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Abstract

We show that the Truncated Realized Variance (TRV) of a SemiMartingale (SM) converges to zero
when observations are contaminated by noise. Under the additive i.i.d. noise assumption, a central limit
theorem is also proved. In consequence it is possible to construct a feasible test allowing us to measure,
for a given path of a given data generating process at a given observation frequency, the relevance of
the noise in the data when we want to estimate the efficient process integrated variance I V . We thus can
optimally select the observation frequency at which we can “safely” use TRV. The performance of our test
is verified on simulated data. We are especially interested in the application of the test to financial data,
and a comparison conducted with Bandi and Russel (2008) and Ait-Sahalia, Mykland and Zhang (2005)
mean square error criteria shows that, in order to estimate IV, in many cases we can rely on TRV for lower
observation frequencies than previously indicated when using Realized Variance (RV). The advantages of
our method are at least two: on the one hand the underlying model for the efficient data generating process
is less restrictive in that jumps are allowed (in the form of an Itô SM). On the other hand our criterion
is pathwise, rather than based on an average estimation error, allowing for a more precise estimation of
IV because the choice of the optimal frequency is based on the observed path. Further analysis on both
simulated and empirical financial data is conducted in Lorenzini (2012) [15] and is also still in progress.
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1. Introduction

We can observe noisy data Yti = X ti + εti of an efficient data generating process (DGP) X ,
which is assumed to be an Itô semimartingale (SM) with continuous martingale part


σsdWs .

If we want to estimate the integrated variance IV
.
=
 T

0 σ 2
s ds of X , we have to decide whether

to use an estimator explicitly accounting for the contribution of the noise process ε (e.g. by pre-
averaging the observations as in [19]) or to directly apply an estimator which is consistent in
the absence of noise. This depends on whether the noise is relevant or not in our data, which
is determined by the magnitude of Var(εti ) but also by the frequency at which we pick the
observations. We are especially interested in the application of our results to financial data,
where X ti represents the logarithm of the efficient price of an asset at time ti and εti , i = 1..n
are called microstructure noises. Given a time series generated by a Brownian semimartingale
(BSM), i.e. a SM without jumps, it is well known that the realized variance (RVh) converges
to IV , as the observation frequency h tends to 0. If the BSM observations are noisy, we can
look at the signature plot (SP) of the realized variance as a function of h to decide whether
at a predetermined frequency the noise contamination is relevant or not [8]: when the noise is
judged to be negligible, we rely on RVh as a measure of IV . However the observation step ĥ
visually selected by means of the SP is not necessarily such that RV ĥ delivers a reliable estimate
of IV , given that RV ĥ cannot disentangle the estimation error due to the choice of a too large h
from the error induced by the presence of the noise. Moreover, in the presence of jumps in the
DGP, RVh undergoes a further source of estimation bias of IV , represented by the sum of the
squared jumps. Another important criterion used to establish the limit frequency at which the
noise can be neglected is theoretically minimizing the conditional mean square estimation error
RVh − IV , as described in [4,3,22]. However also in this case X is assumed to have continuous
paths. Further, the selected h is optimal on average, along many paths of the price process, while
it is possible that the optimal step for a given day is different from the step which is optimal in
another day. This makes it useful to have a further tool allowing to establish, for a fixed path
of a fixed asset and a given frequency, whether the noise is contaminating the asset returns in
a non-negligible way or not. We are thus going to propose a test and to check its reliability on
simulated data. The application to empirical financial data has been done in [15] and is also still
in progress. Questions that we judge to be interesting are (1) checking whether, as stated by
some authors (as in [20]), the mid-quotes are less affected by noise than the transaction prices
and at which extent; (2) for a given high frequency, checking how much, when pre-averaging the
data, the (normalized) pre-averaged time series has been decontaminated by the noise; (3) for an
observation frequency at which the noise is judged to be negligible by our test, comparing the
performances of TRV and pre-averaged TRV.

The paper is organized as follows: Section 2 draws the framework we are considering,
Section 3 contains the main results allowing to construct out test, Section 4 illustrates how the
test is constructed and how it works. In Section 5 we implement the test on simulated data in
order to check whether its responses are reliable, meaning that when the test judges the noise
to be relevant then the estimation error ˆIVh − IV is high while it is low otherwise. Appendix
contains the proofs of all the results stated in this paper.

2. Model setup

For a fixed T ∈ R let us consider the filtered probability space S 0
= (Ω0, F 0, F 0

t∈[0,T ]
, P0)

generated by a Brownian motion W and a Poisson random measure µ (possibly allowing for
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infinite activity jumps), and let the log price of an asset be modeled as an Itô semimartingale
X on S 0. We can always arrange the different components of X so as X = X0 + J , where
X0t = x0 +

 t
0 asds +

 t
0 σs dWs , with cadlag integrands a and σ , and J has the following

representation (see [11])

Jt = J1t + J̃2t =

 t

0


|γ (x,s,ω)|>1

γ (x, s, ω)µ(dx, ds)

+

 t

0


|γ (x,s,ω)|≤1

γ (x, s, ω)[µ(dx, ds) − dxds],

where


1 ∧ γ 2(x, s, ω)dx is a.s. finite. As such X0 is called Brownian semimartingale (BSM)
component of X and J jump component. Process J1 is of finite activity of jump (i.e. almost all
paths jump finitely many times in [0, T ]), and it also has the representation

J1t (ω), =


s≤Nt (ω)

γ (xs, s, ω)

where Nt =
 t

0


|γ (xs ,s,ω)|>1 1µ(dx, ds) is the counting measure of the jumps with size larger

than 1 in absolute value and, for fixed ω if a jump occurs at time s then xs ∈ R is the mark
pointing at which jump size γ (xs, s, ω) is realized. On the contrary, in general J̃2 has infinite
activity (some path can jump infinitely many times, even densely, in any finite time interval). Let
ε be a noise process, defined on an extension S := (Ω , F , Ft∈[0,T ], P) given as in [12]. We can
only observe the noisy process Y = X+ε, which is the superposition of the efficient price process
X with the contaminating noise. We have observations Yti at discrete times ti = ih, i = 1..n, for
a given resolution h = T/n.

Define rh := hβ , with β ∈ (0, 1), and ˆIVh :=
n

i=1(∆i Y )2 I{(∆i Y )2≤rh}, where, for any
process Z ,∆i Z = Z ti − Z ti−1 . The following further notation is used throughout the paper:
∆i Z⋆ = ∆i Z I{|∆i Z |≤

√
rh}, for any process Z , RVh(Z) :=

n
i=1(∆i Z)2

; RVh = RVh(Y );
ˆIVh(Z) =

n
i=1(∆i Z⋆)

2; for any Itô SM X as above, QV(X) =
 T

0 σ 2
s ds +


s≤T (1Js)

2,
where 1Js = Js − Js−; εi := εti , N (0, b2) denotes the Gaussian law having mean 0 and
variance b2; U denotes a standard Gaussian r.v.; c indicates a constant which does not depend on
i , nor on n, and which keeps the same name even if it can change from line to line; ≈ denotes
approximation of numerical results in computations; the asymptotic theory is conducted for
n → ∞, i.e. h = T/n → 0. In view of the one to one correspondence between n and h, if
f is written as a function of h (or alternatively of n) we indifferently indicate either limh f (h)

or limn f (h); given two real functions f, g (possibly the paths of a stochastic process for a fixed
ω), f (h) ∼ g(h) means asymptotic equivalence as h → 0, i.e. there exist constants c1, c2 such
that c1 ≤

f (h)
g(h)

≤ c2 keeps true when h → 0, meaning that if f and g converge (or diverge), they
do at the same speed; f (h) ≪ g(h) means that f (h) = o(g(h)).

Assumption 1. ∀i = 1..n, P{|∆iε| ≤ c
√

rh} = O(
√

rh).

Assumption 2. (i)

|γ |>1 1dx is locally bounded in (t, ω);

(ii) there exists α ∈]0, 2[ such that

|γ |≤ε

γ 2dx ≤ cε2−α .

Remarks. (1) Assumption 1 is verified if e.g. all the εi are normally N (0, c2) or uniformly
U [−c, c] distributed for i = 1..n, for all n (which are the typical examples of additive i.i.d.
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noise). More generally it is verified each time that the law ∆iε(P) does not depend on i and
n, σ 2

ε
.
= Var(εi ) ≠ 0 and ∆iε(P) has a density f which is continuous at 0. Note that the

assumption requires that the probability that an increment of the noise process be small tends to
0 when the observation step h → 0. This is consistent with the idea that when h is very small,
while the efficient price increments tend to zero in probability, because X is a semimartingale,
the noise increments keep comparatively large, which gives an explanation of why the SP of RVh
increases when h → 0.

(2) Assumption 2(i) is technical and is standard when proving CLTs (e.g. Assumption
(K ) in [10] implies our condition (i)). Assumption 2(ii) is satisfied when J is Lévy with
Blumenthal–Getoor index α or is a semimartingale (with constant Blumenthal–Getoor index
α) satisfying e.g. Assumption 2 in [2] (with β there playing the role of α here). The condition
is needed to ensure that, for all n, P{|∆i X | >

√
rh} and P{|∆i J̃2| >

√
rh} keep bounded by

ch1−
αβ
2 , uniformly in i = 1..n (see Lemma A.1 in the Appendix), which is needed in the proof

of Theorem 3.1.

3. Main results

Our first important result is showing that in the presence of noises the threshold estimator of
IV tends to zero rather than to IV .

Theorem 3.1. Let Y = X + ε and take β > 2/3. Under Assumptions 1 and 2 we have

ˆIVh
P
→ 0.

The intuition is the following. The increments ∆iε have the peculiarity that their variance
keeps high even when h → 0, which makes process ε to fall outside the semimartingales class.
Microstructure noises typically satisfy Assumption 1, because they tend to keep large when
h → 0. On the contrary, as previously said, ∆i X tends to be small for each i (in particular, under
Assumption 2 we have P{|∆i X | >

√
rh} ≤ ch1−αβ/2

→ 0). It follows that when h → 0 the
increment ∆iε tends to predominate on ∆i X and makes ∆i Y large for all i , and all I{(∆i Y )2≤rh}

will turn out to be zero.
Condition β > 2/3 is used in the proof to show that E[I1] → 0 (I1 depends on h, which

is omitted). If it was β ≤ 2/3, the threshold function could be too high in that too many noise
increments would remain below it together with the ones of the Brownian part of Y , and the limit
of ˆIVh could not be zero. In fact, in order to include all the frameworks, condition β > 2/3 is
necessary, as if e.g. Y = X + ε with X ≡ 0 and εi i.i.d. Gaussian with non-zero variance, then,
by using (11) (which does not require β > 2/3) to prove conditions (a) to (c) described within

the proof of Theorem 3.2, with φi =


(∆iε⋆)

2
− E[(∆iε⋆)

2
]


/


nVar


(∆iε⋆)2


, we reach that

i
(∆iε⋆)

2
− nE[(∆iε⋆)

2
]

c
√

n r
5
4

h

d
→ U,

for all β ∈ (0, 1), meaning that


i (∆iε⋆)
2

∼ nE[(∆iε⋆)
2
] which is of the same order as nr3/2

h ,
and so ˆIVh(Y ) = ˆIVh(ε) tends to zero in probability iff β > 2/3.
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Theorem 3.1 allows us to distinguish whether the observed process is contaminated by (a

relevant) noise or not. In fact if σ ≢ 0, when X is not contaminated then ˆIVh(X)
P
→
 T

0 σ 2
s ds >

0 [16], while if X is contaminated then ˆIVh
P
→ 0. The next theorem enables us to establish

confidence intervals for ˆIVh being significantly far form 0. When X models the log-price of a
financial asset, its observation is always affected by some microstructure noises, however if ˆIVh
turns out to be far from zero, the impact of the noise is as if it was absent, meaning that it is
present but negligible, not relevant. This is the logic under which the test we propose in the next
section works. In order to construct the mentioned confidence intervals (in Section 4) we need
to compute the speed at which ˆIVh tends to zero in the case where X is contaminated, which is
exactly the objective of the next theorem. In case where σ is null the next theorem is still valid,
as within the proof the condition σ ≢ 0 is never invoked.

Theorem 3.2 (CLT in the Presence of Additive i.i.d. Noise). Assume that for all h the r.v.s
εti , i = 1..n, n ∈ N, are i.i.d. with zero mean and 0 < σ 2

ε < ∞, and are independent on
X. Further assume that the law of each εti has (the same) Lipschitz and bounded density g. Then
when X is contaminated by the noise and β > 2/3 we have

(i)

E[ ˆIVh]

nr
3
2

h

P
→

2
3

E[g(ε1)] =
2
3


R

g2(x)dx

(ii)

N Bh :=

ˆIVh − nr3/2
h

2
3 E[g(ε1)]

√
n r

5
4

h


2
5 E[g(ε1)]

F0-stable
→ U,

where U is a random variable on an extension S ′
:= (Ω ′, F ′, F ′

s, P ′) of S , having standard
Gaussian law, and is independent on S .

Remarks. (1) We recognize that assuming i.i.d. noises when {Yti }i=1..n represent the observed
prices of a financial asset is not completely realistic, however, as in many other works
following [23], this represents a starting point to understand what one can substantially do.

(2) The above assumptions on ε imply that Assumption 1 is satisfied (see point (5) below and
Remark (1) after Assumption 2). The above assumptions on ε are satisfied if e.g. the noise is
additive i.i.d. with Gaussian εti .

(3) When εti are i.i.d. with uniform laws, the density g is not Lipschitz over the whole R,
however the results (i) and (ii) are proved by using the specific features of the uniform density
(see just after the proof of Theorem 3.2).

(4) Condition β > 2/3 implies, from (i), that E[ ˆIVh] → 0.
(5) By the i.i.d. property of the r.v.s εi , also the differences ui = εi − εi−1 have a common

density f , for i = 1..n, for all n, and the relation between f and the density g of εi is

f (z) =


R

g(z + y)g(y)dy.

Consequently E[g(ε1)] =


R g2(y)dy = f (0), so we can estimate E[g(ε1)] by either making
assumptions on the noise density (e.g. Gaussian or uniform) and then using parametric methods
(e.g. deducing the value f (0) from estimates of the variance of the noise increments given
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e.g. in [6, p. 20]) or using non-parametric methods (as kernel-type estimators of f (0)). Therefore
we can implement a feasible version of N Bh . Var(ε1) ≠ 0 implies that f (0) = E[g(ε1)] ≠ 0,
since f (0) = E[g(ε1)] =


R g2(y)dy and g cannot be null.

(6) In [21] a power variation based statistic is proposed to study which kind of noise could
realistically affect a given record of observations. The statistic also serves to select an observation
frequency at which the impact of the noise can be considered negligible. The theory however is
developed for a noised Gaussian process (X t = σ Wt ).

4. Application: measuring the relevance of the noise in finite samples

In the previous section we obtained that in the presence of noises in the data, if we choose

β close to one, then
n

i=1(∆i Y )2
⋆

P
→ 0, in a way such that Theorem 3.2(ii) holds true, and the

feasible version of N Bh , where E[g(ε1)] = f (0) is replaced by an estimate f̂ (0), tends to a
standard Gaussian r.v. On the contrary, in the absence of the noise, since the econometrician
believes that some noises always affect the data, he still implements the same feasible version

of N Bh , but now we have
n

i=1(∆i Y )2
⋆

P
→ IV ≥ 0 (see [16]) and f̂n(0) → +∞ in both the

following cases: the case where we use kernel estimation

f̂n(0) =
1
ns

n
i=1

I{|∆i Y |<s}

with s = ϑ
√

h, for some constants ϑ , and the case where we believed that εi are Gaussian
N (0, σ 2

ε ) (or uniform) and estimated fn(0) through the empirical variance of the increments
∆i Y taken at the highest available frequency, by using

f̂n(0) =
1

2πσ̂ 2
u

, σ̂ 2
u =

1
n

n
i=1

(∆i Y )2
−


1
n

n
i=1

∆i Y

2

. (1)

( f̂n(0) = 1/


6σ̂ 2
u in the case of uniform noises εi ). In fact, in both cases we have f̂n(0) ∼ h−1/2,

which we checked under X ≡ Y ≡ σ W , by using the Lindeberg–Feller CLT for a 1-dependent
sequence forming a triangular array. Therefore nr3/2

h f̂n(0) → +∞, while nr5/2
h f̂n(0) → 0, so

Sh → −∞.
As a consequence, with β close to 1, the following statistic

Sh
.
=

ˆIVh − nr
3
2

h
2
3 Ê[g(ε1)]

√
nr

5
4

h


2
5 Ê[g(ε1)]

=

ˆIVh − nr
3
2

h
2
3 f̂n(0)

√
nr

5
4

h


2
5 f̂n(0)

(2)

allows us to construct a formal test of the hypotheses

(H0) presence of the noise, (H1) absence of the noise.

In fact, as soon as
√

nr1/4
h ( f (0) − f̂n(0)) → 0 we have

Sh


F0-stable

→ U if the noise is present, i.e. under (H0)
a.s.
→ −∞ if the noise is absent, i.e. under (H1).

(3)



2734 C. Mancini / Stochastic Processes and their Applications 123 (2013) 2728–2751

Note that if e.g. we use (1) then within the specialized model Y = σ W + ε we have
f (0) − f̂n(0) ∼ h so the requirement

√
nr1/4

h ( f (0) − f̂n(0)) → 0 is fulfilled.
The importance of this test stems from indicating us whether, for a given mesh h, we can rely

or not on TRV in order to estimate the IV of X . In practice, financial data are always affected
by some microstructure noises, so it is a bit delicate to be willing to test whether the noise is
present or not. However on finite samples the contamination can be high or low and then it is
meaningful to ask whether the noise can be neglected or not in order to estimate IV by using ˆIV .
To give an answer to this last question is exactly our intent, and is made possible by looking at
the behavior of Sh : when, given an observation step h, |Sh | assumes a very large value we are led
to think that the data behave like as if the noise was absent, meaning that the effect of the noise
is sufficiently low to allow us to estimate IV through ˆIV . If on the contrary the value assumed by
|Sh | is compatible with a standard Gaussian law, then the noise has to be judged to be relevant and
ˆIV has to be considered not reliable. The simulations experiments below substantially confirm

that when the noise affecting the data has small variance or the observation frequency is low
then |Sh | assumes large values, while it assumes small values otherwise. Thus we can use the
magnitude of |Sh | as an indicator of how negligible is the present noise. The negligibility of the
noise contribution to ˆIV is measured below by the performance MEE

.
= 100( ˆIV − IV)/IV of ˆIV

in estimating IV .
Note that our test is formulated in a not conventional way, as our hypothesis (H0) is “presence

of noise” rather than “absence of the noise”.
The confidence intervals for our test statistic are given using that P{|U | > 1.96} = 5%, so that

Sh is compatible at the 95% confidence level with a standard normal r.v. if its assumed absolute
value is below 1.96, and in such a case (H0) is accepted and the noise has to be considered
relevant. Otherwise, for large values of |Sh | formally (H0) would be rejected, however in practice
we have an indication of the negligibility of the noise.

The test procedure we propose here summarizes as follows:

• estimate f (0) (using a kernel or assuming a distribution for ∆iε and using the empirical
variance of the ∆i Y at the highest available frequency)

• RULE: consider the noise relevant at 5% level iff |Sh | ≤ 1.96.

We remark that using ˆIVh when possible, rather than applying estimators specifically
accounting for the presence of the noise, has an advantage in efficiency. In fact ˆIVh converges
at rate n1/2, in the absence of the noise, when the jump component J of X has finite variation
(see e.g. [17]), while the best rate of an estimator of IV accounting for the noise is n1/4. This can
make an important difference in finite samples.

By implementing Sh for different values of h, we can select optimally the observation mesh
ĥ to be used in order to estimate IV by ˆIVh in the presence of noise. In fact when the observation
frequency h is low, the estimation error ˆIVh − IV can be high (even in the absence of the
noises), because the theory asserts that ˆIVh → IV when h → 0. On the contrary, when
the frequency is very high, ˆIVh tends to zero and not to IV , in fact RVh would explode to
infinity. We are thus proposing an alternative criterion to the ones proposed so far in the financial
econometrics literature, namely the visual inspection of the SP of RVh [8] or the minimization of
the conditional (on σ ) mean squared error (MSE) of RVh −IV [4,3,22]. SP is not necessarily such
that RV ĥ delivers a reliable estimate of IV , given that RV ĥ cannot disentangle the estimation error
due to choice of a too large h from the error induced by the presence of the noise. Furthermore
both the SP and the MSE criterions are designed under the assumption that X has continuous
paths, while in the presence of jumps RVh undergoes a further source of estimation bias of IV ,
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represented by the sum of the squared jumps. Moreover, for the MSE criterion the selected h
is optimal on average, i.e. along many paths of the price process, while it is possible that the
optimal frequency for a given day is different from the frequency which is optimal in another
day. Our approach allows to establish the optimal observation mesh for any fixed path of a fixed
asset and also in the presence of jumps in X .

In practice, for financial data realistically the noise variance can be different for different
sampling frequencies. In a further paper (see in the meanwhile [18]) we study in simple
frameworks how the test response changes in this case. Indicated by ε

(n)
i the noise which is

involved in the observations sampled at frequency h = T/n, we allow that when n changes the
noise variance can change, but, for fixed n, Var(ε(n)

i ) is the same for all i = 1..n. We separately

tackle the case where ρn := Var(ε(n)
1 ) → ρ > 0 and the one where ρn → 0. The first case is

probably the most realistic, and the test has theoretically the same asymptotic behavior as when
ρn is the same for all n, while the second case serves to measure how reliable is the application
of the test when we stress the difficulty in identifying the noise characteristics, i.e. when the
hypotheses (H (n)

0 ) and (H1) get closer and closer while n → ∞.

5. Reliability check on simulations

We check here the reliability of our proposed procedure in recognizing whether ˆIVh is a
good estimate of IV by looking at the magnitude of Sh . Through Sh we then select the optimal
observation frequency to estimate IV . Further analysis on both simulated and empirical data is
conducted in [15]. Here we conduct four different kinds of check. Our DGP is given by

Y = X + τε

where X can follow one of the three models (5), (6) or (7) described below, the noise is
additive and given by a process ε which is independent on X . The r.v.s εti are i.i.d. uniform and
centered with different possible values of the variance parameter in the different experiments:
Var(εi )

.
= σ 2

ε = 2 × 10−7 (low level) or σ 2
ε = 8 × 10−6 (medium level) or σ 2

ε = 8 × 10−5

(high level). In any case σ 2
ε is constant as h varies, as assumed in [14, p. 16]. We discriminate

the presence or the absence of the noise in the simulated data through the variable τ , which
takes value 1 in the first case, and 0 in the second case. In the simulation experiments either we
consider f (0) = 1/


12σ 2

ε as known and plug its value directly into Sh or we estimate f (0) by
means of the empirical variance of the n observations ∆i Y , where n is the same as in ˆIV:

f̂ (0) = 1/


6σ̂ 2

u . (4)

Applications of the test where f (0) is estimated by the non-parametric kernel method is done
in [15]. In all the three proposed models the values of σ keep around 0.4, as it is realistic for
financial data, and the threshold rh has to be such that about all the squared variations (σti ∆i W )2

are below it, so we implement our test using rh = 0.95 × h0.999, where 0.95 is about 6 times
0.42. We take different values of n and of the observation steps h in the different experiments,
then T = nh. For instance when we consider 1′′ observations over a whole day with a 7 h open
market (T = 0.004 years), then h = 1/(252×7×60×60) and n = 25 200, while if we consider
5′ observations over a day then h = 1/(252 × 7 × 12) and n = 84.

We recall that we are interested in establishing whether for a given h the noise is too relevant
or not in order to rely on the fact that ˆIVh correctly estimates IV , and such a relevance is measured
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by the discrepancy between the behavior of our test statistic Sh and the standard Gaussian law.
Our formal hypothesis is

(H0) τ = 1

and we judge that the noise is relevant iff we have |Sh | < 1.96, meaning that we cannot rely that
ˆIVh correctly estimates IV , while we judge that the noise is negligible otherwise. In this last case

we more or less rely on ˆIVh .
In the following, when we take τ = 1 we simulate H paths of Y , for each path we implement

Sh and compute the following empirical quantile of |Sh |

pct
.
=

#{|Sh | > 1.96}

H
,

which we use as a test on the distribution of |Sh |. More precisely, as the CLT we gave states an
F0-stable convergence of Sh , we operate conditionally on X , i.e. for a given h the H paths of Y
are obtained by generating one path of X and by adding to it H different paths of ε. When τ = 0
we implement |Sh | only once.

MODEL GP: Gauss–Poisson process. Here the efficient price X has constant volatility and
compound Poisson jumps. However we condition process J to have one jump within [0, T ], in
which case the jump time ν is a r.v. uniformly distributed on [0, T ], and J can be written as

Jt ≡ J1t = Z I{t≥ν},

with Z a r.v. independent on ν and that we choose to be Gaussian with law N (0, 0.62). Then we
have

d X = 0.4dW + d J, (5)

the parameters are chosen as in [1] and are expressed in annual unit of measure.
MODEL SV-PJ: Stochastic volatility and Poisson jumps. The dynamics of σ is as in [9] and

J is as above:

d X = −σ 2
t /2dt + σt dWt + d Jt ,

d log σt = −0.09 × (log σt − log(0.25))dt + 0.05 × dW (2)
t , Jt = Z I{t≥ν}.

(6)

The σ parameters log σ0 = log(0.4), ρ = corr(Wt , W (2)
t ) = −0.7 ∀t , produce similar σ paths as

in [9].
MODEL G-CGMY: constant volatility and CGMY jumps.

d X = 0.3815 dW + d J, (7)

where J is a CGMY process as proposed in [5] with, for the Lévy density of J , scale parameter
C = 280.11, tail decay parameter for the negative jump sizes G = 102.84, tail decay parameter
for the positive jump sizes M = 102.53 and jump activity index Y = 0.1191. The parameter
values have been estimated for MSFT asset prices in [5] (Table 2).

FIRST CHECK. We show the empirical density of the values assumed by our test statistic
when implemented on H = 1000 paths of Model GP in the case τ = 1, medium σ 2

ε =

8 × 10−6, using n = 1000 observations. Consistently with our common sense, we observe
two radically different behaviors when h is 20′ (left panel of Fig. 1) and when h is 1′′

(right panel): according to the values assumed by Sh in the first case the noise is judged to
be negligible, while in the second case it is judged to be relevant. And in fact pct = 1,
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Fig. 1. Empirical density of the test statistic Sh under the simulated Model GP plus additive i.i.d. uniform noise with
σ 2
ε = 8 × 10−6 and n = 1000 observations, h = 1/(252 × 21) i.e. 20′ (left), h = 1/(252 × 7 × 60 × 60) i.e. 1′′ (right),

pct = 1 (left), pct = 0.045 (right).

Table 1
Performance of our test Sh under Model GP: τ = 1 is when the simulated data contain the noise component, τ = 0
otherwise; pct = #{|Sh | > 1.96|X}/H ; low noise means σ 2

ε = 2 × 10−7, medium noise σ 2
ε = 8 × 10−6, high noise

σ 2
ε = 8 × 10−5. As we condition on the X path, when τ = 1 then Sh is implemented on H = 1000 different simulated

paths of Y = X + τε, while when τ = 0 then Sh is implemented only once.

Model GP h pct MEE SEE pct MEE SEE pct MEE SEE
Low noise Med noise High noise

Size 5′ 1 −16.34 5.9 0.88 30.34 17.48 0.035 −27.32 15.90
τ = 1 1′′ 1 −18.45 0.94 0.17 −84.50 0.46 0.046 −94.97 0.27

Power 5′ 1 −9.059 0
τ = 0 1′′ 1 −9.91 0

MEE = mean(100( ˆIV − IV)/IV) = 10.3434, SEE
.
=


Var(100( ˆIV − IV)/IV) = 3.9709 in

the first case, while pct = 0.0452, MEE = −84.5334, SEE = 2.3202, in the second one.
SECOND CHECK. Under Model GP we check size (τ = 1) and power (τ = 0) of our test,

for fixed T = 0.004 years, either with h =1 second (n = 25 200), or 5 min (n = 84), in the four
cases of absence of noise, low, medium or high level of noise. Recall that when τ = 0 only one
path of Y is available and the value 100 × ( ˆIV − IV)/IV is computed only once, and that f̂ (0) is
still as in (4). When τ = 1 then H = 1000 paths are generated in each scenario. The produced
results are as in Table 1. Substantially the statistic behaves as one would expect: for instance,
when the variance is low and we sample each 5′, for the 100% of the paths of Y the statistic |Sh |

assumes values above 1.96, indicating negligibility of the noise, and in fact the mean estimation
error of IV by ˆIV is not so high, about 16%; if we sample at 1′′ the noise is still classified as
negligible by Sh , in fact MEE is about 18%; when the noise has high variance and we sample
at 1′′, for about the 95% of the samples |Sh | is below 1.96, so according to it the noise has to
be considered relevant, and in fact the mean estimation error is high (about 95%). Consistently
with our common sense, when the noise is at an intermediate level the statistic indicates that it
is much more relevant when sampling at 1′′ than at 5′. In the absence of the noise things go as
expected, as according to Sh the noise is always correctly judged to be negligible.

We now change the volatility component in the simulated DGP, assuming Model SV-PJ, and
repeat the previous experiment. Table 2 confirms the previous results.



2738 C. Mancini / Stochastic Processes and their Applications 123 (2013) 2728–2751

Table 2
Performance Sh under Model SV-PJ.

Model SV-PJ h pct MEE SEE pct MEE SEE pct MEE SEE
Low noise Med noise High noise

Size 5′ 1 −1.84 6.74 0.97 30.30 16.60 0.038 −27.70 15.17
τ = 1 1′′ 1 −18.48 0.92 0.15 −84.48 0.47 0.035 −95.00 0.25

Power 5′ 1 −10.91 0
τ = 0 1′′ 1 −11.10 0

Table 3
Performance Sh under Model G-CGMY.

Model G-CGMY h pct MEE SEE pct MEE SEE pct MEE SEE
Low noise Med noise High noise

Size 5′ 0.008 −64.45 6.12 0.043 −62.89 10.10 0.037 −68.74 10.91
τ = 1 1′′ 1 −25.19 0.90 0.25 −84.95 0.45 0.05 −95.04 0.26

Power 5′ 0 −76.27 0
τ = 0 1′′ 1 −19.09 0

Table 4
Performance Sh under Model G-CGMY, n = 2000.

Model G-CGMY h pct MEE SEE pct MEE SEE pct MEE SEE
Low noise Med noise High noise

τ = 1 5′ 1 −2.15 1.56 0.97 15.08 3.52 0.56 −32.04 3.32

τ = 0 5′ 1 −3.94 0

We finally consider Model G-CGMY. The outcomes for pct are given in Table 3.
In this G-CGMY framework in fact ˆIVh is almost always considered unreliable by the test

based on the magnitude of Sh , and in fact the mean estimation error MEE is high in all cases
but when the noise is absent or low and we observe every 1′′. Now the many small jumps of the
GCMY process are confused by the test with the noise process increments, in fact this confusion
is higher for lower observation frequency when the jumps are not well disentangled of IV , with
the result that the noise is perceived much higher than it is. When we sample each 5 min in fact
n = 84 observations are not sufficient to disentangle IV from the jumps. If we implement the
test with n = 2000 5-min observations, things go much more as we would expect, as shown in
Table 4.

THIRD CHECK. We now check the sensitivity of the proposed test to the noise variance σ 2
ε .

For this, we simulate a GP model as in (5). Given an observation step h we vary σ 2
ε and compute

the resulting pct value. Fig. 2 displays the plots of pct as a function of σ 2
ε in the two cases of

h = 5′ (left panel) and h = 1′′ (right panel).
Recall that the test classifies the noise as relevant iff pct ≤ 0.05, so we can see that for h = 5′

noises with variance less than or equal to about 10−8 are judged to be negligible, while with
h = 1′′ noises with variance between 10−8.5 and 10−8 are already judged to be relevant, as one
would expect, because for the same level of noise the impact on the returns is higher at lower
frequencies.
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Fig. 2. Plot of pct =
#{|Sh |>1.96}

H as a function of σ 2
ε . From Model GP plus additive i.i.d. uniform noise H = 1000

paths were generated. Each path is observed at n = 1000 points in time and the observation step is either of five minutes
(left panel) or one second (right panel). Recall that the noise is judged by the test to be negligible iff pct ≫ 5%.

FOURTH CHECK. We finally compare the response we obtain using our test with the
responses given on one hand by visualizing the signature plot (SP) of RVh and on the other
hand by using the criterion of minimizing the conditional (on σ ) mean square estimation
error RVh − IV (MSE). We now simulate only one path of the DGP, with nmax = 33 600
observations with minimum observation frequency hmin = 1′′, then for each h = hmin × k, k ∈

{1, 2, 5, 10, 15, 20, 30, 60, 120, 300, 600, 900, 1200, 1800, 2400, 3000, 3600}, we aggregate the
available data to reach n = nmax/k observations with frequency h and we jointly plot RVh
and Sh as functions of h. We also report the values of h obtained in [4,22,3], which give an
approximately optimal MSE. In [4, p. 348], for a BSM model X with i.i.d. additive noise, the
observation step minimizing MSE is ĥ = T/n̂ where n̂ minimizes

2
T

n
(I Q + Rn) + 4nE[ε4

1] + 4n2σ 4
ε + 8IVσ 2

ε + 2σ 4
ε − E[ε4

1],

where Rn = o(1) as n → ∞, and I Q :=
 T

0 σ 4
t dt . Because T/n → 0, we computed the n

minimizing

2
T

n
I Q + 4nE[ε4

1] + 4n2σ 4
ε + 8IVσ 2

ε + 2σ 4
ε − E[ε4

1],

which is unique and exactly given by nBR
.
= y − a/3, where

y =
3


−q/2 +


q2/4 + p3/27 +

3


−q/2 −


q2/4 + p3/27;

p = −a2/3; q = 2a3/27 − T × I Q/(4σ 4
ε ),

a = E[ε4
1]/2σ 4

ε . We then set hBR = T/nBR. The authors also suggest that, when the number of
used observations is sufficiently large, then n̂ is well approximated by ñBR

.
=

3


T × I Q/(4σ 4
ε ),

so that

h̃BR
.
=

3


4T 2σ 4
ε /I Q.

In [22, p. 1399], for a BSM model X , an analogous minimization of MSE is conducted and, in
the framework of equally spaced observations, it gives the same approximate optimal observation
step as hBR. Note that in [3, p. 361] the same observation step value as hBR is again selected for a
parametric Gaussian model X = σ W where σ is estimated by maximum likelihood and MSE is
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Fig. 3. Optimal choices of h to estimate IV , using the different criteria of Sh , SP, hBR, h̃BR, under Model SV-PJ. The
noise is additive i.i.d. uniform, nmax = 33 600, T = 0.0053, rh = h0.999. The figures in the top row are characterized
by σ 2

ε = 8 × 10−6 (medium level of noise), while in the second row we have σ 2
ε = 2 × 10−7 (low level of noise).

The figures in the left column are characterized by the fact that we imposed J ≡ 0, while to generate the figures of the
right column we conditioned to the occurrence of one jump. TRV stands for Threshold Realized Variance and coincides
with ˆIVh .

minimized. The value hBR is still an approximation of the optimal h, this time the approximation
error is small for large T . The coincidence of the selected observation steps in [3,4] is explained
by the fact that in the framework of [3] the ML estimator coincides with RVh/T .

We firstly assume Model SV-PJ and uniform noise. Fig. 3 visualizes a comparison of the
different answers given by the different four criteria Sh , SP, hBR, h̃BR within 4 different scenarios.
The squares with a cross inside and connected by a line represent the SP of RVh as h varies on
the horizontal axis. The step h is expressed in seconds and the x-axis reports ln h. In order
to be able to clearly read the figure, also on the vertical axis we reported log values, such as
log(RVh), log( ˆIVh) and so on. In the top left panel J is set equal to 0 and the noise level is
medium with σ 2

ε = 8 × 10−6. According to the plotted SP, as the minimal value is obtained with
h ≈ e8 (corresponding to about 50′), this is the limit frequency under which not to go in order to
consider RVh as a reliable estimate of IV . Note that in fact e8 is close to the value h̃BR (“APPR.
BR”, point in the x-axis). However note that, in this case, with 50′ observations, RVh does
not approximate IV (continuous line) nicely. We also reported the unobservable log(RVh(X))

(crosses), log( ˆIVh(X)) (circles) and the log of the 95% confidence band (dotted lines) indicating
when ˆIVh(X) is an acceptable estimate of IV in the absence of noise. Such confidence band is
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computed on the basis of the CLT for ˆIVh(X) given in [16]. We see that in the absence of the
jumps and of the noise RVh(X) and ˆIVh(X) in fact coincide, but they give very accurate estimates
of IV only for values of h less than or equal to e7 seconds (about 18′), while for larger values of
h they fall outside the confidence interval, meaning that h ≈ e8 is too large.

On the other hand, the minimal MSE criterion (hBR and h̃BR, points on the x-axis which are
centered respectively with respect to the labels “BR” and “APPR. BR”) would suggest that on
average it is safe to use RVh with hBR ≈ e3.6 (about 36′′) or h̃BR = e7.8 (41′). However, as we
can directly check, for the realized path of Y we are analyzing, the estimation error RVh − IV is
not really acceptable, especially at the frequency hBR, as RVh is outside and quite far from the
dotted confidence range (in this framework of no jumps P limh RVh = P limh ˆIVh and the same
CLT holds for both the estimators).

On the contrary, if we use the threshold estimator of IV , we can take an even lower frequency
than hBR, such as about h = e3.4 (about 30′′) and still correctly approximating IV . In fact the stars
surrounded by circles represent the values assumed by log( ˆIVh). The dashed lines represent the
log of the 95% confidence interval for Sh behaving like a standard Gaussian r.v., thus indicating
relevance of the noise. A triangle on a given value h on the x-axis indicates that for that obser-
vation step our test accepts (H0) (meaning relevance of the noise). As soon as log( ˆIVh) enters
the dashed lines confidence interval, we are aware that we cannot rely anymore on our estima-
tor because the noise becomes too important. Note that, as h decreases, for a while ˆIVh follows
the shape of RVh , but then the threshold begins to truncate and ˆIVh is smoothed. Our test indi-
cates not to use a frequency below about h = e3.4 (30′′) to estimate IV through ˆIVh , considering
acceptable the percentage estimation error ( ˆIVh − IV)/IV of about 20% when h = e3.4.

Since in this path no jumps occurred, QV equals IV , and we see that log(RVh) and log( ˆIVh)

nearly coincide for h ≥ e6.8 (10′). However, if some jumps occur, as in the top right panel
of Fig. 3, we know that it is forbidden to use RVh to estimate IV , because RVh tends to
QV = IV +


t≤T (1Jt )

2. So in this second panel it is even more evident the problem that
the optimal h values for the SP and for the minimum MSE criterions is not necessarily such that
the estimation error of IV is small.

On the other hand the bottom left panel of Fig. 3 shows the comparison among the illustrated
optimal frequency selection criteria when the noise variance is decreased to σ 2

ε = 2 × 10−7.
In this case it turns out that hBR = 5.7 × 10−6

≈ e−12 (which falls outside the x-axis range,
and corresponds to about 0′′), indicating that the noise is so low that we can use all the available
1′′ data and rely on RVh to estimate IV , which however is not the case from our picture. The
threshold based test response on the optimal frequency selection is similar, because no triangles
appear on the x-axis, indicating us to neglect the noise even when using 1′′ observations if
adopting ˆIVh . In fact our picture clearly suggests that, with data at 1′′, we have to estimate IV by
ˆIVh and not by RVh . This is even more so when X undergoes some jumps (bottom right panel).

We now repeat the comparison on two simulated paths of Model G-CGMY added with
uniform noises. We have similar pictures (Fig. 4) and conclusions as before, for the noise variance
levels of σ 2

ε = 8 × 10−6 (left panel) and σ 2
ε = 2 × 10−7 (right panel). Note that in this case QV

always differs from IV , because J has infinite activity of jump and on [0, T ] it realizes countably
many very small jumps.
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Fig. 4. Optimal choices of h to estimate IV , using the different criteria of Sh , SP, hBR, h̃BR, under Model G-CGMY.
The noise is additive i.i.d. uniform, with medium level of noise σ 2

ε = 8 × 10−6 in the left panel and σ 2
ε = 2 × 10−7 in

the right one. nmax = 33 600, T = 0.0053, rh = h0.999.

Appendix. Proofs of the results

Lemma A.1. Under Assumption 2 we have, for all n,

P{|∆i X | >
√

rh} ≤ ch1−
αβ
2 , P{|∆i J̃2| >

√
rh} ≤ ch1−

αβ
2 ,

uniformly in i = 1..n.

Proof. Exactly as in Lemma 8.2(iii) in [7]. �

We remark that the càdlàg property of the paths of a, σ, X entails that the three processes are
locally bounded. By a localization procedure similar to the one in [10, Section 5.4, p. 549], we
can assume wlog that they are bounded (as (ω, t) vary within Ω × [0, T ]).

Proof of Theorem 3.1. We have what follows.

0 ≤

n
i=1

(∆i Y )2 I{(∆i Y )2≤rh} ≤ 2
n

i=1

[(∆i X0)
2
+ (∆i J + ∆iε)

2
]

× [I{∆i N≠0,(∆i Y )2≤rh} + I{∆i N=0,(∆i Y )2≤rh}]

note that for sufficiently small h on (∆i Y )2
≤ rh we have |∆i J + ∆iε| ≤ 2

√
rh , since

√
rh ≥ |∆i Y | ≥ |∆i J + ∆iε| − |∆i X0| implies that |∆i J + ∆iε| ≤

√
rh + |∆i X0| ≤ 2

√
rh by

(14) in [16], therefore

n
i=1

[(∆i X0)
2
+ (∆i J + ∆iε)

2
]I{∆i N≠0,(∆i Y )2≤rh}

≤

n
i=1

[(∆i X0)
2
+ (∆i J + ∆iε)

2
]I{∆i N≠0,|∆i J+∆i ε|≤2

√
rh}

≤ c


h ln

1
h

+ rh


NT

a.s.
→ 0.
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On the other hand
n

i=1

(∆i J + ∆iε)
2 I{∆i N=0,(∆i Y )2≤rh}

≤

n
i=1

(∆i J + ∆iε)
2 I{∆i N=0,(∆i Y )2≤rh ,|∆i J+∆i ε|≤2

√
rh}

and this last term can be split in

I1 + I2 :=

n
i=1

(∆i J + ∆iε)
2 I

{∆i N=0,(∆i Y )2≤rh ,|∆i J+∆i ε|≤2
√

rh ,|∆i J̃2|≤
√

rh}

+

n
i=1

(∆i J + ∆iε)
2 I

{∆i N=0,(∆i Y )2≤rh ,|∆i J+∆i ε|≤2
√

rh ,|∆i J̃2|>
√

rh}
.

By Assumption 2 we have, uniformly on i, P{|∆i J̃2| >
√

rh} = OP (h1−
αβ
2 ), so in probability

I2 = OP


rhh−

αβ
2


= OP


hβ(1−

α
2 )


→ 0.

As for I1, on {∆i N = 0, |∆i J +∆iε| ≤ 2
√

rh, |∆i J̃2| ≤
√

rh} we have 2
√

rh ≥ |∆i J +∆iε| ≥

|∆iε| − |∆i J̃2| then |∆iε| ≤ 2
√

rh + |∆i J̃2| ≤ 3
√

rh and by Assumption 1 we reach that

E[I1] ≤ crhn
√

rh = h
3
2 β−1

→ 0.

Finally we consider
n

i=1(∆i X0)
2 I{∆i N=0,(∆i Y )2≤rh} and we write it as

I3 + I4 :=

n
i=1

(∆i X0)
2I{∆i N=0,(∆i Y )2≤rh} − I{(∆i X)2≤Arh}


+

n
i=1

(∆i X0)
2 I{(∆i X)2≤Arh},

with A > 1 any constant. We have

I3 =

n
i=1

(∆i X0)
2I{∆i N=0,(∆i Y )2≤rh ,(∆i X)2>Arh} − I{(∆i X)2≤Arh}∩({∆i N≠0}∪{(∆i Y )2>rh})


:

we now show that on {∆i N = 0, (∆i Y )2
≤ rh, (∆i X)2 > Arh} we have (∆i J̃2)

2 > crh , for
a suitable constant c. In fact, given any constant δ > 0, analogously as for the statement in the
fourth line of this proof, a.s. for sufficiently small h if (∆i Y )2

≤ rh then

|∆i J̃2 + ∆iε| ≤ (1 + δ)
√

rh; (8)

moreover if (∆i X)2 > Arh and (∆i Y )2
≤ rh then |∆iε| > (

√
A − 1)

√
rh , since

|∆iε| = |∆i Y − ∆i X | > |∆i X | − |∆i Y | ≥


Arh −

√
rh = (

√
A − 1)

√
rh (9)

putting together (8) and (9) we reach

|∆i J̃2| = |∆i J̃2 + ∆iε − ∆iε| > |∆iε| − |∆i J̃2 + ∆iε| ≥ ((
√

A − 1) − 1 − δ)
√

rh

and
√

A −2− δ > 0 as soon as we choose A > (2+ δ)2, as we wanted. Now a.s., for sufficiently
small h, with

√
c :=

√
A − 2 − δ



2744 C. Mancini / Stochastic Processes and their Applications 123 (2013) 2728–2751

n
i=1

(∆i X0)
2 I{∆i N=0,(∆i Y )2≤rh ,(∆i X)2>Arh} ≤

n
i=1

(∆i X0)
2 I

{|∆i J̃2|>
√

c
√

rh}

≤ ch ln
1
h

h−
αβ
2 → 0

and the almost sure limit of I3 + I4 is the same as

−

n
i=1

(∆i X0)
2 I

{(∆i X)2≤Arh}∩


{∆i N≠0}∪{(∆i Y )2>rh}

 +

n
i=1

(∆i X0)
2 I{(∆i X)2≤Arh}.

Note that a.s., for sufficiently small h,
n

i=1(∆i X0)
2 I{(∆i X)2≤Arh}∩{∆i N≠0} ≤ h ln 1

h NT is
negligible, so we are left with

n
i=1

(∆i X0)
2

−I{(∆i X)2≤Arh}∩{(∆i Y )2>rh} + I{(∆i X)2≤Arh}


=

n
i=1

(∆i X0)
2 I{(∆i X)2≤Arh ,(∆i Y )2≤rh}. (10)

However on {(∆i X)2
≤ Arh, (∆i Y )2

≤ rh} we have |∆iε| = |∆i Y −∆i X | ≤ |∆i Y |+ |∆i X | ≤
√

rh +
√

Arh , so that almost surely (10) is bounded by h ln 1
h

n
i=1 I

{|∆i ε|≤(
√

A+1)
√

rh}
, whose

expectation is O(nh ln 1
h
√

rh) → 0. �

Lemma A.2. Under the assumptions of Theorem 3.2, for any even integer q > 0 we have what
follows.

(1) For fixed ω, for all n for all i = 1..n, define the r.v.

Hq
i (r)

.
=

 √
r

−
√

r
|u|

q g(u − ∆i X + εi−1)du.

It holds that for fixed ω, for all n for all i = 1..n∃ ξi = ξn
i (ω) ∈ (0, r):

Hq
i (r) =

r (q+1)/2

q + 1


g(


ξi − ∆i X + εi−1) + g(−


ξi − ∆i X + εi−1)

. (11)

(2) ∀n, ∀i

Ei−1[(∆i Y⋆)
q
] = Ei−1[Hq

i (rh)]

=
r (q+1)/2

h

q + 1
Ei−1


g(


ξi − ∆i X + εi−1) + g(−


ξi − ∆i X + εi−1)

.

(3) 1
n

n
i=1 Ei−1[g(s

√
ξi − ∆i X + εi−1)]

L1

→ E[g(ε1)] for both cases s = +1, and s = −1.

Proof. (1) Define G(q)(r) := r
q+1

2 and note that Gq(0) = H (q)
i (0) = 0. Using the Cauchy

theorem, a.s. for all i there exist numbers ξi ∈]0, r [ such that

H (q)
i (r) =

(H (q)
i )′(ξi )

(G(q))′(ξi )
G(q)(r)

=
g(

√
ξi − ∆i X + εi−1) + g(−

√
ξi − ∆i X + εi−1)

q + 1
r

q+1
2 . (12)
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(2) For fixed (h, i) we have Ei−1[(∆i Y⋆)
q
] = Ei−1


(∆i X + ∆iε)

q I{|∆i X+∆i ε|≤
√

rh}


, and by

the independence of εi on (εi−1, X) and since q is even the above term equals

Ei−1


R
(∆i X + z − εi−1)

q I{|∆i X+z−εi−1|≤
√

rh}g(z)dz


= Ei−1

 √
rh

−
√

rh

uq g(u − ∆i X + εi−1)du


= Ei−1


H (q)

i (rh)

,

having changed variable as u = ∆i X + z − εi−1. Now for fixed (i, h), for any fixed ω we have
equality (11), so for fixed (i, h) the two terms in (11) are a.s. equal, therefore their expectations
Ei−1 coincide a.s., and the thesis follows.

(3) Firstly note that by the law of large numbers 1
n

n
i=1 Ei−1[g(εi−1)] =

1
n

n
i=1 g(εi−1)

L2

→

E[g(ε1)]. Secondly we show that 1
n

n
i=1 Ei−1[g(s

√
ξi −∆i X + εi−1)] behaves asymptotically

in L1 norm as 1
n

n
i=1 Ei−1[g(εi−1)]. In fact by the Lipschitz property of g, denoting with L its

Lipschitz constant,

E

1n
n

i=1

Ei−1[g(s


ξi − ∆i X + εi−1) − g(εi−1)]




≤
L

n

n
i=1

E[|s


ξi − ∆i X |]. (13)

Because |s
√

ξi | ≤
√

rh and we assumed X bounded wlog, we have, for all i , for small
h, E[|∆i X |] ≤

√
h <

√
rh and the last display above is dominated by c(E[|s

√
ξi |] + E[|∆i X |])

≤ c
√

rh → 0. �

Proof of Theorem 3.2. (i) We have

E[ ˆIVh] = E


n

i=1

(∆i Y⋆)
2


= E


i

Ei−1[(∆i Y⋆)
2
]


by Lemma A.2 part (2) the last expectation equals

r3/2
h

3
E


n

i=1

Ei−1[g(


ξi − ∆i X + εi−1) + g(−


ξi − ∆i X + εi−1)]



= nr3/2
h

1
3

E


1
n


i

Ei−1[g(


ξi − ∆i X + εi−1) + g(−


ξi − ∆i X + εi−1)]


,

and the thesis follows from Lemma A.2 part (3).
In order to prove (ii), we apply a classical theorem of convergence for sums of r.v.s belonging

to a triangular array [11, Lemma 4.3 of the preprint draft] to show the convergence in law of
the normalized bias N Bh . We then refine the result to an F 0-stable convergence. Recall that
h = T/n and define

φi = φn
i

.
=

(∆i Y⋆)
2
− r3/2

h
2
3 E[g(ε1)]

nr5/2
h

2
5 E[g(ε1)]

and note that φi ∈ Fti . We are going to verify that

(a)
[t/h]
i=1

Ei−1[φi ]
P
→ 0 (b)

[t/h]
i=1

Ei−1[φ
2
i ] − E2

i−1[φi ]
L1

→ CT , (c)
[t/h]
i=1

Ei−1[φ
4
i ]

P
→ 0,
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with C a deterministic increasing process with continuous paths. Such conditions imply the
convergence in law of processes {

[t/h]

i=1 φi , t ≥ 0} to a Gaussian process B with continuous
paths, centered, with independent increments and such that ∀t ≥ 0, E[B2

t ] = Ct .
As for (a),

[t/h]
i=1

Ei−1[φi ] =

[t/h]
i=1

Ei−1[φi ] ±
2r

3
2

h

3
Ei−1[g(εi−1)]

√
nr

5
4

h


2
5 E[g(ε1)]


=

r
3
2

h

3

[t/h]
i=1

Ei−1


g(

√
ξi − ∆i X + εi−1) + g(−

√
ξi − ∆i X + εi−1) − 2g(εi−1)


√

nr
5
4

h


2
5 E[g(ε1)]

+
r

3
2

h

3

[t/h]
i=1

2Ei−1[g(εi−1)] − 2E[g(ε1)]

√
nr

5
4

h


2
5 E[g(ε1)]

. (14)

Using the Lipschitz property of g, the first term above has absolute value bounded by

c
r

1
4

h
√

n

[t/h]
i=1

Ei−1


|g(


ξi − ∆i X + εi−1) + g(−


ξi − ∆i X + εi−1) − 2g(εi−1)|


≤ c
r

1
4

h
√

n
L

[t/h]
i=1

Ei−1


|


ξi | + |∆i X |


.

As argued for (13), Ei−1


|
√

ξi | + |∆i X |


≤

√
rh , further for t ≤ T we have [t/h] ≤ n, so the

above display is dominated by

cr
1
4

h

√
n
√

rh = h
3
4 β−

1
2

which tends to zero by the assumption β > 2/3. As for the second term in (14), it coincides with

c
r

1
4

h
√

n


[t/h]
i=1

g(εi−1) −


t

h


E[g(ε1)]


which, by the central limit theorem for a sequence of i.i.d. r.v.s with finite mean and variance,
behaves asymptotically as r1/4

h → 0.
As for condition (b), using Lemma A.2 we have

[t/h]
i=1

E2
i−1[φi ] =

[t/h]
i=1

E2
i−1


(∆i Y⋆)

2
− r3/2

h
2
3 E[g(ε1)]


nr

5
2

h
2
5 E[g(ε1)]

≤ cr3
h

[t/h]
i=1

E2
i−1


g(

√
ξi − ∆i X + εi−1) + g(−

√
ξi − ∆i X + εi−1)


nr

5
2

h

+ cr3
h


t

h


E2

[g(ε1)]

nr
5
2

h

:
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the last term has the same asymptotic behavior as [t/h]r3
h/(nr5/2

h ) ≤ r1/2
h → 0, while the first

term of the rhs above is dominated by

c
r1/2

h

n

[t/h]
i=1

Ei−1[g
2(


ξi − ∆i X + εi−1) + g2(−


ξi − ∆i X + εi−1)].

By the boundedness of g this in turn is dominated by cr1/2
h → 0. We now compute

[t/h]
i=1

Ei−1[φ
2
i ] =

[t/h]
i=1

Ei−1

 (∆i Y⋆)
4

nr
5
2

h
2
5 E[g(ε1)]

− r
3
2

h
4
3

E[g(ε1)]

[t/h]
i=1

Ei−1

(∆i Y⋆)

2


nr
5
2

h
2
5 E[g(ε1)]

+


t

h


r3

h
4
9

E2
[g(ε1)]

nr
5
2

h
2
5 E[g(ε1)]

.

By Lemma A.2 part (2) and the analogous result as in part (3) with [t/h] in place of n, the first
term tends to t/T in probability and the second and the third terms above have both the same
asymptotic behavior as r1/2

h → 0. We can conclude that condition (b) holds with Ct = t/T , so
that the limit process B = Z/

√
T has the same law of a standard Brownian motion Z t divided

by
√

T .
We now check condition (c). We have

[t/h]
i=1

Ei−1[φ
4
i ] ≤

c

n2r5
h

[t/h]
i=1

Ei−1

(∆i Y⋆)
2
− r3/2

h
2
3

E[g(ε1)]

4


≤

c
[t/h]
i=1

Ei−1[(∆i Y⋆)
8
]

n2r5
h

+
c

n2r5
h

nr6
h .

The last term is of the same order as rh/n → 0, while, using again Lemma A.2, parts (2) and
(3), the first term of the rhs above is dominated by

c
r9/2

h

nr5
h

[t/h]

n

[t/h]
i=1

Ei−1[g(
√

ξi − ∆i X + εi−1) + g(−
√

ξi − ∆i X + εi−1)]

[t/h]
∼

1
n
√

rh
→ 0.

We now come to the F0-stable convergence of
n

i=1 φi . By Proposition VIII.5.33 in [13],
because

n
i=1 φi converges in law, then it is tight, it is thus sufficient to show that for all A ∈ F0

and all bounded continuous f the sequence E[IA f (
n

i=1 φi )] converges. In fact

E


IA f


n

i=1

φi


= E


E0


IA f


n

i=1

φi


= E


IA E0


f


n

i=1

φi


.

By the convergence in law of
n

i=1 φi we have that E0


f (
n

i=1 φi )


→


f (x)φ(x)dx , where φ

is the density of BT = ZT /
√

T , which is standard Gaussian, and by the dominated convergence
theorem, the last term in the display above converges to P(A)


f (x)φ(x)dx , which concludes

the proof of the stated stable convergence. �
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Proof of results (i) and (ii) in the statement of Theorem 3.2 when the noise has uniform law.
We are now assuming that process ε is independent on X, εi are i.i.d. with uniform law,

β > 2/3. We begin by checking the validity of Lemma A.2. In this framework we have
g(x) = C−1 I[−C/2,C/2](x), for some fixed constants C , thus for fixed h, ω, i, H (q)

i (r) =

C−1
 √

r
−

√
r

uq I|u−∆i X+εi−1|≤C/2du is not differentiable at the points r = ∆i X − εi−1 − C/2,

∆i X − εi−1 + C/2. We can apply the Cauchy theorem as in the proof of part (1) of the lemma
only when (−

√
r ,

√
r) ⊂ (∆i X − εi−1 − C/2,∆i X − εi−1 + C/2) (or equivalently when

√
r < C/2 − |∆i X − εi−1|), and the following results will be sufficient to prove the CLT of

Theorem 3.2:

(1′) for fixed ω, n, i , for r < C/2 − |∆i X − εi−1| then ∃ ξi = ξn
i (ω) ∈ (0, r) such that (11)

holds true
(2′) for any fixed (n, i)

Ei−1[(∆i Y⋆)
q I√rh<C/2−|∆i X−εi−1|] = Ei−1[Hq

i (rh)I√rh<C/2−|∆i X−εi−1|]

=
r (q+1)/2

h

q + 1
Ei−1


[g(


ξi − ∆i X + εi−1)

+ g(−


ξi − ∆i X + εi−1)]I√rh<C/2−|∆i X−εi−1|


.

(3′) 1
n

n
i=1 Ei−1[g(s

√
ξi − ∆i X + εi−1)]

L1

→ E[g(ε1)] for both cases s = +1, and s = −1.

Proof. Parts (1′), (2′) are proved analogously as for Lemma A.2. As for (3′) we only have to
show that

1
n

n
i=1

Ei−1[g(s


ξi − ∆i X + εi−1) − g(εi−1)]
L1

→ 0.

Using the expression for g(x) and noting that with probability 1 we have εi−1 ∈ (−C/2, C/2),
the rhs term of the last expression equals

−C−1

n

n
i=1

Ei−1[I{εi−1∈(−C/2,C/2),|εi−1−∆i X+s
√

ξi |>C/2}]

which has absolute value

1
nC

n
i=1


Pi−1{εi−1 > C/2 + ∆i X − s


ξi } + Pi−1{εi−1 < −C/2 + ∆i X − s


ξi }


≤

1
nC

n
i=1


Pi−1{εi−1 > C/2 + ∆i X −

√
rh} + Pi−1{εi−1 < −C/2 + ∆i X +

√
rh}


.

Thus

E

1n
n

i=1

Ei−1[g(s


ξi − ∆i X + εi−1) − g(εi−1)]


≤

1
nC

n
i=1


P{εi−1 > C/2 + ∆i X −

√
rh} + P{εi−1 < −C/2 + ∆i X +

√
rh}





C. Mancini / Stochastic Processes and their Applications 123 (2013) 2728–2751 2749

=
1

nC

n
i=1


E[P{εi−1 > C/2 + ∆i X −

√
rh}|∆i X ]

+ E[P{εi−1 < −C/2 + ∆i X +
√

rh |∆i X}]


.

Noting that if ∆i X −
√

rh > 0 the first term is 0 and if ∆i X +
√

rh > 0 the second one is 0, the
last display equals

1
nC

n
i=1


E

 C/2

C/2+∆i X−
√

rh

1dz I∆i X−
√

rh<0



+ E


−C/2+∆i X+

√
rh

−C/2
1dz I∆i X+

√
rh>0



≤
c

n

n
i=1

E[
√

rh + |∆i X |] ≤ c sup
i

(E[|∆i X |] +
√

rh) → 0. �

We now prove the result (i) and (ii) of Theorem 3.2 when εi are uniform.
For (i), we have

E[ ˆIV] = E


i

Ei−1[(∆i Y⋆)
2 I{(−√

rh ,
√

rh)⊂(∆i X−εi−1−C/2,∆i X−εi−1+C/2)}]


+ E


i

Ei−1[(∆i Y⋆)
2 I{(−√

rh ,
√

rh)⊂(∆i X−εi−1−C/2,∆i X−εi−1+C/2)}c ]


. (15)

Firstly note that

P{−
√

rh > ∆i X − εi−1 − C/2} = P{
√

rh < −∆i X + εi−1 + C/2,∆i X − εi−1 > 0}

+ P{
√

rh < |∆i X − εi−1| + C/2,∆i X − εi−1 < 0} :

for small h, we have
√

rh < C/2, thus for any i the last term equals

P{∆i X − εi−1 < 0} = E[P{∆i X < εi−1|∆i X}] = C−1 E

 C/2

∆i X
1dz


= C−1 E[C/2 − ∆i X ] = 1/2 − E[∆i X ]/(C),

and the first term equals

P{∆i X > εi−1 >
√

rh − C/2 + ∆i X} = C−1 E

 ∆i X

√
rh−C/2+∆i X

1dz


= C−1(C/2 −

√
rh) = 1/2 −

√
rh/C.

Moreover

P{
√

rh ≥ ∆i X − εi−1 + C/2} = E[P{
√

rh ≥ ∆i X − εi−1 + C/2|∆i X}]

= E[C−1
 C/2

∆i X+C/2−
√

rh

1dz] = C−1 E[−∆i X +
√

rh].
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Thus in (15) the second term is dominated by

nrh sup
i


P{−

√
rh ≤ ∆i X − εi−1 − C/2} + P{

√
rh ≥ ∆i X − εi−1 + C/2}


≤ cnrh


sup

i
E[|∆i X |] +

√
rh


≤ cnr3/2

h → 0,

as β > 2/3 and supi E[|∆i X |] ≤ c
√

h ≤ c
√

rh .
On the other hand, to the first term on the rhs of (15) we can apply result (2′) above, and

obtain

nr3/2
h

1
3

E


1
n


i

Ei−1[g(


ξi − ∆i X + εi−1) + g(−


ξi − ∆i X + εi−1)]



− nr3/2
h

1
3

E


1
n


i

Ei−1[g(


ξi − ∆i X + εi−1)

+ g(−


ξi − ∆i X + εi−1)]I{(−√
rh ,

√
rh)⊂(∆i X−εi−1−C/2,∆i X−εi−1+C/2)}c


.

By the boundedness of g and the fact that nr3/2
h → 0, the second term above is negligible and by

result (3′) we reach our thesis.
We now prove (ii). We can proceed almost in the same way as in the previous proof of

(ii) conducted under the assumption that g was Lipschitz. It is sufficient to give an alternative
treatment of the first term in (14), the only point where we used the Lipschitz property of g in
the previous proof. We need to deal with two terms of kind

c
r1/4

h
√

n

[t/h]
i=1

Ei−1


|g(s


ξi − ∆i X + εi−1) − g(εi−1)|


.

Using the above computations, the last term is given by

c
r1/4

h
√

n

[t/h]
i=1

Ei−1[I{εi−1∈(−C/2,C/2),|εi−1−∆i X+s
√

ξi |>C/2}]

≤ cr1/4
h

√
n sup

i
(E[|∆i X |] +

√
rh) ≤ c


r3/2

h n → 0,

as for small h,
√

h <
√

rh . �
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