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Abstract

The martingale problem for superprocesses with parameters (ξ,Φ, k) is studied where k(ds)may not be
absolutely continuous with respect to the Lebesgue measure. This requires a generalization of the concept
of martingale problem: we show that for any process X which partially solves the martingale problem,
an extended form of the liftings defined in [E.B. Dynkin, S.E. Kuznetsov, A.V. Skorohod, Branching
measure-valued processes, Probab. Theory Related Fields 99 (1995) 55–96] exists; these liftings are part
of the statement of the full martingale problem, which is hence not defined for processes X who fail
to solve the partial martingale problem. The existence of a solution to the martingale problem follows
essentially from Itô’s formula. The proof of uniqueness requires that we find a sequence of (ξ,Φ, kn)-
superprocesses “approximating” the (ξ,Φ, k)-superprocess, where kn(ds) has the form λn(s, ξs) ds. Using
an argument in [N. El Karoui, S. Roelly-Coppoletta, Propriété de martingales, explosion et représentation
de Lévy–Khintchine d’une classe de processus de branchement à valeurs mesures, Stochastic Process.
Appl. 38 (1991) 239–266], applied to the (ξ,Φ, kn)-superprocesses, we prove, passing to the limit, that
the full martingale problem has a unique solution. This result is applied to construct superprocesses with
interactions via a Dawson–Girsanov transformation.
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0. Introduction

0.1. Motivation

Let (E,B) be a measurable space and let Mf denote the set of finite measures on (E,B).
We say that an Mf-valued Markov process X = (X t ,=, Pr,µ) is a superprocess if its transition
probability Pr,µ satisfies the following formula:

vr,t f (µ) =

∫
E
µ(dx)vr,t f (δx )

where

vr,t f (µ) = − log Pr,µe−〈X t , f 〉, f ∈ bpB, µ ∈ Mf.

vr,t f is called the log-Laplace functional and is a semigroup,

vr,s(vs,t ( f ))(µ) = vr,t f (µ), for r < s < t.

Superprocesses can be characterized by evolution equations of the form

vr,t ( f )(x) = πr,x f (ξt )− πr,x

∫ t

r
Φ(s, ξs, vs,t ( f )(ξs))k(ds)

where ξ = (ξt ,=, πr,x ) is a Markov process, k(ds) is an additive functional of ξ and Φ is an
operator, which admits only the log-Laplace vr,t ( f )(x) := vr,t ( f )(δx ) as a solution. A detailed
exposition of this approach can be found in [7].

The characterization of superprocesses by evolution equations has been achieved to a large
extent. Indeed, under mild conditions on X , necessary conditions were found for (ξ,Φ, k) in [8].
Under slightly stronger conditions on X , the gap between the necessary and sufficient conditions
was filled in [15]. On the other hand characterization of superprocesses in terms of martingale
problems was stopped by difficulties arising when considering (ξ,Φ, k)-superprocess with k
non-classical, i.e. with k non-absolutely continuous with respect to the Lebesgue’s measure.
In [16], Roelly-Coppoletta posed and solved the martingale problem for the (ξ, (.)2, ds)-
superprocesses where ξ is a Feller process. El-Karoui and Roelly-Coppoletta [9] extended the
result to a large class of (ξ,Φ, ds)-superprocesses where ξ is a Feller process. Fitzsimmons [11]
obtained some results on the martingale problem for the (ξ,Φ, ds)-superprocesses (where ξ is a
right process) and in particular he showed that interesting properties can be derived from a well
posed martingale problem. Multitype superprocesses were characterized by martingale problems
by Gorostiza and Lopez-Mimbela [13]. Fitzsimmons [12] also solved the martingale problem for
the (ξ,Φ, ds)-superprocesses for ξ a right process and

Φ(x, λ) = b(x)λ2
+

∫
∞

0

(
e−λu

− 1 + λu
)

n(x, du)

where b(x) and the kernel n(x, du) satisfy some properties. Dawson and Fleischmann showed
in [3] that the one point catalytic super Brownian motion, that is the (ξ, (.)2, Lc)-superprocesses
(where Lc

t is the local time of the Brownian motion ξ at time t), solves a martingale problem
related to the density of the occupation time process.

Difficulties are inherent even in the statement of a martingale problem for superprocesses with
branching rates k(ds) which are not absolutely continuous with respect to the Lebesgue measure.
The difficulties first come from the fact that it is not possible to get, in the case of a general k,
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the classical form of the (A,D(A))-martingale problems, where A is an operator with domain
D(A). The statement of the martingale problem itself is problematic. It requires (1) a partial
martingale problem to identify (see Theorem 7) additive functionals K of X , corresponding to
additive functionals k of the motion process ξ (the lifting K of k), and (2) for solutions to this
partial martingale problem, a full martingale problem is needed to characterize the (ξ,Φ, k)-
superprocess.

To illustrate this in the case of an absolutely continuous additive functional k, suppose that
X = (X t ,=, Pr,µ) is a process such that

t 7→ 〈X t , ϕ〉 − 〈Xr , ϕ〉 −

∫ t

r
〈Xs,Aϕ〉 ds

is a martingale for every ϕ in the domain D(A) of the infinitesimal generator A of ξ . This
non-well posed partial martingale problem allows us to verify that for any measurable bounded
nonnegative η(s, x), if the additive functional K η ds of X is given by

K η ds(ds) =

∫
E
η(s, x)Xs(dx) ds,

then the process

s 7→ K η ds(r, s] +

∫
E
πs,x

(∫ t

s
η(u, ξu) du

)
Xs(dx)

is a martingale. We call K η ds(ds) the lifting of k(ds) := η(s, ξs) ds. Now fix Φ and assume
k(ds) = g(s, ξs) ds. Let

KΦ(ϕ) dk(ds) =

∫
E

Φ(x, ϕ(x))g(s, x)Xs(dx) ds

be the lifting of Φ(ξs, ϕ(ξs))g(s, ξs) ds. The only solution to the full martingale problem

t 7→ exp(−〈X t , ϕ〉)+

∫ t

r
exp(−〈Xs, ϕ〉)〈Xs,Aϕ〉 ds

−

∫ t

r
exp(−〈Xs, ϕ〉)KΦ(ϕ) dk(ds)

is the (ξ,Φ, k)-superprocess.
Recall from [9] that the martingale problem (L ,D) for the (ξ,Φ, k)-superprocesses with

k(ds) = ds is well posed where D is the class of functions on Mf given by the formula
F(µ) = f 〈µ, ϕ〉 for f infinitely differentiable with compact support on R, ϕ ∈ D(A) and
ϕ ≥ 0 and where, for every F in D, L(F)(µ) is defined by

L(F)(µ) = f ′
〈µ, ϕ〉〈µ,Aϕ〉 + f ′′

〈µ, ϕ〉〈bϕ2, µ〉

+

∫
E

∫
∞

0
G(F, x, u)n(x, du)µ(dx),

where G(F, x, u) denotes the expression

G(F, x, u) = [ f (〈µ, ϕ〉 + uϕ(x))− f 〈µ, ϕ〉 − f ′
〈µ, ϕ〉uϕ(x)].

In addition to the intrinsic interest of the martingale problem characterization of (ξ,Φ, k)-
superprocesses, this can also be used (see Section 5) to construct superprocesses with
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interactions. Here the interaction is given by an additional term R, and the process is called
the (ξ,Φ, k,R)-superprocess with interactions. It is characterized as the unique solution of a
martingale problem obtained by a Dawson–Girsanov transformation of our martingale problem
associated to the (ξ,Φ, k)-superprocess. The martingale problem formulation still holds the
most promise for interacting models and developing a martingale problem in the general non-
interacting case, as done in this paper, is a basic step.

0.2. Partial and full martingale problem

In general, a martingale problem can be formulated in the following way: first, to any
(canonical càdlàg) process X = (X t ,=, Pr,µ), a real valued process t 7→ (Mr

G)t , t ≥ r , is
defined up to Pr,µ-indistinguishability, for every function G belonging to a certain set S. The
(canonical càdlàg) process X = (X t ,=, Pr,µ) or simply Pr,µ is said to be a solution to the
martingale problem if the processes t 7→ (Mr

G)t are Pr,µ-martingales for every G in S. The
martingale problem ((Mr

G), S) is said to be well posed if there exists one and only one solution
to the martingale problem.

We see a well posed martingale problem as a “test” which characterizes a process. Pick a
(canonical càdlàg) process X = (X t ,=, Pr,µ). The test goes like this:

• For every G ∈ S, check if the process t 7→ (Mr
G)t is a Pr,µ-martingale.

If the test is a success, X is the only solution to the ((Mr
G), S) martingale problem. In the

test, the order in which the processes t 7→ (Mr
G)t (for G ∈ S) are tested has no importance. We

introduce now a slight modification to this procedure. Let S = S1 ∪ S2 where S1 and S2 are two
disjoint sets. Our new “test” is the following:

• Test whether or not X is a solution to the ((Mr
G), S1)-martingale problem.

• If X is a solution to the ((Mr
G), S1)-martingale problem, test whether or not X is also a solution

to the ((Mr
G), S2)-martingale problem.

The non-well-posed martingale problem ((Mr
G), S1) is called the partial martingale problem.

A solution to the partial martingale problem is called a solution to the full martingale problem if
it is a solution to the ((Mr

G), S2)-martingale problem.
In this paper, partial martingale problems are used to determine certain additive functionals –

in terms of the solutions of the partial martingale problem – which enter into the statement of the
full martingale problem; hence the statement of the full martingale problem is simply not defined
for processes X = (X t ,=, Pr,µ) which are not solutions to the partial martingale problem.

0.3. Basic assumptions: Motion process ξ , branching mechanism Φ and branching functional k

Assumption 1. Throughout this paper, the following assumptions are in [2] force:

(a) (Phase space) (E, d) is a locally compact separable metric space. We denote by B the
σ -algebra generated by d; given a family F of measurable functions, we denote by bF
the bounded members of F and by pF the nonnegative f ∈ F . C(E) denotes the set of
continuous functions on E while Ĉ(E) denotes the set of members of C(E) vanishing at
infinity.

(b) (Measure space) Mf (resp. M1) denotes the set of finite (resp. probability) measures on E ,
endowed with the topology of weak convergence.
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(c) (Time interval) We consider stochastic processes on a fixed interval I := [0, T ], T > 0, or
on subintervals of I .

(d) (Underlying particle’s motion process ξ ) Process ξ = (ξt ,F, πr,x ), is a (time homogeneous)
Feller process living in a locally compact separable metric space (E, d). We denote by St the
semigroup of ξ . We often make use of time inhomogeneous notation and in particular:

Sr
t ( f )(x) := πr,x f (ξt ) := πx f (ξt−r ) = St−r ( f )(x)

St (1) = 1.

L ⊇ Ĉ(E) denotes an algebra of bounded measurable functions f such that St ( f )(x) is
strongly continuous, that is

‖St ( f )(.)− St+h( f )(.)‖∞ → 0 as h → 0.

Obviously, for ξ is Feller, a particular case is Ĉ(E) = L. We denote by (A,D(A)) the
infinitesimal (strong) generator of ξ .

(e) (Branching mechanism) b(x) and `(x, du) are respectively a measurable function and a
kernel satisfying the conditions1:

0 ≤ b(x) ≤ 1, 0 ≤

∫
∞

0
u2`(x, du) ≤ 1. (1)

Throughout this paper we pose

Φ(x, f (x)) =
1
2

b(x) f 2(x)+

∫
∞

0
E (u f ) `(x, du)

where E(z) = e−z
+ z − 1. We call Φ a branching mechanism. We use the notation

Φ(x, f ) := Φ(x, f (x)). In the same spirit as [9], we assume that for every ϕ(x) ∈ D(A),
Φ(x, ϕ(x)) ∈ L. Moreover, we want that Φ be a regular branching mechanism, that is,
t 7→ Φ(wt , ϕt (wt )) is càdlàg when t 7→ wt and t 7→ ϕt (wt ) are càdlàg trajectories.

(f) (Branching functional) k(ds) is a continuous nonnegative additive functional of ξ satisfying
the condition

hr
t (x) := πr,x k(r, t) → 0 uniformly in x as t − r → 0. (2)

Note that, since we consider only our processes during the time interval [0, T ], this is
equivalent to the “admissibility condition” in [7] according to [7, Lemma 3.3.1]. (Such
additive functionals are called admissible additive functionals.) We assume that hr

t (.) ∈ L
for every r, t .

0.4. Partial martingale problem and liftings

In order only to be able to state the martingale problem for the (ξ,Φ, k)-superprocesses, we
first need to extend the notion of lifting and projection introduced in [8] to the case where X
may not be a Markov process. Given an Mf-valued Hunt process X = (X t ,=, Pr,µ) and a
E-valued Hunt process ξ , Dynkin, Kuznetsov and Skorohoddefined the lifting A(ds) of an

1 Condition (1) means that for t ∈ R+, µ ∈Mf, supr≤t Pr,µ 〈X t , 1〉2 < ∞. This is a basic assumption in [8] which
insures the existence of liftings (see Theorem A.1). It is also assumed in [4] which guarantees the continuous dependence
of (ξ,Φ, k)-superprocesses with respect to parameter k (see Theorem A.3).
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additive functional a(ds) of ξ as an additive functional A(ds) of X such that for every r, t ∈ R+,
every µ ∈ Mf and every bounded nonnegative measurable ϕ(.)

Pr,µA(r, t] =

∫
E
µ(dx)Pr,δx A(r, t] (3)

and

Pr,µ

∫
∞

r
ϕ(s)A(ds) = πr,µ

∫
∞

r
ϕ(s)a(ds) (4)

where πr,µ(.) :=
∫

E µ(dx)πr,x (.). If A(ds) is a lifting of a(ds), then a(ds) is said to be the
projection of A(ds). And in fact, given a linear additive functional A(ds) of X , that is an additive
functional such that (3) is verified, one can find an additive functional a(ds) of ξ which is the
projection of A. The authors proved that the lifting-projection relation establishes a one to one
correspondence between the additive functionals of ξ and the linear additive functionals of X .
Their proof makes use of the Markov property of X . For our purposes, it was necessary to reduce
that condition to the assumption that a certain partial martingale problem is verified.

Definition 2 (Partial Martingale Problem for ξ ). Let r ∈ R+,µ ∈ Mf and let X = (X t ,=, Pr,µ)

satisfy the following conditions:

• X t has its trajectories in D[r,∞)(Mf)

• Pr,µ(Xr = µ) = 1.
• = denotes the collection of filtrations {=

r
t }t∈[r,∞) defined by

=
r
t =

⋂
ε>0

σ(Xs : r ≤ s ≤ t + ε)Pr,µ

where the superscript Pr,µ denotes the completion with respect to Pr,µ.

• P
=

r
t

r,µ denotes the conditional expectation with respect to =
r
t .

The process X = (X t ,=, Pr,µ) will be said to be a solution to the (r, µ)-partial martingale
problem for ξ if for every ϕ ∈ D(A)

t 7→ 〈X t , ϕ〉 − 〈Xr , ϕ〉 −

∫ t

r
〈Xs,Aϕ〉 ds (5)

is a Pr,µ-martingale for t ∈ [r, T ].

The full martingale problem requires for its statement the notion of a lifting of an additive
functional:

Definition 3 (Extended Definition of Lifting). Let X = (X t ,=, Pr,µ) be a (canonical càdlàg
Mf-valued) process and let a(ds) be an additive functional of ξ . A predictable right continuous
additive functional A(ds) of X will be called a lifting of a(ds) if for every t ≥ r , the process

s 7→ A(r, s] +

∫
πs,x a(s, t]Xs(dx)

is a Pr,µ-martingale for s ∈ [r, t].

Note that this definition of liftings agrees with [8]. The following proposition (which will be
proved in a further section) guaranties the existence and uniqueness of liftings for every solution
X = (X t ,=, Pr,µ) to the partial martingale problem.
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Proposition 4 (Liftings Existence and Uniqueness). Let the process X = (X t ,=, Pr,µ) be a
solution to the (r, µ)-partial martingale problem for ξ . Then for every additive functional a(ds)
of ξ satisfying (2), there exists a unique lifting A(ds) of X. Moreover, it is a continuous additive
functional.

Notation 5 (KΦ( f ) dk(ds)). Let f be a progressively measurable and bounded function, and let
Φ be a branching mechanism. Then the additive functional Φ(ξs, f (s, ξs))k(ds) satisfies (2), and
we will denote by KΦ( f ) dk(ds) the lifting of Φ(ξs, f (s, ξs))k(ds).

0.5. Full martingale problem

The “full martingale problem” characterization of superprocesses with parameters (ξ,Φ, k)
is the main result of this paper.

Definition 6 (Full Martingale Problem). Let r ∈ R+, µ ∈ Mf. A solution X = (X t ,=, Pr,µ) to
the (r, µ)-partial martingale for ξ which is such that for every ϕ ∈ D(A) the process

t 7→ exp(−〈X t , ϕ〉)+

∫ t

r
exp(−〈Xs, ϕ〉)〈Xs,Aϕ〉 ds

−

∫ t

r
exp(−〈Xs, ϕ〉)KΦ(ϕ) dk(ds) (6)

is a Pr,µ-martingale will be called a solution to the (r, µ)-full martingale problem for (ξ,Φ, k).
We will say that X is a solution to the (ξ,Φ, k)-full martingale problem if it is a solution to the
(r, µ)-full martingale problem for (ξ,Φ, k) for every r ∈ R+, µ ∈ Mf.

Theorem 7 (Martingale Problem). Let r ∈ R+, µ ∈ Mf. Then X = (X t ,=, Pr,µ) is a solution

to the (r, µ)-full martingale problem for (ξ,Φ, k) if and only if Pr,µ = P(ξ,Φ,k)r,µ , where P(ξ,Φ,k)r,µ
is the distribution of the (ξ,Φ, k)-superprocess.

0.6. Outline

To show that the (ξ,Φ, k)-full martingale problem is well posed, i.e. to prove Theorem 7,
we need to show that (a) the (ξ,Φ, k)-superprocess is a solution to the (ξ,Φ, k)-full martingale
problem and (b) there is only one possible solution to the (ξ,Φ, k)-full martingale problem.
Section 1 deals with the proof that the (ξ,Φ, k)-superprocess is a solution to the (ξ,Φ, k)-full
martingale problem.

The proof that the solution is unique relies on a sequence of superprocesses that we construct
to “approximate” (in a strong sense specified below) our given superprocess. The approximating
superprocesses, Xn

= (ξ,Φ, kn), have the property that their branching additive functional rates
kn(ds) are absolutely continuous with respect to the Lebesgue measure: kn(ds) = λn(s, ξs) ds.
This is done in Section 2.

In Section 3, we study the connection between ξ and any solution X to the partial martingale
problem. Firstly, additive functionals of ξ can be lifted (Proposition 4), but also the convergence
of processes s 7→ Fn(s, ξs) to a process s 7→ F(s, ξs) can also be “lifted” to obtain the
convergence of processes s 7→ 〈Xs, Fn(s, .)〉 to the process s 7→ 〈Xs, F(s, .)〉. Furthermore,
the convergence (in some weak sense) of additive functionals an(ds) to their limit a(ds) implies
the convergence of their liftings K dan

(ds) to the lifting K da(ds). For our purpose, these results
are particularly interesting for Fn(s, ξs) := vn

s,T (ϕ)(ξs) and for an(ds) := kn(ds), where vn
s,T is

the log-Laplace functional of the (ξ,Φ, kn)-superprocess of Section 2.
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Indeed, in Section 2, we first show that if X = (X t ,=, Pr,µ) is a solution to the (r, µ)-full
martingale problem for (ξ,Φ, k) then the processes

t 7→ exp(−〈X t , v
n
t,T (ϕ)〉)

+

∫ t

r
exp(−〈Xs, v

n
s,T (ϕ)〉)

〈
Xs,Avn

s,T (ϕ)+
∂

∂s
vn

s,T (ϕ)

〉
ds

−

∫ t

r
exp(−〈Xs, v

n
s,T (ϕ)〉)K

Φ(vn
.,T (ϕ)) dk

(ds)

are martingales. But then, letting

K n
1 (ds) := 〈Xs,Φ(., vn

s,T (ϕ))λ
n(s, .)〉 ds

K n
2 (ds) := KΦ(vn

.,T (ϕ)) dk
(ds)

and using the lifted convergence results of Section 3 we can prove, passing to the limit, that the
processes

t 7→ exp(−〈X t , vt,T (ϕ)〉)

are martingales, so

Pr,µ(exp(−〈XT , ϕ〉)) = exp(−〈µ, vr,T (ϕ)〉)

= P(ξ,Φ,k)r,µ (exp(−〈XT , ϕ〉))

and Pr,µ = P(ξ,Φ,k)r,µ , which completes the argument.
Finally, in Section 5, the full martingale problem for (ξ,Ψ , k) is applied to construct

superprocesses with interactions via a Dawson–Girsanov transformation for the binary branching
Ψ(s, x, λ) = λ2.

1. Proof of the existence of a solution to the martingale problem

In this section we prove the existence part of Theorem 7, that is, we show that the distribution
P(ξ,Φ,k)r,µ of the (ξ,Φ, k)-superprocess is a solution to the full martingale problem.

Clearly, the process (5) is a P(ξ,Φ,k)r,µ -martingale for every ϕ ∈ D(A). Existence and
uniqueness of liftings is given from Theorem A.1. Let Ct (ϕ) be the quadratic variation of the
continuous martingale part of the semimartingale 〈X t , ϕ〉. Then Itô’s formula implies that

t 7→ (〈X t , ϕ〉)2 − (〈Xr , ϕ〉)2 − 2
∫ t

r
〈Xs, ϕ〉〈Xs,Aϕ〉 ds − Ct (ϕ)

+

∑
r<s≤t

((〈Xs− +1Xs, ϕ〉)2 − (〈Xs−, ϕ〉)2 − 2〈Xs−, ϕ〉〈1Xs, ϕ〉)

is a Pr,µ-martingale for every ϕ ∈ D(A). Simplifying we obtain that

t 7→ (〈X t , ϕ〉)2 − (〈Xr , ϕ〉)2 − 2
∫ t

r
〈Xs, ϕ〉〈Xs,Aϕ〉 ds

− Ct (ϕ)+

∑
r<s≤t

(〈1Xs, ϕ〉)2

is a Pr,µ-martingale for every ϕ ∈ D(A). By definition of the modified Lévy measure, this is the
same thing as saying that
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t 7→ (〈X t , ϕ〉)2 − (〈Xr , ϕ〉)2 − 2
∫ t

r
〈Xs, ϕ〉〈Xs,Aϕ〉 ds

− Ct (ϕ)+

∫ t

r

∫
Mf

〈µ, ϕ〉
2L(ds, dµ) (7)

is a Pr,µ-martingale for every ϕ ∈ D(A), where
∫
Mf

〈µ, ϕ〉
2L(ds, dµ) is the lifting of∫

∞

0 (uϕ)2(ξs)`(ξs, du)k(ds). Note that (by definition of lifting)

Pr,µ

∫ t

r

∫
Mf

〈µ, ϕ〉
2L(ds, dµ) = πr,µ

∫ t

r

∫
∞

0
(uϕ)2(ξs)`(ξs, du)k(ds). (8)

Since the Pr,µ-expectation of martingale (7) is zero, we can use (8) and the moment formulae of
Theorem A.1 to calculate

Pr,µ(Ct (ϕ)) = πr,µ

∫ t

r
b(ξs)ϕ

2(ξs)k(ds).

Thus

Pr,µ

(
1
2

Ct (ϕ)−

∫ t

r
Q̂(ϕ2)(ds)

)
= 0

where Q̂(ϕ2)(ds) is the lifting of 1
2 b(ξs)ϕ

2(ξs)k(ds). Therefore, since X t is a Markov process,
this implies that

t 7→
1
2

Ct (ϕ)−

∫ t

r
Q̂(ϕ2)(ds)

is a martingale. But because t 7→
1
2 Ct (ϕ)−

∫ t
r Q̂(ϕ2)(ds) is also a right continuous predictable

process of integrable variation, we obtain that 1
2 Ct (ϕ) ≡

∫ t
r Q̂(ϕ2)(ds). We can apply Itô’s

formula which gives that

t 7→ exp(−〈X t , ϕ〉)+

∫ t

r
exp(−〈Xs, ϕ〉)〈Xs,Aϕ〉 ds

−

∫ t

r
exp(−〈Xs, ϕ〉)Q̂(ϕ2)(ds)

−

∫ t

r
exp(−〈Xs, ϕ〉)

∫
Mf

E(−〈µ, ϕ〉)L(ds, dµ)

is a P(ξ,Φ,k)r,µ -martingale. But since Q̂(ϕ2)(ds) is the lifting of the additive functional
1
2 b(ξs)ϕ

2(ξs)k(ds) and
∫
Mf

E(−〈µ, ϕ〉)L(ds, dµ) is the lifting of
∫

∞

0 E(uϕ(ξs))`(ξs, du)k(ds),
this can be rewritten to give that

t 7→ exp(−〈X t , ϕ〉)+

∫ t

r
exp(−〈Xs, ϕ〉)〈Xs,Aϕ〉 ds

−

∫ t

r
exp(−〈Xs, ϕ〉)KΦ(ϕ) dk(ds)

is a P(ξ,Φ,k)r,µ -martingale. �
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2. Approximation of superprocesses

As explained in Section 0.6, in order to prove that the full martingale problem has only one
solution, we need to approximate (in a rather strong sense specified below) superprocesses by
other superprocesses with branching rate of the form kn(ds) = λn(s, ξs) ds. This is done in
Theorem 16 below which may have some independent interest. But before, some technical results
are needed.

2.1. Some technical lemmas

Lemma 8. Let (Ω ,=, P) be a filtered probability space. and let t 7→ xn
t , n ≥ 1 be right

continuous processes such that supτ∈[r,t] P(|xn
τ |) → 0, where the expression supτ∈[r,t] denotes

here the supremum over all stopping times τ such that r ≤ τ ≤ t . Then

sup
s∈[r,t]

∣∣xn
s

∣∣ → 0 in P-probability.

Proof. Let η > 0. Let τ n
η := inf{s ∈ [r, t] : |xn

s | > η}, where infφ := t . Then we have

P

{
sup

s∈[r,t]
|xn

s | > η

}
≤ P{|xn

τ n
η
| ≥ η}

≤
1
η

P(|xn
τ n
η
|)

and this converges to zero by hypothesis. �

Lemma 9. Let (Ω ,G, P) be a probability space and an(ds) be a sequence of random measures
on R+ such that P|an([0, t])− a([0, t])| → 0 for every t ≥ 0. Then there exists a subsequence
ank such that P-a.s. ank H⇒ a.

Proof. With the use of Cantor’s diagonalization method one finds a subsequence ank such that

P{|ank [0, q] − a[0, q]| → 0 for every rational q ≥ 0} = 1.

But then, because the mappings t 7−→ an[0, t] are increasing, this implies that P-a.s. ank H⇒

a. �

Lemma 10. Let k(ds) be any additive functional of ξ . Let Sr
t ( f )(x) = St−r ( f )(x) be the

semigroup generated by ξ . For every 0 ≤ r ≤ s ≤ t we have that Sr
s (h

s
t )(x) ≤ hr

t (x) and

|Sr
s (h

s
t )(x)− hr

t (x)| = hr
s(x)

where hs
t (x) = πs,x k(s, t).

Proof.

Sr
s (h

s
t )(x) = πr,x (πs,ξs k(s, t])

= πr,x (k(s, t])

= πr,x (k(r, t])− πr,x (k(r, s])

= hr
t (x)− hr

s(x). �
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2.2. A-smooth approximation of superprocesses

In this section we introduce the concept of A-smooth approximation of superprocesses. The
key result here is Theorem 16 below, which states that, under Assumptions 0.3(a)–0.3(c), an
A-smooth approximation exists.

Definition 11. A sequence kn(ds) of additive functionals of ξ is said to be uniformly admissible
if for every ε > 0 there exists a δ > 0 such that for every s, t ∈ [0, T ], |s − t | < δ implies that
supn ‖

nhs
t ‖∞ < ε where nhs

t (x) = πs,x kn(s, t).

Definition 12. We say that a mapping ψ : [0, T ] × E → R+ is smooth for the strong generator
(A,D(A)) of ξ , or simply that ψ is smooth for A, if

(1) ψ(s, .) belongs to D(A) for every s
(2) ∂

∂sψ(s, x) exists for every s and∥∥∥∥ψ(s + h, .)− ψ(s, .)

h
−
∂

∂s
ψ(s, .)

∥∥∥∥
∞

→ 0

(3) ψ, ∂
∂sψ and Aψ are bounded and strongly continuous.

Definition 13. We say that (ξ,Φ, kn)-superprocesses Xn form an A-smooth approximation for
the (ξ,Φ, k)-superprocess X if:

• kn(ds) has the form λn(s, ξs) ds
• the log-Laplace functional vn of Xn converges to the log-Laplace functional v of X .
• for every f ∈ D(A), the function ψn(s, x) := vn

s,T ( f )(x) is smooth for A.

The proof of existence of an A-smooth approximation relies on the following lemma where
we show that any admissible additive functional k can be approximated (in some rather strong
sense) by additive functionals kn of the form kn(ds) = λn(s, ξs) ds. This is used in Theorem 16
to show that, then, the sequence of (ξ,Φ, kn)-superprocesses form an A-smooth approximation
for the (ξ,Φ, k)-superprocess.

Lemma 14. Let k(ds) be a (continuous) admissible additive functional of a right process ξ .
There exists a sequence of additive functionals kn(ds) of the form

kn(ds) = λn(s, ξs) ds

such that

(i) sup0≤s<t≤T supx∈E |
nhs

t (x) − hs
t (x)| tends to zero as n tends to infinity, where nhs

t (x) =

πs,x kn(s, t) and hs
t (x) = πs,x k(s, t);

(ii) the sequence kn(ds) is uniformly admissible;
(iii) kn(r, τ ] converges to k(r, τ ] in L1(πr,x ) for every r-stopping time2 τ (bounded by T ) and

every r, x;
(iv) for every r, x there exists a subsequence {knk (ds)}∞k=1 converging weakly to k(ds).

2 By this we mean a stopping time τ ≥ r with respect to the filtration {Fr
t }t∈[r,∞).
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Proof. Let tn
i :=

i
n T ; choose 1

n T > δn > 0 such that for every α ≤ β such that |α− β| ≤ δn we
have

‖hαβ‖∞ ≤
1

n2 .

Let us denote by pC∞
c the set of all infinitely differentiable nonnegative functions f : R+ → R+

with a compact support. We denote by supp{ f } the support of a function f ∈ pC∞
c (R+). Choose

a function f n
i in pC∞

c (R+) such that

(1) supp{ f n
i } ⊂ [tn

i , tn
i + δn]

(2)
∫

f n
i (s) ds = 1

(3) (for simplicity) f n
i (s) is a translation of f n

j (s).

Let

kn(ds) :=

n−1∑
i=0

hs
tn
i+1
(ξs) f n

i (s) ds

and

nhs
t (x) := πs,x kn(s, t].

Note that

nh
tn

j
T (x) =

n−1∑
i= j

∫ tn
i +δn

tn
i

f n
i (s) dsS

tn
j

s (h
s
tn
i+1
)(x). (9)

But for s ∈ [tn
i , tn

i + δn]

S
tn

j
s (h

s
tn
i+1
)(x) = πtn

j ,x
(πs,ξs k(s, tn

i+1])

= πtn
j ,x
(k(s, tn

i+1])

= πtn
j ,x
(k(tn

i , tn
i+1])− πtn

j ,x
(k(tn

i , s])

= πtn
j ,x

(
πtn

i ,ξtni
k(tn

i , tn
i+1]

)
− πtn

j ,x

(
πtn

i ,ξtni
k(tn

i , s]
)

= πtn
j ,x

(
h

tn
i

tn
i+1
(ξtn

i
)
)

− πtn
j ,x

(
h

tn
i

s (ξtn
i
)
)
.

Thus ∥∥∥∥S
tn

j
s (h

s
tn
i+!

)(x)− πtn
j ,x

(
h

tn
i

tn
i+1
(ξtn

i
)
)∥∥∥∥

∞

≤ max
i=0,...,n−1

∥∥∥h
tn
i

tn
i +δn

∥∥∥
∞

≤
1

n2 .

Returning to Eq. (9) we get that

max
j=0,...,n

∥∥∥∥nh
tn

j
T (x)− h

tn
j

T (x)

∥∥∥∥
∞

≤
1
n
.

Now if s ∈ (tn
j−1, tn

j ) we have that
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‖
nhs

T (x)− hs
T (x)‖∞ =

∥∥∥πs,x

(
kn(s, tn

j ] − k(s, tn
j ]

)∥∥∥
∞

= +

∥∥∥∥πs,x

(
nh

tn
j

T (ξtn
j
)− h

tn
j

T (ξtn
j
)

)∥∥∥∥
∞

≤ 2 sup
s∈(tn

j−1,t
n
j )

∥∥∥hs
tn

j

∥∥∥
∞

+
1
n
;

and the last expression tends to zero as n tends to infinity. Moreover, since
nhs

t (x)− hs
t (x) = πs,x (k

n(s, T ] − k(s, T ])− πs,x (πt,ξt k(t, T ] − πt,ξt k
n(t, T ])

we easily derive that

sup
0≤s,t≤T,x∈E

|
nhs

t (x)− hs
t (x)| → 0

as n tends to infinity. This establishes that kn(ds) satisfies property (i). Property (ii) is an
immediate consequence of (i).

It remains only to establish property (iii) and (iv). But property (i) implies that for every r ≥ 0
and every x ∈ E , we have that

sup
τ∈[r,T ]

πr,x (|
nhτT (ξτ )− hτT (ξτ )|) → 0

where the supremum is taken over all r -stopping times τ such that r ≤ τ ≤ T . Consequently,
from Lemma 8, we obtain that sups∈[r,T ] |

n hs
T (ξs)−hs

T (ξs)| → 0 in πr,x -probability. One verifies
easily that all the hypotheses of Theorem A.2 are verified, and this yields property (iii). Property
(iv) is immediate from Lemma 9, and the proof is complete. �

Remark 15. In Lemma 14, the sequence of additive functional kn(ds) can be chosen to have the
form

kn(ds) =

n−1∑
i=0

h
tn
i

tn
i+1
(ξs) f n

i (s) ds,

where f n
i ∈ pC∞

c (R+) for n = 1, 2, . . .; i = 0, . . . , n − 1;

Proof. Choose δn such that for every r ≥ 0 and every α ≤ β ≤ α + δn we have

max
i=1,...,n

∥∥∥Sr
α(h

tn
i

tn
i+1
)− Sr

β(h
tn
i

tn
i+1
)

∥∥∥
∞

+

∥∥∥hαβ

∥∥∥
∞

≤
1

n2 .

Proceed then exactly like in the proof of Lemma 14. Note that if r ∈ {tn
0 , . . . , tn

n } then

nhr
T (x) =

∑
tn
i ≥r

∫ tn
i +δn

tn
i

f n
i (s) dsSr

s (h
tn
i

tn
i+1
)(x).

But since for s ∈ [tn
i , tn

i + δn] we have∥∥∥Sr
s (h

tn
i

tn
i+1
)− Sr

tn
i
(h

tn
i

tn
i+1
)

∥∥∥
∞

≤
1

n2

and since∑
tn
i ≥r

∫ tn
i +δn

tn
i

f n
i (s) dsSr

tn
i
(h

tn
i

tn
i+1
)(x) = hr

T (x),
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we get∥∥nhr
T (x)− hr

T (x)
∥∥ ≤

1
n
.

The rest is similar to the proof of Lemma 14. �

Theorem 16. There exists a uniformly admissible sequence of additive functionals kn(ds) with
kn(ds) = λn(s, ξs) ds which are such that the sequence of (ξ,Φ, kn)-superprocesses form an
A-smooth approximation for the (ξ,Φ, k)-superprocess. For every (r, x) ∈ R+ × E and every
r-stopping time τ ≤ T , kn(r, τ ] converges in L1(πr,x ) to k(r, τ ].

Proof. Let {kn(ds)} be a collection of approximating additive functionals as in Remark 15.
Let vn

r,t ( f )(x) be the log-Laplace functional of the corresponding (ξ,Φ, kn)-superprocess, for
n = 1, 2, . . .. According to Theorem A.3, vn

r,t ( f )(x) → vr,t ( f )(x) where vr,t ( f )(x) is the
log-Laplace functional of the (ξ,Φ, k)-superprocess. According to Theorem A.5, vn

r,t ( f )(x)
is smooth for A and Avn

s,T ( f )(x) +
∂
∂s v

n
s,T ( f )(x) = Φ(x, vn

s,T ( f )(x))λn(s, x) for every
0 ≤ s ≤ T , x ∈ E and f ∈ D(A). �

3. The partial martingale problem

In this section we investigate some of the properties shared by all processes X = (X t ,=, Pr,µ)

which are solutions to the partial martingale problem. One of these properties is that, for such
processes, liftings exist, and therefore, the full martingale problem can be stated.

We also prove that the convergence of processes s 7→ Fn(s, ξs) to a process s 7→ F(s, ξs)

can be “lifted” to obtain the uniform convergence of processes s 7→ 〈Xs, Fn(s, .)〉 to the process
s 7→ 〈Xs, F(s, .)〉. Also, the convergence (in some weak sense) of additive functionals an(ds) to
their limit a(ds) implies the convergence of their liftings K dan

(ds) to the lifting K da(ds).

3.1. Connection between X and its particle motion ξ

The following result is due to Fitzsimmons [12, Corollary 2.8]. It establishes – via the partial
martingale problem – a link between solutions X to the partial martingale problem and their
projection ξ .

Lemma 17. Let X = (X t ,=, Pr,µ) be a solution to the partial martingale problem and let St be
the semigroup of ξ . If τ is a bounded r-stopping time then for all f ∈ bB

P
=

r
τ

r,µ〈Xτ+t , f 〉 = 〈Xτ , St f 〉, for every t ≥ 0

where P
=

r
τ

r,µ denotes the conditional expectation with respect to =
r
τ .

The following technical lemma will be used several times in this paper:

Lemma 18. Let X = (X t ,=, Pr,µ) be a solution to the partial martingale problem for ξ . Then
for every f ∈ bB, every T > 0 the process t 7→ 〈X t , ST −t f 〉 is a càdlàg martingale. In
particular, for every r-stopping time τ bounded by T we have that

Pr,µ〈Xτ , ST −τ f 〉 = 〈µ, ST −r f 〉.
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Proof. From Lemma 17, we have that

P
=

r
t

r,µ〈X t+s, ST −t−s( f )〉 = 〈X t , ST −t ( f )〉

and hence the process t 7→ 〈X t , ST −t ( f )〉 is a martingale. Since it is dominated by t 7→

‖ f ‖∞〈X t , 1〉, it belongs to class (D), according to [7, Lemma A.1.1]. If f ∈ D(A), then
St f ∈ D(A) for every t ≥ 0. Hence, for every t ′, the process t 7→ 〈X t , ST −t ′( f )〉 is a
càdlàg process. Hence if Λn denotes a sequence of partitions {tn

i }
n
i=0 of the interval [r, T ] with

mesh{Λn} → 0, then the process xn
t defined by

t 7→ xn
t :=

n−1∑
i=0

1[tn
i ,t

n
i+1)
(t)〈X t , ST −tn

i
f 〉

is a càdlàg process. Because f ∈ D(A), 1[tn
i ,t

n
i+1)
(t)ST −tn

i
f (x) converges uniformly (in x ∈ E

and t ∈ [r, T ]) to ST −t ( f )(x). Therefore t 7→ xn
t converges uniformly (in t ∈ [r, T ] for every

ω ∈ Ω ) to t 7→ 〈X t , ST −t f 〉. Consequently, t 7→ 〈X t , ST −t f 〉 is a càdlàg martingale. From the
optional sampling theorem we get that for every r -stopping time τ bounded by T

Pr,µ〈Xτ , ST −τ f 〉 = 〈µ, ST −r f 〉. (10)

The extension of equality (10) to arbitrary f ∈ bB follows from the fact that D(A) is dense,
for the bounded pointwise convergence, in bB. From lemma [7, A.1.1.D], we conclude from this
equality that t 7→ 〈X t , ST −t f 〉 is a right continuous – and therefore càdlàg – martingale. �

Corollary 19. Let X = (X t ,=, Pr,µ) be a solution to the partial martingale problem for ξ . Let
β ∈ (r, T ], α ∈ [r, T ] and let f (.) ∈ bB. Then the process

t 7→ xt := 1[α,β)(t)〈X t , St
β f 〉

is càdlàg, and moreover, for every δ > 0 and every stopping time τ

Pr,µxτ+δ = Pr,µ1[α,β)(τ + δ)〈Xτ , Sτβ f 〉.

Proof. The process t 7→ 〈X t∧β , St∧β
β f 〉 is a càdlàg martingale; so xt is càdlàg. Let τ be a

stopping time and δ > 0. Note that without lost of generality, we can assume that τ + δ ≤ β :

this is due to the fact that for τ + δ > β, we have x(τ+δ)∧β = xτ+δ = 0. From the optional
stopping time theorem, we get

P
=

r
τ

r,µ〈Xτ+δ, Sτ+δβ f 〉 = 〈Xτ , Sτβ f 〉

where P
=

r
τ

r,µ(.) denotes the conditional expectation with respect to =
r
τ . Because 1[α,β)(τ +δ) ∈ =

r
τ

this completes the proof. �

Corollary 20. Let X = (X t ,=, Pr,µ) be a solution to the partial martingale problem for ξ . Let
t0 := r < t1 < · · · < tn := T be a partition of [r, T ]. Let f i (.) ∈ bB, that is a bounded
B-measurable function, for i = 1, . . . , n. Then the process

t 7→ xt :=

n−1∑
i=0

1[ti ,ti+1)(t)
〈
X t , St

ti+1
f i+1

〉
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is càdlàg, and for every stopping time τ and every δ > 0 we have that

Pr,µ(xτ+δ) = Pr,µ

n−1∑
i=0

1[ti ,ti+1)(τ + δ)
〈
Xτ , Sτti+1

f i+1
〉
.

Proof. This is immediate from the above corollary. �

3.2. Liftings

Consider now the function hr
T (x) := πr,x a(r, T ] which is called the characteristic of the

additive functional a(ds). Assume that hT is bounded. Note that by Markov property, for every
0 ≤ r ≤ s ≤ T we have

Sr
s (h

s
T )(x) = πr,x (πs,ξs a(s, T ]) = πr,x a(s, T ] ≤ hr

T (x).

We use this in the following proof of the existence and uniqueness of liftings for solutions to the
partial martingale problem.

Proof of Proposition 4. According to Lemma 17

P
=

r
t

r,µ〈X t+s, f 〉 = 〈X t , Ss f 〉, Pr,µ-almost surely for every f ∈ bB.

Consequently,

P
=

r
t

r,µ
〈
X t+s, ht+s

T

〉
=

〈
X t , Ss

(
ht+s

T

)〉
≤

〈
X t , ht

T

〉
,

and therefore process t 7→ xt := 〈X t , ht
T 〉 is a supermartingale.

Let Λn := r = tn
0 < · · · < tn

n = T be a sequence of nested partitions of the interval [r, T ]

with mesh{Λn} → 0. According to Corollary 20, the processes

t 7→ xn
t :=

n−1∑
i=0

1[tn
i ,t

n
i+1)
(t)

〈
X t , St

tn
i+1

h
tn
i+1
T

〉
are càdlàg. Since a(ds) is admissible, we have that, according to Lemma 10,

max
i=0,...,n−1

sup
t∈[tn

i ,t
n
i+1)

∥∥∥St
tn
i+1

h
tn
i+1
T − ht

T

∥∥∥
∞

→ 0.

Moreover, due to the fact that t 7→ 〈X t (ω), 1〉 is càdlàg,

sup
s∈[r,T ]

〈Xs(ω), 1〉 < ∞.

We can thus conclude that

lim
n→∞

sup
t∈[r,T ]

|xn
t (ω)− xt (ω)| = 0.

The uniform limit of a sequence of càdlàg functions being also càdlàg, we conclude that t 7→ xt
is càdlàg.

Thus, by Doob–Meyer decomposition theorem (cf. [7, Theorem A.1.1]), t 7→ xt has a unique
compensator A(ds) (which is, by definition of lifting, the unique lifting of a(ds)) and

A(r, t] = lim
Λ

n−1∑
i=1

P
=

r
ti −

r,µ

{〈
X ti , hti

T

〉
−

〈
X ti+1 , hti+1

T

〉}
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= lim
Λ

n−1∑
i=1

P
=

r
ti −

r,µ

{〈
X ti , hti

T

〉
−

〈
X ti , Sti

ti+1
hti+1

T

〉}

= lim
Λ

n−1∑
i=1

P
=

r
ti −

r,µ

{〈
X ti , hti

ti+1

〉}
(11)

weakly in L1(Pµ) as Λ runs over a standard sequence of partitions Λ = {r = t0 < t1 < · · · <

tn = t} of the interval [r, t]. Moreover, the convergence in (11) is strong when A is continuous.

We now show that the lifting A of an admissible additive functional a is continuous.
According to [7, Theorem A.1.1], A is continuous if and only if for every sequence of r -stopping
times τn ↗ τ , with τn < τ , we have Er,µxτn ↘ Er,µxτ .

Let the r -stopping times τn increase to τ . Clearly, since xt = 0 for t ≥ T , we can suppose
that τ ≤ T . Choose ε and pick δ such that |α − β| ≤ δ implies ‖hαβ‖∞ ≤ ε.

We have

Pr,µxτn ≥ Pr,µxτ ≥ Pr,µxτ∨(τn+δ) = Pr,µ1{τn+δ<τ }xτ + Pr,µ1{τn+δ≥τ }xτn+δ.

But because x belongs to class (D), we have, for n big enough, that the right hand side of
the above differs from Er,µxτn+δ by a quantity which is less than or equal to ε. Therefore, for
big n,

Pr,µxτn+δ ≤ Pr,µxτ + ε. (12)

On the other hand we get from Lemma 10

N−1∑
i=0

Pr,µ1
{

i
N T ≤τ+δ< i+1

N T }

〈
Xτ+δ, Sτ+δi+1

N T
h

i+1
N T

T

〉
→ Pr,µ

〈
Xτ+δ, hτ+δT

〉
(13)

but by Corollary 20, the left hand side of (13) coincides with

N−1∑
i=0

Pr,µ1
{

i
N T ≤τ+δ< i+1

N T }

〈
Xτ , Sτi+1

N T
h

i+1
N T

T

〉
.

Another use of Lemma 10 gives

N−1∑
i=0

Pr,µ1
{

i
N T ≤τ+δ< i+1

N T }

〈
Xτ , Sτi+1

N T
h

i+1
N T

T

〉
→ Pr,µ

〈
Xτ , Sττ+δh

τ+δ
T

〉
,

and therefore

Pr,µ

〈
Xτ+δ, hτ+δT

〉
= Pr,µ

〈
Xτ , Sττ+δh

τ+δ
T

〉
.
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Thus, using (12), we have, for n big enough,

0 ≤ Pr,µxτn − Pr,µxτ ≤ ε + Pr,µ(xτn − xτn+δ)

= ε + Pr,µ

(〈
Xτn , hτn

T

〉
−

〈
Xτn , Sτn

τn+δh
τn+δ
T

〉)
= ε + Pr,µ

(〈
Xτn , hτn

τn+δ

〉)
≤ ε(1 + |µ|).

This shows that Pr,µxτn ↘ Pr,µxτ and therefore, as pointed out earlier, the compensator A of x
is continuous. �

3.3. Convergence for ξ versus convergence for X

Let f n(r, x) be a collection of nearly Borel functions, and consider the process s 7→ Fn
s,T (ξs),

s ∈ [0, T ], where Fn
r,T (x) := πr,x f n(T, ξT ). To these processes correspond the “lifted”

processes s 7→ 〈Xs, Fn
s,T 〉. In this subsection, we establish a criterion under which the pointwise

convergence of Fn
r,T (x) to Fr,T (x) implies that the processes s 7→ 〈Xs, Fn

s,T 〉 converge uniformly
in s to the process s 7→ 〈Xs, Fs,T 〉.

We are particularly interested in the processes s 7→ 〈Xs, v
n
s,T (.)〉, where vn is the log-

Laplace functional of an A-smooth approximating sequence for the superprocess with parameters
(ξ,Φ, k). We want to show that s 7→ 〈Xs, v

n
s,T (.)〉 converges in probability uniformly in s to

s 7→ 〈Xs, vs,T (.)〉.
We also establish a criterion under which the convergence of additive functionals kn(ds) to

an additive functional k(ds) implies the same convergence for their liftings K n(ds) and K (ds).
This is crucial for the proof of uniqueness to the martingale problem.

3.3.1. Uniform convergence of sequences of “lifted” processes

Notation 21. Let zs be a function of s ∈ [r, T ]. In the following, the expression z∗ will denote

z∗
:= sup

t∈[r,T ]

zt .

Lemma 22. Let X = (X t ,=, Pr,µ) be a solution to the partial martingale problem for ξ . Let
f n(t, x) be a sequence of uniformly bounded measurable functions satisfying the condition

sup
0≤t≤T,x∈E,n≥1

|St+δ f n(t + δ, x)− f n(t, x)| → 0 as δ → 0. (14)

Suppose that

f (t, x) = lim
n→∞

f n(t, x). (15)

Then the process

|xn
− x |

∗
:= sup

t∈[r,T ]

|〈X t , f n(t, .)〉 − 〈X t , f (t, .)〉|

converges to zero in Pr,µ-probability.
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Proof. Let tm
i := r +

i
m (T − r), for i = 0, . . . ,m. Define

xn
t :=

〈
X t , f n(t, .)

〉
x∞

t := 〈X t , f (t, .)〉

xn,m
t :=

m−1∑
i=0

1[tm
i ,t

m
i+1)
(t)

〈
X t , St

tm
i+1

f n(tm
i+1, .)

〉
x∞,m

t :=

m−1∑
i=0

1[tm
i ,t

m
i+1)
(t)

〈
X t , St

tm
i+1

f (tm
i+1, .)

〉
.

Recall that for every ω, supt∈[r,T ] 〈X t (ω), 1〉 < ∞. Thus, (14) implies that for every ε > 0 and
for every m big enough, we have

sup
n∈[1,...,∞]

|xn,m(ω)− xn(ω)|∗ < ε.

Therefore, it suffices to prove that for every m > 0, |xn,m
− x∞,m |

∗ tends to zero in Pr,µ-
probability. This will clearly be verified if for every c > 0

sup
t∈[r,c]

∣∣〈X t , St
c f n(c, .)

〉
−

〈
X t , St

c f (c, .)
〉∣∣

converges to zero in Pr,µ-probability. This is the case if

sup
t∈[r,c]

〈
X t , St

c

∣∣ f n(c, .)− f (c, .)
∣∣〉

converges to zero in Pr,µ-probability. To prove this, it suffices, according to Lemma 8, to check
that

lim
n→∞

sup
r≤τ≤c

Pr,µ
〈
Xτ , Sτc

∣∣ f n(c, .)− f (c, .)
∣∣〉 = 0.

But for every g ∈ B, the process t 7→
〈
X t , St

cg
〉

is a càdlàg martingale. Hence, from the optional
sampling theorem we get that, for every r -stopping time τ ≤ c

Pr,µ
〈
Xτ , Sτc

∣∣ f n(c, .)− f (c, .)
∣∣〉 = Pr,µ

〈
Xr , Sr

c

∣∣ f n(c, .)− f (c, .)
∣∣〉

=
〈
µ, Sr

c

∣∣ f n(c, .)− f (c, .)
∣∣〉 .

Because f n converges to f , and because { f n
} is uniformly bounded, the right hand side of the

last equality tends to zero. �

Corollary 23. Let X = (X t ,=, Pr,µ) be a solution to the partial martingale problem for ξ . Let
kn(ds), k(ds) be a collection of uniformly admissible additive functionals of ξ . Let vn be the
log-Laplace functional of the (ξ,Φ, kn)-superprocess, and v the log-Laplace functional of the
(ξ,Φ, k)-superprocess. Let g ∈ L and suppose that vn

r,T (g)(x) converges to vr,T (g)(x) for every
r, x. Then s 7→ 〈Xs, v

n
s,T (g)〉 converges uniformly (in s) to s 7→

〈
Xs, vs,T (g)

〉
in Pr,µ-probability.

Proof. Let g ∈ L. Note that vn
r,T (g)(x) and Φ(x, vn

r,T (g)(x)) are uniformly bounded. This
implies that the family of additive functionals {k∗n

}, defined by

k∗n(ds) := Φ(ξs, v
n
s,T ( f )(ξs))k

n(ds),
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is uniformly admissible. It follows from Lemma 10 that (14) holds with f n(t, x) := πr,x k∗n(r, T ]

and f (t, x) := πr,x k∗(r, T ], where

k∗(ds) := Φ(ξs, vs,T ( f )(ξs))k(ds).

This yields (14) with f n(t, x) := vn
r,T ( f )(x) and f (t, x) := vr,T ( f )(x). The assumption that

vn
r,T ( f )(x) converges to vr,T ( f )(x) is identical to (15). An appeal to Lemma 22 completes the

proof. �

3.3.2. Convergence of additive functionals versus convergence of their liftings

Proposition 24. Let X = (X t ,=, Pr,µ) be a solution to the partial martingale problem for ξ .
Let kn(ds), k(ds) be a collection of uniformly admissible additive functionals. Suppose that for
every r, x we have that

nhr
T (x) := πr,x kn(r, T ] → πr,x k(r, T ] =: hr

T (x). (16)

Then, for every r-stopping time τ ≤ T , K n(r, τ ] converges to K (r, τ ] in L1(Pr,µ), where K n(ds)
(resp. K (ds)) is the lifting of kn(ds) (resp. k(ds)).

Proof. Because the additive functionals are uniformly admissible, we derive from Lemma 10
that condition (14) is verified with f n(t, x) =

nhr
T (x) and f (t, x) = ht

T (x). Condition (16) is
identical to condition (15) and therefore, according to Lemma 22,

sup
t∈[r,T ]

∣∣〈X t ,
nht

T

〉
−

〈
X t , ht

T

〉∣∣ → 0

in Pr,µ-probability.
Clearly, for every r -stopping time τ bounded by T and every bounded random variable M

Pr,µ
(
M

〈
Xτ ,

nhτT
〉)

→ Pr,µ
(
M

〈
Xτ , hτT

〉)
.

We have already established, in Section 3.2, that processes

t 7→ xn
t :=

〈
X t ,

nht
T

〉
are right continuous supermartingales of class (D) whose compensators are the liftings K n(ds)
of the additive functionals kn(ds). In fact, since the additive functionals kn(ds) are uniformly
admissible, their characteristics nhr

T (x) are uniformly bounded, so the processes t 7→ xn
t belong

uniformly to class (D).
It suffices only to appeal to Theorem A.2 to obtain the desired result. �

Corollary 25. Under the hypotheses of Corollary 23, if KΦ(vn) dkn
(ds) is the lifting of

Φ(s, ξs, v
n
s,T (g)(ξs))kn(ds), where g ∈ L, then, for every r-stopping time τ ≤ T ,

KΦ(vn) dkn
(r, τ ] converges to KΦ(v) dk(r, τ ] in L1(Pr,µ).

Proof. Clearly, vn
r,T (g)(x) − πr,x g(ξt ) converges to vr,T (g)(x) − πr,x g(ξt ) for every r, x . That

is, if

n h̃r
T (x) := πr,x

∫ T

r
Φ(s, ξs, v

n
s,ξs
(g)(ξs))k

n(ds)

h̃r
T (x) := πr,x

∫ T

r
Φ(s, ξs, vs,ξs (g)(ξs))k(ds)
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then
n h̃r

T (x) → h̃r
T (x)

for every (r, x) ∈ [0, T ] × E . Moreover, the additive functionals

Φ(s, ξs, v
n
s,ξs
(g)(ξs))k

n(ds)

are uniformly admissible. An appeal to Proposition 24 completes the proof. �

4. The full martingale problem: Uniqueness of the solution

We now prove the uniqueness of the solution to the full martingale problem. Assume for now
on that (X t ,=, Pr,µ) is a solution to the full martingale problem. Our first goal, in this section, is
to “extend” the martingales (6) to the case where ϕ is a time dependent function.

4.1. Extension of the martingale problem to time dependent functions

Lemma 26. Let X = (X t ,=, Pr,µ) be a solution to the full martingale problem for (ξ,Φ, k) and
let ψ be smooth for A. Then

t 7→ exp(−〈X t , ψt 〉)+

∫ t

r
exp(−〈Xs, ψs〉)

〈
Xs,Aψs +

∂

∂s
ψs

〉
ds

−

∫ t

r
exp(−〈Xs, ψs〉)K

Φ(ψ) dk(ds) (17)

is a Pr,µ-martingale, where KΦ(ψ) dk(ds) is the lifting of Φ(ξs, ψs)k(ds).

Proof. The proof is a generalization of Lemma 8 in [9] (see also [10, Lemma 4.3.4]). First, for a
measurable function f (s, x), let us define (when the expressions makes sense)

u f (s, X t ) := exp(−〈X t , f (s, .)〉)

v f (s, X t ) := exp(−〈X t , f (s, .)〉)

〈
X t ,

∂

∂s
f (s, .)

〉
w f (s, X t ) := exp(−〈X t , f (s, .)〉)〈X t ,A f (s, .)〉.

Let ψ be smooth for A. Then we have

uψ (t2, X t2)− uψ (t1, X t2) = −

∫ t2

t1
vψ (s, X t2) ds

and

P
=

r
t1

r,µ [uψ (t1, X t2)− uψ (t1, X t1)] = −P
=

r
t1

r,µ

[∫ t2

t1
wψ (t1, Xs) ds

]
− P

=
r
t1

r,µ

[∫ t2

t1
uψ (t1, Xs)K

Φ(ψt1 ) dk(ds)

]
. (18)

Therefore, if Λn is a partition of [t1, t2] with mesh{Λn
} → 0 and ψn and Xn are defined by

ψn(s, x) :=

n∑
i=1

ψ(tn
i , x)1[tn

i ,t
n
i+1)
(s)
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Xn(s) :=

n∑
i=1

X tn
i+1

1[tn
i ,t

n
i+1)
(s)

then, clearly,

n−1∑
i=1

1[tn
i ,t

n
i+1)
(s)K

Φ(ξs ,ψtni
(ξs )) dk

(ds) = KΦ(ξs ,ψ
n
s (ξs )) dk(ds)

(where K η(s,ξs ) dk(ds) denotes here the lifting of η(s, ξs)k(ds)) and we get (by summing the
expressions in (18)) that

P
=

r
t1

r,µ [uψ (t2, X t2)− uψ (t1, X t1)] = −P
=

r
t1

r,µ

[∫ t2

t1
vψ (s, Xn

s ) ds

]
− P

=
r
t1

r,µ

[∫ t2

t1
wψn (s, Xs) ds

]
+ P

=
r
t1

r,µ

[∫ t2

t1
uψn (s, Xs)K

Φ(ψn) dk(ds)

]
. (19)

We want to show that

lim
n→∞

P
=

r
t1

r,µ

[∫ t2

t1
vψ (s, Xn

s ) ds

]
= P

=
r
t1

r,µ

[∫ t2

t1
vψ (s, Xs) ds

]
lim

n→∞
P

=
r
t1

r,µ

[∫ t2

t1
wψn (s, Xs) ds

]
= P

=
r
t1

r,µ

[∫ t2

t1
wψ (s, Xs) ds

]
lim

n→∞
P

=
r
t1

r,µ

[∫ t2

t1
uψn (s, Xs)K

Φ(ψn) dk(ds)

]
= P

=
r
t1

r,µ

[∫ t2

t1
uψ (s, Xs)K

Φ(ψ) dk(ds)

] (20)

which would complete the proof of the lemma.

(1◦) Let us first show that the first two limits of (20) are verified. From Lebesgue’s theorem, it
suffices to prove that for a fixed s ≥ t1, we have that Pr,µ-almost surely〈

Xn
s , ψs

〉
→ 〈Xs, ψs〉,〈

Xs, ψ
n
s

〉
→ 〈Xs, ψs〉,〈

Xs,Aψn
s

〉
→ 〈Xs,Aψs〉,〈

Xn
s ,
∂

∂s
ψs

〉
→

〈
Xs,

∂

∂s
ψs

〉
.

Only the last convergence is not straightforward. Let Q+ denote the set of nonnegative rational
numbers. Since ψs+h−ψs

h ∈ D(A), the processes

t 7→

〈
X t ,

ψs+h − ψs

h

〉
, where s, h ∈ Q+

are Pr,µ-indistinguishable from right continuous processes. But since 〈X t , 1〉 is a càdlàg process,

sup
r≤t≤T

〈X t (ω), 1〉 < ∞,

for every ω ∈ Ω . Using the facts that ψs+h−ψs
h →

∂
∂sψs uniformly in x , we obtain that

Pr,µ-almost surely, the mappings
{
t 7→

〈
X t ,

∂
∂sψs

〉}
s∈Q+

are uniform limits of right continuous
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mappings. They are therefore also right continuous. Because the function ∂
∂sψs is strongly

continuous and bounded, it is easy to derive that (t, s) 7→
〈
X t ,

∂
∂sψs

〉
is jointly right continuous,

Pr,µ-almost surely. Hence,
〈
Xn

s ,
∂
∂sψs

〉
→

〈
Xs,

∂
∂sψs

〉
, Pr,µ-almost surely, as wanted.

(2◦) We now show that the third limit of (20) holds. Note that, for every ω, s 7→
〈
Xs, ψ

n
s

〉
(ω)

converges uniformly (in s ∈ [r, T ]) to s 7→ 〈Xs, ψs〉 (ω). According to Proposition 24,
KΦ(ψn) dk(r, τ ] converges to KΦ(ψ) dk(r, τ ] in L1(Pr,µ) for every r -stopping time τ ≤ T . With
Lemma 9, it is also possible to suppose (perhaps by taking a subsequence) that KΦ(ψn) dk(ds)
converges weakly to KΦ(ψ) dk(ds). This yields (17) as wanted. �

4.2. Proof of uniqueness for the full martingale problem

We are now ready to show that the solution to the full martingale problem for (ξ,Φ, k) is
unique, as stated in Theorem 7.

Step (1) According to Lemma 14, we can choose a uniformly admissible sequence of additive
functionals kn(ds) = λn(s, ξs) ds such that if vn (resp. v) is the log-Laplace of the (ξ,Φ, kn)-
superprocess (resp. (ξ,Φ, k)-superprocess) then for every nonnegative ϕ ∈ D(A)

(i) vn
r,T (ϕ)(x) converges to vr,T (ϕ)(x) for every r, x ;

(ii) vn
r,T (ϕ)(x) is smooth for A;

(iii) for every r, x and every r -stopping time τ ≤ T , kn(r, τ ] converges in L1(πr,x ) to k(r, τ ].

Fix a nonnegative ϕ ∈ D(A). Let us define

K n
1 (ds) :=

〈
Xs,Φ(., vn

s,T (ϕ))λ
n(s, .)

〉
ds

K n
2 (ds) := KΦ(vn

.,T (ϕ)) dk
(ds).

Note that K n
1 (ds) is the lifting of Φ(ξs, v

n
s,T (ϕ))λ

n(s, ξs) ds. According to Proposition 24 and
Corollary 25 we have that

(A) For every r -stopping time τ ≤ T , both random variables K n
1 (r, τ ] and K n

2 (r, τ ] converge to
KΦ(v.,T (ϕ)) dk(r, τ ] in L1(Pr,µ,).

Invoking Lemma 9 we are also allowed to assume (by mean of taking a subsequence) that a.s.

(B) K n
1 (ds) and K n

2 (ds) converges weakly to KΦ(v.,T (ϕ)) dk(ds).

Moreover, from Corollary 23, it is also possible to suppose (by means of taking a subsequence)
that

(C) s 7→ 〈Xs, v
n
s,T (ϕ)〉 converges uniformly in s ∈ [r, T ] to s 7→ 〈Xs, vs,T (ϕ)〉.

Step (2) According to Lemma 26,

t 7→ exp
(
−

〈
X t , v

n
t,T (ϕ)

〉)
+

∫ t

r
exp

(
−

〈
Xs, v

n
s,T (ϕ)

〉) 〈
Xs,Avn

s,T (ϕ)+
∂

∂s
vn

s,T (ϕ)

〉
ds

−

∫ t

r
exp

(
−

〈
Xs, v

n
s,T (ϕ)

〉)
KΦ(vn

.,T (ϕ)) dk
(ds)

is a martingale. Putting xn
t =

〈
X t , v

n
t,T (ϕ)

〉
, the equality

Avn
s,T (ϕ)+

∂

∂s
vn

s,T (ϕ) = Φ(., vn
s,T (ϕ))λ

n(s, .)
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gives

e−xn
t = Mn

t (ϕ)+

∫ t

r
e−xn

s K n
1 (ds)−

∫ t

r
e−xn

s K n
2 (ds) (21)

where t 7→ Mn
t (ϕ) is a Pr,µ martingale.

Clearly e−xn
t → e−xt pointwise and in L1(Pr,µ) where xt is defined by xt := 〈X t , vt,T (ϕ)〉

and v is the log-Laplace functional of the superprocess (ξ,Φ, k).
From (A), (B) and (C) we get that∫ t

r
e−xn

s K n
1 (ds)−

∫ t

r
e−xn

s K n
2 (ds) → 0 (22)

where the convergence holds in L1(Pr,µ).
That forces Mn

t (ϕ) to converge in L1(Pr,µ) to a limit Mt (ϕ) which has to be a martingale, and
we get

Pr,µ(e−xT ) = Pr,µ(e−xr ),

which is precisely

Pr,µ(exp(−〈XT , ϕ〉)) = exp(−〈µ, vr,T (ϕ)〉). (23)

Since T is arbitrary and since pD(A) is uniformly dense in the set of strictly positive members
of Ĉ(E), it clearly follows from (23) that X is the superprocess with parameters (ξ,Φ, k). �

5. Application to superprocesses with interactions

We now introduce a Dawson–Girsanov transformation (cf. [1] and [2, Theorem 7.2.2]) for
(ξ,Ψ , k)-superprocesses, where Ψ(s, x, λ) = λ2.

It follows from [7] (see indeed [15, Remark 1.1]), that there exists a continuous version of the
(ξ,Ψ , k)-superprocess.

Notation 27. Fix r ≥ 0 and µ ∈ Mf

(1) Let X = (X t ,=, P(ξ,Ψ ,k)
r,µ ) denote the canonical superprocess with parameter (ξ,Ψ , k)

realized on C[r,∞)(Mf), the subspace of D[r,∞)(Mf) consisting of continuous trajectories.

(2) Let Q̂(ξ,Ψ ,k)( f g)(ds) denote, for f, g ∈ pbB, the lifting of the additive functional
1
2 bs(ξs) f (ξs)g(ξs)k(ds). It follows from Itô’s formula that, for every ϕ ∈ D(A), the

P(ξ,Ψ ,k)
r,µ -martingale

t 7→ Mt (ϕ) := 〈X t , ϕ〉 − 〈Xr , ϕ〉 −

∫ t

r
〈Xs,Aϕ〉 ds

is square integrable with quadratic variation

2Q̂(ξ,Ψ ,k)(ϕ2)(ds).

One easily checks that

〈M( f ),M(g)〉(ds) = 2Q̂(ξ,Ψ ,k)( f g)(ds). (24)
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(3) Let M (ξ,Ψ ,k) denote the martingale measure extending the martingales Mt (ϕ). It is an
orthogonal martingale measure with intensity

ν((r, t] × A) =

∫ t

r
2Q̂(ξ,Ψ ,k)(1A)(ds).

We denote by Q(ξ,Ψ ,k)(ds, dx, dy) the covariance functional of M (ξ,Ψ ,k). It is clear from
(24) that

Q(ξ,Ψ ,k)(ds, f, g) = 2Q̂(ξ,Ψ ,k)( f g)(ds)

for every f, g ∈ pbB.
(4) For any g : M1 → C(E) bounded and measurable, and M(ds, dy) an orthogonal martingale

measure with covariance functional Q(ds, dx, dy) we set

Z M
g (t) =

∫ t

r

∫
E

g(Xs, y)M(ds, dy)

Z Q
g (t) =

1
2

∫ t

r

∫
E

∫
E

g(Xs, x)g(Xs, y)Q(ds, dx, dy)

Z M,Q
g (t) = exp

{
Z M

g (t)− Z Q
g (t)

}
.

(5) Let % denote a bounded and measurable mapping from M1 to C(E).
(6) Define R(ds, dx) =

∫
%(Xs, y)Q(ξ,Ψ ,k)(ds, dx, dy).

In addition to the Assumptions 1 and the notation above, we now require that3:

Assumption 28. Assume that for every θ > 0, and every t ≥ r ,

P(ξ,Ψ ,k)
r,µ

(
eθQ(ξ,Ψ ,k)((r,t],E,E)

)
= P(ξ,Ψ ,k)

r,µ

(
e2θ Q̂(ξ,Ψ ,k)(1)(r,t]

)
< ∞.

Theorem 29 ((ξ, (.)2, k,R)-Superprocess with Interactions). There exists one and only one
distribution P(ξ,Ψ ,k,R )

r,µ on C[r,∞)(Mf) such that for every ϕ ∈ D(A),

t 7→ MR
t (ϕ) := 〈X t , ϕ〉 − 〈Xr , ϕ〉 −

∫ t

r
〈Xs,Aϕ〉 ds −

∫ t

r

∫
ϕ(x)R(ds, dx)

is a continuous local martingale with increasing process∫ t

r

∫ ∫
ϕ(y)ϕ(x)Q(ξ,Ψ ,k)(ds, dx, dy),

and such that t 7→ Z MR,Q(ξ,Ψ ,k)

−% (t) is a martingale, where MR is the martingale measure coming

from the martingales t 7→ MR
t (ϕ).

Proof. The proof is identical to the proof in [2, Theorem 7.2.2]. In Dawson’s argument, one
should only replace (1◦) Q(Xs, dx, dy) ds by Q(ds, dx, dy); (2◦) r by %; (3◦) R(Xs, dx) ds by
R(ds, dx). �

3 This condition can be compared to a condition in [6] which asserts that for every t > 0 and every θ > 0,
supr<t supx πr,x eθk(r,t) < ∞.
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Appendix A

Theorem A.1. Let X = (X t ,=, Pr,µ) be the superprocess with parameters (ξ,Φ, k). Then X is
a Hunt process, the lifting of every predictable additive functional with finite characteristic exists
and the lifting of `(ξs, du)k(ds) is the modified Lévy measure L(ds, dµ) of X. In particular for
every bounded measurable real valued function f we have

Pr,µ

∫ t

r

∫
Mf

f (〈µ, ϕ〉)L(ds, dµ) = πr,µ

∫ t

r

∫
∞

0
f (uϕ(ξs))`(ξs, du)k(ds). (25)

The following moment formulae are satisfied:

(i) Pr,µ〈X t , f 〉 = πr,µ f (ξt )

(ii)

Pr,µ〈X t , f1〉〈X t , f2〉 = πr,µ f1(ξt )πr,µ f2(ξt )

+πr,µ

∫ t

r
πs,ξs f1(ξt )πs,ξs f2(ξt )k

(2)(ds)

where k(2)(ds) =
(
b(ξs)+

∫
∞

0 u2`(ξs, du)
)

k(ds).

Proof. The E-valued process ξ is a Hunt process. Therefore the superprocess X is also a
Hunt process (see [15, Theorem 6.32]). The existence and uniqueness of liftings is due to [8]
(see [7, p. 83]). The fact that the modified Lévy measure L(ds, dµ) is the lifting of `(ds, dµ) :=

`(ξs, du)k(ds) is also due to [8] (See [7, Theorem 6.1.1 and Section 6.8.1]). The formula (25)
follows from the definition of the lifting of a measure valued additive functional, see [7, Equation
6.2.13a]. The moment formulae were established in [6, p. 1163]. �

Theorem A.2. Let xn , n = 1, . . . ,∞ be right continuous supermartingales and An , n =

1, . . . ,∞ their compensators. Assume the xn belong uniformly to the class (D). Assume also
that for every stopping time τ , xn

τ converges weakly in L1 to x∞
τ and that sup0≤s≤T |xn

s − xs |

converges to zero in probability. Then for every stopping time τ , An
τ converges to A∞

τ in L1.

Proof. See [5, VII.19 and 20]. �

Theorem A.3. Consider branching functionals k1, . . . , k∞
= k, being uniformly of bounded

characteristic. Suppose that for every starting point (r, x) ∈ [0, T ] × E and every r-stopping
time σ ≤ T we know that kn(r, σ ] converges to k(r, σ ] in L1(πr,x ) as n → ∞. Then the related
log-Laplace functionals converge:

vn
r,t ( f )(x)→

n
vr,t ( f )(x), 0 ≤ r ≤ t ≤ T, x ∈ E, f ∈ pbB.

Proof. See [4, Theorem 23]. �

Definition A.4. We say that a mapping Γ (s, x, λ) is locally in λ strongly continuous if for every
s ≥ 0 and every Λ ≥ 0

lim
t→s

sup
x∈E,0≤λ≤Λ

|Γ (s, x, λ)− Γ (t, x, λ)| = 0.
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Theorem A.5. Let (ξ,F, πr,x ) be a time homogeneous right process with value in a metrizable
Luzin space (E, E). Let St denote the semigroup of ξ and let L ⊆ bE denote the set of functions
f ∈ bE such that St ( f )(x) is strongly continuous. Let (A,D(A)) be the (strong) generator of S.
Let Φ(s, x, λ) be a nonnegative mapping such that Φ(s, x, ϕ(x)) ∈ L for every ϕ ∈ D(A) and
such that for each Λ, T ∈ R+,

‖Φ′
s‖∞ ∨ ‖Φ′′

s ‖∞ ∨ ‖Φ′
λ‖∞ ∨ ‖Φ′′

λ‖∞ =: M(Λ, T ) =: M < ∞

where the supremum is taken over the triples (s, x, λ) such that 0 ≤ s ≤ T, x ∈ E, 0 ≤ λ ≤ Λ.
Assume that Φ and its derivatives are locally in λ strongly continuous. Then for each ϕ ∈ D(A),
there exists a unique solution v to the equation

vt,T (ϕ)(x) = ST −tϕ(x)−

∫ T

t
Sr−t [Φ(r, vr,T (ϕ))](x) dr.

v satisfies the properties

(1) vt,T (ϕ)(x) belongs to D(A) for every t;
(2) ∂

∂t vt,T (ϕ)(x) exists and∥∥∥∥vt+h,T (ϕ)(.)− vt,T (ϕ)(.)

h
−
∂

∂t
vt,T (ϕ)(.)

∥∥∥∥
∞

→ 0;

(3) vt,T (ϕ),
∂
∂t vt,T (ϕ) and Avt,T (ϕ) are bounded and strongly continuous.

Moreover
∂

∂t
vt,T (ϕ)(x)+ Avt,T (ϕ)(x) = Φ(t, x, vt,T (ϕ)(x)).

Proof. See [14, Theorem 2]. �
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