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Abstract

The asymptotic behavior of a subcritical Branching Process in Random Environment (BPRE) starting
with several particles depends on whether the BPRE is strongly subcritical (SS), intermediate subcritical
(IS) or weakly subcritical (WS). In the (SS+ IS) case, the asymptotic probability of survival is proportional
to the initial number of particles, and conditionally on the survival of the population, only one initial particle
survives a.s. These two properties do not hold in the (WS) case and different asymptotics are established,
which require new results on random walks with negative drift. We provide an interpretation of these results
by characterizing the sequence of environments selected when we condition on the survival of particles. This
also raises the problem of the dependence of the Yaglom quasistationary distributions on the initial number
of particles and the asymptotic behavior of the Q-process associated with a subcritical BPRE.
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MSC: 60J80; 60J85; 60K37

Keywords: Branching process in random environment (BPRE); Yaglom distribution; Q-process; Random walk with
negative drift

1. Introduction

Let f be the generating function of a random probability measure on N and ( fn)n∈N a
sequence of iid copies of f which serve as a random environment. We consider a Branching
Process in Random Environment (BPRE) (Zn)n∈N induced by ( fn)n∈N [1–5]. This means that
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conditionally on the environment ( fn)n∈N, particles at generation n reproduce independently of
each other and their offsprings have generating function fn .

We can think of a population of plants which have a one year life-cycle. Each year the weather
conditions (the environment) vary, which impacts the reproductive success of the plant. Given
the climate, all the plants reproduce according to the same mechanism.

Then Zn is the number of particles at generation n and Zn+1 is the sum of Zn independent
random variables with generating function fn . That is, for every n ∈ N,

E
(

s Zn+1 |Z0, . . . , Zn; f0, . . . , fn

)
= fn(s)

Zn (0 ≤ s ≤ 1).

In the whole paper, we denote by Pk the probability associated with k initial particles and
Fn := f0 ◦ · · · ◦ fn−1. Then, we have for every k ∈ N,

Ek(s
Zn+1 | f0, . . . , fn) = Fn+1(s)

k (0 ≤ s ≤ 1).

When the environment is deterministic (i.e. f is a deterministic generating function), this
process is the Galton–Watson process (GW) and f is the generating function of the reproduction
law.

In this paper, we consider the subcritical case:

E
(
log( f ′(1))

)
< 0.

Then extinction occurs a.s., that is

P(∃n ∈ N : Zn = 0) = 1.

For a subcritical GW process, if further E(Z1 log+(Z1)) < ∞, then there exists c > 0 such
that P(Zn > 0) ∼ c f ′(1)n when n tends to infinity [6]. In random environments, the asymptotic
behavior depends on whether the BPRE is strongly subcritical (SS), intermediate subcritical (IS)
or weakly subcritical (WS) (see [4] or the Preliminaries Section for details). A subcritical GW
process is always strongly subcritical (SS).

In this paper, we study the role of the initial number of particles in such limit theorems. For
a GW process, particles are independent. As a consequence, limit theorems starting with several
initial particles derive from those for a single initial particle. In random environment, particles
do not reproduce independently. Independence holds only conditionally on the environment and
asymptotics may differ from the GW case.

First, we determine the dependence of the asymptotic survival probability in terms of the
initial number of particles. In that view, we define

αk := lim
n→∞

Pk(Zn > 0)/P1(Zn > 0).

For a GW process, αk = k and the asymptotic survival probability is proportional to the initial
number of particles. This equality still holds in the (SS+ IS) case for BPRE, but not in the (WS)
case where a different asymptotic behavior as k →∞ is established. For the proof, we need an
asymptotic result on random walks with negative drift, which gives the sum of the logarithms of
the mean number of offsprings for the successive environments. We refer to [7] for asymptotics of
the extinction probability when the number of initial particles tends to infinity in the supercritical
case.

Moreover, when the BPRE is (SS) or (IS), if we condition on the survival of the population at
generation n, then only one initial particle survives at generation n when n → ∞, just as for a
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GW process. But this does not hold in the (WS) case, as stated in Section 3.2. Thus, (WS) BPRE
conditioned to survive has a supercritical behavior, as previously observed in [2].

In Section 3.3, we give an interpretation of these results in terms of environments.
Conditioning on non-extinction induces a selection of environments with high reproduction
law. In the (SS + IS) case, we prove that the survival probability of the branching process in
the selected environments is still zero. This is obvious if environments are a.s. subcritical, i.e.
f ′(1) < 1a.s. But in the (WS) case, conditioning on the survival of the population selects only
supercritical environments, which means that the sequence of selected environments has a.s. a
positive survival probability. Finally letting the initial number of particles tend to infinity, the
sequence of environments selected by conditioning on the survival of the population becomes
subcritical again.

Finally, in Section 3.4, we consider the size of the population conditioned to survive and we
are interested in the characterization of the Yaglom quasistationary distributions starting from k
particles:

lim
n→∞

Pk(Zn = i | Zn > 0) (i ≥ 1).

In Section 3.5, we focus on the Q-process associated to the subcritical BPRE, which is defined
for all l1, l2, . . . , ln ∈ N, by

Pk(Y1 = l1, . . . , Yn = ln) = lim
p→∞

Pk(Z1 = l1, . . . , Zn = ln | Zn+p > 0).

See [6] for details on the Q-process associated to GW. Again, these results depend on the
subcritical regime.

2. Preliminaries

We start by recalling some known results for subcritical BPRE. Note that s ∈ R+ 7→
E( f ′(1)s) is a convex function and define γ and α in [0, 1] such that

γ := inf
θ∈[0,1]

{
E
(

f ′(1)θ
)}
= E

(
f ′(1)α

)
. (1)

From now on, we assume E( f ′(1)| log( f ′(1))|) <∞. Note that 0 < γ < 1, γ ≤ E( f ′(1)), and

γ = E( f ′(1))⇔ E
(

f ′(1) log( f ′(1))
)
≤ 0.

There are three subcritical regimes (see [4]).

? The strongly subcritical case (SS), where E( f ′(1) log( f ′(1))) < 0. In this case, assuming
further

E(Z1 log+(Z1)) <∞,

then there exist c, αk > 0 such that, as n→∞:

Pk(Zn > 0) ∼ cαkE( f ′(1))n, α1 = 1. (2)

? The intermediate subcritical case (IS), where E( f ′(1) log( f ′(1))) = 0. In this case, assuming
further

E
(

f ′(1) log2( f ′(1))
)
<∞, E

(
[1+ log−( f ′(1))] f ′′(1)

)
<∞,
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then there exist c, αk > 0 such that as n→∞:

Pk(Zn > 0) ∼ cαkn−1/2E( f ′(1))n, α1 = 1. (3)

? The weakly subcritical case (WS), where 0 < E( f ′(1) log( f ′(1))) < ∞. In this case,
assuming further

E( f ′′(1)/ f ′(1)1−α) <∞, E( f ′′(1)/ f ′(1)2−α) <∞,

then there exist c, αk > 0 such that as n→∞:

Pk(Zn > 0) ∼ cαkn−3/2γ n, α1 = 1. (4)

In the rest of the paper, we take the integrability assumptions above for granted for each case.
See [8] for asymptotics with a weaker hypothesis in the (IS) case.

It is also known that the process Zn starting from k particles and conditioned to be non-zero
converges to a finite positive random variable Υk , called the Yaglom quasistationary distribution
(see [4]):

Ek

(
s Zn |Zn > 0

)
n→∞
−→ E

(
sΥk

)
.

See Section 3.3 for discussions about (Υk)k∈N.
Actually, in [4], the result and the proof of the convergence are given for k = 1. It can be

generalized to k ≥ 1 with the following modifications. We borrow notations from [4]

fk,l :=

 fk ◦ fk+1 ◦ · · · ◦ fl−1, k < l
fk−1 ◦ fk−2 ◦ · · · ◦ fl , k > l
id, k = l.

Then 1 − Ek(s Zn |Zn > 0) = E(1 − f k
0,n(s))/Pk(Zn > 0). Lemma 2.1 of [4] still holds

replacing f0,n by f k
0,n and P(Zn > 0) by Pk(Zn > 0). Lemma 2.2 also still holds and

results of Lemma 2.3 can now be stated as follows. By convexity of x ∈ [0, 1] → xk and
( fn)n∈N, for every n ≥ 0, we have a.s. exp(−Si )(1 − fi,0(s)k) ≤ 1 (0 ≤ s ≤ 1), where
Si = log(k) + log( f ′0(1)) + · · · + log( f ′n−1(1)). Moreover exp(−Sn)(1 − fn,0(s)k) converges
a.s. as n→∞, which is a direct consequence of the convergence for k = 1 given in Lemma 2.3
in [4] (noting also that this implies fn,0(s)→ 0 a.s. as n→∞).

Finally, we consider the case where the generating functions of the reproduction laws are
a.s. linear fractional. Indeed in this case the survival probability in a given environment can
be computed explicitly since linear fractional generating functions are stable by composition.
Specifically, we suppose that

f (s) = 1−
A

1− B
+

As

1− Bs
a.s. (0 ≤ s ≤ 1), (5)

where A, B are two r.v. such that A ∈ [0, 1], B ∈ [0, 1) and A + B ≤ 1. In this case, setting for
every i ∈ N,

Pi := f ′n−i (1) . . . f ′n−1(1), (P0 = 1),

we have (see [9,10] or [11])

P1(Zn > 0 | f0, . . . , fn−1) = 1− Fn(0) =

(
1+

n−1∑
i=0

f ′′n−i−1(1)

2 f ′n−i−1(1)
Pi

)−1

Pn . (6)
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Let us label by i ∈ N the initial particles and denote by Z (i)n the number of descendants of particle
i at generation n. As conditionally on ( f0, . . . , fn−1), (Z (i)n , i ≥ 1) is an iid sequence, we get

Pk(Z
(1)
n > 0, . . . , Z (k)n > 0 | f0, . . . , fn−1) =

(
1+

n−1∑
i=0

f ′′n−i−1(1)

2 f ′n−i−1(1)
Pi

)−k

Pk
n . (7)

We can get now lower bounds for survival probabilities of a general BPRE by a coupling
argument. We use the fact that for every probability generating function fi , we can find a linear
fractional probability generating function f̃i such that for every s ∈ [0, 1], f̃i (s) ≥ fi (s),
f̃ ′i (1) = f ′i (1), f̃ ′′i (1) = 2 f ′′i (1) (see [10] or [11]). Then, F̃n(0) ≥ Fn(0) a.s. ensures that

P1(Zn > 0 | f0, . . . , fn−1) ≥ P1(Z̃n > 0 | f̃0, . . . , f̃n−1) a.s. (8)

More generally, for every k ≥ 1,

Pk(Z
(1)
n > 0, Z (2)n > 0, . . . , Z (k)n > 0 | f0, . . . , fn−1)

= (1− Fn(0))k

≥ (1− F̃n(0))k

= Pk(Z̃
(1)
n > 0, Z̃ (2)n > 0, . . . , Z̃ (k)n > 0 | f̃0, . . . , f̃n−1) a.s. (9)

3. Subcriticality starting from several particles

We specify here the asymptotics of survival probabilities starting with k particles. Then we
determine how many initial particles survive conditionally on non-extinction of particles and we
characterize the sequence of environments which are selected by this conditioning. Finally we
consider the Yaglom quasistationary distributions of (Zn)n∈N and the associated Q-process. In
the (SS) case, the results are those expected, i.e. they are analogous to those of a GW process. In
the (IS) case, results are different for the Yaglom quasistationary distribution and the Q-process.
In the (WS) case, all results are different.

Recall that we label by i ∈ N each particle of the initial population and denote by Z (i)n the
number of descendants of particle i at generation n. Thus (Z (i)n )n∈N are identically distributed
BPRE (i ∈ N), with common distribution (Zn)n∈N starting with one particle. Conditionally on
the environments, these processes are independent: for all n, k, li ∈ N,

Pk(Z
(i)
n = li , 1 ≤ i ≤ k | f0, . . . , fn−1) =

k∏
i=1

P1(Zn = li | f0, . . . , fn−1).

Moreover, under Pk , (Zn)n∈N is a.s. equal to
(∑k

i=1 Z (i)n

)
n∈N

.

3.1. Survival probabilities starting with several particles

Note that x 7→ E
(

f ′(1)x log( f ′(1))
)

increases with x .

Proposition 1. For every k ∈ N∗,
(i) If E

(
f ′(1)k log( f ′(1))

)
< 0, then there exists ck > 0 such that

Pk(Z
(1)
n > 0, Z (2)n > 0, . . . , Z (k)n > 0)

n→∞
∼ ckE( f ′(1)k)n

and E( f ′(1)k) < E( f ′(1)k−1) < · · · < E( f ′(1)).
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(ii) If E
(

f ′(1)k log( f ′(1))
)
= 0, then there exists ck > 0 such that

Pk(Z
(1)
n > 0, Z (2)n > 0, . . . , Z (k)n > 0)

n→∞
∼ ckn−1/2E( f ′(1)k)n .

(iii) If E
(

f ′(1)k log( f ′(1))
)
> 0, then there exists ck > 0 such that

Pk(Z
(1)
n > 0, Z (2)n > 0, . . . , Z (k)n > 0)

n→∞
∼ ckn−3/2γ̃ n,

with γ̃ = infu∈R+{E( f ′(1)u)} ∈ (0, 1) and c = c1 ≥ c2 ≥ · · · ≥ ck .
Moreover, in the (IS+WS) case, γ̃ = γ . In the (SS) case, γ̃ < γ = E( f ′(1)).

The proof is given in Section 4.1 and uses the case where the probability generating function
f is a.s. linear fractional.

In the (SS + IS) case, the asymptotic probability of survival of particles is proportional
to the number of initial particles, as stated below. This is not surprising and well known for
subcritical GW process. But this does not hold in the (WS) case. Recall that αk is defined as
limn→∞ Pk(Zn > 0)/P1(Zn > 0).

Theorem 2. In the (SS+ IS) case, for every k ∈ N, αk = k.
In the (WS) case, αk →∞ as k →∞ and there exists M+ > 0 such that

αk ≤ M+kα log(k), (k ≥ 2),

where α ∈ (0, 1) is given by (1).
Assuming further E( f ′(1)1/2 log( f ′(1))) > 0 (i.e. α < 1/2) and that f ′′(1)/ f ′(1) is bounded

by a constant, there exists M > 0 such that

αk ≥ M kα log(k), (k ∈ N).

One can naturally conjecture that the last result still holds for 1/2 ≤ α < 1. The proof also
uses the linear fractional case where, conditionally on the environments, the survival probability
is related to a random walk whose jumps are the log of the means of the reproduction law of
the environments. This is why we need to prove a result about random walk with negative drift
conditioned to be larger than −x < 0 (see the Appendix). One way to generalize the last result
of the theorem above to the case E( f ′(1)1/2 log( f ′(1))) > 0 (i.e. α < 1/2) would be to improve
Lemma 11.

3.2. Survival of initial particles conditionally on non-extinction

We turn our attention to the number of particles that survive when we condition on the survival
of the whole population of particles. More precisely, denote by Nn the number of particles in
generation 0 whose descendant is alive at generation n. That is, starting with k particles:

Nn := #{1 ≤ i ≤ k : Z (i)n > 0}.

We have the following elementary consequence of Proposition 1.

Proposition 3. In the (SS+ IS) case, for every k ≥ 1,

lim
n→∞

Pk(Nn > 1 | Zn > 0) = 0.

In the (WS) case, for every k ≥ 1,

lim
n→∞

Pk(Nn = k|Zn > 0) > 0.
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Thus, for (SS + IS) BPRE, conditionally on the survival of the population, only one initial
particle survives, as for GW. But for (WS) BPRE, several initial particles survive with positive
probability. The forthcoming Theorem 5 gives an interpretation of this property in terms of
selection of favorable environments by conditioning on non-extinction. This result has an
application to the branching model for cell division with parasite infection considered in [12]. In
particular it ensures that the separation of descendants of parasites (see section 6.3 in [12]) holds
only in the (SS + IS) case. In the same vein, we refer to [13] for results on the reduced process
associated with subcritical BPRE in the linear fractional case: In the (WS) case, the number of
particles of the reduced process is not a.s. equal to 1 in the first generations.

We next consider the situation when the number of initial particles tends to infinity in the
(WS) case. We shall see that the number of initial particles which survive conditionally on non-
extinction is finite a.s. but not bounded.

Theorem 4. In the (WS) case, assuming E( f ′(1)1/2 log( f ′(1))) > 0 (i.e. α < 1/2) and that
f ′′(1)/ f ′(1) is bounded by a constant, there exist Al↓l→∞0 such that for all k ≥ l ≥ 0,

lim sup
n→∞

Pk(Nn ≥ l | Zn > 0) ≤ Al .

Moreover, for every l ∈ N∗,

lim inf
k→∞

lim inf
n→∞

Pk(Nn = l | Zn > 0) > 0.

Thus, under the conditions of the theorem,

lim sup
k→∞

lim sup
n→∞

Pk(Nn ≥ l | Zn > 0) ≤ Al , with Al↓l→∞0.

3.3. Selection of environments conditionally on non-extinction

We characterize here the sequence of environments which are selected by conditioning on the
survival of particles.

We denote by F the set of generating functions and for every gn = (g0, . . . , gn−1) ∈ F n ,
by Zgn the value at generation n of the branching process in varying environment whose
reproduction law at generation l ≤ n − 1 has generating function gl . Thus, for every k ≥ 1,

Ek(s
Zgn ) = [g0 ◦ g1 ◦ · · · ◦ gn−1(s)]

k (0 ≤ s ≤ 1). (10)

Then we denote by p(gn) the survival probability of a particle in environment gn :

p(gn) := P1(Zgn > 0). (11)

Denote by fn the sequence of environments until time n, i.e.

fn := ( f0, f1, . . . , fn−1).

In the subcritical case, p(fn)→ 0 a.s. as n →∞ since (Zn)n∈N becomes extinct a.s. Roughly
speaking, the sequences of environments have a.s. zero survival probability. In the (SS+IS) case,
conditioning on the survival of particles does not change this fact, but it does in the (WS) case,
as we can guess using Proposition 3. Coming back to the model of plants in random weather,
the survival of flowers in the (SS + IS) case is due to the exceptional reproduction of plants
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(despite the weather), whereas in the (WS) case it is due to nice weather (and regular reproduction
of plants).

More precisely, we prove that in the (WS) case, the sequence of environments which are
selected by conditioning on Zn > 0 have a.s. a positive survival probability. Thus, they
are ‘supercritical’. In [2], the authors had already remarked this supercritical behavior of the
BPRE (Zn)n∈N in the (WS) case by giving an analog of the Kesten–Stigum theorem, i.e. the
convergence of Zn/mn .

Theorem 5. In the (SS+ IS) case, for all k ≥ 1, ε > 0,

lim
n→∞

Pk(p(fn) ≥ ε | Zn > 0) = 0.

In the (WS) case, for every k ≥ 1,

lim inf
n→∞

Pk(p(fn) ≥ ε | Zn > 0)
ε→0+
−→ 1.

This supercritical behavior in the (WS) case disappears as k tends to infinity. That is, the
survival probability of selected sequences of environments tends to 0 as the number of particles
grows to infinity.

Proposition 6. In the (WS) case, for every ε > 0,

lim sup
n→∞

Pk(p(fn) ≥ ε | Zn > 0)
k→∞
−→ 0.

In other words, conditionally on the survival of Zn , the more initial particles there are, the
less environments need to be favorable to allow the survival of the population, and the less likely
it is for a given particle to survive. This explains why letting the number of initial particles tend
to infinity does not make the number of surviving initial particles tend to infinity, as stated in
Theorem 4.

3.4. Yaglom quasistationary distributions

We focus now on the Yaglom quasistationary distribution of (Zn)n∈N (see Preliminaries for
existence and references). For the GW process, this distribution does not depend on the initial
number of particles and is characterized by a functional equation. This result still holds for (SS)
BPRE. Indeed, starting with several particles, conditionally on the survival of one given particle,
the others become extinct (see Proposition 3). Recalling that in the (SS+IS) case, γ = E( f ′(1)),
and writing p.g. f . for probability generating function, we have the following statement.

Theorem 7. For every k ≥ 1, the BPRE Zn starting from k and conditioned to be positive
converges in distribution as n→∞ to a r.v. Υk , whose p.g.f. Gk verifies

E(Gk( f (s))) = γGk(s)+ 1− γ (0 ≤ s ≤ 1).

In the (SS+ IS) case, the distribution of Υk does not depend on k.
Moreover, in the (SS) case, the common p.g.f. of (Υk : k ≥ 1) is the unique p.g.f. G which

satisfies the functional equation above and G ′(1) <∞.

In the (WS) case, we leave open the question of determining whether the quasistationary
distribution Υk depends on the initial number k of particles. We know that for every k ≥ 1, Gk
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verifies the same functional equation given above but we do not know if the solution is unique.
Moreover, other observations also lead us to believe that quasistationary distributions Υk might
not depend on k. For example, we can prove that if Z1 ∈ {0, 1, N } for some N ∈ N∗, then

Υ1
d
= ΥN .

3.5. Q-process associated with a BPRE

The Q-process (Yn)n∈N is the BPRE (Zn)n∈N conditioned to survive in the distant future.
See [6] for details in the case of GW processes. In the (SS) case, the Q-process converges in
distribution to the size biased Yaglom distribution, as for GW process and finer results have been
obtained in [14]. In the (IS+WS) case, the Q-process is transient. That is, the population needs
to grow largely in the first generations so that it can survive.

Recall that for all l1, l2, . . . , ln ∈ N,

Pk(Y1 = l1, . . . , Yn = ln) = lim
p→∞

Pk(Z1 = l1, . . . , Zn = ln|Zn+p > 0).

Proposition 8. ? In the (SS) case, for every k ∈ N∗, for all l1, l2, . . . , ln ∈ N,

Pk(Y1 = l1, . . . , Yn = ln) = [E( f ′(1))]−n ln
k

Pk(Z1 = l1, . . . , Zn = ln).

Moreover (Yn)n∈N converges in distribution to the size biased Yaglom distribution.

∀l ≥ 0, Pk(Yn = l)
n→∞
−→

lP(Υ = l)

E(Υ)
.

? In the (IS) case, for every k ∈ N∗, for all l1, l2, . . . , ln ∈ N,

Pk(Y1 = l1, . . . , Yn = ln) = E( f ′(1))−n ln
k

Pk(Z1 = l1, . . . , Zn = ln).

Moreover Yn →∞ in probability as n→∞.
? In the (WS) case, for every k ∈ N∗, for all l1, l2, . . . , ln ∈ N,

Pk(Y1 = l1, . . . , Yn = ln) = γ
−n αln

αk
Pk(Z1 = l1, . . . , Zn = ln).

Moreover Yn tends to infinity a.s.

We focus now on the environments of the Q-process. We endow F with distance d given by
the infinity norm

d( f, g) = ‖ f − g‖∞

and we denote by B(F) the Borel σ -field.
We introduce the probability νk on (FN,B(F)⊗N) which gives the distribution of the

environments when the BPRE (Zn)n∈N starting from k particles is conditioned to survive. Using
the Kolomogorov Theorem, it can be specified by its projection on (F p,B(F)⊗p) for every
p ∈ N, denoted by νk|F p ,

νk|F p (dgp) := lim
n→∞

Pk
(
fp ∈ dgp|Zn+p > 0

)
= γ−pP

(
fp ∈ dgp

) ∞∑
l=1

Pk(Zgp = l)
αl

αk
, (12)
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with fp = ( f0, . . . , f p−1) and γ = E( f ′(1)) in the (SS+ IS) case. The limit is the weak limit of
probabilities on (F p,B(F)⊗p) (see [15] for the definition and Section 4.5 for the proof), which
we endow with the distance dp given by

dp
(
(g0, . . . , gp−1), (h0, . . . , h p−1)

)
= sup{‖gi − hi‖∞ : 0 ≤ i ≤ p − 1}. (13)

For every g ∈ FN, we denote by g|n the first n coordinates of g ∈ FN and we introduce the
survival probability in environment g ∈ FN:

p(g) = lim
n→∞

P(Zg|n > 0).

One can naturally conjecture an analog of Theorem 5 and Proposition 6. That is, for every
k ∈ N∗,

In the (SS+ IS) case, νk({g ∈ FN : p(g) = 0}) = 1.

In the (WS) case, νk({g ∈ FN : p(g) > 0}) = 1 and νk(p(f) ∈ dx)
k→∞
H⇒ δ0(dx).

A perspective is to characterize the tree of particles when we condition on the survival of
particles, i.e. the tree of particles of the Q-process. Informally, for a GW process, this gives a
spine with finite iid subtrees (see [16,17]). This fact still holds in the (SS+ IS) case but we will
observe a ‘multispine tree’ in the (WS) case.

4. Proofs

Recall that fn = ( f0, . . . , fn−1) and set for every n ∈ N,

Xn := log( f ′n(1)), Sn :=

n−1∑
i=0

X i (S0 = 0),

Ln := min{Si : 1 ≤ i ≤ n}.

To get limit theorems starting from k particles, we will work conditionally on the environments
so that particles reproduce independently. Thus, we need to control the asymptotic distribution
of p(fn) = P1(Zn > 0 | fn). Roughly speaking, we prove now that p(fn) ≈ exp(Ln) a.s.
as n → ∞. The proof relies on the fact that in the fractional linear case, we can compute the
survival probability at time n as a function of the random walk (Si , 1 ≤ i ≤ n) (see Section 2).
We use then a result on random walk with negative drift conditioned to be above x < 0 given in
the Appendix to get the lower bound in the linear fractional case. The lower bound in the general
case follows by a coupling argument, whereas the upper bound is easy.

Lemma 9. For every n ∈ N, we have

p(fn) ≤ exp(Ln) a.s.

Moreover if E( f ′(1)1/2 log( f ′(1))) > 0 (i.e. 0 < α < 1/2) and f ′′(1)/ f ′(1) is bounded, then
there exists µ ≥ 1 such that for all n ∈ N and x ∈ (0, 1],

P(p(fn) ≥ x) ≥ P(Ln ≥ log(µx))/4.
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Proof. For the upper bound, note that all n ∈ N and gn ∈ F n , we have,

p(gn) = P1(Zgn > 0) ≤ E1(Zgn ) =

n−1∏
i=0

g′i (1).

Thus p(fn) ≤ eSn a.s. Adding that p(fn) decreases a.s. ensures that

p(fn) ≤ eLn a.s.

For the lower bound, use (8) and (6) to get

p(fn) ≥ p(f̃n) =
P̃n

1+
n−1∑
i=0

f̃ ′′n−i−1(1)

2 f̃ ′n−i−1(1)
P̃i

=
Pn

1+
n−1∑
i=0

f ′′n−i−1(1)
f ′n−i−1(1)

Pi

a.s.,

where Pi := f ′n−i (1) . . . f ′n−1(1) (P0 = 1). Define

S′i := log( f ′n−i (1))+ · · · + log( f ′n−1(1)) (1 ≤ i ≤ n), S′0 = 0.

Then Pi = exp(S′i ) and assuming that C :=
(

1+ ess sup( f ′′(1)
f ′(1) )

)−1
> 0, we have

p(fn) ≥ C
eS′n

2
n−1∑
i=0

eS′i

≥
C

2
eS′n−max{S′j :0≤ j≤n}

n∑
i=0

eS′i−max{S′j :0≤ j≤n}
a.s.

Thus,

p(fn) ≥
C

2
eLn

n∑
i=0

eLn−Si

. (14)

As α < 1/2, the forthcoming Corollary 12 in the Appendix ensures that there exists β > 0 such
that for all n ∈ N and x ∈ (0, 1],

P(p(fn) ≥ x) ≥ P(Ln ≥ log(2βx/C))P

(
n∑

i=0

eLn−Si ≤ β | Ln ≥ log(2βx/C)

)
≥ P(Ln ≥ log(µx))/4,

writing µ = min(1, 2β/C). �

4.1. Proofs of Section 3.1

First we give the proof of Proposition 1, which is split into three parts. It follows the proof of
Theorem 1.2 in [10]. Using also the lemma above, we are then able to prove Theorem 2.

Proof of Proposition 1(i). We follow the proof of Theorem 1.2(a) in [10] and introduce the
probability P̃ such that under P̃, the environments still are iid and their law is given by

P̃( f ∈ dg) = E( f ′(1)k)−1g′(1)kP( f ∈ dg).

Then, writing Pn = f ′0(1) . . . f ′n−1(1)(P0 = 1), we have

P(Z (1)n > 0, . . . , Z (k)n > 0) = E((1− Fn(0))k) = E( f ′(1)k)nẼ(((1− Fn(0))/Pn)
k).
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As E( f ′(1)k log( f ′(1))) < 0, then Ẽ(log( f ′(1))) < 0 and Theorem 5 in [3] ensures that

C = lim
n→∞

1− Fn(0)
Pn

exists P̃ a.s. and belongs to ]0, 1]. Thus, as n→∞,

Pk(Z
(1)
n > 0, . . . , Z (k)n > 0) ∼ E( f ′(1)k)nẼ(Ck).

Add that s 7→ E( f ′(1)s) decreases for s ∈ [0, α] and k < α to complete the proof, where α is
given by (1). �

Proof of Proposition 1(iii). We follow the proof of Theorem 1.2 (c) in [10].
Step 1. First we consider the linear fractional case. In that case, by (7),

Pk(Z
(1)
n > 0, . . . , Z (k)n > 0| f0, . . . , fn−1) =

(
1+

n−1∑
i=0

f ′′n−i−1(1)

2 f ′n−i−1(1)
Pi

)−k

Pk
n .

Define γ̃ by

γ̃ = inf
s∈R+

{
E
(

f ′(1)s
)}
= E

(
f ′(1)α̃

)
,

where 0 < α̃ < k since E( f ′(1)k log( f ′(1))) > 0. Let Pα̃ be the probability given by

Pα̃( f ∈ dg) = γ̃−1g′(1)α̃P( f ∈ dg).

Then

Pk(Z
(1)
n > 0, . . . , Z (k)n > 0) = γ̃ nEα̃

(1+
n−1∑
i=0

f ′′i (1)

2 f ′i (1)
Pi

)−k

Pk−α̃
n

 .
As Eα̃(log( f ′(1))) = 0, we apply Theorem 2.1 in [10] with

φ(x) = xk−α̃, ψ(x) = (1+ x)−k, 0 < k − α̃ < k,

so there exists ck > 0 such that, as n→∞,

Pk(Z
(1)
n > 0, . . . , Z (k)n > 0) ∼ ck γ̃

nn−3/2.

Step 2. For the general case, we can use Step 1. Indeed, by (9), there exists a BPRE (Z̃n)n∈N
such that f̃ is a.s. linear fractional, f̃ ′(1) = f ′(1) and

Pk(Z
(1)
n > 0, Z (2)n > 0, . . . , Z (k)n > 0) ≥ Pk(Z̃

(1)
n > 0, Z̃ (2)n > 0, . . . , Z̃ (k)n > 0).

By Step 1, this yields the existence of ck(1) > 0 such that

Pk(Z
(1)
n > 0, Z (2)n > 0, . . . , Z (k)n > 0) ≥ ck(1)γ nn−3/2. (15)

Note that by the inclusion–exclusion principle, we have

Pk(Zn > 0) =
k∑

i=1

(−1)i+1
(

k

i

)
P(Z (1)n > 0, . . . , Z (i)n > 0). (16)

Moreover, (4) ensures the convergence of γ−nn3/2P1(Zn > 0) to cα1. By induction, it gives the
convergence of
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γ−nn3/2P(Z (1)n > 0, Z (2)n > 0, . . . , Z (k)n > 0)

to a constant ck , which is positive by (15).
To complete the proof note that γ = γ̃ iff [E( f ′(1)s)]′(1) ≥ 0, i.e. in the (IS+WS) case. �

Proof of Proposition 1(ii). The proof is close to the previous one. First, we consider the linear
fractional case and the probability P̃ defined by

P̃( f ∈ dg) = E( f ′(1)k)−1g′(1)kP( f ∈ dg).

Using again (7), we get then

P(Z (1)n > 0, . . . , Z (k)n > 0) = E( f ′(1)k)nẼ

(1+
n−1∑
i=0

f ′′n−i−1(1)

2 f ′i−i−1(1)
Pi

)−k
 .

As Ẽ(log( f ′(1))) = 0, we can use again Theorem 2.1 in [10] and conclude in the linear fractional
case.

The general case can be proved following Step 2 in the previous proof. �

Proof of Theorem 2 (Computation of αk in the (SS + IS) case). In the (SS + IS) case,
Proposition 3 and (16) ensure that for every k ∈ N,

Pk(Zn > 0) ∼ kP1(Zn > 0), (n→∞).

Then, αk = k, which gives the first result.
Limit of αk in the (WS) case. Note that P1(Z p+n > 0) =

∑
∞

k=1 P1(Z p = k)Pk(Zn > 0).
Then,

P1(Z p+n > 0)

P1(Zn > 0)
=

∞∑
k=1

P1(Z p = k)
Pk(Zn > 0)
P1(Zn > 0)

. (17)

First, Pk(∪
k
i=1{Z

(i)
n > 0}) ≤

∑k
i=1 Pk(Z

(i)
n > 0), which gives

Pk(Zn > 0)/P1(Zn > 0) ≤ k.

Moreover
∑
∞

k=1 P1(Z p = k)k = E(Z p) < ∞ and Pk(Zn > 0)/P1(Zn > 0)
n→∞
−→ αk , so by

bounded convergence, we get

∞∑
k=1

P1(Z p = k)
Pk(Zn > 0)
P1(Zn > 0)

n→∞
−→

∞∑
k=1

P1(Z p = k)αk .

Then, using again (4), letting n→∞ in (17) yields

γ p
=

∞∑
k=1

P1(Z p = k)αk .

Assuming that (αk)k∈N is bounded by A leads to

γ p
≤ AP1(Z p > 0).

Letting p→∞ leads to a contradiction with (4). Adding that αk increases ensures that αk →∞

as k →∞.
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Upper bound of αk in the (WS) case. Using the independence of the particles conditionally
on the environments, we have

Pk(Zn > 0 | fn) = 1− P1(Zn = 0 | fn)
k
= 1− (1− p(fn))

k .

This yields the following expressions for the survival probability starting from k particles,

Pk(Zn > 0) = E(1− (1− p(fn))
k) = k

∫ 1

0
(1− x)k−1P(p(fn) ≥ x)dx . (18)

So we can write

αk = lim
n→∞

k
∫ 1

0
(1− x)k−1 P(p(fn) ≥ x)

P1(Zn > 0)
dx . (19)

Using the first inequality of Lemma 9, we have then

αk ≤ lim sup
n→∞

k
∫ 1

0
(1− x)k−1 P(exp(Ln) ≥ x)

P1(Zn > 0)
dx

≤ k. lim sup
n→∞

n−3/2γ n

P1(Zn > 0)
. lim sup

n→∞

∫ 1

0
(1− x)k−1 P(exp(Ln) ≥ x)

n−3/2γ n
.

By (26), we can use Fatou’s Lemma and (25) ensures that there exists a linearly growing function
u such that

αk ≤ k lim sup
n→∞

n−3/2γ n

P1(Zn > 0)
.

∫ 1

0
(1− x)k−1x−αu(log(1/x))dx .

Thus, using (4) and the fact that u is linearly growing, there exists a constant C > 0 such that

αk ≤ Ck
∫ 1

0
(1− x)k−1x−α[1+ log(1/x)]dx . (20)

Finally, splitting the integral at 1/k and using integration by parts,∫ 1

0
(1− x)k−1x−α log(1/x)dx ≤

∫ 1/k

0
x−α log(1/x)dx + kα log(k)

∫ 1

1/k
(1− x)k−1dx

≤ [−α + 1]−1
(

kα−1 log(k)+ [−α + 1]−1kα−1
)
+ kα−1 log(k).

Similarly
∫ 1

0 (1 − x)k−1x−αdx ≤ [1 − α]−1kα−1
+ kα−1. Then (20) ensures that there exists

M+ > 0 such that for every k > 0, αk ≤ M+kα log(k).
Lower bound of αk in the (WS) case assuming further E( f ′

1/2
(1) log( f ′(1))) > 0 (i.e.α <

1/2) and f ′′(1)/ f ′(1) is bounded.
By (4) and the second part of Lemma 9, there exists µ ≥ 1 such that for every x ∈ (0, 1],

lim inf
n→∞

P(p(fn) ≥ x)

P1(Zn > 0)
= lim inf

n→∞

γ nn−3/2

P1(Zn > 0)
P(p(fn) ≥ x)

γ nn−3/2

≥ c−1 lim inf
n→∞

P(Ln ≥ log(µx))

γ nn−3/2 .

Using (25) and the fact that u grows linearly, there exists D > 0 such that

lim inf
n→∞

P(p(fn) ≥ x)

P1(Zn > 0)
≥ Dx−α log(1/[xµ]).
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By (19) and Fatou’s Lemma,

αk ≥ D
∫ 1

0
(1− x)k−1x−α[log(1/x)+ log(1/µ)]dx .

For all k ≥ µ2 and x ∈ (0, 1/k], log(1/x) ≥ 2 log(µ). So for every k ≥ µ2,

αk ≥ 2−1 Dk
∫ 1/k

0
(1− x)k−1x−α log(1/x)dx

≥ 2−1 Dk log(k)
∫ 1/k

0
x−αdx,

which ensures that there exists M− such that for every k ≥ 1, αk ≥ M−kα log(k). �

4.2. Proofs of Section 3.2

Proof of Proposition 3. The first part (i.e. the (SS+ IS) case) follows from

Pk(∃i 6= j, 1 ≤ i, j ≤ k, Z (i)n > 0, Z ( j)
n > 0 | Zn > 0) ≤

(
k

2

)
P2(Z

(1)
n > 0, Z (2)n > 0)
Pk(Zn > 0)

,

the asymptotics given by Proposition 1(i-ii-iii) and Eqs. (2) and (3). The second part (i.e. the
(WS) case) is directly derived from Proposition 1(iii) and (4). �

Proof of Theorem 4. Denote by N (gn) the number of initial particles which survive until
generation n where the successive reproduction laws are given by gn (i.e. conditionally on
fn = gn). Then, for all 1 ≤ l ≤ k,

Pk(Nn = l) =
∫

F n
P(fn ∈ dgn)Pk(N (gn) = l)

=

∫ 1

0
P(p(fn) ∈ dx)

(
k

l

)
x l(1− x)k−l .

Note that x ∈ [0, 1] 7→ x l(1− x)k−l is positive, increases on [0, l/k] and decreases on [l/k, 1].
First, we prove the upper bound. By Lemma 9, p(fn) ≤ exp(Ln) a.s., so that∫ 1

0
P(p(fn) ∈ dx)x l(1− x)k−l

=

∫ 1

0
P(p(fn) ∈ dx, exp(Ln) ≤ l/k)x l(1− x)k−l

+

∫ 1

0
P(p(fn) ∈ dx, exp(Ln) > l/k)x l(1− x)k−l

≤

∫ 1

0
P(exp(Ln) ∈ dx)x l(1− x)k−l

+P(exp(Ln) ∈ (l/k, 1])(l/k)l(1− l/k)k−l .

By (25),

lim sup
n→∞

P(exp(Ln) ∈ (l/k, 1])

γ nn−3/2 ≤ u(log(k/ l))(k/ l)α.



V. Bansaye / Stochastic Processes and their Applications 119 (2009) 2436–2464 2451

Second, using again the variations of x ∈ [0, 1] 7→ x l(1− x)k−l and (26), we get

lim
n→∞

∫ 1

0

P(exp(Ln) ∈ dx)

n−3/2γ n
x l(1− x)k−l

≤

∫ l/k

0
ν+(dx)x l(1− x)k−l

+ ν+([l/k, 1])(l/k)l(1− l/k)k−l

≤ c+

∫ 1

0
log(1/x)x−α−1x l(1− x)k−ldx

+ c+

(
1+

∫ 1

l/k
log(1/x)x−α−1dx

)
(l/k)l(1− l/k)k−l

≤ c+

∫ 1

0
log(1/x)x−α−1x l(1− x)k−ldx

+ c+

(
1+ log(k/ l)

(k/ l)α − 1
α

)
(l/k)l(1− l/k)k−l .

Putting the last three inequalities together and using u(log(k/ l)) ≤ C(1+ log(k/ l)) for some
C > 0 ensure that there exists D > 0 such that

lim sup
n→∞

∫ 1

0

P(p(fn) ∈ dx)

n−3/2γ n
x l(1− x)k−l

≤ c+

∫ 1

0
log(1/x)x−α−1x l(1− x)k−ldx + D(1+ log(k/ l)(k/ l)α)(l/k)l(1− l/k)k−l .

Moreover, denoting by B the Beta function, we have∫ 1

0
log(x)x−α−1x l(1− x)k−ldx

=

∫ 1/k

0
log(1/x)x l−α−1(1− x)k−ldx +

∫ 1

1/k
log(1/x)x l−α−1(1− x)k−ldx

≤

∫ 1/k

0
log(1/x)x l−α−1dx + log(k)

∫ 1

1/k
x l−α−1(1− x)k−ldx

≤ (l − α)−1
[
log(k)kα−l

+ (l − α)−1kα−l
]
+ log(k)B(l − α, k − l + 1),

by integration by parts. By Stirling’s formula, there exists C > 0, and then C ′,C ′′ > 0 such that
for all 1 ≤ l ≤ k,(

k

l

)
k−αB(l − α, k − l + 1)

≤ C
kk−α+1/2

ll+1/2(k − l)k−l+1/2

(l − α)l−α−1/2(k − l + 1)k−l+1/2

(k − α + 1)k−α+1/2

≤ C ′
(l − α)l−α−1/2(k − l + 1)k−l+1/2

ll+1/2(k − l)k−l+1/2

≤ C ′′
1

l1+α , (21)
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where the last inequality comes from the fact that (1/x+1/2) log(1+x) is bounded for x ∈ [0, 1],
so that (k − l + 1/2) log(1+ 1/(k − l)) is bounded for 1 ≤ l < k.

Then, combining the last three inequalities gives

lim sup
n→∞

Pk(Nn = l)

kα log(k)n−3/2γ n
≤ lim sup

n→∞

(
k
l

)
kα log(k)

∫ 1

0

P(exp(Ln) ∈ dx)

n−3/2γ n
x l(1− x)k−l

≤ (l − α)−1
[(

k

l

)
k−l
+ (l − α)−1k−l/ log(k)+ C ′′

1

l1+α

]
+ D

(
k

l

)
(k−α/ log(k)+ l−α)(l/k)l(1− l/k)k−l .

Adding that(
k

l

)
k−l
≤

1
l!
, (22)

there exists D′ > 0 such that

lim sup
n→∞

Pk(Nn = l)

kα log(k)n−3/2γ n
≤ D′

[
1

l1+α +
1
l!
+

(
k

l

)
l−α(l/k)l(1− l/k)k−l

]
.

Then,

lim sup
n→∞

Pk(Nn ≤ l)

kα log(k)n−3/2γ n
= lim sup

n→∞

k∑
l ′=l

Pk(Nn = l ′)

kα log(k)n−3/2γ n

=

k∑
l ′=l

lim sup
n→∞

Pk(Nn = l ′)

kα log(k)n−3/2γ n

≤ D
k∑

l ′=l

[
1

l ′1+α
+

1
l ′!
+

(
k

l ′

)
l ′−α(l ′/k)l

′

(1− l ′/k)k−l ′
]

≤ D

[
k∑

l ′=l

[
1

l ′1+α
+

1
l ′!

]
+ l ′−α

]
.

Recalling that Pk(Zn > 0) ∼ cαkn−3/2γ n, (n → ∞) and αk ≥ M log(k)kα, (k ∈ N) (see
Theorem 2), we have

lim sup
n→∞

Pk(Nn ≥ l | Zn > 0) = lim sup
n→∞

Pk(Nn ≥ l)

cαkn−3/2γ n

≤ (cM )−1 D

[
k∑

l ′=l

[
1

l1+α +
1
l!

]
+ l−α

]
.

This gives the first inequality of the proposition with Al = (cM )−1 D
[∑
∞

l ′=l

[
1

l1+α +
1
l!

]
+ l−α

]
.

We can prove similarly the lower bound. By Lemma 9, for every x > 0,

P(p(fn) ≥ x) ≥ P(Ln ≥ log(xµ))/4.

Then, using also (9), for all 0 ≤ l < k and N > 0,
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P(p(fn) ∈ [l/k, Nl/k[) = P(p(fn) ≥ l/k)− P(p(fn) ≥ Nl/k)

≥ P(Ln ≥ log(µl/k))/4− P(exp(Ln) ≥ Nl/k).

By (25), we get

lim inf
n→∞

P(p(fn) ∈ [l/k, Nl/k[)

n−3/2γ n

≥ (k/ l)α[µ−αu(log(k)− log(µl))/4− N−αu(log(k)− log(Nl))].

Then, as u is linearly growing, we can fix N ≥ 1 so that there exists C > 0 such that

lim inf
k→∞

lim inf
n→∞

P(p(fn) ∈ [l/k, Nl/k[)

kα log(k)n−3/2γ n
≥ l−αC. (23)

Using that

Pk(Nn = l) =
∫ 1

0
P(p(fn) ∈ dx)

(
k

l

)
x l(1− x)k−l ,

and x → x l(1− x)k−l decreases on [l/k, 1], we have, for every k ≥ Nl,

Pk(Nn = l) ≥ P(p(fn) ∈ [l/k, Nl/k[)

(
k

l

)
(Nl/k)l(1− Nl/k)k−l .

Then (23) and limk→∞

(
k
l

)
(Nl/k)l(1− Nl/k)k−l > 0 ensure that

lim inf
k→∞

lim inf
n→∞

Pk(Nn = l)

kα log(k)n−3/2γ n
> 0.

Use Pk(Zn > 0) ∼ cαkn−3/2γ n and the upper bound on αk given in Theorem 2 to conclude.
�

4.3. Proofs of Section 3.3

Proof of Theorem 5. Let us first consider the (WS+IS) case. Using that conditionally on fn , Z (1)n

and Z (2)n are independent,

Pk(Z
(1)
n > 0, Z (2)n > 0) = E(p(fn)

2).

Thus, for every ε > 0, by the Markov inequality,

Pk(Z
(1)
n > 0, Z (2)n > 0 | Zn > 0) ≥ ε2Pk(p(fn) ≥ ε | Zn > 0).

By Proposition 3, we get

Pk(p(fn) ≥ ε | Zn > 0)
n→∞
−→ 0.

In the (WS) case, by (18), for every ε ∈ (0, 1]:

Pk(Zn > 0) ≥
∫ ε

0
P(p(fn) ∈ dx)(1− (1− x)k).
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Moreover∣∣∣∣∫ ε

0
P(p(fn) ∈ dx)(1− (1− x)k)−

∫ ε

0
P(p(fn) ∈ dx)kx

∣∣∣∣
≤ k sup

x∈[0,ε[

{∣∣∣∣1− (1− x)k

kx
− 1

∣∣∣∣} ∫ ε

0
P(p(fn) ∈ dx)x

≤ k sup
x∈[0,ε[

{∣∣∣∣1− (1− x)k

kx
− 1

∣∣∣∣}P1(Zn > 0).

Putting these two inequalities together yields

Pk(Zn > 0) ≥ k
∫ ε

0
P(p(fn) ∈ dx)x − k sup

x∈[0,ε[

{∣∣∣∣1− (1− x)k

kx
− 1

∣∣∣∣}P1(Zn > 0).

Then

P1(p(fn) ∈ [0, ε), Zn > 0) =
∫ ε

0
P(p(fn) ∈ dx)x

≤ Pk(Zn > 0)/k + sup
x∈[0,ε[

{∣∣∣∣1− (1− x)k

kx
− 1

∣∣∣∣}P1(Zn > 0).

Dividing by P1(Zn > 0) and letting n→∞ ensure that

lim sup
n→∞

P1(p(fn) ∈ [0, ε) | Zn > 0)

≤ lim sup
n→∞

Pk(Zn > 0)
kP1(Zn > 0)

+ sup
x∈[0,ε[

{∣∣∣∣1− (1− x)k

kx
− 1

∣∣∣∣}
≤
αk

k
+ sup

x∈[0,ε)

{∣∣∣∣1− (1− x)k

kx
− 1

∣∣∣∣} .
Finally recall Theorem 2 and use

αk/k
k→∞
−→ 0, ∀k ∈ N∗, sup

x∈[0,ε[

{∣∣∣∣1− (1− x)k

kx
− 1

∣∣∣∣} ε→0
−→ 0,

to get limε→0+ lim supn→∞ Pk(p(fn) ≤ ε | Zn > 0) = 0. �

Proof of Proposition 6. Recall that for every gn ∈ F n , Pk(Zgn > 0) = 1− (1− p(gn))
k . Thus,

Pk(p(fn) ∈ dx | Zn > 0) =
P(p(fn) ∈ dx)(1− (1− x)k)

Pk(Zn > 0)

= P1(p(fn) ∈ dx | Zn > 0)
P1(Zn > 0)
Pk(Zn > 0)

(1− (1− x)k)

x
.

Then, for every ε > 0,

lim sup
n→∞

Pk(p(fn) ≥ ε | Zn > 0)

=
1
αk

lim sup
n→∞

∫ 1

ε

P1(p(fn) ∈ dx | Zn > 0)
(1− (1− x)k)

x

≤
1
εαk

,
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and the left-hand part tends to zero as k tends to infinity by Theorem 2. This ends the proof. �

4.4. Proofs of Section 3.4

We know from Section 2 that the BPRE (Zn)n≥0 starting from k particles and conditioned to
be positive converges in distribution to Υk , and we call Gk its p.g.f:

Gk(s) = lim
n→∞

Ek(s
Zn | Zn > 0) (0 ≤ s ≤ 1).

Adding that by [4], G ′1(1) <∞ we can split the proof of Theorem 7 into three parts.

(i) For every k ≥ 1,

E(Gk( f (s))) = γGk(s)+ 1− γ (0 ≤ s ≤ 1).

(ii) In the (SS+ IS) case, for every k ≥ 1, Υk
d
= Υ1.

(iii) There is a unique p.g.f G which satisfies

E(G( f (s))) = E( f ′(1))G(s)+ 1− E( f ′(1)) (0 ≤ s ≤ 1), G ′(1) <∞. (E )

One can note that (iii) proves (ii) in the (SS) case, adding that G ′k(1) < ∞ (whose proof for
k = 1 in [4] can be generalized).

Proof of (i). Let f0 be distributed as f and independent of (Zn)n∈N. For every n ∈ N,

1− Ek(s
Zn+1 | Zn+1 > 0) =

Ek(1− s Zn+1)

Pk(Zn+1 > 0)

=
1

Pk(Zn+1 > 0)

∞∑
i=1

Pk(Zn = i)Ek(1− s Zn+1 | Zn = i)

=
Pk(Zn > 0)

Pk(Zn+1 > 0)

∞∑
i=1

Pk(Zn = i | Zn > 0)E(1− f0(s)
i )

=
Pk(Zn > 0)

Pk(Zn+1 > 0)
Ek(1− f Zn

0 (s) | Zn > 0).

Then letting n tend to infinity and using the asymptotics given in the Preliminaries section give

1− Gk(s) = γ
−1E(1− Gk( f0(s))),

where γ = E( f ′(1)) in the (SS+ IS) case. �

Proof of (ii). For every i ≥ 1,

P2(Zn = i) = P2(Z
(1)
n = i, Z (2)n = 0)+ P2(Z

(1)
n = 0, Z (2)n = i)

+P2(Zn = i, Z (1)n > 0, Z (2)n > 0).

Moreover |P2(Z
(1)
n = i, Z (2)n = 0)− P2(Z

(1)
n = i)| ≤ P2(Z

(1)
n > 0, Z (2)n > 0), then

|P2(Zn = i)− 2P1(Zn = i)| ≤ 3P2(Z
(1)
n > 0, Z (2)n > 0).

Thus, using Proposition 3,

lim
n→∞

P2(Zn = i)

P2(Zn > 0)
= lim

n→∞

2P1(Zn = i)

P2(Zn > 0)
.
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As α2 = limn→∞ P2(Zn > 0)/P1(Zn > 0) = 2, we have

P(Υ2 = i) = lim
n→∞

P2(Zn = i | Zn > 0)

= lim
n→∞

2P1(Zn = i | Zn > 0)P1(Zn > 0)
P2(Zn > 0)

= P(Υ1 = i).

Then Υ1
d
= Υ2 and the same argument ensure that for every k ≥ 1, Υk = Υ1. �

The proof of (iii) requires the following lemma.

Lemma 10. If H : [0, 1] → R is a power series continuous on [0, 1], H(1) = 0 and

H(s) =
E(H( f (s)) f ′(s))

E( f ′(1))
, (0 ≤ s ≤ 1), (24)

then H ≡ 0.

Proof. First case: There exists s0 ∈ [0, 1) such that E( f ′(s0)) = E( f ′(1)).
The monotonicity of f ′ implies

f ′(s0) = f ′(1) a.s.,

and f ′ is a.s. constant on [s0, 1]. As it is a power series, f ′ is a.s. constant.
Thus

f (s) = f ′(1)s + (1− f ′(1)) (0 ≤ s ≤ 1), f ′(1) ≤ 1 a.s.

Moreover, let |H(α)| = sup{|H(s)|, s ∈ [0, 1]} with α ∈ [0, 1), and note that

E
(

f ′(1)(H(α)− H( f (α)))
)
= 0.

Thus H( f (α)) = H(α) a.s. and by induction, recalling that Fn = f0 ◦ f1 · · · ◦ fn−1, we have

H(Fn(α)) = H(α) a.s.

As Zn is subcritical, then E(Fn(α)) = E(αZn ) → 1 as n → ∞. So Fn(α) → 1 in probability
as n →∞. Adding that Fn(α) < 1 a.s. for every n ∈ N and that H is a power series, then H is
constant and equals zero since H(1) = 0.

Second case: For every s0 ∈ [0, 1[, E( f ′(s0)) < E( f ′(1)).
If H 6= 0 then there exists α ∈ [0, 1[ such that

sup{|H(s)| : s ∈ [0, α]} > 0

Let αn ∈ [α, 1[ such that αn
n→∞
−→ 1. Then, for every n ∈ N, there exists βn ∈ [0, αn] such that:

sup{|H(s)| : s ∈ [0, αn]} = |H(βn)|

≤
E( f ′(βn))

E( f ′(1))
sup{|H(s)|, 0 ≤ s ≤ 1}

< sup{|H(s)|, 0 ≤ s ≤ 1},

since sup{|H(s)|, 0 ≤ s ≤ 1} > 0 and E( f ′(βn)) < E( f ′(1)). As I ∩ J = ∅, sup I <

sup(I ∪ J )⇒ sup I < sup J , we get

sup{|H(s)| : s ∈ [0, αn]} < sup{|H(s)| : s ∈]αn, 1]}.
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Also, H(s)
s→1
−→ 0 leads to a contradiction letting n→∞. So H = 0. �

Proof of (iii). Assume that G1 and G2 are two probability generating functions which verify (E).
By differentiation, G ′1 and G ′2 satisfy

E(G ′( f (s)) f ′(s)) = E( f ′(1))G ′(s).

Then H := G ′2(1)G
′

1 − G ′1(1)G
′

2 verifies the conditions of Lemma 10. As a consequence,

G ′2(1)G
′

1 = G ′1(1)G
′

2.

Also, G1(0) = G2(0) = 0, G2(1) = G1(1) = 1 ensure that G1 = G2, which gives the
uniqueness for (E). �

4.5. Proof of Section 3.5

Proof of Proposition 8. First, we have

Pk(Z1 = l1, . . . , Zn = ln|Zn+p > 0) = Pk(Z1 = l1, . . . , Zn = ln)
Pln (Z p > 0)

Pk(Zn+p > 0)
.

Then, using (2)–(4), we get

lim
p→∞

Pk(Z1 = l1, . . . , Zn = ln|Zn+p > 0) = γ−n αln

αk
Pk(Z1 = l1, . . . , Zn = ln)

and recall αl = l in the (SS+ IS) case to get the distribution of (Yn)n∈N.
To get the limit distribution of (Yn)n∈N, note that, for every l ∈ N∗,

Pk(Yn = l) = γ−n αl

αk
Pk(Zn = l) = γ−nPk(Zn > 0)

αl

αk
Pk(Zn = l | Zn > 0).

Use respectively (2) and (3) to get the limit in distribution in the (SS) case and the (IS).
Finally, in the (WS) case, by (4), there exists C > 0 such that

Pk(Yn ≤ l) ≤ Cn−3/2 αl

αk
Pk(Zn ≤ l | Zn > 0) ≤ Cn−3/2 αl

αk
.

Then Borel–Cantelli Lemma ensures that Yn tends a.s. to infinity as n→∞. �

Proof of (12). To prove the convergence and the equality, note that

Pk
(
fp ∈ dgp|Zn+p > 0

)
=

P
(
fp ∈ dgp

)
Ek(PZgp

(Zn > 0))

Pk(Zn+p > 0)

=
P1(Zn > 0)

Pk(Zn+p > 0)

∞∑
l=1

Pk(Zgp = l)
Pl(Zn > 0)
P1(Zn > 0)

.

The asymptotic results given in Section 2 ensure that

P1(Zn > 0)
Pk(Zn+p > 0)

n→∞
−→

1
γ pαk

,

and using the bounded convergence theorem with

Pl(Zn > 0)
P1(Zn > 0)

n→∞
−→ αl ,

Pl(Zn > 0)
P1(Zn > 0)

≤ l, E(Zgp ) <∞.
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ensures that

lim
n→∞

Pk
(
fp ∈ dgp|Zn+p > 0

)
= γ−pP

(
fp ∈ dgp

) ∞∑
l=1

Pk(Zgp = l)
αl

αk
.

This completes the proof. �
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Appendix. Random walk with negative drift

We study here the random walk (Sn)n∈N with negative drift. Indeed, in the linear fractional
case, the survival probability is a functional of the random walk obtained by summing the
successive means of environments (see (6)). In the general case, the random walk appears in
the lower bound of the survival probability (see (14)). More precisely, we need to control the
successive values of the random walk with negative drift conditioned to stay above −x < 0.

More specifically, let (X i )i∈N be iid random variables distributed as X with

E(X) < 0.

We assume that for every z ∈ [0, 1], E(exp(zX)) < ∞ and E(X exp(αX)) = 0 for some
0 < α < 1. Set γ := E(exp(αX)),

Sn :=

n−1∑
i=0

X i , (S0 = 0),

and for all n ∈ N, k ∈ N,

Ln = min{Si , 0 ≤ i ≤ n}.

Its asymptotic behavior is given in Lemma 4.1 in [4] or Lemma 7 in [18]. There exists a linearly
increasing positive function u such that, as n→∞

P(Ln ≥ −x) ∼ eαx u(x)n−3/2γ n, (25)

for x ≥ 0 if the distribution X is non-lattice, and for x ∈ λZ if the distribution of X is supported
by a centered lattice λZ.

Moreover for each θ > α, there exists cθ > 0 such that

P(Ln ≥ −x) ≤ cθeθx n−3/2γ n, (x ≥ 0, n ∈ N). (26)

Finally, using (25) and the fact that u grows linearly, there exist c−, c+ > 0 such that the two
following positive measures on [0, 1],

ν−(dx) = c log(1/x)x−α−1dx, ν+(dx) = c+(δ1(dx)+ log(1/x)x−α−1dx),

verify for every x ∈]0, 1]

ν−([x, 1]) ≤ lim
n→∞

P(eLn ≥ x)

n−3/2γ n
≤ ν+([x, 1]). (27)
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We need to control the successive values of the random walk conditioned to stay above
−x (x ≥ 0). Under integrability conditions, it is known that the process (S[nt]/n1/2

|Ln ≥ 0)
converges weakly to the Brownian meander as n → ∞ (see [19]). Moreover Durrett [20] has
proved that if there exists q > 2 such that P {X1 > x} ∼ x−q L(x) as x →∞, where L is slowly
varying, then (S[nt]/n|Ln ≥ 0) converges weakly to a non-degenerate limit which has a single
jump.

We prove here that the random walk conditioned to stay above −x (x ≥ 0) spends a very
short time close to its minimum, by giving an upper bound of the number of visits to a level of
the random walk reflected at its minimum. To be more specific, define

Nn(k) = card{i ∈ N, i ≤ n, k ≤ Si − Ln < k + 1}.

Lemma 11. For every θ > α, there exists d > 0 such that

lim sup
n→∞

P(Nn(k) ≥ l | Ln ≥ −x) ≤ deθk/
√

l, (k, l ∈ N, x ≥ 0).

Moreover for all θ > α and x ≥ 0, there exists C > 0 such that

P(Nn(k) ≥ l | Ln ≥ −x) ≤ Ceθk/
√

l, (k, n, l ∈ N). (28)

Moreover, we will use the following consequence of the preceding lemma.

Corollary 12. If α < 1/2, there exists β > 0 such that for all x ≥ 0 and n ∈ N,

P

(
n∑

i=0

exp(Ln − Si ) ≤ β | Ln ≥ −x

)
≥ 1/4.

For the sake of simplicity, we assume that X ∈ Z a.s. for the proof of Lemma 11. Thus

∀k, n ∈ N2, Nn(k) = card{i ∈ N, i ≤ n, Si − Ln = k},

and we denote by (T j : 1 ≤ j ≤ Nn(k)) the successive times before n when (Si − Ln)i∈N visits
k. That is

T1 = inf{0 ≤ i ≤ n : Si − Ln = k}, T j+1 = inf{T j < i ≤ n : Si − Ln = k}.

First, cutting the path of the random walk between two of these passage times enables us to prove
the following result.

Lemma 13. If X ∈ Z a.s., then for all n, k, l, i and 0 ≤ h ≤ n, we have

P(Ln ≥ −i, Nn(k) ≥ 2l, Tl + n − TNn(k) = h) ≤ (k + 1)P(Ln−h ≥ −k)P(Lh ≥ −i),

and

P(Ln ≥ −i, Nn(k) ≥ 2l, T1 + n − Tl = h) ≤ (k + 1)P(Ln−h ≥ −k)P(Lh ≥ −i).

Proof. We introduce the first hitting time Mn of the minimum Ln before time n and Rn(l) the
last passage time at l before time n

Mn = inf{ j ∈ [1, n] : S j = Ln}, Rn(l) := sup{ j ∈ [1, n] : S j = l}.
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First, we consider the case where Mn ∈ [0, Tl ] ∪ [TNn(k), n] and split the path of the random
walk between times Tl and TNn(k). For all j ≤ 0, k ≥ 0 and 0 ≤ n1 < n2 ≤ n, introduce then

A( j, n1, n2) = {Ln = j, Nn(k) ≥ 2l, Tl = n1, TNn(k) = n2,Mn ∈ [0, n1] ∪ [n2, n]},

B( j, n1, n2) = {∀m ∈ [1, n1] : Sm ≥ j, Sn1 = Sn2 = j + k,

∀m ∈ [n2 + 1, n] : Sm ≥ j, Sm 6= j + k, ∃a ∈ [0, n1] ∪ [n2, n], Sa = j},

C( j, n1, n2) = {∀m ∈ [n1, n2] : Sm ≥ j, Sn1 = Sn2 = j + k}.

Note that conditionally on D(n1, n2) := {Sn1 = Sn2 = j + k}, B( j, n1, n2) and C( j, n1, n2) are
independent,

P(C( j, n1, n2) | Sn1 = j + k) ≤ P(Ln2−n1 ≥ −k),

and

A( j, n1, n2) ⊂ B( j, n1, n2) ∩ C( j, n1, n2).

Then, noting also that

P(C( j, n1, n2) | D(n1, n2))

= P(C( j, n1, n2) | Sn1 = j + k)P(Sn1 = j + k)/P(D(n1, n2)),

we have

P(A( j, n1, n2)) ≤ P(D(n1, n2))P(B( j, n1, n2) | D(n1, n2))P(C( j, n1, n2) | D(n1, n2))

= P(Sn1 = j + k)P(B( j, n1, n2) | D(n1, n2))P(C( j, n1, n2) | Sn1 = j + k)

≤ P(Ln2−n1 ≥ −k)P(Sn1 = j + k)P(B( j, n1, n2) | D(n1, n2)). (29)

Moreover,

{Ln ≥ −i, Nn(k) ≥ 2l, Tl + n − TNn(k) = h,Mn ∈ [0, Tl ] ∪ [TNk (n), n]}

=

⋃
j≥−i,

1≤n1<n2≤n,n1+n−n2=h

A( j, n1, n2).

Then, using the last two relations,

P(Ln ≥ −i, Nn(k) ≥ 2l, Tl + n − TNn(k) = h,Mn ∈ [0, Tl ] ∪ [TNk (n), n])

≤

∑
j≥−i,

1≤n1<n2≤n,n2−n1=n−h

P(A( j, n1, n2))

≤ P(Ln−h ≥ −k)
∑
j≥−i,

1≤n1<n2≤n,n1+n−n2=h

P(Sn1 = j + k)P(B( j, n1, n2) | D(n1, n2)).

Concatenating the path of the random walk before time n1 and after time n2 gives

P(Ln ≥ −i, Nn(k) ≥ 2l, Tl + n − TNn(k) = h,Mn ∈ [0, Tl ] ∪ [TNk (n), n])

≤ P(Ln−h ≥ −k)
∑
j≥−i,

1≤n1<n2≤n,n1+n−n2=h

P(Ln1+n−n2 = j, Rn1+n−n2( j + k) = n1)

≤ P(Ln−h ≥ −k)
∑
j≥−i

P(Lh = j)

= P(Ln−h ≥ −k)P(Lh ≥ −i). (30)
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Second, we consider the case where Mn ∈ [Tl , TNn(k)] and split the path of the random walk
between times T1 and Tl . For all j, j ′ ≤ 0, k ≥ 0 and 0 ≤ n1 < n2 ≤ n, introduce then

A′( j, n1, n2) = {Ln = − j, Nn(k) ≥ 2l, Tl = n1, TNn(k) = n2,Mn ∈ [n1, n2]},

B ′( j, j ′, n1, n2) = {∀m ∈ [1, n1] : Sm ≥ j ′, Sn1 = Sn2 = j + k,

∀m ∈]n2, n] : Sm ≥ j ′, Sm 6= j + k, ∃a ∈ [0, n1] ∪ [n2, n] : Sa = j ′},

C ′( j, n1, n2) = {∀m ∈ [n1, n2] : Sm ≥ j, Sn1 = Sn2 = k + j, ∃a ∈ [n1, n2] : Sa = j}.

Note that conditionally on D(n1, n2) = {Sn1 = Sn2 = j + k}, B ′( j, j ′, n1, n2) and C ′( j, n1, n2)

are independent,

A′( j, n1, n2) ⊂

j+k⋃
j ′= j

B ′( j, j ′, n1, n2) ∩ C ′( j, n1, n2)

and we get the analog of (29),

P(A′( j, n1, n2)) ≤

j+k∑
j ′= j

P(Ln2−n1 ≥ −k)P(Sn1 = j + k)P(B ′( j, j ′, n1, n2) | D(n1, n2)).

Moreover

{Ln ≥ −i, Nn(k) ≥ 2l, Tl + n − TNn(k) = h,M ∈ [Tl , TNk (n)]}

=

⋃
j≥−i,

1≤n1<n2≤n,n1+n−n2=h

A′( j, n1, n2).

Then, following the proof of (30), we get

P(Ln ≥ −i, Nn(k) ≥ 2l, Tl + n − TNn (k) = h,Mn ∈ [Tl , TNk (n)])

≤ P(Ln−h ≥ −k)
∑

j ′≥−i, j∈[ j ′−k, j ′]

∑
1≤n1<n2≤n,
n1+n−n2=h

P(Sn1 = j + k)P(B′( j, j ′, n1, n2) | D(n1, n2))

≤ P(Ln−h ≥ −k)
∑

j ′≥−i

k max
j∈[ j ′−k, j ′]

∑
1≤n1<n2≤n,
n1+n−n2=h

P(Sn1 = j + k)P(B′( j, j ′, n1, n2) | D(n1, n2))

≤ P(Ln−h ≥ −k)
∑

j ′≥−i

kP(Lh = j ′)

≤ kP(Ln−h ≥ −k)P(Lh ≥ −i). (31)

Combining the inequalities (30) and (31), we get

P(Ln ≥ −i, Nn(k) ≥ 2l, Tl + n − TNn(k) = h) ≤ (k + 1)P(Ln−h ≥ −k)P(Lh ≥ −i),

which proves the first inequality of the lemma. The second can be proved similarly concatenating
the random walk between [0, T1] and [TNn(k), n]. �

Proof of Lemma 11. Let h ∈ N such that h ≥ n/2. The first inequality of Lemma 13 ensures
that

P(Ln ≥ −i, Nn(k) ≥ 2l, Tl + n − TNn(k) = h) ≤ (k + 1)P(Lh ≥ −i)P(Ln−h ≥ −k).

Using (26),

P(Ln ≥ −i, Nn(k) ≥ 2l, Tl + n − TNn(k) = h)

≤ cθ (k + 1)P(Lh ≥ −i)eθk(n − h)−3/2γ n−h .



2462 V. Bansaye / Stochastic Processes and their Applications 119 (2009) 2436–2464

Moreover, using (25), for every i ∈ N, there exists n0 ∈ N such that for all n0/2 ≤ n/2 ≤ h,

P(Lh ≥ −i) ≤ 2eiαu(i)h−3/2γ−h
≤ 2.23/2eiαu(i)n−3/2γ h . (32)

Then, writing c′θ = 2.23/2.cθ ,

P(Ln ≥ −i, Nn(k) ≥ 2l, Tl + n − TNn(k) = h)

≤ c′θeαi u(i)(k + 1)eθkγ nn−3/2(n − h)−3/2. (33)

Similarly, for every h such that n0/2 ≤ n/2 ≤ h, the second inequality of Lemma 13 ensures
that

P(Ln ≥ −i, Nn(k) ≥ 2l, T1 + n − Tl = h)

≤ c′θeαi u(i)(k + 1)eθkγ nn−3/2(n − h)−3/2. (34)

Noting that a.s.

{Nn(k) ≥ 2l} =
n−l⋃

h=n/2

{Nn(k) ≥ 2l, Tl + n − TNn(k) = h}

×

n−l⋃
h=n/2

{Nn(k) ≥ 2l, T1 + n − Tl = h},

we can combine the last two inequalities (33) and (34), which gives for every n ≥ n0,

P(Ln ≥ −i, Nn(k) ≥ 2l) ≤
∑

n/2≤h≤n−l

P(Ln ≥ −i, Nn(k) ≥ 2l, Tl + n − TNn(k) = h)

+

∑
n/2≤h≤n−l

P(Ln ≥ −i, Nn(k) ≥ 2lT1 + n − Tl = h)

≤ 2c′θeαi u(i)γ nn−3/2(k + 1)eθk
∑

n/2≤h≤n−l

(n − h)−3/2

≤ 2c′θeαi u(i)γ nn−3/2(k + 1)eθk
∑
h≥l

h−3/2

≤ 2.2c′θeαi u(i)γ nn−3/2(k + 1)eθk/
√

l, (n ≥ n0).

Then, using again (25),

lim sup
n→∞

P(Ln ≥ −i, Nn(k) ≥ 2l)/P(Ln ≥ −i) ≤ 4c′θc−1
0 (k + 1)eθk/

√
l.

Using that (k + 1)eθk
= o(eθ

′k) if θ ′ > θ , this completes the proof of the first inequality of the
lemma for X ∈ Z. The general case can be proved similarly.

Note that, for every θ > α, when h ≥ n/2, we can replace (32) by

P(Lh ≥ −i) ≤ 23/2.cθeθ i n−3/2γ h, (i, h, n ∈ N).

Following the proof above ensures that there exists c′′θ > 0 such for all i, n, l ∈ N,

P(Ln ≥ −i, Nn(k) ≥ 2l) ≤ c′′θ eθ iγ nn−3/2eθk/
√

l.
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Thus, by (25), for every x ≥ 0, there exists Cx > 0 such that

P(Nn(k) ≥ l | Ln ≥ −x) ≤ 2c′′θCx (k + 1)eθk/
√

l, (k, n, l ∈ N),

which gives the second inequality of the lemma. �

Proof of Corollary 12. Let α < 1/2 and d > 0 given by Theorem 2. Fix α < θ < µ/2 < 1/2.
Choose also k0 ∈ N such that

d
∑
k≥k0

e(θ−µ/2)k < 1/2.

By (28), for every x ≥ 0, there exists D > 0 such that for every n ∈ N,

P(Nn(k) ≥ eµk
| Ln ≥ −x) ≤ De(θ−µ/2)k

which is summable with respect to k. Thus, by Fatou’s lemma,

lim sup
n→∞

∑
k≥k0

P(Nn(k) ≥ eµk
| Ln ≥ −x) ≤

∑
k≥k0

lim sup
n→∞

P(Nn(k) ≥ eµk
| Ln ≥ −x).

By Lemma 11, this gives, for every x > 0,

lim sup
n→∞

∑
k≥k0

P(Nn(k) ≥ eµk
| Ln ≥ −x) ≤ d

∑
k≥k0

e(θ−µ/2)k .

Then,

lim sup
n→∞

P

(⋃
k≥k0

{Nn(k) ≥ eµk
} | Ln ≥ −x

)
< 1/2.

By Lemma 11 again, fix N ∈ N such that

lim sup
n→∞

P

( ⋃
0≤k<k0

{Nn(k) ≥ N } | Ln ≥ −x

)
≤ 1/4.

Then

lim sup
n→∞

P

( ⋃
0≤k<k0

{Nn(k) ≥ N }
⋃

k≥k0

{Nk(k) ≥ eµk
} | Ln ≥ −x

)
< 3/4.

Noting that

n∑
i=0

exp(Ln − Si ) ≤

∞∑
k=0

Nn(k)e−k,

this ensures that for every x ≥ 0,

lim inf
n→∞

P

(
n∑

i=0

exp(Ln − Si ) ≤ β | Ln ≥ −x

)
> 1/4,

with β :=
∑

0≤k<k0
Ne−k+1

+
∑

k≥k0
eµke−k+1. This gives the result. �
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