈ {1,−1}, the weak effective dimension of the stationary SαS process
Y (v)(n)

}
n∈Z is 1. It can be verified that∑

k∈Z

⏐⏐gk(s)
⏐⏐α < ∞ for a.e. s ∈ R.

t follows from Corollary 4.2 of Rosiński (1995) that
{
Y (v)(n)

}
n∈Z is generated by a dissipative

ow. Moreover, Condition (2) of Theorem 4.1 is satisfied with θ1 = θ2 = 1. It follows from
4.6) that if α ∈ (1, 2) and H > 1/α, then for any 0 < γ < α,

lim sup
h→0+

supt∈[0,1] sup|s−t |≤h |Z H (t) − Z H (s)|
h(H−1/α)(log 1/h)1/γ = 0 a.s. (5.4)

This result improves Theorem 2 in [15] for linear fractional stable motion Z H with H >

/α. In this case, [41] established a stronger result on uniform modulus of continuity by using
ore delicate analysis.

.2. A linear fractional stable field indexed by R2

In this subsection, we give a new example of a linear fractional stable field for which our
esults perform better than the existing ones. This happens because the increment fields have
ffective dimension 1. We would like to mention that this example can easily be extended
o an Rd -indexed field but for simplicity of presentation, we only consider the d = 2 case.
hroughout this subsection v and t will denote the vectors (v1, v2) ∈ R2 and (t1, t2) ∈ R2,

espectively.
For 0 < α < 2 and H ∈ (0, 1), we define an SαS random field {W H (t1, t2)}t1,t2∈R+

by

W H (t1, t2) =

∫
R

{
(t1 − t2 − s)H−1/α

+ − (−s)H−1/α
+

}
Mα(ds),

here Mα is a SαS random measure with Lebesgue control measure. It is easy to check that
his random field is H -self-similar with stationary increments. For each direction v = (v1, v2),
he stationary SαS field

(v1,v2) H H 2
Y (t1, t2) := W (t1 + v1, t2 + v2) − W (t1, t2), (t1, t2) ∈ R
+
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has integral representation (2.5) with c(t1,t2) ≡ 1,

f (s) = (v1 − v2 − s)H−1/α
+ − (−s)H−1/α

+ , s ∈ R,

and

φ(t1,t2)(s) = s + t2 − t1, s ∈ R.

Applying an argument used in Example 3.5 of [8], it follows that each increment field
Y (v1,v2)(t1, t2)} has effective dimension 1. Therefore, Corollary 4.3 of our paper yields that
or α ∈ (1, 2), H ∈ (1/α, 1) and for all γ ∈ (0, α),

lim sup
h→0+

supt∈[0,1]2 sup|s−t |∞≤h |W H (t) − W H (s)|

h(H−1/α)(log 1/h)1/γ = 0 a.s. (5.5)

ote that (5.5) cannot be obtained using the existing results (e.g., Corollary 3.7 of [45]) on
niform modulus of continuity for self-similar stable random fields with stationary increments.

.3. Harmonizable fractional stable fields

For any given α ∈ (0, 2) and H ∈ (0, 1), let Z̃ H
= {Z̃ H (t)}t∈Rd be the real-valued harmo-

izable fractional SαS field (HFαSF or HFSF, for brevity) with Hurst index H , defined by:

Z̃ H (t) := κ̃ Re
∫
Rd

ei⟨t,x⟩
− 1

|x |
H+d/α M̃α(dx), (5.6)

here Re denotes the real-part, ⟨t, x⟩ the usual inner product of t and x , M̃α a complex-valued
otationally invariant α-stable random measure with Lebesgue control measure, and κ̃ is the
ositive normalizing constant given by

κ̃ = 2−1/2
(∫

Rd

(
1 − cos⟨ξ, x⟩

)α/2
|x |

αH+d dx
)−1/α

, (5.7)

where ξ is an arbitrary element of the unit sphere Sd−1. When d = 1, Z̃ H is called a
harmonizable fractional stable motion (cf. e.g., [38]).

For every v ∈ {−1, 0, 1}
d
\{0} consider the increment process

Ỹ (v)(t) = κ̃ Re
∫
Rd

ei⟨t+v,x⟩
− ei⟨t,x⟩

|x |
H+d/α M̃α(dx). (5.8)

hen for any integer n ≥ 1,

b(v)
n = κ̃

(∫
Rd

max
0≤k≤(n−1)1

⏐⏐⏐ei⟨k+v,x⟩
− ei⟨k,x⟩

⏐⏐⏐α dx
|x |

αH+d

)1/α

= κ̃

(∫
Rd

⏐⏐ei⟨v,x⟩
− 1

⏐⏐α dx
|x |

αH+d

)1/α

,

hich is independent of n. This implies that the weak effective dimension of the stationary SαS
rocess

{
Ỹ (v)(t)

}
t∈Zd is 0. Applying Corollary 3.2 of [34], one can verify that

{
Ỹ (v)(t)

}
t∈Zd is

enerated by a conservative flow.
We remark that the results in Section 3 are not applicable for determining the precise

agnitude of the maximal moments E
[
max0≤k≤(n−1)1 |Ỹ (v)(k)|γ

]
for γ ∈ (0, α). Some partial

esults are known. It follows from Theorem 2.1 of [20] that if 0 < α < 1 then for any
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0 < γ < α, one has K ≤ E
[
max0≤k≤n−1 |Y (v)(k)|γ

]
≤ K ′, where K and K ′ are positive

nd finite constants. When 1 ≤ α ≤ 2, by appealing to the fact that Ỹ (v)(t) is conditionally
aussian, see [6,7], or [15], we can modify the proof of Proposition 4.3 in [45] to derive the

ollowing upper and lower bounds

K ≤ E
[

max
0≤k≤(n−1)1

|Ỹ (v)(k)|
γ
]

≤ K ′
(
log n

)γ /2 (5.9)

or some positive and finite constants K and K ′. We omit a detailed verification of (5.9) here
ecause it is lengthy and does not produce the optimal bounds. In the case of α = 2, it can be
roved by applying the Sudakov minoration (see Lemma 2.1.2 in [42]) that the upper bound
n (5.9) is optimal. For 1 < α < 2, a lower bound for E

[
max0≤k≤(n−1)1 |Ỹ (v)(k)|

]
in terms of

og n and q = α/(α − 1) can be derived from Theorem 2.2 of [20].
It follows from (5.9), (4.3) and Proposition 2.1 with σ (h) = hH

⏐⏐ log 1/h
⏐⏐1/2 that for any

> 0,

lim sup
h→0+

supt∈[0,1]d sup|s−t |≤h |Z̃ H (t) − Z̃ H (s)|

hH (log 1/h)
1
2 +

1
α+ϵ

= 0 a.s. (5.10)

his improves Theorem 4.5 in [45] and extends Theorem 1 in [15] to the random field setting.
owever, it is an open problem to determine the exact uniform modulus of continuity for
FSM Z̃ H .
We remark that, even though LFSM Z H and HFSM Z̃ H are H -self-similar with stationary

ncrements, their properties are very different. By the exact modulus of continuity in [41] and
5.10), it is clear that the laws of Z H and Z̃ H are singular with respect to each other.

.4. The Mittag-Leffler fractional SαS motions

We provide another application of Theorem 4.1 to the Mittag-Leffler fractional SαS motions
ntroduced by [24] (see also [9,10] for related results). These processes form an important
lass of self-similar stable processes with stationary increments whose regularity properties are
ifferent from linear fractional stable motions and harmonizable fractional stable motions.

For a constant β ∈ (0, 1), let Sβ = {Sβ(t)}t≥0 be a β-stable subordinator defined on a
robability space (Ω ′,F ′,P′). Define its inverse process Mβ = {Mβ(x)}x≥0 by

Mβ(x) = inf{t ≥ 0 : Sβ(t) ≥ x}, x ≥ 0. (5.11)

or each fixed x ≥ 0, Mβ(x) is a stopping time and its distribution is the Mittag-Leffler
istribution with the Laplace transform

E′

(
eθMβ (x)

)
=

∞∑
n=0

(θ tβ)n

Γ (1 + nβ)
, θ ∈ R.

t is known from [22] that the process Mβ is β-self-similar and has a continuous and
ondecreasing version. In the terminology of [24], Mβ is called the Mittag-Leffler process.

The β-Mittag-Leffler (or β-ML) fractional SαS motion Yα,β = {Yα,β(t)}t≥0 is defined by

Yα,β(t) =

∫
Ω ′×[0,∞)

Mβ

(
(t − x)+, ω′

)
d Zα,β

(
ω′, x

)
, t ≥ 0, (5.12)

here Zα,β is a SαS random measure on Ω ′
× [0,∞) with control measure P′

× ν, with ν a
−β
easure on [0,∞) given by ν(dx) = (1 − β)x dx, x > 0.
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[24] proved that the β-ML fractional stable motion Yα,β is H -self-similar with stationary
ncrements, where

H = β +
1 − β

α
, (5.13)

nd is the scaling limit of partial sums of certain symmetric stationary infinitely divisible
rocesses with regularly varying Lévy measures. Among many interesting results, they also
stablished the following results on uniform modulus of continuity for Yα,β in their Theorem
.3: If 0 < α < 1, then

sup
0≤s<t≤1/2

|Yα,β(t)Yα,β(s)|
(t − s)β | log(t − s)1−β

< ∞, a.s. (5.14)

and if α < 2, then

sup
0≤s<t≤1/2

|Yα,β(t)Yα,β(s)|

(t − s)β | log(t − s)
3
2 −β

< ∞, a.s. (5.15)

Since β < H , (5.14) and (5.15) show that the sample path of Yα,β is rougher than that of HFSM
Z̃ H . This indicates that, even though both Yα,β and Z̃ H are conservative, the dependence (or

emory) in Z̃ H is stronger than in Yα,β .
The method for proving (5.14) and (5.15) in [24] is based on a random series representation

or Yα,β and a uniform modulus of continuity for the Mittag-Leffler process Mβ . We provide
n alternative approach for studying the uniform modulus of continuity of Yα,β .

For every v ∈ {−1, 1}, we consider the increment process

Y (v)
α,β(t) =

∫
Ω ′×[0,∞)

[
Mβ

(
(t + v − x)+, ω′

)
− Mβ

(
(t − x)+, ω′

)]
d Zα,β(ω′, x). (5.16)

y Theorem 3.5 of [24], the stationary sequence {Y (v)(n)}n≥0 is generated by a conservative
ull flow and is mixing.

For simplicity, we only consider v = 1 and write the corresponding b(v)
n as bn . Then for any

nteger n ≥ 1,

bαn =

∫
Ω ′×[0,∞)

max
0≤k≤n−1

[
Mβ

(
(k + 1 − x)+, ω′

)
− Mβ

(
(k − x)+, ω′

)]α
P′(dω′)ν(dx)

= (1 − β)
∫

∞

0
E′

(
max

0≤k≤n−1

[
Mβ

(
(k + 1 − x)+

)
− Mβ

(
(k − x)+

)]α)dx
xβ

= (1 − β)
n−1∑
ℓ=0

∫ ℓ+1

ℓ

E′

(
max

ℓ≤k≤n−1

[
Mβ

(
k + 1 − x

)
− Mβ

(
(k − x)+

)]α) dx
xβ
.

(5.17)

In the following, we obtain a lower bound of bn and a slightly worse upper bound. To this
nd, we will make use of the following facts, where (i) follows from Lemma 1 of [12] and (ii)
s from p. 246 in [24] or Exercise 5.6 in [17].

(i). There exist positive constants c3 < c4, depending on β such that the small tail probability
of Sβ(1) satisfies

exp
(
−c4θ

−β/(1−β)
)

≤ P′
(
Sβ(1) ≤ θ

)
≤ exp

(
−c3θ

−β/(1−β)
)
, θ ∈ (0, 1). (5.18)
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(ii). For a constant r > 0, let δr = Sβ(Mβ(r )) − r be the overshoot of the level r by the
β-stable subordinator {Sβ(t)}t≥0. The law of δr is given by

P′(δr ∈ dη) =
sinβπ
π

rβ(r + η)−1η−β dη, η > 0. (5.19)

(iii). By the strong Markov property of Sβ , we have that for any r > 0 the process{
Sβ
(
Mβ(r )+u

)
− Sβ

(
Mβ(r )

)}
u≥0 is independent of the σ -algebra FMβ (r ) (i.e., the history

up to the stopping time Mβ(r )) and has the same law as {Sβ(u)}u≥0. In particular,{
Sβ
(
Mβ(r ) + u

)
− Sβ

(
Mβ(r )

)}
u≥0 is independent of δr .

To get a lower bound for bn , we fix ℓ ∈ {0, 1, . . . , n − 1} and x ∈ [ℓ, ℓ+ 1] first and write
he expectation in the last line of (5.17) as

E′

(
max

ℓ≤k≤n−1

[
Mβ

(
k + 1 − x

)
− Mβ

(
(k − x)+

)]α)
= α

∫
∞

0
uα−1P′

(
max

ℓ≤k≤n−1

[
Mβ

(
k + 1 − x

)
− Mβ

(
(k − x)+

)]
> u

)
du

≥ α

∫
∞

0
uα−1P′

(
Mβ

(
ℓ+ 3 − x

)
− Mβ

(
ℓ+ 2 − x

)
> u

)
du.

(5.20)

By the definition of Mβ , the aforementioned facts (ii) and (iii), we have

P′

(
Mβ

(
ℓ+ 3 − x

)
− Mβ

(
ℓ+ 2 − x

)
> u

)
= P′

(
Sβ
(
Mβ(ℓ+ 2 − x) + u

)
− Sβ

(
Mβ(ℓ+ 2 − x)

)
≤ 1 − δℓ+2−x

)
=

sinπβ
β

∫ 1

0

(ℓ+ 2 − x)β

(ℓ+ 2 − x + η) ηβ
P′
(
Sβ(u) < 1 − η

)
dη

=
sinπβ
β

∫ 1

0

(ℓ+ 2 − x)β

(ℓ+ 2 − x + η) ηβ
P′
(
Mβ(1 − η) > u

)
dη.

(5.21)

Plugging (5.21) into (5.20), we derive

E′

(
max

ℓ≤k≤n−1

[
Mβ

(
(k + 1 − x)+

)
− Mβ

(
(k − x)+

)]α)
≥
α sinπβ
β

∫
∞

0

∫ 1

0
uα−1 (ℓ+ 2 − x)β

(ℓ+ 2 − x + η)ηβ
P′
(
Mβ(1 − η) > u

)
dη du

≥
sinπβ
β

∫ 1

0

1
(ℓ+ 2 − x + η) ηβ

E′
(
Mβ(1 − η)α

)
dη

=
sinπβ
β

E′
(
Mβ(1)α

) ∫ 1

0

(1 − η)αβ

(ℓ+ 2 − x + η) ηβ
dη

≥ K > 0,

(5.22)

here K > 0 is a constant. In the above we have used the fact that 1 ≤ ℓ + 2 − x ≤ 2 and
′
(
Mβ(1 − η)α

)
= (1 − η)αβE′

(
Mβ(1)α

)
.

It follows from (5.17) and (5.22) that

bαn ≥ K
n−1∑
ℓ=0

∫ ℓ+1

ℓ

dx
xβ

= K ′n1−β . (5.23)

his gives a lower bound for b .
n
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In order to derive an upper bound for bn , we consider the increasing function

Φ(x) = exp
(c3

2
xγ
)

− 1,

where c3 is the constant in (5.18) and γ =
1

α(1−β) . Then Φ(x) is strictly increasing, Φ(0) = 0,
nd convex over the interval (a,∞) for some constant a ≥ 0 (a = 0 if γ ≥ 1 and Φ is
n Orlicz function). The inverse function of Φ is given by Φ−1(y) =

(
ln(1 + y)

)1/γ . It is a
ecreasing function and is concave on (Φ(a), ∞).

To consider the maximum moment in the last line of (5.17), we denote ξk = Mβ

(
k + 1 −

x
)
− Mβ

(
(k − x)+

)
for k ≥ ℓ. Then similar to (5.21), we apply the aforementioned facts (ii)

nd (iii) to obtain that for any k ≥ ℓ+ 1 and u > 1,

P′
(
ξk > u

)
= P′

(
Sβ
(
Mβ(k − x + u)

)
− Sβ

(
Mβ(k − x)

)
≤ 1 − δk−x

)
=

sinπβ
β

∫ 1

0

(k − x)β

(k − x + η) ηβ
P′
(
Sβ(u) < 1 − η

)
dη

≤
sinπβ
β

∫ 1

0

(k − x)β

(k − x + η) ηβ
P′
(
Sβ(1) < (1 − η)/u1/β) dη

≤
sinπβ
β

∫ 1

0

(k − x)β

(k − x + η) ηβ
exp

(
−c3

( u
(1 − η)β

)1/(1−β)
)

dη

≤ K (k − ℓ)−1+β exp
(
−c3u1/(1−β)

)
.

(5.24)

or the case of k = ℓ, we have ξℓ = Mβ

(
ℓ+ 1 − x

)
, hence

P′
(
ξℓ > u

)
= P′

(
Sβ(u) ≤ ℓ+ 1 − x

)
≤ exp

(
−c3u1/(1−β)

)
.

Let a′ > a be a constant. Then Φ(ξαk +a′) > Φ(a). It follows from (5.24) that for k ≥ ℓ+1,

E′

(
Φ(ξαk + a′)

)
=

∫
∞

0
Φ ′(u)P′

(
ξαk + a′ > u

)
du

≤ K (k − ℓ)−1+β

(
1 +

∫
∞

a′+1
Φ ′(u) exp

(
−c3(u − a′)1/(1−β)

)
du
)

≤ K ′(k − ℓ)−1+β,

(5.25)

here K , K ′ are finite constants. For k = ℓ, the expectation is finite. Hence, by Jensen’s
nequality and (5.25), the maximum moment in the last line of (5.17) can be bounded by

E′

(
max

ℓ≤k≤n−1
ξαk

)
≤ Φ−1

(
E′

(
Φ
(

max
ℓ≤k≤n−1

ξαk + a′

)))
≤ Φ−1

(n−1∑
k=ℓ

E′

(
Φ(ξαk + a′)

))

≤ Φ−1
(

K ′

(
1 +

n−1∑
k=ℓ+1

(k − ℓ)−1+β
))

( )1/γ

(5.26)
≤ K ln(1 + n) .
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Combining (5.17) and (5.26) yields

bαn ≤ K
n−1∑
ℓ=0

1
ℓβ

(
ln n

)1/γ
≤ K n1−β

(
ln(1 + n)

)1/γ
. (5.27)

Therefore we have proven that for all n ≥ 1

K ′ n1−β
≤ bαn ≤ K n1−β

(
ln(1 + n)

)1/γ
, (5.28)

where γ =
1

α(1−β) . We remark that the upper bound (5.28) may not be sharp, but we are not
ble to improve.

Following the proof of Theorem 3.4 (see Section 6.2), we get that (5.28) yields for all
∈ (0, α),

E(Mζ
v,n) ≤ K1bζn ≤ K2n(1−β)ζ/α(ln(1 + n)

)ζ/αγ
, (5.29)

here Mv,n is the partial maxima sequence (2.12) for {Y (v)
α,β(n)}n≥0. (When 0 < α < 1, (5.29)

ollows directly from Remark 3.5.) Then it follows from the proof of Theorem 4.1 that for any
> 0,

lim sup
h→0+

sups,t∈[0,1],s−t |≤h |Yα,β(t) − Yα,β(s)|

hβ(log 1/h)γ+
1
α+ε

= 0 a.s., (5.30)

where γ =
1

α(1−β) .
To compare (5.30) with the results (5.14) and (5.15) of [24], we notice that the power of the

ogarithmic factor in (5.30) is 2−β

α(1−β) +ε which is bigger than 1−β if 0 < α < 1. Thus, for the
ase 0 < α < 1, (5.14) is stronger than (5.30). When 1 ≤ α < 2, we have 2−β

α(1−β) <
3
2 − β if

> 0 is small and α is close to 2. In such a case, (5.30) is stronger than (5.14). However, as in
he case of the harmonizable fractional stable motion Z̃ H , it is an open problem to determine
he exact uniform modulus of continuity of Yα,β .

. Proofs of theorems in Section 3

In this section, we prove Theorems 3.1, 3.4 and 3.6. The key idea is to encash the series
epresentation given in [35] (and follow the proof of Theorem 4.1 therein) to obtain sharp tail
ounds for the lower powers of maxima of stationary SαS random fields and then invoke the
ominated convergence theorem.

.1. Proof of Theorem 3.1

In the following, {Γ j } j≥1 denotes the arrival times of a unit rate Poisson process on (0,∞),
ξ j } j≥1 is a sequence of i.i.d. Rademacher random variables, and for each fixed n ∈ N,
U (n)

j

}
j≥1 is a sequence of i.i.d. S-valued random variables with common law ηn whose density

s given by

dηn

dµ
= b−α

n max
0≤t≤(n−1)1

| ft (s)|α, s ∈ S.
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All three of the above sequences are independent. For each fixed n ∈ N, we will make use of
he following series representation for the random vector

(
Yk, 0 ≤ k ≤ (n − 1)1

)
:

Yk
d
= bnC1/α

α

∞∑
j=1

ξ jΓ
−1/α
j

fk(U (n)
j )

maxm∈[0,(n−1)1] | fm(U (n)
j )|

, 0 ≤ k ≤ (n − 1)1. (6.1)

See Section 3.10 in [38].
We first consider the case (1) when Y is generated by a dissipative action. It follows from

(2.10) that the deterministic sequence {bn}n≥1 satisfies

lim
n→∞

n−d/αbn = c̃Y, (6.2)

where c̃Y > 0 is a constant. This implies that bn satisfies condition (4.6) in [35], namely

(LB) : bn ≥ cnθ for some constant c > 0

with θ = d/α. Additionally, condition (4.8) in [35] also holds, i.e., for all ϵ > 0,

(LL) : P

[
for some k ∈ [0, (n − 1)1],

fk(U (n)
j )

maxm∈[0,(n−1)1] | fm(U (n)
j )|

> ϵ, j = 1, 2

]
→ 0

s n → ∞; see Remark 4.2 in [35] (or Remark 4.4 in [34]). Further, (6.2) implies that for any
p > α, there is a finite constant A such that

(UB) : ndb−p
n < ndb−α

n ≤ A.

ote that (LB) is a lower bound on bn that is essential in carrying out our arguments and
UB) yields (LB) when the underlying group action is dissipative. The condition (LL) ensures
hat only the first term of the series representation (6.1) contributes to the asymptotics of the

aximal moments.
Let K = d , ϵ and δ be chosen such that

0 < ϵ <
δ

K
.

hen we obtain from (4.21) in [35] the following upper bound on the tail distribution of b−1
n Mn

nder (LB) and (LL):

P
(
b−1

n Mn > λ
)

≤ P
(
C1/α
α Γ

−1/α
1 > λ(1 − δ)

)
+ φn(ϵ, λ) + ψn(ϵ, δ, λ), (6.3)

here

φn(ϵ, λ) = P
(

∃ k ∈ [0, (n − 1)1],
Γ

−1/α
j | fk(U (n)

j )|

maxm∈[0,(n−1)1] | fm(U (n)
j )|

>
ϵλ

C1/α
α

for at least 2 different j ′s
)

and

ψn(ϵ, δ, λ) = P
(

max
k∈[0,(n−1)1]

⏐⏐⏐⏐ ∞∑
j=1

ξ jΓ
−1/α
j | fk(U (n)

j )|

maxm∈[0,(n−1)1] | fm(U (n)
j )|

⏐⏐⏐⏐ > λ

C1/α
α ∥ f ∥α

,

Γ
−1/α
1 ≤

bnλ(1 − δ)

C1/α
α ∥ f ∥α

and Γ
−1/α
2 ≤

bnλϵ

C1/α
α ∥ f ∥α

)
.
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Note that

φn(ϵ, λ) ≤ ndP
(
Γ

−1/α
j >

bnϵλ

C1/α
α ∥ f ∥α

for at least 2 different j ′s
)
. (6.4)

In deriving the last inequality, we have applied the fact that for every k ∈ [0, (n − 1)1], the
oints

bnξ jΓ
−1/α
j

fk(U (n)
j )

max0≤s≤(n−1)1 | fs(U (n)
j )|

, j = 1, 2, . . .

ave the same joint distribution as the points

ξ j∥ f ∥αΓ
−1/α
j , j = 1, 2, . . .

which represent a symmetric Poisson random measure on R with mean measure

Λ((x,∞)) = x−α
∥ f ∥

α
α/2, for x > 0. (6.5)

n the above, the function f is given in (2.5) and ∥ f ∥α =
(∫

S | f (s)|αµ(ds)
)1/α . Similarly, we

ave

ψn(ϵ, δ, λ) ≤ ndP
(⏐⏐⏐ ∞∑

j=1

ξ jΓ
−1/α
j

⏐⏐⏐ > bnλ

C1/α
α ∥ f ∥α

, Γ
−1/α
1 ≤

bnλ(1 − δ)

C1/α
α ∥ f ∥α

,

and Γ
−1/α
2 ≤

bnλϵ

C1/α
α ∥ f ∥α

)
.

(6.6)

For any 0 < β < α, by using the tail bound in (6.3) we have

E
[
b−β

n Mβ
n

]
=

∫
∞

0
P
(
b−1

n Mn > τ 1/β)dτ
≤

∫
∞

0
P
(
C1/α
α Γ

−1/α
1 > τ 1/β(1 − δ)

)
dτ

+

∫
∞

0
φn(ϵ, τ 1/β)dτ +

∫
∞

0
ψn(ϵ, δ, τ 1/β)dτ

:= T1(δ) + T (n)
2 (ϵ) + T (n)

3 (ϵ, δ).

(6.7)

t is shown in [35] that for every τ > 0,

φn(ϵ, τ 1/β), and ψn(ϵ, δ, τ 1/β) converge to 0,

s n → ∞ for choices of ϵ adequately smaller in comparison to δ.
Next we present non-trivial integrable bounds on (1,∞) for integrands φn(ϵ, τ 1/β) and

ψn(ϵ, δ, τ 1/β) in T (n)
2 (ϵ) and T (n)

3 (ϵ, δ) in (6.7) respectively, and use the trivial bound of 1
on (0, 1). Finally, we apply the dominated convergence theorem to show that the terms
T (n)

2 (ϵ) and T (n)
3 (ϵ, δ) converge to 0 as n → ∞.

We begin by providing an integrable upper bound for φn(ϵ, τ 1/β) on (1,∞). It follows from
6.4) that

φn(ϵ, τ 1/β) ≤ ndP
( ∞∑

j=1

1
ξ j ∥ f ∥αΓ

−1/α
j

{ (
−∞, −C−1/α

α bnϵτ
1/β)

∪
(
C−1/α
α bnϵτ

1/β, ∞
) }

≥ 2
)

d

(6.8)
= n P(Poi(Λ(Bn)) ≥ 2),
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(

where

Bn =
(
−∞,−C−1/α

α bnϵτ
1/β)

∪
(
C−1/α
α bnϵτ

1/β,∞
)

and we have used the fact that
∞∑
j=1

1
ξ j ∥ f ∥αΓ

−1/α
j

{Bn} ∼ Poi(Λ(Bn)).

hus, the Markov inequality and definition (6.5) of the mean measure Λ imply

φn(ϵ, τ 1/β) ≤ nd E(Poi(Λ(Bn)))
2

= ndΛ(Bn)/2

= ndb−α
n

Cαϵ
−α

τ α/β

∥ f ∥
α
α

2
≤ A

C−1
α ϵ−α

∥ f ∥
α
α

2τ α/β
. (6.9)

The last inequality in (6.9) follows using (UB) and yields an integrable upper bound in τ on
(1,∞). We apply the dominated convergence theorem to T (n)

2 (ϵ) as

T (n)
2 (ϵ) =

∫ 1

0
φn(ϵ, τ 1/β)dτ +

∫
∞

1
φn(ϵ, τ 1/β)dτ

y using the trivial bound of 1 on (0, 1) and the bound derived in (6.9) on (1,∞) to conclude

T (n)
2 (ϵ) → 0 as n → ∞.

We next derive an upper bound for ψn(ϵ, δ, τ 1/β). It follows from (6.6) that ψn(ϵ, δ, τ 1/β) is
ounded from above by

ndP
( ⏐⏐⏐C1/α

α

∞∑
j=1

ξ jΓ
−1/α
j

⏐⏐⏐ > bnτ
1/β

∥ f ∥α
, C1/α

α Γ
−1/α
1 ≤

bnτ
1/β(1 − δ)
∥ f ∥α

,

and C1/α
α Γ

−1/α
j ≤

bnτ
1/βϵ

∥ f ∥α
for all j ≥ 2

)
≤ ndP

(
C1/α
α

⏐⏐⏐ ∞∑
j=K+1

ξ jΓ
−1/α
j

⏐⏐⏐ > bnτ
1/β(δ − ϵ(K − 1))

∥ f ∥α

)

≤ ndP
(

C1/α
α

⏐⏐⏐ ∞∑
j=K+1

ξ jΓ
−1/α
j

⏐⏐⏐ > bnτ
1/βϵ

∥ f ∥α

)

≤ ndb−p
n

∥ f ∥
p
αE
⏐⏐⏐C1/α

α

∑
∞

j=K+1 ξ jΓ
−1/α
j

⏐⏐⏐p

τ p/βϵ p

≤ A∥ f ∥
p
α

E
⏐⏐⏐C1/α

α

∑
∞

j=K+1 ξ jΓ
−1/α
j

⏐⏐⏐p

τ p/βϵ p
using (UB). (6.10)

or any p such that α < p < α(K + 1),

E
⏐⏐⏐C1/α

α

∞∑
j=K+1

ξ jΓ
−1/α
j

⏐⏐⏐p
< ∞

see p.1451 of [35]). Therefore (6.10) gives an integrable upper bound for ψn(ϵ, δ, τ 1/β) on
1,∞). By a similar argument using the dominated convergence theorem, we have

T (n)(ϵ) → 0 as n → ∞.
3
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Using (6.7), we complete the proof by noting

lim sup
n→∞

E
[
b−β

n Mβ
n

]
≤

∫
∞

0
P
(
Γ

−1/α
1 > C−1/α

α τ 1/β(1 − δ)
)
dτ

=

∫
∞

0

(
1 − exp

(
−Cατ

−α/β(1 − δ)−α
))

dτ.

By letting δ → 0+, and applying the dominated convergence theorem again and using (6.2),
we have

lim sup
n→∞

E
[
n−dβ/αMβ

n

]
≤ c̃βYCβ/α

α E
[
Zα/β

]
.

The argument for establishing a corresponding lower bound is similar. We start with the
following lower bound for the tail distribution of b−1

n Mn from [35],

P
(
b−1

n Mn > λ
)

≥ P
(
C1/α
α Γ

−1/α
1 > λ(1 + δ)

)
− φn(ϵ, λ) − ψ̃n(ϵ, δ, λ), (6.11)

where φn(ϵ, λ) is the same as in (6.4) and ψ̃n(ϵ, δ, λ) is defined by

ψ̃n(ϵ, δ, λ) = P
(

max
k∈[0,(n−1)1]

⏐⏐⏐⏐ ∞∑
j=1

ξ jΓ
−1/α
j | fk(U (n)

j )|

maxm∈[0,(n−1)1] | fm(U (n)
j )|

⏐⏐⏐⏐ > λ

C1/α
α ∥ f ∥α

,

Γ
−1/α
1 ≤

bnλ(1 + δ)

C1/α
α ∥ f ∥α

, and Γ
−1/α
2 ≤

bnλϵ

C1/α
α ∥ f ∥α

)
≤ ndP

( ⏐⏐⏐ ∞∑
j=1

ξ jΓ
−1/α
j

⏐⏐⏐ > bnλ

C1/α
α ∥ f ∥α

, Γ
−1/α
1 ≤

bnλ(1 + δ)

C1/α
α ∥ f ∥α

,

and Γ
−1/α
2 ≤

bnλϵ

C1/α
α ∥ f ∥α

)
.

y a similar argument leading to (6.7), we obtain

E
[
b−β

n Mβ
n

]
≥

∫
∞

0
P
(
C1/α
α Γ

−1/α
1 > τ 1/β(1 + δ)

)
dτ

−

∫
∞

0
φn(ϵ, τ 1/β)dτ −

∫
∞

0
ψ̃n(ϵ, δ, τ 1/β)dτ

:= T̃1(δ) − T (n)
2 (ϵ) − T̃ (n)

3 (ϵ, δ).

(6.12)

y applying the dominated convergence theorem with the integrable bounds derived in (6.8)
nd (6.10), we derive

lim inf
n→∞

E
[
n−dβ/αMβ

n

]
≥ c̃βYCβ/α

α E
[
Zα/β

]
.

ombining the above inequalities, we prove (3.1), that is

n−dβ/αE
[
Mβ

n

]
→ C as n → ∞.

In the case of a conservative action, let W be a stationary SαS random field independent
f Y, having a similar integral representation with SαS measure M ′ on space S′ with control
easure µ′, independent of M in the integral representation of Y. That is,

Wt =

∫
c′

t (s)
(

dµ′
◦ φ′

t
′

(s)
)1/α

g ◦ φ′

t (s)M ′(ds), t ∈ Zd .

S′ dµ
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Denoting the above integrand by gt (s), further let W be such that the sequence

bW
n =

(∫
S′

max
0≤t≤(n−1)1

|gt (s)|αµ′(ds)
)1/α

, n ≥ 1,

atisfies (LB) for some θ > 0.
Define Z = W + Y. Then Z inherits its natural integral representation on S ∪ S′ and

he naturally defined action on that space is a stationary SαS random field generated by a
onservative Zd -action. The deterministic maximal sequence bZ

n corresponding to conservative
satisfies (LB) as

bZ
n ≥ bW

n for all n.

sing symmetry, we have

P
(
M Z

n > x
)

≥
1
2
P (Mn > x) (6.13)

nd

E
[
n−dβ/αMβ

n

]
=

∫
∞

0
P
(
n−d/αMn > τ 1/β) dτ

≤ 2
∫ 1

0
P
(
(bZ

n )−1 M Z
n > Cτ 1/β) dτ

+ 2
∫

∞

1
P
(
(bZ

n )−1 M Z
n > Cτ 1/β) dτ

= S(1)
n + S(2)

n

ith the second step following from (6.13) and that n−d/αbZ
n converges to 0 and hence is

ounded by a constant 1/C say. We use the fact from [35] that

n−d/αMn ⇒ 0 as n → ∞,

nd conclude (3.2) via a dominated convergence argument by using the trivial bound

P
(
(bZ

n )−1 M Z
n > Cτ 1/β)

≤ 1

or τ ∈ (0, 1) and obtaining a non-trivial integrable bound for the same on (1,∞). Again with
similar choice of ϵ as in the dissipative case, we have

P
(
M Z

n > CbZ
n τ

1/β)
≤ P

(
Γ

−1/α
1 > Cτ 1/βϵ

)
+ P

(
M Z

n > CbZ
n τ

1/β, Γ
−1/α
1 ≤ Cτ 1/βϵ

)
,

here M Z
n is the maxima, and bZ

n is the corresponding deterministic maximal sequence for
. Let Z have a series representation in terms of arrival times of a unit Poisson process, Γ j

nd Rademacher variables ξ j . Now choose K large enough so that α(K + 1) > d/θ . For p
atisfying

d
< p < α(K + 1),
θ
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6

using a technique similar to (6.10) by an application of Markov’s inequality, we derive an
integrable upper bound for τ ∈ (1,∞) as

P
(

M Z
n > CbZ

n τ
1/β, Γ

−1/α
1 ≤ Cτ 1/βϵ

)
≤ ndP

(⏐⏐⏐C1/α
α

∞∑
j=1

ξ jΓ
−1/α
j

⏐⏐⏐ > CbZ
n τ

1/β

∥ f Z∥α
, C1/α

α Γ
−1/α
1 ≤

CbZ
n τ

1/βϵ

∥ f Z∥α

)

≤ ndP
( ⏐⏐⏐C1/α

α

∞∑
j=1

ξ jΓ
−1/α
j

⏐⏐⏐ > CbZ
n τ

1/β

∥ f Z∥α
,

C1/α
α Γ

−1/α
j ≤

CbZ
n τ

1/βϵ

∥ f Z∥α
for all j ∈ N

)
≤ ndP

(
C1/α
α

⏐⏐⏐ ∞∑
j=K+1

ξ jΓ
−1/α
j

⏐⏐⏐ > C∥ f Z
∥

−1
α bZ

n τ
1/β(1 − K ϵ)

)

≤ nd (bZ
n )−pC p

∥ f Z
∥

p
αE
⏐⏐⏐C1/α

α

∑
∞

j=K+1 ϵ jΓ
−1/α
j

⏐⏐⏐p

τ p/βϵ p

≤ AC p
∥ f Z

∥
p
α

E
⏐⏐⏐C1/α

α

∑
∞

j=K+1 ϵ jΓ
−1/α
j

⏐⏐⏐p

τ p/βϵ p
.

(6.14)

Observing that∫
∞

0
P
(
Γ

−1/α
1 > ϵτ 1/β)dτ = ϵ−βE

[
Zα/β

]
= ϵ−βΓ (1 − β/α) < ∞,

nd using integrable bound for

P
(
M Z

n > τ 1/βbZ
n , Γ

−1/α
1 ≤ ϵτ 1/β)

s derived in (6.14), we obtain a nontrivial bound for S(2)
n . Applying the dominated convergence

heorem with the trivial bound 1 for S(1)
n and an integrable bound for S(2)

n , we conclude (3.2).
his completes the proof.

.2. Proof of Theorem 3.4

The proof again follows by noting that

E
[
b−β

n Mβ
n

]
=

∫
∞

0
P
(
b−1

n Mn > τ 1/β)dτ
≤

∫
∞

0

{
P
(
Γ

−1/α
1 > τ 1/βϵ

)
+ P

(
Mn > τ 1/βbn, Γ

−1/α
1 ≤ τ 1/βϵ

) }
dτ

= ϵ−βΓ (1 − β/α) +

∫ 1

0
P
(
Mn > τ 1/βbn, Γ

−1/α
1 ≤ τ 1/βϵ

)
dτ

+

∫
∞

P
(
Mn > τ 1/βbn, Γ

−1/α
1 ≤ τ 1/βϵ

)
dτ.
1
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The integral over [0, 1] is bounded by 1. To bound the integral over (1,∞), we choose K large
enough so that α(K + 1) > αd

θ1
. Fix ϵ satisfying 0 < ϵ < 1

K and p satisfying

αd
θ1

< p < α(K + 1).

The same argument as in (6.14), together with the lower bound in (3.5), gives

P
(
Mn > τ 1/βbn, Γ

−1/α
1 ≤ τ 1/βϵ

)
≤

B
τ p/βϵ p

,

where

B = A∥ f ∥
p
αE
⏐⏐⏐⏐C1/α

α

∞∑
j=K+1

ϵ jΓ
−1/α
j

⏐⏐⏐⏐p

.

t follows from above that

E
[
b−β

n Mβ
n

]
≤ ϵ−βΓ (1 − β/α) + 1 +

∫
∞

1

B
τ p/βϵ p

dτ

= K1 < ∞.

Hence

E
[
Mβ

n

]
≤ K1 · bβn ≤ K1c2 · nβθ2/α

or all sufficiently large n, say n ≥ n0. Taking K ′
= max{c2 K1;E

[
Mβ

k

]
, k ≤ n0} yields (3.6).

.3. Proof of Theorem 3.6

(1) When the action {φt }t∈F restricted to the free group F is dissipative, then by Proposi-
ion 5.1 of [34], the sequence {bn}n≥0 satisfies

lim
n→∞

n−p/αbn = c, a constant,

hich implies that bn satisfies (LB) with θ = p/α. Also, (4.17) of [34] holds; see the proof
f Theorem 5.4 in [34].

Now we choose K such that α(K + 1) > dα/p, use the same tail bound as in (6.3) and
pply the dominated convergence theorem using integrable bounds on

φn(ϵ, τ 1/β) ≤ ndb−α
n

C−1
α ϵ−α

τ α/β
≤ K2C−1

α ϵ−ατ−α/β,

ψn(ϵ, δ, τ ) ≤ ndb−p′

n

∥ f ∥
p′

α E
⏐⏐⏐⏐C1/α

α

∑
∞

j=K+1 ϵ jΓ
−1/α
j

⏐⏐⏐⏐p′

τ p′/βϵ p′

≤ K3ϵ
−p′

τ−p′/β,

for p′ satisfying
dα
p

≤ p′
≤ α(K + 1).

Then as in the proof of (3.1), (3.7) follows.
(2) When the action {φt }t∈F is conservative, we can obtain a stationary SαS random field
generated by a conservative Zd -action such that bZ

n satisfies (LB) for some θ > 0 and

n−p/αbZ
n → 0 as n → ∞.

Again by the exact argument used to prove (3.2), we obtain (3.8).
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ppendix. Maximal moments for continuous parameter case

Here we present the theorem on the rate of growth of moments of maximum of SαS process
ndexed by continuous time in R, which can be easily extended to the class of fields indexed
y Rd (see Remark A.2).

heorem A.1. Let Y = {Y (t)}t∈R be a stationary measurable SαS process with 0 < α < 2
nd having integral representation as

Y (t) d
=

∫
S

ft (s)M(ds) =

∫
S

ct (s)
(

dµ ◦ φt

dµ
(s)
)1/α

f ◦ φt (s)M(ds), t ∈ R,

here f ∈ Lα(S, µ), {φt }t∈R is a nonsingular flow, {ct }t∈R is a ±1-valued cocycle with respect
o {φt }t∈R and M is an SαS measure with control measure µ; see [28].

1. If Y is generated by a dissipative flow, then for 0 < β < α,

E
[
T −β/αMβ

T

]
→ C as T → ∞, (A.1)

where C is a positive constant with an expression analogous to (3.3).
2. If Y is generated by a conservative flow, then

E
[
T −β/αMβ

T

]
→ 0 as T → ∞. (A.2)

roof. Stationarity and measurability together imply continuity in probability for stable
rocesses (see Proposition 3.1 of [33]). Therefore following [36], we shall approximate the
table process (and all of its functionals) by its dyadic skeletons even without writing it
xplicitly at times. This will ensure, in particular, that every quantity considered in this proof
s measurable.

As in the proof of Theorem 3.1, we consider cases (1) and (2) separately. When Y is
enerated by a dissipative flow,

{bT }T ≥0 =

{(∫
S

sup
0≤t≤T

| ft (s)|αµ(ds)
)1/α

}
T ≥0

atisfies limT →∞ T −1/αbT = c, a constant. The above implies that bT satisfies conditions (2.9)
ith θ = 1/α and (2.12) in [36], analogous to (LB) and (LL) in Theorem 3.1 for fields indexed
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F

by Zd . For a choices of ϵ > 0 and 0 < δ < 1 such that ϵ is chosen small enough as compared
o δ and for K = 0, 1, 2, . . . satisfying

K <
1

ϵC1/α
α

,

we bound the tail distribution of b−1
T MT as

P
(
b−1

T MT > λ
)

≤ P
(
C1/α
α Γ

−1/α
1 > λ(1 − δ)

)
+ φT (ϵ, λ) + ψT (ϵ, δ, λ), (A.3)

aken from [36]. The quantities φT and ψT in (A.3) are defined and bounded as follows:

φT (ϵ, λ) = P
(

for some t ∈ [0, T ],
Γ

−1/α
j | ft (U

(T )
j )|

sups∈[0,T ] | fs(U (T )
j )|

> ϵλ

for at least 2 different j ′s
)

≤ ⌊T ⌋P
(

Γ
−1/α
j sup

0≤t≤1

| ft (U
(T )
j )|

sups∈[0,T ] | fs(U (T )
j )|

> ϵλ

for at least 2 different j ′s
)
,

(A.4)

where ⌊T ⌋ denotes the smallest integer ≥ T and the inequality follows from the same argument
as in (2.26) of [36]. Furthermore, the random points

bTΓ
−1/α
j

| ft (U
(T )
j )|

sups∈[0,T ] | fs(U (T )
j )|

, j = 1, 2, . . .

ave the same distribution as

Z j (t) = b1Γ
−1/α
j

| ft (V j )|
sups∈[0,1] | fs(V j )|

, j = 1, 2, . . . ,

here {V j } is identically distributed as {U (1)
j } and independent of {Γ j }. This and (A.4) imply

hat

φT (ϵ, λ) ≤ ⌊T ⌋P
(

b1Γ
−1/α
j sup

0≤t≤1

| ft (V j )|
sups∈[0,1] | fs(V j )|

> bT ϵλ

for at least 2 different j ′s
)

= ⌊T ⌋P

⎛⎝ ∞∑
j=1

1{supt∈[0,1] |Z j (t)|}(bT ϵλ,∞) ≥ 2

⎞⎠ .
or set of interest

B(T ) =

{
(z(t); t ∈ [0, 1]) : sup

t∈[0,1]
|z(t)| > bT ϵλ

}
,

{Z j (t), j ≥ 1} are points of a Poisson random measure with mean measure

Λ(B(T )) =

(
bT ϵλ

)−α

.

b1
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Using the fact that [T ]b−α
T ≤ K4 a constant, we have

φT (ϵ, λ) ≤ K4bα1 ϵ
−αλ−α. (A.5)

Similarly as above, we have for 0 < ϵ < δ/K ,

ψT (ϵ, δ, λ) = P
(

bT sup
t∈[0,T ]

⏐⏐⏐⏐ ∞∑
j=1

ξ jΓ
−1/α
j ·

| ft (U
(t)
j )|

sups∈[0,T ] | fs(U (s)
j )|

⏐⏐⏐⏐ > C−1/α
α bTλ;

b1Γ
−1/α
1 ≤ bTλ(1 − δ) and b1Γ

−1/α
2 ≤ bTλϵ

)
≤ ⌊T ⌋P

(
b1 sup

t∈[0,1]

⏐⏐⏐⏐ ∞∑
j=1

ξ jΓ
−1/α
j ·

| ft (V j )|
sups∈[0,1] | fs(V j )|

⏐⏐⏐⏐ > C−1/α
α bTλ;

b1Γ
−1/α
1 ≤ bTλ(1 − δ) and b1Γ

−1/α
2 ≤ bTλϵ

)
.

(A.6)

sing the same argument as in (2.29)–(2.33) of [36], leveraging on the observation that

bTΓ
−1/α
j

| ft (U
(T )
j )|

sups∈[0,T ] | fs(U (T )
j )|

re identically distributed as Z j (t) and applying an exponential Markov inequality in the
enultimate step, we derive

ψT (ϵ, δ, λ) ≤ ⌊T ⌋P
(

sup
t∈[0,1]

⏐⏐⏐⏐ ∞∑
j=K+1

ξ jΓ
−1/α
j ·

| ft (V j )|
sups∈[0,1] | fs(V j )|

⏐⏐⏐⏐
> bT

(
1 − ϵC1/α

α

)
b−1

1 C−1/α
α λ

)
≤ 4⌊T ⌋

∫
∞

0
exp(−x)

x K

K !
exp

{
−

(
1 − ϵC1/α

α

)
λ log 2

(γ + 2x−1/αbT )b1C1/α
α

}
dx

≤ 4⌊T ⌋

(
C1 exp(−ζ (λ)T θ ) +

∫ 1

0

x K

K !
exp

(
−x − C2λx1/αT θ

)
dx
)
,

where ζ (λ) is an increasing function of λ.
For any 0 < β < α, using the tail bound in (A.3) we have

E
[
b−β

T Mβ

T

]
=

∫
∞

0
P
(
b−1

T MT > τ 1/β)dτ
≤

∫
∞

0
P
(
C1/α
α Γ

−1/α
1 > τ 1/β(1 − δ)

)
dτ

+

∫
∞

0
φT (ϵ, τ 1/β)dτ +

∫
∞

0
ψT (ϵ, δ, τ 1/β)dτ

= T1(δ) + T (T )
2 (ϵ) + T (T )

3 (ϵ, δ).

gain from [36], we know that, as T → ∞, φT (ϵ, τ ) and ψT (ϵ, δ, τ 1/β) converge to 0 point-
ise for all τ ∈ [0,∞). Hence using the integrable bounds derived in (A.4) and (A.6) on (1,∞)

nd the trivial bound 1 on (0, 1), we apply the dominated convergence theorem to conclude that
(T ) (T )
T2 (ϵ), T3 (ϵ, δ) → 0 as T → ∞,
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which gives

lim sup
T →∞

E
[
b−β

T Mβ

T

]
≤

∫
∞

0
P(Γ−1/α

1 > C−1/α
α τ 1/β(1 − δ))dτ

=

∫
∞

0

(
1 − exp

(
−Cατ

−α/β(1 − δ)−α
))

dτ.

By letting δ → 0+, and applying the dominated convergence theorem again gives

lim sup
T →∞

E
[
T −β/αMβ

T

]
≤ cβCβ/α

α E
[
Zα/β

]
.

On the other hand, we can use a similar lower tail bound

E
[
b−β

T Mβ

T

]
≥ T1(δ) − T (T )

2 (ϵ) − T (T )
3 (ϵ, δ).

and applying the dominated convergence theorem with the integrable bounds derived in (A.4)
and (A.6), we have

lim inf
T →∞

E
[
T −β/αMβ

T

]
≥ cβCβ/α

α E
[
Zα/β

]
.

This concludes the proof of (A.1).
(2) Consider a stationary SαS random field W independent of Y, also given by the integral

representation of the form

W =

∫
S′

gt (s)M ′(ds), t ∈ R,

where M ′ is a SαS random measure with control measure µ′, independent of M in the integral
representation of Y and generated by a conservative flow and also satisfying

bW
T ≥ cT θ for sufficiently large T (A.7)

for some θ > 0. Define Z = Y + W, a stationary SαS random process generated by a
conservative R-action with the natural integral representation on S∪S′ corresponding to the nat-
urally defined action on that space. Let bZ

T be the corresponding deterministic maximal quantity
defined for the process Z . As bZ

T ≥ bY
T for all T > 0, the conservative process Z satisfies (A.7).

E
[
T −β/αMβ

T

]
=

∫
∞

0
P
(
T −1/αMT > τ 1/β)dτ

≤ 2
∫ 1

0
P
(
(bZ

T )−1 M Z
T > Cτ 1/β)dτ

+ 2
∫

∞

1
P
(
(bZ

T )−1 M Z
T > Cτ 1/β)dτ

= S(1)
T + S(2)

T

with the second step following from symmetry and the fact T −1/αbZ
T is bounded by C−1, a

constant. Using the bounding technique in (A.6), we have a similar integrable bound for

P
(
M Z

T > τ 1/βbZ
T , Γ

−1/α
1 ≤ τ 1/βϵ

)
.

This leads to (A.2) by a similar dominated convergence argument using the fact that

P
(
T −1/αMT > τ 1/β)

→ 0

as T → ∞; see Theorem 2.2 of [36]. □
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Remark A.2. The results presented in this section can easily be extended to stationary
easurable symmetric α-stable random fields indexed by Rd . For simplicity of presentation,
e only dealt with the d = 1 case here. This extension to higher dimension can be done using

the techniques of [33] and [8]. More specifically, the idea is to approximate the continuous
parameter random field {X t }t∈Rd by its discrete parameter skeletons {X t }t∈2−iZd , i = 0, 1, 2, . . ..

In [8], the notion of effective dimension was extended to the continuous parameter case
ased on the following observation: the effective dimensions of {X t }t∈2−iZd , i = 0, 1, 2, . . .
re equal and hence can be defined as the group theoretic dimension of {X t }t∈Rd . With this
efinition, Theorem A.1 can be extended to the higher-dimensional case connecting the rate
f growth of maximal moments to the group theoretic dimension p. We can also define a
ontinuous parameter analogue of weak effective dimension and relate it to the asymptotic
roperties of the maximal moments. In summary, all the results presented in Section 3 can be
ewritten for stationary measurable SαS random fields indexed by Rd .
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