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Abstract

We study the following interacting particle system. There are ρn particles, ρ < 1, moving clockwise
(“right”), in discrete time, on n sites arranged in a circle. Each site may contain at most one particle. At
each time, a particle may move to the right-neighbor site according to the following rules. If its right-
neighbor site is occupied by another particle, the particle does not move. If the particle has unoccupied
sites (“holes”) as neighbors on both sides, it moves right with probability 1. If the particle has a
hole as the right-neighbor and an occupied site as the left-neighbor, it moves right with probability
0 < p < 1. (We refer to the latter rule as a “holdback” property.) From the point of view of holes
moving counter-clockwise, this is a zero-range process.

The main question we address is: what is the system steady-state flux (or throughput) when n is
large, as a function of density ρ? The most interesting range of densities is 0 ≤ ρ < 1/2. We define
the system typical flux as the limit in n → ∞ of the steady-state flux in a system subject to additional
random perturbations, when the perturbation rate vanishes. Our main results show that: (a) the typical
flux is different from the formal flux, defined as the limit in n → ∞ of the steady-state flux in the
system without perturbations, and (b) there is a phase transition at density h = p/(1 + p). If ρ < h, the
ypical flux is equal to ρ, which coincides with the formal flux. If ρ > h, a condensation phenomenon

occurs, namely the formation and persistence of large particle clusters; in particular, the typical flux in
this case is p(1 − ρ) < h < ρ, which differs from the formal flux when h < ρ < 1/2.

Our results include both the steady-state analysis (which determines the typical flux) and the transient
analysis. In particular, we derive a version of the Ballot Theorem, and show that the key “reason” for
large cluster formation for densities ρ > h is described by this theorem.
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1. Introduction

1.1. The model and motivation

The basic model, which is the focus of this paper, is the following interacting particle system.
here are n sites (or nodes), arranged in a circle and numbered from 0 to n−1 in the clockwise

order. There is a constant number ρn of particles in the system, where ρ ∈ (0, 1] is the particle
density. There is at most one particle at each site at any time. The system evolves in discrete
time t = 0, 1, 2, . . .. The state at a given time is described as a sequence of particles (occupied
sites) and holes (empty sites). We often refer to the clockwise and counter-clockwise directions
as “right” and “left”, respectively. The particles never move counter-clockwise. Their clockwise
movement, at each time, is governed by the following rules:

(a) if a particle has another particle as a right-neighbor, it does not move;
(b) if a particle has holes as neighbors on both sides, it moves to the right-neighbor site with

probability 1;
(c) if a particle has a hole as right-neighbor and a particle as left-neighbor, it moves to the

right-neighbor site with fixed probability p ∈ (0, 1].

This model may be considered as a version of the discrete-time Totally Asymmetric Simple
Exclusion Process (TASEP), with parallel updates, cf. [7]. We refer to rule (c) as a “holdback”
property and thus call the model discrete-time TASEP-H, where H stands for holdback. In the
classical version of discrete-time TASEP a particle cannot move if its right-neighbor is another
particle and, otherwise, moves right with a certain fixed probability. (For a general introduction
into interacting particle systems see [9].)

This interacting particle system is motivated, in particular, by a simple model of packet
movement in a wireless communication system under a CSMA (Carrier-Sense Multiple Access)
protocol. Sites correspond to network nodes and particles correspond to data packets. Discrete
time corresponds to the sequence of fixed-length time slots, in which packet transmissions
occur. Each node can hold at most one packet. Packets “move” along a sequence of nodes, in
the “right” direction, by being transmitted from nodes to their “right” neighbors. Consider a
node that in a given time slot has a packet. If both neighbors of the node do not have packets,
the packet will be transmitted successfully, because the transmission does not experience an
interference (from neighbors). If the right-neighbor node is occupied by another packet, the
packet will be certainly blocked from moving right. If the right-neighbor node is empty, but
the left-neighbor node is occupied, the transmission protocol is such that the “competition”
from the left-neighbor packet may prevent the packet from moving right, with some probability.
(This motivating model is very basic. A more complicated – and more realistic – CSMA model,
which exhibits a qualitatively similar behavior, is discussed in Appendix B.) Our TASEP-H
system is also motivated by and related to a slow-to-start model [4] of car traffic, where particles
represent cars and the holdback property corresponds to the fact that cars need some time to
accelerate after being stopped. The relation of TASEP-H to the slow-to-start model will be
discussed in more detail in Section 6.2.

Going back to the TASEP-H system definition, note that from the point of view of holes
moving counter-clockwise (left), the rules (a)–(c) are equivalent to the following ones:

(a′) if a hole has another hole immediately to the left, it does not move;
(b′) if a hole has a particle immediately to the left, followed by another hole, it moves to the
left-neighbor site;
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(c′) if a hole has two or more particles immediately to the left, it moves to the left-neighbor
site with probability p ∈ (0, 1].

In the latter interpretation (as holes’ movement counter-clockwise), TASEP-H system is a
pecial case of the model considered in [7] where the probability of a hole movement may be
n arbitrary function of the number of holes immediately to the left of it. It is shown (see [7,
ection 7]) that the stationary distribution of the system may be presented in a product form.

In general, the class of TASEP models is very rich and has received a lot of attention in the
iterature, because it has many applications, including statistical physics and transportation; see,
.g.[1,5,8,9]. In addition to [7], our model is related to some other TASEP models considered
n the literature. We mention q-TASEP [3] for the continuous-time and [2] for the discrete-time

version; both papers however consider movement of a finite number of particles on an infinite
line.

1.2. Particle flux: “formal” vs. “typical”

The particle flux φ is defined as a steady-state average number of particle movements, per
site per time unit. (This corresponds to the throughput in the context of wireless systems.) In
this paper we are primarily interested in the dependence of flux φ on the density ρ, when n is
large.

Trivially, for any n, when ρ < 1/2, the flux is simply equal to the density, φ = ρ, because
the system eventually enters a completely sparse state, where all particles are free (have holes
as both neighbors), and all particles will move at speed 1 thereafter. Following the discussion
which will be given shortly, it is also not hard to guess (and observe in simulations, and prove)
that when ρ > 1/2, the steady-state of the system is very different — the system spends most
of the time in a condensed state, where a large particle cluster (a sequence of contiguously
occupied sites) exists. Correspondingly, the “formal” flux of TASEP-H is as follows: φ = ρ

for ρ < 1/2, but it has a discontinuity (“negative jump”) at 1/2 and is continuous decreasing
for ρ > 1/2. Fig. 1 shows this “formal” flux, when n is large.

However, an interesting phenomenon can be observed in simulations. If h = p/(1 + p) <
< 1/2 and n is large, and we start the process in a state chosen uniformly at random, then the

process enters a quasi-stationary regime, in which it stays in condensed states (with one or more
clusters). This quasi-stationary regime persists for a very long time. The flux corresponding to
this quasi-steady-state is strictly less than ρ. If we consider as “typical” the system flux that is

bserved with very high probability for a very long time, then this “typical” flux of TASEP-H
s shown in Fig. 1 (for large n): it depends on ρ continuously, coincides with “formal” flux for
< h = p/(1 + p) and ρ > 1/2, but is different for h < ρ < 1/2.
In this paper we will formally define the “typical” flux as the limit in n → ∞ of the flux

f the TASEP-H system subject to additional state perturbations, as the perturbation rate (per
article per time unit) vanishes as n → ∞. Our results will show, in particular, that the typical
ux of TASEP-H is indeed as shown in Fig. 1. Most importantly, for h < ρ < 1/2, the typical
ux of TASEP-H is equal to that in quasi-stationary regime (as opposed to the formal flux,
hich is ρ).

.3. Condensation. Quasi-stationary regime

The term condensation in interacting particle systems is inspired by the famous Bose con-
ensation [6,7]. (Regarding the terminology, in most of the literature, the condensation occurs
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Fig. 1. Large n; p = 1/2. Formal and typical flux versus ρ. For ρ < 1/3 and ρ > 1/2, the formal and typical
uxes coincide.

t low particle density, as opposed to high. This is consistent with TASEP-H condensation, if
e view the process from the point of view of holes’ movement.)
We now discuss the condensation effect in more detail. Recall that the state of the system

t any time is described as a sequence of particles and holes. We will refer to a contiguous
egment of (at least two) particles as a cluster. Only the particle at the right end of a cluster
ay move at a given time. We will also refer to a contiguous segment of sites (which may

nclude all sites) as a sparse interval, if all particles in it are free (have holes as both neighbors).
bviously, each free particle at a given time moves right with probability 1.
A system state such that all particles are free we will call (interchangeably) completely

parse, or ideal, or absorbing. As discussed earlier, if ρ < 1/2, then for any n and any p, the
ystem eventually reaches an absorbing state and therefore its flux φ = ρ.

However, for h < ρ < 1/2, it may take the system a very long time to reach such an
bsorbing state. Instead, the system may enter a quasi-stationary regime, which will persist for

a long time. (It is reasonable to guess that this time is exponential in n, but we will not need
his estimate in this paper.) We explain this – heuristically at this point – as follows. (Our main
esults will formally substantiate this heuristics.) Suppose, the system starts in a state such that
∗n particles, 0 < τ ∗

≤ 1, form a single cluster, while the remaining sparse interval, consisting
of (1 − τ ∗)n sites, has particles spread out with the density

h = p/(1 + p).
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Note that in this case the overall density of particles is ρ = τ ∗
+ (1 − τ ∗)h > h, and then

τ ∗
= ρ(1 + p) − p.

hen, the system dynamics is as follows. The particles will leave the cluster from its “right end”
t the rate p, with the average distance between the released particles being 1 + 1/p = 1/h.
Indeed, when a particle becomes the right-end particle of a cluster, the random number X of
ime slots it takes for this particle to leave the cluster has geometric distribution, P{X = i} =

p(1 − p)i−1, i = 1, 2, . . ., with EX = 1/p. Then X is also the number of holes between two
onsecutive released particles. Then, the average distance between two consecutive released
articles is 1 + EX = 1 + 1/p.) Therefore, the cluster right end, as it moves left at the rate

p, leaves particle density exactly h in “its wake” on the right. Of course, free particles (in the
parse interval) move right at speed 1. It is not hard to see that, as free particles “hit” (and
hus join) the cluster on its left, the left end moves left at the rate p. (This follows because the
verage time between two consecutive free particles hitting the cluster on the left is equal to
he average number of holes separating them, which is 1/p.) To summarize, the cluster moves

left at speed p, with its length τ ∗n staying (approximately) constant, and with the density
“everywhere” in the sparse interval staying equal to h. Therefore, the system state remains
almost) invariant, up to the shift of the cluster. We will call such a state a main equilibrium
tate (MES). (This definition will be made formal later in the paper.) Note that a MES exists

and is unique (up to space shift) if and only if ρ > h. As long as a MES remains the system
state, the flux is φ∗ .

= (1 − τ ∗)h = p(1 − ρ) < h < 1/2. The existence of a quasi-stationary
regime, represented in our model by MES, is often referred to as metastability.

Further notice that, if the system starts in a MES, it will take a long time (which, again,
can be guessed to be exponential in n) for the cluster to “dissolve”. Therefore, if the density
ρ ∈ (h, 1/2), the system may enter a MES and stay in it – as opposed to an absorbing state
– for a very long time, during which it will have the flux φ∗ < h < ρ, as opposed to the
“formal” flux ρ.

Note that MES exists for any ρ > h, not just h < ρ < 1/2. The graph of φ∗ (when the
system stays in a MES) versus ρ, for ρ > h, can be seen in Fig. 2, for the cases p = 0.1,
p = 0.5 and p = 0.9. Note that φ∗ is linearly decreasing from h to 0 in the interval [h, 1].
he case when ρ ≥ 1/2 is a simplified version of the case h < ρ < 1/2. For this reason, in

his paper we restrict our attention to the most interesting case ρ < 1/2.

.4. Main results and contributions

To summarize the previous subsection, even when ρ < 1/2, in addition to a formal stationary
egime, when the system stays in an absorbing state and the flux is ρ, there may exist a
uasi-stationary regime (represented by a MES), in which the system flux is φ∗. This raises
he following question. What should be considered a “typical” flux of TASEP-H? Is it ρ, or
∗, or maybe something else? In this paper we introduce the notion of typical flux, which

s, informally speaking, the value of the flux in the system subject to infrequent random
erturbations of the system state, in addition to the system “normal” random evolution. This
s motivated by the fact that, even if the basic system behavior is described by TASEP-H

whether it is movement of packets in a wireless system or movement of cars on a road
practical systems are subject to occasional “imperfections”, or perturbations. For example,

ew packets [resp., cars] may occasionally enter or leave the system [resp., road]; packets may
ccasionally fail to transmit successfully even in the absence of interference; cars may break
205
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Fig. 2. Large n; p = 1/4, 1/2, 3/4. Typical flux versus density ρ.

own; etc. If occasional perturbations result in the flux that is different from the formal flux,
hen the former rather than latter can be considered typical. More specifically, in this paper,
or a given density ρ, we will define the typical flux φ(ρ) as the limit in n → ∞ of the flux of
ASEP-H with perturbations, as the rate of perturbations (per particle per time unit) vanishes
s n → ∞. The main goal of this paper is to demonstrate that even very low perturbation rate,

O(1/n2), leads to the typical flux given by Fig. 1.
Perturbations in the basic TASEP-H may be defined in different ways. For example, we may

eplace the probability 1 with which a free particle moves right, with a close to one probability
< 1. Such a system, which we will refer to as zero-range model, is still within the framework

f [7], its stationary distribution has a product form, and the limiting flux φπ , as n → ∞, can
e found. We in fact carry out this analysis in Section 5, and demonstrate that limπ↑1 φπ is
xactly as depicted in Fig. 2. Note that here we take the limit n → ∞ first, and limit π ↑ 1
econd. This means, in particular, that as n → ∞, the perturbation rate remains “high”, namely

O(1) per particle per time unit.
However, the above analysis, based on the steady-state product-form for the zero-range

model has a number of limitations, including the following.

• It is interesting to look at how low a perturbation rate can be so that the flux remains
as in Fig. 2. This question could be answered by considering a zero-range model with
π = π (n) ↑ 1. Unfortunately, analysis of the flux in this latter case (i.e., taking limit
n → ∞ with π = π (n) ↑ 1), appears to be difficult.
206
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• Perturbations induced by π < 1 are not the only type of perturbations of interest. And
for other types of perturbations, as those we introduce shortly, the product-form for the
steady-state may no longer be available.

• An analysis of steady-state alone does not shed light into how condensation occurs,
i.e. into the questions of the following type. What is the mechanism and dynamics of
large cluster formation? How fast do the clusters form? And so on.

To address these issues, most of the analysis in this paper concerns a different type of
perturbations (introduced shortly) and “low” perturbation rates (per particle per time unit),
vanishing as n → ∞. For these perturbations the product form of the steady-state is not
available. In particular, we do a transient analysis which sheds light on why, for the densities
ρ > h, even a small cluster formed by a perturbation has a positive, uniformly bounded away
from 0, probability to grow large, bring the system to a MES, which will then persist for a
long time. The key “reason” for large cluster formation for densities ρ > h is described by a
ersion of the Ballot Theorem, which we derive in Proposition 8.

The TASEP-H with perturbations, which is the main focus of this paper, is as follows. We
efine two versions of the perturbation mechanism, both preventing the system from being
bsorbed in an ideal (absorbing) state. For both of them, a perturbation is defined as follows:
particle, chosen uniformly at random, is relocated to one of the holes, also chosen uniformly

t random. The two versions of TASEP-H with perturbations are:

• A-perturbations (perturbations of absorbing states). At every time, in which the system
enters an ideal (absorbing) state, a perturbation happens with probability λ/n with some
λ > 0, independent of the process history up to that time.

• I-perturbations (independent perturbations). At every time a perturbation happens with
probability λ/n with some λ > 0, independently of the process history up to that time.

We analyze the behavior of the system as n → ∞, with ρ staying constant. In particular, we
tudy the process under hydrodynamic space/time scaling. In addition to the steady-state results

in fact, as a tool for obtaining them – we derive results on the process transient behavior
nder this scaling. These transient results may be of independent interest.

Our main results are as follows.

• For TASEP-H with A-perturbations we prove that the limit (in n → ∞) of stationary
distributions is such that:

– If ρ < h, a cluster (if any) contains zero fraction of sites; consequently, the typical
flux φ(ρ) = ρ; see Theorem 9.

– If ρ > h, the system state is the MES; consequently, the typical flux φ(ρ) = φ∗
=

p(1 − ρ); see Theorem 12.

• For TASEP-H with I-perturbations we prove that the limit (in n → ∞) of stationary
distributions is such that:

– If ρ < h, all clusters (if any) contain zero fraction of sites; consequently, the typical
flux φ(ρ) = ρ; see Theorem 17.

– If ρ > h, the typical flux φ(ρ) < ρ; see Theorem 19.
∗
We conjecture that, if ρ > h, the typical flux φ(ρ) = φ ; Conjecture 18.
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• For the zero-range model we prove that if we first take the limit of stationary distributions
as n → ∞, and then the limit in π ↑ 1, the limit is exactly equal to the typical flux φ(ρ)
of TASEP-H with A-perturbations; see Theorem 20 in Section 5.

• We derive a version of the Ballot Theorem (Proposition 8) which serves as a key tool
for establishing condensation at high densities ρ > h.

.5. Paper organization

The rest of the paper is organized as follows. Some basic notation, used throughout
he paper, is given in Section 1.6. Section 2 defines the basic TASEP-H model (without
erturbations), the model with perturbations, and a system flux; it also defines the asymptotic
egime, the corresponding limiting flux (typical flux), the process under hydrodynamic scaling,
nd the probability space construction. The analysis of TASEP-H with A-perturbations is
iven in Section 3: we define the process hydrodynamic limits and establish their properties
Section 3.1); we state a version of the Ballot Theorem (Proposition 8 in Section 3.2); the
ain results for TASEP-H with A-perturbations (Theorems 9 and 12) are stated and proved

n Section 3.3. Section 4 is devoted to the analysis of TASEP-H with I-perturbations: some
reliminary facts are given in Section 4.1; hydrodynamic limits are defined and studied in
ection 4.2; Sections 4.3 and 4.4 contain our main results and the conjecture (Theorems 17,
9, Conjecture 18) for TASEP-H with I-perturbations. In Section 5 we formally define the zero-
ange model and derive (Theorem 20) the limit of its flux (as n → ∞ and then π → 1). In
ection 6 we present and discuss further conjectures for both the TASEP-H with perturbations
nd zero-range models. Appendix A contains the proof of Proposition 8; Appendix B discusses
CSMA model further (indirectly) motivating the holdback property of TASEP-H.

.6. Basic notation

We denote by R and Z the sets of real numbers and integers, respectively, and by L the
ebesgue measure on R. Abbreviation a.e. means almost everywhere w.r.t. Lebesgue measure.
he minimum and maximum of two numbers are denoted a ∧ b .

= min(a, b) and a ∨ b .
=

ax(a, b), respectively; ⌊a⌋ is the largest integer which is ≤ a; ⌈a⌉ is the smallest integer
which is ≥ a. I(A) is the indicator of event or condition A. RHS and LHS mean right-hand
side and left-hand side, respectively. WLOG means without loss of generality.

A function is called c-Lipschitz if it is Lipschitz continuous with constant c ≥ 0. We say
that a function is RCLL if it is right-continuous with left limits. Notation (∂−/∂x) f (x, t) means
eft partial derivative in x . U.o.c. convergence means uniform on compact sets convergence.
otation O(1/n) signifies a function g(n) such that lim supn→∞ |ng(n)| < ∞.
Abbreviation r.v. means random variable; w.p.1 means with probability 1; i.i.d. means

ndependent identically distributed. Probability distributions are defined on the spaces and
orresponding σ -algebras that are clear from the context. We denote by ⇒ the convergence
f random elements in distribution. For a random process Y (t), t ≥ 0, we denote by Y (∞) its
random) state in a stationary regime. (In other words, the distribution of Y (∞) is a stationary
istribution of Y (t).) We will say that a random variable X has distribution G E O M(ℓ, p) [or
imply write X ∼ G E O M(ℓ, p)], for integer ℓ and real 0 ≤ p ≤ 1, if P{X = i} = p(1− p)i−ℓ,

≥ ℓ; EX = ℓ+ (1 − p)/p.
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2. Model

2.1. Basic model

Consider n sites arranged in a circle. The sites are numbered from 0 to n − 1 in clockwise
order. There is a constant number ρn, 0 < ρ ≤ 1, of particles in the system, with either 0 or 1
particles located at each site at any time; correspondingly, a site may be empty (0 particles) or
occupied (1 particle). We often refer to empty sites as holes, and to occupied sites as particles.
The clockwise [resp., counterclockwise] direction we often refer to as “right” [resp. “left”]
direction.

The system evolves in discrete time t = 0, 1, 2, . . .. A time index t is sometimes referred
o as time slot t . The system state at each time is its sites’ occupancy configuration, i.e. the
equence of particles and holes. Given the state at time t , the (random) state at time t + 1 is
etermined by applying the following rules to each particle independently:

(a) if the right-neighbor of the particle is another particle, it does not move;
(b) if both the right-neighbor and left-neighbor of the particle are holes, the particle moves

o the right-neighbor site with probability 1;
(c) if the right-neighbor of the particle is a hole and the left-neighbor is another particle,

he particle moves to the right-neighbor site with probability p ∈ (0, 1].
We refer to the rule (c) as a “holdback” property.
To make some definitions that follow later unambiguous, we adopt the following convention

bout the exact timing of the particles’ movement. Namely, the movement of particles that
hanges the system state from that at t − 1 to that at t is attributed to time t .

We will use the following terminology throughout. We call a particle free if it has holes
n both sides. A contiguous set of particles is a cluster if it has holes as neighbors on both
ides. A contiguous set of sites is a sparse interval, if it contains only free particles and holes
i.e., does not overlap with any cluster). A system state is called completely sparse, or ideal,
f it contains no clusters.

Note that any trajectory of the basic model is such that the number of clusters cannot
ncrease. Indeed, free particles cannot form new clusters – they can only join existing ones. If
e consider any cluster initially present, then as particles “leave” this cluster from the right

nd “join” it on the left, the cluster may “move” to the left, may grow or decrease in length,
r may eventually disappear; but it cannot split into two or more clusters and, therefore, no
ew cluster can ever be created.

.2. TASEP-H with perturbations

We will now introduce the TASEP-H model with perturbations, in fact two different versions
f it. For a given system state its (random) perturbation is defined as follows: we pick a particle
niformly at random, remove it, and then place it into one of the holes picked uniformly
t random. We adopt a convention that the site from which the particle was removed is
mmediately considered a hole, so that the particle may go back to it. (This convention is
ot essential.)

We also adopt the following convention about the exact timing of a perturbation with respect
o time slots. Applying a perturbation at time t means that it is applied to the state the system
nters after the “normal” particles’ movement at time t (i.e. the movement “between” t − 1

nd t), and it is done before the next time t + 1. In other words, the perturbation does not take
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an extra time slot, and the final system state at time t is the state after the normal particles’
movement at t and after a perturbation (if any) is applied.

Model with I-perturbations. In this version, at each time t , one perturbation is applied with
probability λ/n, λ > 0, independently of the process history up to t . (Term I-perturbations is
because the perturbations are independent.)

Model with A-perturbations. In this version, one perturbation is applied with probability
λ/n, λ > 0, at each time t in which the system enters to – or stays at – an ideal state, after
the normal particles’ movement. (Term A-perturbations is because the perturbations explicitly
prevent absorption.)

Recall that in the basic model (without perturbations) no new cluster can ever be created.
Consequently, in a model with perturbations, in the time intervals between perturbations
the number of clusters cannot increase. However, unlike in the basic model, a model with
perturbations is such that new clusters may be created by perturbations. If a perturbation is
applied to an ideal state, then at most one cluster (of length two or three) may be created.
Note that for the A-perturbation model this necessarily means that, after the system “hits” an
ideal state, it can have at most one cluster from that time on. In the I-perturbation model a
perturbation may: (a) split a cluster into two clusters and/or (b) merge two clusters by filling
a hole separating them and/or (c) create a new cluster (of length two or three).

For future reference, we summarize these simple observations as the following

Lemma 1. Any process trajectory has the following properties, depending on the model type.
(i) The basic model (without perturbations). The number of clusters cannot increase. Each

initial cluster may move to the left, may grow or decrease in length, may eventually disappear.
But no new cluster can ever be created.

(ii) A-perturbations model. The number of clusters cannot increase until a trajectory “hits”
an ideal state. There can be at most one cluster from that time on, which may be created by a
perturbation.

(iii) I-perturbations model. The number of clusters cannot increase between perturbations.
Upon a perturbation, a new cluster may form and/or a cluster may split into two and/or two
clusters may merge.

The process without perturbations behaves as follows. If ρ ≤ 1/2, the behavior is rather
trivial: an ideal state is eventually reached, and from that time on all particles remain free and
move at speed 1. If ρ > 1/2: at least one cluster always exists; the states with more than one
cluster are transient, so that a state with exactly one cluster is eventually reached; the process on
the states with exactly one cluster is a discrete-time finite (aperiodic) Markov chain; therefore,
the process has a unique stationary distribution.

For both the A-perturbation and I-perturbation models, the process is a discrete-time
finite (aperiodic) Markov chain. For I-perturbations, the Markov chain is irreducible. For
A-perturbations, the Markov chain on the set of states with no more than one cluster is
irreducible; states with more than one cluster are transient. (So, as far as a stationary distribution
of the process with A-perturbations is concerned, the states with more than one cluster can be
ignored.) Therefore, for both perturbation models, the Markov chain has a unique stationary
distribution.

2.3. Flux of TASEP-H

We now define the flux of TASEP-H, with or without perturbations. (TASEP-H without
perturbations can be viewed as a special case of TASEP-H with perturbations, with λ = 0.)
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Denote the state of the system at time t by Z (t) = (Z0(t), . . . , Zn−1(t)), where Z i (t) = 1 if site
is a particle and Z i (t) = 0 if it is a hole. Then, the instantaneous average flux of the system is
efined as φ(ρ, n; Z (t)) = ψ(ρ, n; Z (t))/n, where ψ(ρ, n; Z (t)) is the expected total distance
hat will be traveled by all particles at time t + 1. (This includes particles being relocated due
o perturbations — the precise convention will be given below.) The flux of TASEP-H, with
erturbations (λ > 0) or without perturbations (λ = 0), with parameters ρ and n, is defined as

φ(ρ, n) .= Eφ(ρ, n; Z (∞)),

here Z (∞) is the (random) value of Z (t) in a stationary regime. Recall that in all cases, except
= 0 (no perturbations) and ρ ≤ 1/2, the stationary distribution is unique. In the remaining

ase of no perturbations and ρ ≤ 1/2, recall that an ideal state is eventually reached, after
hich time all particle are free and move and speed 1; so, even though there may be multiple

tationary distributions (corresponding to different ideal states), for each of them φ(ρ, n) = ρ.
hus, in all cases, φ(ρ, n) above is well defined.

.4. Asymptotic regime. Typical flux and formal flux

The asymptotic regime that we will consider is such that ρ and λ remain constant, while
n → ∞. To avoid cumbersome notation, let us assume that ρn is integer. This is the total
number of particles. (If ρn is non-integer, we could assume that the number of particles is,
say, ⌊ρn⌋.)

The main focus of the paper is on identifying the limiting flux of TASEP-H with perturbations
(λ > 0):

φ(ρ) = lim
n→∞

φ(ρ, n).

The value of φ(ρ) will also be referred to as the typical flux of TASEP-H.
Formal flux of TASEP-H is defined as limn→∞ φ(ρ, n) for TASEP-H without perturbations

(λ = 0). If ρ < 1/2, the formal flux is equal to ρ, simply because φ(ρ, n) = ρ for all n.

.5. Process definition. Hydrodynamic scaling

For a system with parameter n (the circle length), the process state at time 0 is described
y the function

Fn(x, 0) =

x∑
i=0

Z i (0), x = 0, 1, . . . , n − 1,

learly, Fn(x, 0) is the total number of particles in sites 0, . . . , x at time 0.
The (random) movement of particles in the system is described by the flux-function Φn(x, t),

efined for x = 0, 1, . . . , n−1 and time t = 0, 1, 2, . . . as follows: Φn(x, t) is the total number
of particles that moved (right) from site x at times 1, . . . , t , with Φn(x, 0) = 0. By convention,
this quantity includes the number of particles that crossed site x due to perturbations, where, by
convention, a perturbation moves a particle in a clock-wise direction. For example, if n = 50
and at time t particles moved from site 2 to 3 and from site 8 to 9 due to normal particle
movement, and then a perturbation relocated a particle from site 48 to site 6, then the number

of particles that moved from site 2 is two, while the number of particles that moved from
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site 8 is one. This is because, by our convention, the particle relocated by the perturbation,
simultaneously “leaves” sites 48, 49, 0, 1, 2, 3, 4, 5, in the clock-wise direction.1

We define

Fn(x, t) = Fn(x, 0) − Φn(x, t), x = 0, 1, . . . , n − 1, t = 0, 1, 2, . . .

t is convenient to extend the definition of Fn(x, t) to all integer x by setting Fn(n, t) =

Fn(0, t) + ρn and assuming that Fn(x, t) has periodic increments in x with period n. Clearly,
he (random) function Fn(x, t) completely describes the process evolution. It is non-decreasing
n x and non-increasing in t . (In terms of describing the system states and evolution, only
ncrements of Fn(x, t) matter. So, for any fixed integer C , Fn(·, t) + C describes exactly the
ame system state at t as Fn(·, t), and Fn(·, ·)+C describes exactly the same system trajectory
s Fn(·, ·). In particular, if Fn(·, t1) − Fn(·, t2) = C, ∀x , the system states at times t1 and t2
re equal.)

It is also convenient to extend the definition of Fn(x, t) to all real x ∈ R and t ≥ 0 by
dopting convention

Fn(x, t) = Fn(⌊x⌋, ⌊t⌋).

urthermore, we will identify any location x ∈ R with x (mod n) ∈ [0, n). So, for example, if
= 50, F50(4, t)− F50(4−7, t) is the total number of particles, at time t , in the 7 consecutive

ites, starting from 4 and going left: 4, 3, 2, 1, 0,−1,−2 or, equivalently, 4, 3, 2, 1, 0, 49, 48.
We assume that the system processes, for a given n, are constructed via certain driving

control) sequences of random variables. These driving sequences determine: the times it takes
or particles at the right end of clusters to break away from their cluster; the timing of the
erturbations; the choice of the particle to be relocated by each perturbation, and the choice of
vacant site where it relocates.
Before we specify the driving sequences, we will adopt the following convention about

ndexing (or, numbering) of clusters as the process evolves. For the clusters that exist initially
at time 0) we assign indices j = 1, . . . , k(0), where k(0) is the number of initial clusters.

hen a new cluster is created due to a perturbed particle landing next to a free particle (or
wo free particles, on its both sides), this cluster is assigned the next available new index;
pecifically, if K is the maximum index assigned so far, the new cluster gets index K + 1 (and
hen K is reset to K + 1). Similarly, if a cluster j breaks into two, due to a perturbation, then,
y convention, the right one retains the index j , and the left one is assigned the next available
ew index. If two clusters j ′ and j , separated by a single hole between them and such that j
s located to the right of j ′, merge into one larger cluster due to a perturbation filling the hole
eparating them, then the combined cluster keeps the index j , while the index j ′ is discarded.
f cluster j disappears (due to a normal evolution or perturbation), index j is also discarded.
hus, indices are assigned to new formed clusters in the increasing order, and the indices of
isappearing clusters are discarded and never “reused”. The description of driving sequences
nd their usage is as follows.

For each (cluster) index j = 1, 2, . . . we have an independent sequence of i.i.d. random
ariables, ξ j

i , i = 1, 2, . . ., with distribution G E O M(1, p), mean 1/p. R.v. ξ j
i determines the

andom time it takes for the i th (since initial time 0) particle to leave the right end of cluster j ,
fter it becomes the right-end particle. (This time has distribution G E O M(1, p), as we already

1 Note that the contribution of perturbations into the steady-state flux is upper bounded by n(λ/n)/n, and
herefore vanishes as n → ∞.
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discussed in Section 1.3.) R.v. ξ j
i , for i ≥ 2, will also be the number of holes between i th and

i −1)-th leaving particles, if the (i −1)-th particle remains free at the time when the i th particle
eaves the cluster.

The choice of the particle to be relocated by the i th perturbation (since initial time 0),
= 1, 2, . . ., and the choice of a vacant site where the particle relocates, are determined by the

.v. η1,i and η2,i , respectively; all these r.v. are i.i.d., each having uniform distribution in [0, 1).
pecifically, η1,i is “used” as follows. When i th perturbation needs to be applied, we label the
articles by 1, 2, . . . , ρn, in the order of their locations in the (scaled) interval [0, 1). Then,
he particle with label ⌈η1,iρn⌉ is picked to be relocated by the perturbation. The variable η2,i
s used analogously for picking a vacant site where a particle relocates, except we label the
urrently vacant sites by 1, 2, . . . , (1−ρ)n+1, and pick the site with label ⌈η2,i [(1−ρ)n+1]⌉.

The timing of perturbations is determined by an i.i.d. sequence η3,i , i = 1, 2, . . ., with
3,i ∼ G E O M(0, λ/n), Eη3,i = (1 − λ/n)/(λ/n). Namely, η3,i determines the random
ime from the start of the i th perturbation “clock”, until the i th perturbation is activated.
This time has distribution G E O M(0, λ/n), because, after the i th perturbation “clock” starts,
he perturbation is activated in each slot with probability λ/n.) For I-perturbations, the i th
erturbation clock starts in the time slot immediately after the previous, (i −1)-th, perturbation.
or A-perturbations, the i th perturbation clock starts in the first time slot after the previous,
i − 1)-th, perturbation, in which the process enters an ideal state.

For each n, we consider a hydrodynamic scaled process, where we compress space, time
nd the number of particles by factor n:

f n(x, t) =
1
n

Fn(nx, nt).

or a fixed (scaled) time t , f n(x, t) – the (scaled) system state – has periodic increments with
eriod 1. From now on, we always refer to scaled space and time, unless explicitly stated
therwise.

In this paper we study the asymptotic behavior of the hydrodynamic-scaled process f n(x, t)
s n → ∞.

In the rest of the paper, we will often construct the processes for all n on a common
robability space. The construction is as follows. We assume that the i.i.d. sequences, ξ j

i , i =

, 2, . . ., j = 1, 2, . . ., are common for all n. They satisfy the following functional strong law
f large numbers (FSLLN) condition: w.p.1,

lim
n→∞

1
n

⌊nt⌋∑
i=1

ξ
j

i =
1
p

t, t ≥ 0 (u.o.c.), ∀ j. (1)

The i.i.d. sequences η1,i and η2,i , i = 1, 2, . . ., will also be common for all n. The i.i.d. sequence
n
3,i , i = 1, 2, . . ., will depend on n. Using Skorohod representation, we can and will assume
hat these sequences are such that, w.p.1,

lim
n→∞

n−1ηn
3,i = η̂3,i , ∀i, (2)

here η̂3,i are independent (across i) exponentially distributed random variables with mean 1/λ.

. A-perturbations model

.1. A-perturbations model: Hydrodynamic limits

For any n, f n(·, t) is a Markov process, and the main goal of this paper is to study its
symptotic behavior, in particular the asymptotics of its stationary distribution. However, to
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achieve this goal, we will need to analyze an extended version of this process, which includes
additional process variables, explicitly describing clusters, sparse intervals, and the times when
clusters exist. Recall that, for the A-perturbations model, as far as the stationary distribution
of the process is concerned, the states with more than one cluster can be ignored; see Lemma 1
and the paragraph following it. Our main results concern the flux, limiting flux (typical flux)
and formal flux, which are all defined in terms of stationary distributions. Therefore, for the
A-perturbations model, it suffices to consider the process living on the states with at most one
cluster, and so the following additional descriptors will suffice.

Denote by ℓn(t) and rn(t) the (scaled) locations of the particles at the left and right edge of
the cluster at time t , if any, and by τ n(t) = rn(t)−ℓn(t) its length. (Note that the scaled number

f particles within the cluster is [nτ n(t) + 1]/n = τ n(t) + 1/n, not τ n(t).) By convention, if
luster does not exist at time 0, we assume that ℓn(t) = rn(t) = τ n(t) = 0 until the time when
cluster forms. Also by convention, after a cluster dissolves, ℓn(t) = rn(t) remain frozen at

he value of ℓn at the last time when the cluster existed. We also adopt the convention that
hen ℓn changes as a result of a cluster formation, the new value of ℓn is chosen to be within

0, 1), and rn is chosen accordingly, to be to the right of (or at) ℓn .
At any time t , the system state is given by

[ f n(·, t), ℓn(t), rn(t), τ n(t)].

Note that [ f n(·, t), ℓn(t), rn(t), τ n(t)] contains no more information than f n(·, t), in the sense
hat the distribution of f n(·, s), s ≥ t depends only on f n(·, t). Once again, we use the
dditional state descriptors for the purposes of analysis.) The metrics on the state space
omponents are as follows. For the f -component, it is defined by the max-norm:

∥ f1(·) − f2(·)∥ = max
x

| f1(x) − f2(x)|.

or the τ -component, it is given simply by the distance |τ1 − τ2|. For the ℓ-component, it is
he distance between ⌊ℓ1⌋ and ⌊ℓ2⌋, considered as points on the unit length circle; formally, it
s

min
k∈Z

|ℓ1 − ℓ2 + k|.

inally, the metric on the entire system state space is the sum-metric for its f -, τ - and
-components. (There is no need to consider the metric for the r -component.)

For each n, consider a finite or infinite time interval [0, T n], with T n possibly depending on
. (If T n does depend on n, it can be thought of as a realization of a stopping time.) Trajectories

[ f n(·, t), ℓn(t), rn(t), τ n(t)], t ∈ [0, T n],

re considered as elements of the Skorohod space. For the purposes of having the Skorohod
etric well-defined, we adopt the convention that, when T n < ∞, the state remains constant

n [T n,∞).
Further, let αn

0 ≥ 0 be the first time when a cluster exists. (If it exists at time 0, then
n
0 = 0. If it never exists αn

0 = ∞.) Let βn
0 ≥ αn

0 be the first time after αn
0 when the system is

n an ideal state. (βn
0 = ∞ if the system never enters an ideal state after αn

0 .) In other words,
αn

0 , β
n
0 ) is the time interval when the “first” (in time) cluster exists. Similarly, let αn

1 ≥ βn
0 be

he first time after βn
0 when the “second” cluster appears, and βn

1 ≥ αn
1 be the first time this

luster disappears. And so on, we define pairs (αn
i , β

n
i ) marking the beginning and end of the

th cluster. Note that, αn
i = ∞ implies that all consecutive times αn

j and βn
j are also infinite.

n
e also adopt a convention that, if we consider the process on a finite time interval [0, T ],
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then any time αn
i or βn

i which is outside [0, T n] is set to be infinite. Finally, note that all αn
i ,

except maybe αn
0 when it is 0, are the times when perturbations occur. (However, not every

perturbation time is one of the αn
i .)

The following will be called an extended realization (trajectory) of the process on a (finite
or infinite) time interval [0, T n]:

{[ f n(·, t), ℓn(t), rn(t), τ n(t)], t ∈ [0, T n]; [αn
i , β

n
i ], i = 0, 1, . . .}.

When this does not cause confusion, which is in most cases, we will call it just a realization.)

efinition 1 (Hydrodynamic Sample Path (HSP)). Suppose, there is a fixed sequence of the
rocess (extended) realizations on the time intervals [0, T n]

{[ f n(·, t), ℓn(t), rn(t), τ n(t)], t ∈ [0, T n]; [αn
i , β

n
i ], i = 0, 1, . . .}, (3)

uch that the driving sequences’ realizations satisfy conditions (1)–(2). Then, a trajectory

{[ f (·, t), ℓ(t), r (t), τ (t)], t ∈ [0, T ]; [αi , βi ], i = 0, 1, . . .}, (4)

s called a hydrodynamic sample path (HSP) on the interval [0, T ] if the following conditions
old.

(i) Points 0 ≤ α0 ≤ α1 ≤ . . . are such that there is only a finite number of them on any
nite interval; αi < αi+1, as long as αi < ∞; if αi > T , then necessarily αi = ∞. Points
≤ β0 ≤ β1 ≤ . . . are such that there is only a finite number of them on any finite interval;

i ≤ βi < αi+1, as long as βi < ∞; if βi > T , then necessarily βi = ∞.
(ii) Function f (x, t) is jointly continuous in (x, t). Function τ (t) is continuous in t . Function

ℓ(t), r (t)] is RCLL in t ; its only possible points of discontinuity are those αi , i ≥ 1, that are
nite.

(iii) Trajectory (4) is a limit of trajectories (3), as n → ∞, in the following sense:
(iii.1) T n

→ T ;
(iii.2) αn

i → αi and βn
i → βi , for each i ;

(iii.3) The following u.o.c. convergence

{[ f n(x, t), τ n(t)], x ∈ R, t ≥ 0} → {[ f (x, t), τ (t)], x ∈ R, t ≥ 0} (5)

nd the following Skorohod space convergence

{[ℓn(t), rn(t)], t ≥ 0} → {[ℓ(t), r (t)], t ≥ 0} (6)

old. (In (5) and (6), by convention, [ f (·, t), ℓ(t), r (t), τ (t)] is defined for all t ≥ 0, with
ts value being constant for t ≥ T , and similarly [ f n(·, t), ℓn(t), rn(t), τ n(t)] is constant for
≥ T n .)

For future reference, note the following. Given that αi are the only possible points of
iscontinuity of [ℓ(t), r (t)], the Skorohod convergence (6) implies that the convergence

[ℓn(t), rn(t)] → [ℓ(t), r (t)] (7)

s uniform on any closed bounded interval, not containing any of the points αi .
The following lemma describes basic properties of the HSPs, implied by the corresponding

asic properties of pre-limit trajectories and HSP definition.

emma 2. Any HSP has the following properties.

(i) Function f (x, t) is 1-Lipschitz non-increasing in t and 1-Lipschitz non-decreasing in x.
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(ii) f (x + 1, t) − f (x, t) = ρ for any x and t.
(iii) Function τ (t) is 1-Lipschitz.
(iv) Functions ℓ(t) and r (t) are 1-Lipschitz non-increasing on the intervals of the form

[αi , βi ∧ T ). In sub-intervals of [0, T ), not intersecting with any of the intervals [αi , βi ∧ T ),
(t) = 0 and ℓ′(t) = r ′(t) = 0.

(v) For any t > 0, condition τ (t) > 0 necessarily implies that t ∈ (αi , βi ∧ T ] for some i .
(vi) For any t, f (r (t), t) − f (ℓ(t), t) = r (t) − ℓ(t) = τ (t).
(vii) For any t, f (x, t) is 1/2-Lipschitz in [r (t), ℓ(t) + 1].

Proof is rather straightforward. Let us prove (i). Note that for any n, δ ≥ 0, x , and t +δ < T n ,

0 ≤ f n(x + δ, t) − f n(x, t) ≤ δ + 2/n, (8)

− δ − 2/n − κ/n ≤ f n(x, t + δ) − f n(x, t) ≤ 0, (9)

where κ is the (finite) number of those αi which are in [0, t + δ]. Taking n → ∞ limit, and
using the u.o.c. convergence (5) and monotonicity of f n(x, t), we obtain the monotonicity and
Lipschitz properties of f (x, t). This proves (i).

Proof of (ii) follows from the fact that f n(x + 1, t) − f n(x, t) = ρ holds for any n.
To prove (iii) it suffices to note that τ n(t) can change at most by 3/n at times αn

i and βn
i ;

at other times it can change at most by 1/n.
The remaining statements (iv)–(vii) are proved analogously, using in particular the following

obvious properties of pre-limit trajectories:
rn(t) and ℓn(t) can only decrease by 1/n at any time t , except the times αn

i and βn
i ; for any t ,

τ n(t) = rn(t) − ℓn(t) + O(1/n),
f n(rn(t), t) − f n(ℓn(t), t) = rn(t) − ℓn(t) + O(1/n),

and

f n(x2, t)− f n(x1, t) = (x2−x1)/2+O(1/n), ∀ x1, x2 such that r (t) < x1 < x2 < ℓ(t)+1.

Taking n → ∞ limits, and using in particular (7), we easily obtain (iv)–(vii). We omit further
details. □

For an HSP, a time point t is called regular, if the derivatives τ ′(t), ℓ′(t), r ′(t) exist. In view
of Lemma 2(iv)–(v), almost all points (w.r.t. Lebesgue measure) are regular.

We see that an HSP describes the evolution of the distribution of the continuous “particle
mass”, or “fluid”, obtained as a limit of rescaled pre-limit particle distributions. For an HSP
we will also use the natural notion of a cluster: we say that a cluster [ℓ(t), r (t)], of length

(t) = r (t) − ℓ(t), exists at time t , if t ∈ [αi , βi ) for some i ; in this case the rest of the unit
ircle, that is interval [r (t), ℓ(t) + 1] is a sparse interval. A sub-interval of a sparse interval
e will call a sparse sub-interval. Note that it is possible that a cluster in an HSP exists even
hen it has zero length, τ (t) = 0. Of course, if τ (t) > 0 then a cluster necessarily exists.

f there is no cluster at time t , then necessarily τ (t) = 0 and the entire unit circle [0, 1] is
sparse interval. The total particle mass f (x + 1, t) − f (x, t) = ρ is constant at all times.
he particle mass density (∂/∂x) f (x, t) within a cluster is exactly 1, and the density within a
parse interval is at most 1/2.

Lemma 3 describes the basic HSP dynamics. We precede it with an informal description
f this dynamics. (See Fig. 3 for an illustration.) The particle mass outside a cluster (if any)
imply moves to the right at the constant speed 1 until and unless it “hits” the cluster. In a time
nterval when a cluster [ℓ(t), r (t)] exists, its right end r (t) moves left at the constant speed p.
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Fig. 3. Cluster dynamics illustration.

Because this is the rate at which particles in a pre-limit system “break-away” from the cluster
n the right.) Moreover, as the right end of a cluster moves left, it leaves a sparse sub-interval
f the density exactly h = p/(1 + p) in its “wake”. (Because, in pre-limit process, the average

distance between two consecutive breaking away particles is 1 + 1/p = 1/h; see Sections 1.3
and 2.5.) Specifically, in a time interval [t, t + δ], a sparse sub-interval [r (t) − δp, r (t) + δ] of

ensity h is created, where r (t + δ) = r (t) − δp is the right-end location at time t + δ, and
(t)+δ is how far the right edge of the sparse sub-interval moved right by time t+δ. Now let us
onsider how the left end ℓ(t) moves. Consider a small interval [t, t + δ]. Let [ℓ(t) − δ1, ℓ(t)]
e the sparse sub-interval immediately to the left of the cluster at time t , which hits – and
erges into – the cluster in time interval [t, t + δ]. Then the δ1 above is the unique solution

f equation

δ = δ1 − [ f (ℓ(t), t) − f (ℓ(t) − δ1, t)]. (10)

ndeed, the time δ for the sparse sub-interval [ℓ(t)− δ1, ℓ(t)] (at t) to join the cluster is exactly
qual to the “empty space” in [ℓ(t) − δ1, ℓ(t)] (at t), which is δ1 − [ f (ℓ(t), t) − f (ℓ(t) − δ1, t)];
olution δ1 is unique, because the RHS of (10), as function of δ1, is Lipschitz increasing with
erivative ≥ 1/2 (recall that the density within a sparse interval is at most 1/2).

The following lemma describes the above basic dynamics of an HSP formally. Its proof
s also fairly straightforward — most of it uses the corresponding properties of pre-limit
rajectories and HSP definition. We will only provide the key points and comments, omitting
etails.

emma 3. Any HSP has the following properties.
(i) Consider a time point t such that t ∈ (αi , βi ∧ T ). (Recall that for a 0 < t < T , τ (t) > 0

ecessarily implies t ∈ (αi , βi ∧ T ).) For any sufficiently small time δ > 0, the following holds.
enote by δ1 the unique positive solution to equation

δ = δ1 − [ f (ℓ(t), t) − f (ℓ(t) − δ1, t)]. (11)

hen, the HSP state at time t + δ is as follows:

ℓ(t + δ) = ℓ(t) − (δ1 − δ); (12)

r (t + δ) = r (t) − pδ; (13)

or x ̸∈ (ℓ(t + δ), r (t + δ)) (this is the part of sparse interval that just shifted, without any
nteraction with the cluster) we have
f (x, t + δ) = f (x − δ, t);
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for x ∈ (ℓ(t + δ), r (t + δ)) (within cluster at time t + δ)

(∂/∂x) f (x, t + δ) = 1;

or x ∈ (r (t + δ), r (t) + δ) (the “wake” of right end of cluster)

(∂/∂x) f (x, t + δ) = h.

n addition, if this t is regular,

ℓ′(t) = −
g

1 − g
, where g = g(t) =

∂−

∂x
f (ℓ(t), t) (14)

nd r ′(t) = −p.
(ii) If t is regular, then τ ′(t) > 0 if and only if g > h.
(iii) If t is regular, t ∈ (αi , βi ∧ T ) and τ (t) = 0, then, necessarily, τ ′(t) = 0 and g = h.
(iv) For any interval [t, t + δ] ⊂ [0, T ) when a cluster does not exist (i.e. not intersecting

ith any of the intervals [αi , βi )), the particle density moves to the right at speed 1:

f (x, t + δ) = f (x − δ, t), ℓ(t + δ) = r (t + δ) = ℓ(t) + δ = r (t) + δ, τ (t) = 0.

(v) Denote by µ(t) the total Lebesgue measure of all points x ∈ [0, 1) (within the circle) at
ime t, which are outside the cluster [ℓ(t), r (t)] (if any) and where the density

∂

∂x
f (x, t) > h.

unction µ(t) is Lipschitz (and then the derivative exists for almost all t), and given the
roperties (i)–(iv), it is non-increasing. Then, for almost all t > 0 (w.r.t. Lebesgue measure),
ither

µ′(t) = 0,

or this time t is regular, τ ′(t) > 0 (and then τ (t) > 0, t ∈ (αi , βi ∧ T )), and

g > h and µ′(t) = −1 + ℓ′(t) = −
1

1 − g
≤ −

1
1 − h

= −(1 + p).

(vi) The Lebesgue measure of the time points t where τ ′(t) > 0 is upper bounded by
/(1 + p).

From now on we make the definition of a regular point more restrictive by requiring, in
ddition, that the conclusions of Lemma 3(v) hold. Still, almost all time points t are regular.

roof. (i) The meaning of (11) (which is same as (10)) is explained in the informal definition
bove. Consider a fixed δ > 0 and time t . For each pre-limit trajectory, as in HSP definition,
efine δ(n)

1 ≥ 0 as the smallest number such that all particles located at time t in the interval
ℓn(t) − δ

(n)
1 , ℓn(t)], will join the cluster by time t + δ. It is easy to observe that

δ = δ
(n)
1 − [ f (ℓn(t), t) − f (ℓn(t) − δ

(n)
1 , t)] + O(1/n). (15)

ndeed, up to quantities that are O(1/n), the δ(n)
1 -long (scaled) interval [ℓn(t) − δ

(n)
1 , ℓn(t)]

t time t consists of (scaled) number [ f (ℓn(t), t) − f (ℓn(t) − δ
(n)
1 , t)] of particles and (scaled)

umber δ of holes, because the rate at which holes “eliminated” by the left end of the cluster is
xactly 1. (In the unscaled trajectory, exactly one hole is eliminated per time slot; in the scaled

rajectory, 1/n of empty space is eliminated per 1/n-long time slot; so the rate of empty space
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elimination is 1 for both the unscaled and scaled trajectories.) It remains to take the n → ∞

imit in (15) (as in the HSP definition) and observe that δ(n)
1 must converge exactly to the δ1

s defined, thus proving (11). All properties before (14) then easily follow. Property (14) is a
ifferential form of (11). Namely, we use the fact that t is regular and therefore ℓ′(t) exists;
et δ ↓ 0; from (12) we have

lim
δ→0

δ1/δ = 1 − ℓ′(t);

ividing (11) by δ, taking δ ↓ 0 limit and substituting the above display, we obtain (14). The
ast property is from (13).

(ii) and (iii) follow from (i). (iv) is obvious.
(v) Obviously, µ′(t) = 0 for almost all time points t such that a cluster does not exist.

onsider now a t which is strictly within a time interval when a cluster exists. Once again,
onsider the movement of the left end ℓ of the cluster in a small interval [t, t + δ]. Then, using
14), (11) can be written as

− δ1 =

∫ t+δ

t
[−1 + ℓ′(s)]ds =

∫ t+δ

t

−1
1 − g(s)

ds, (16)

where −1 + ℓ′(s) is the instantaneous (negative) rate at which the sparse sub-interval [ℓ(t) −

δ, ℓ(t)] of length δ1, which existed at time t , “shrinks” due to its right end ℓ(s) moving at
peed ℓ′(s) left and its left end ℓ(t) − δ1 + (s − t) moving at speed 1 right. The integrand

in the RHS exists for almost all t (and is unique up the time subsets of zero Lebesgue
easure). Note that, for a given t , the density (∂/∂x) f (x, t) exists a.e. in x , and therefore
∂−/∂x) f (x, t) = (∂/∂x) f (x, t) a.e. (Recall that g(t) is defined as left derivative.) Analogously
o (16), it is easy to obtain its generalization, which gives the (negative) increment of µ in the
nterval [t, t +δ], by integrating over only those times s, where (∂−/∂x) f (ℓ(s), s) = g(s) > h:

µ(t + δ) − µ(t) =

∫ t+δ

t

−1
1 − g(s)

I{g(s) > h}ds. (17)

Therefore, for almost all s ∈ [t, t + δ],

µ′(s) =
−1

1 − g(s)
I{g(s) > h}.

rom here, along the fact that almost all times s are regular, all properties stated in (v) follow.
(vi) Follows from (v). □

Lemma 4. Suppose, ρ < h. Then any HSP is such that the following properties hold.
(i) For any i such that αi < ∞, we have βi ∧ T − αi < 1.
Consequently, for any t0 ≤ T − 1 there exist t0 < t1 ≤ t0 + 1 such that τ (t1) = 0.
(ii)∫ T

0
τ (t)dt ≤ C̄ = 1 +

1
2(1 + p)

. (18)

roof. (i) Suppose not, i.e. (t0, t0 + 1] is entirely within an interval of the form [αi , βi ∧ T ).
hen, at time t0 + 1 the HSP state is such that everywhere outside the cluster the density is
qual to h. (This follows from Lemma 3(i), density h.) This is impossible, because it would
mply that ρ ≥ h.
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(ii) Consider the set of points t ∈ [0, T ), where τ (t) > 0. This set consists of possibly
n interval [0, s), whose length s cannot exceed 1 (by (i)), and a countable number of open
ntervals (t1, t2) with lengths also not exceeding 1 (by (i)). Obviously,∫ s

0
τ (t)dt ≤ s ≤ 1.

onsider any of the open intervals (t1, t2). We have

max
t∈(t1,t2)

τ (t) ≤

∫
t∈(t1,t2): τ ′(t)>0

τ ′(t)dt ≤

∫
t∈(t1,t2): τ ′(t)>0

[−ℓ′(t)]dt

≤
1
2
L{t ∈ (t1, t2) : τ ′(t) > 0},

and therefore (recall that t2 − t1 ≤ 1)∫ t2

t1

τ (t)dt ≤
1
2
L{t ∈ (t1, t2) : τ ′(t) > 0}.

Summing up over all intervals where τ (t) > 0, we obtain∫ T

0
τ (t)dt ≤ 1 +

1
2
L{t ∈ (0, T ) : τ ′(t) > 0} ≤ 1 +

1
2

1
1 + p

,

where in the last inequality we used Lemma 3(vi). □

Suppose h < ρ < 1. Recall h = p/(1 + p). State [ f ∗(·), ℓ∗, r∗, τ ∗] is called a main
quilibrium state (MES), if it satisfies the following conditions: τ ∗

=
ρ−h
1−h , r∗

= ℓ∗
+ τ ∗,

f ′(x) = 1 for x ∈ (ℓ∗, r∗), f ′(x) = h for x ∈ (r∗, ℓ∗
+ 1). The definition shows that a MES is

ssentially unique, up to a space shift of the cluster; therefore, we will often refer to any MES
s the MES. Note that if the steady-state of a system with large n is close to MES, then the
ux is close to φ∗

= φ∗(ρ) .= (1 − τ ∗)h = p(1 − ρ).

emma 5. Suppose, ρ > h. Then any HSP is such that the following properties hold.
(i) If HSP initial state is a MES, the HSP is unique and is stationary, i.e. it stays in this

tate (up to shift of the cluster).
(ii) If α0 = 0 and β0 ≥ 1−ρ, then the HSP state at time 1−ρ is a MES, and the trajectory

s stationary (staying in a MES) in the interval [1 − ρ, T ].

roof. (i) According to derivatives’ expressions for a MES, it cannot change with time, up to
he cluster moving left at the constant speed p.

(ii) The entire particle mass, which is originally outside the cluster is at most ρ. We have
0 ≥ 1 − ρ, so the cluster exists for the time at least 1 − ρ. The time interval [0, 1 − ρ]

s long enough for all the mass which was originally outside the cluster to join the cluster.
herefore, at some time point in t0 ∈ [0, 1 − ρ], a state is reached, consisting of a cluster and
sparse interval with constant density h (by Lemma 3(i)) This is equivalent to the state being
MES. The same argument as in the proof of (i) shows that the trajectory must stay in MES

n [t0, T ]. □

emma 6. Consider a sequence of systems, with n → ∞, with arbitrary random initial states

[ f n(·, 0), ℓn(0), rn(0), τ n(0)].
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For each n consider some stopping time T n (finite or infinite). Then, with prob. 1, any
ubsequence of (extended) realizations has a further subsequence, along which the convergence
o an HSP holds in the sense of Definition 1.

roof. This type of a hydrodynamic-limit result is standard. If the sequence of processes is
onstructed on the common probability space, as specified above, the driving sequences satisfy
he properties required in Definition 1 w.p.1. Clearly, w.p.1 we can and do choose a subsequence
long which the convergence in (iii.1) and (iii.2) of Definition 1 holds, where all finite αi are

different. Properties (8) and (9) hold for any pre-limit trajectory. Then, w.p.1 we can choose a
further subsequence along which the convergence (5) in Definition 1 holds for all rational pairs
(x, t); given the monotonicity of f n(x, t) (non-decreasing in x and non-increasing in t) we see
hat the convergence (5) is in fact u.o.c., as required in Definition 1. Using the properties of
n(t) and ℓn(t) described in the proof of Lemma 2, w.p.1 we can choose a further subsequence

along which the Skorohod convergence (6) holds. Then, by Definition 1, the limiting trajectory
is an HSP. □

Lemma 7. Suppose ρ > h. Consider a sequence of systems, with n → ∞, with arbitrary
random initial states [ f n(·, 0), ℓn(0), rn(0), τ n(0)]. For a fixed constant B ≥ 1 − ρ and each
n consider a stopping time T n , which is the minimum of constant B and the first time after 0,
when the process is in an ideal state. Then, w.p.1, any subsequence of (extended) realizations
has a further subsequence, along which it converges to an HSP of duration T ≤ B. This HSP
satisfies one of the following two properties:

(a) T < 1 − ρ and τ (T ) = 0;
(b) T = B and the HSP state in [1 − ρ, B] is a MES.

Proof. The probability 1 subsequential convergence to HSPs is due to Lemma 6. Then the
required HSP properties follow from Lemma 5(ii). □

3.2. A version of the ballot theorem

The following combinatorial fact plays a key role in the proofs of our main results for the
high density, h < ρ < 1/2. We will derive it from Theorem 1.2.5 – a ballot theorem – in [11].

Proposition 8. Suppose an integer n ≥ 1 and a sequence of real non-negative numbers,
k1, k2, . . . , kn are fixed. Let us extend the definition of the sequence {kr } to all integer r ≥ 1
by periodicity, kr+n = kr , and denote ψ( j) =

∑ j
ℓ=1 kℓ for j ≥ 0, where ψ(0) = 0 by

convention. Suppose a real number m > ψ(n) is fixed. Let N be the number of those indices
j ∈ {0, 1, . . . , n − 1}, for which

ψ( j + r ) − ψ( j) <
m
n

r, r = 1, . . . , n. (19)

hen,

N ≥ ⌈n
(

1 −
ψ(n)

m

)
⌉. (20)

The proof is in Appendix A.
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3.3. A-perturbations model: Main results

Theorem 9. Consider the model with A-perturbations. Assume ρ < h. Then, as n → ∞,
he sequence of the stationary distributions of [ f n(·, t), ℓn(t), rn(t), τ n(t)] is such that its any
ubsequential weak limit is concentrated on the states with τ = 0. In other words, as n → ∞,
n(∞) ⇒ 0 [equivalently, Eτ n(∞) → 0] and, consequently, the limiting flux (typical flux)
(ρ) = ρ.

roof of Theorem 9. It suffices to show that any distributional limit is such that Eτ = 0.
uppose not. Consider a fixed interval [0, B], and stationary versions of the processes in this

nterval. Then there exists ϵ > 0 such that, for any B > 0,

lim inf
n→∞

(1/B)E
∫ B

0
τ n(t)dt ≥ ϵ > 0. (21)

owever, using our construction above, we can construct all these (stationary) processes on a
ommon probability space, so that, w.p.1., we have a subsequential convergence to an HSP.
onvergence to an HSP, in particular, means that τ n(·) → τ (·) u.o.c. Then, for any B > 0,

rom Lemma 4(ii) we obtain

lim sup
n→∞

E
∫ B

0
τ n(t)dt ≤ C̄ .

his contradicts the fact that (21) must hold for all B > 0. □

emma 10. Consider the model with A-perturbations. Assume h < ρ < 1/2. Consider the
ystem without time/space rescaling. Consider a (random) initial system state, at initial time 0,
hich is formed as follows: we pick an arbitrary ideal state and apply a perturbation to it. (In
ther words, a particle is picked uniformly at random, and it is placed into one of the empty
ites, chosen uniformly at random.) Then, there exists δ = δ(p, ρ) > 0 such that, uniformly
n all the original (pre-perturbation) ideal states and uniformly in all sufficiently large n (and
hen in all n), the following event occurs with probability at least δ: The perturbation creates

cluster and this cluster will not disappear within (unscaled) time interval [0, (1 − ρ)n − 1].

Proof. It will be convenient to relabel time, so that the initial time is 1 (instead of 0). Consider
the initial state after the perturbation. Consider the relocated particle, which we will refer to as
a “seed” particle; the site to which it relocates we will call the “seed” site. If the perturbation
happens to form a cluster, let us consider the dynamics of this cluster, starting the initial time 1.
(If the perturbation did not form a cluster, let us view such event as a cluster “disappearance”
immediately at time 1.) Obviously, as long as the cluster exists, the particles will leave it on
the right as a Bernoulli process, with “success” (leaving) probability p, starting time 2. (By
convention, a particle does not leave the cluster at initial time 1.) Of course, the process of
“failures” (non-departures) is Bernoulli with probability 1 − p. Fix ϵ = ( p̂ − p)/3, where
p̂ = ρ/(1−ρ) > p, because p = h/(1−h). (The meaning of p̂ will be explained shortly.) Let
D(t), t = 1, 2, . . ., be the cumulative number of “successes” of the Bernoulli process described
above (with D(1) = 0 by convention), by and including time t , and let D̄(t) = t − D(t) be the
corresponding cumulative number of “failures” (with D̄(1) = 1 by convention). We observe
that

δ = P{D̄(t) ≥ [(1 − p) − ϵ]t, ∀t ≥ 1} > 0. (22)
1
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Now consider how the cluster (if any) “grows” on the left due to particles joining it on the
eft. (By convention, if the seed particle finds another one immediately to the left of the seed
ite, we assume that the latter particle joined the cluster immediately at the initial time 1.)
ote that the initial cluster (if any) has at most 1 particle to the right of the seed particle and,

herefore, at time 1, at least ρn − 3 particles (i.e., “almost all”) form a sparse interval to the
left of the cluster. Therefore, at least ρn − 2 particle which are initially to the left of the seed
particle will move unobstructed, at speed 1, until and unless they join the cluster.

Let us define the following process over the time interval 1, 2, . . . , n−(ρn−1) = (1−ρ)n+1;
this process exactly describes the process A(t) of the cumulative number of particles joining
the cluster from the left, in the (a bit shorter) time interval 1, 2, . . . , (1−ρ)n. We will illustrate
he definition by an example. Let n = 20 and the total number of particles is ρn = 8. Consider
he configuration of the ρn − 1 = 7 particles on the circle, excluding the seed particle, with
espect to the seed site. Starting from the site immediately to the left from the seed site, and
oving left, the configuration of the particles (excluding seed particle) is, for example, this

equence of length n = 20:

1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0 (23)

Note that the last element of this sequence is necessarily 0, because it corresponds to the seed
ite, and we do not include the seed particle into this sequence.) Consider now the sequence
f length n − (ρn − 1) = (1 − ρ)n + 1 = 20 − 7 = 13, obtained from (23) by removing each
, which immediately follows a 1. We obtain

1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1 (24)

he cumulative number of 1’s by time t (= place in the sequence) is the function A(t), t =

, 2, . . . , (1 − ρ)n + 1. Consider the interval t = 1, 2, . . . , (1 − ρ)n (which is a bit shorter
han t = 1, 2, . . . , (1 − ρ)n + 1). It is easy to see that, in this interval, until and unless the
luster disappears, A(t) is exactly the number of particles joining the cluster on the left. This
s because at the initial time 1 the particles to the left of the seed particle (except maybe the
article immediately to the left, which, by our convention, has joined the cluster at initial time
) are part of the sparse interval and therefore will move at speed 1 until/unless they join the
luster. Using our illustration above, if the initial configuration of particles to the left of the seed
article is given by (23) then the particles will join the cluster at times t = 1, 3, 7, 8, 11, 12
see the first (1 − ρ)n = 12 elements of sequence (24)), until/unless the cluster disappears at
ome t ≤ 12. Here we consider the shorter time interval t = 1, 2, . . . , (1 − ρ)n, as opposed
o t = 1, 2, . . . , (1 − ρ)n + 1, because this excludes from consideration the initially non-free
article (if any) immediately to the right of the seed particle.

Clearly, the process A(t) satisfies the following conservation law: A((1−ρ)n +1) = ρn −1.
et us denote by Ā(t) = t − A(t) the corresponding cumulative process of “failures” (zeros).
he conservation law for Ā(t) is: Ā((1−ρ)n +1) = ((1−ρ)n +1)− (ρn −1) = (1−2ρ)n +2.
ote that the average slope of Ā(t) is

(1 − 2ρ)n + 2
(1 − ρ)n + 1

=
(1 − 2ρ) + 2/n
(1 − ρ) + 1/n

, (25)

nd is close to
1 − 2ρ
1 − ρ

= 1 − p̂, p̂ = ρ/(1 − ρ).

herefore, for all large n, the average slope (25) is at most (1− p̂)+ϵ < (1− p̂)+2ϵ = (1−p)−ϵ.
Notice that, given locations of all particles except the seed particle on the circle, since the
223
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seed particle chooses one of the empty sites (to become the seed site) uniformly at random,
all cyclical permutations of a sequence (24) appear with equal probabilities. Using the latter
observation, we can apply Proposition 8, to obtain the following estimate: for all sufficiently
large n,

P{ Ā(t) < [(1 − p̂) + 2ϵ]t, ∀ 1 ≤ t ≤ (1 − ρ)n + 1} ≥ δ2 =
ϵ

(1 − p̂) + 2ϵ
> 0. (26)

Combining estimates (22) and (26), we conclude that, uniformly on all initial (pre-
perturbation) ideal states and in all sufficiently large n, with probability at least δ = δ1δ2, a

erturbation will create a cluster at time 1 and this cluster will not disappear by and including
ime (1 − ρ)n. □

As a corollary of Lemmas 7 and 10, we obtain Lemma 11. To formulate it, note the
ollowing. Recall the definition of the state space of [ f n(·, t), ℓn(t), rn(t), τ n(t)] in Section 3.1,
nd the metric on it. For each state we can consider the unique “standard” version of each state,
atisfying f n(0, t) = 0, ℓn(t) ∈ [0, 1), and rn(t) ∈ [ℓn(t), ℓn(t) + 1). Denote by Sn this state
pace (restricted to the “standard” versions of the states), for each n. Denote by S∞ the set of
f (·), ℓ, r, τ ] such that: f (x) is non-decreasing 1-Lipschitz function with periodic increments,

f (x + 1) − f (x) = ρ, and with f (0) = 0; ℓ ∈ [0, 1), and r ∈ [ℓ, ℓ+ 1). Then it is easy to see
hat the state space S .

= S∞ ∪ [∪n Sn] is compact. This in particular implies that any sequence
f distributions on Sn with n → ∞ is tight, and therefore has subsequential weak limits.

emma 11. Consider the model with A-perturbations. Assume h < ρ < 1/2. For each n
onsider the scaled process, with (random) initial state formed by a perturbation of an arbitrary
deal state. Fix B ≥ 1 − ρ. Consider the stopping time T n which is the minimum of B and the
rst time the process hits an ideal state. Then any subsequential (in n → ∞) weak limit of the
tate distributions at time T n is such that, with probability at least δ (defined in Lemma 10)
he state is a MES.

heorem 12. Consider the model with A-perturbations. Assume h < ρ < 1/2. Then,
s n → ∞, any subsequential weak limit of the sequence of the stationary distributions
f [ f n(·, t), ℓn(t), rn(t), τ n(t)] is a distribution concentrated on the main equilibrium states.
onsequently, the limiting flux (typical flux) φ(ρ) = φ∗

= (1 − τ ∗)h = p(1 − ρ).

emark 13. Theorem 12 actually holds for h < ρ < 1. The proof for 1/2 < ρ ≤ 1 is a
implified version of that for h < ρ < 1/2, because when ρ > 1/2 a cluster always exists and
-perturbations never occur. If ρ = 1/2, the corresponding sequence of pre-limit systems is

uch that an ideal state either exists infinitely often, or does not exist infinitely often, or both.
n any case, if we consider the corresponding subsequences of systems, the proof is the same
s for either h < ρ < 1/2 or ρ > 1/2.

roof of Theorem 12. For each n, consider the process with any fixed initial state at 0.
onsider stopping time θn

1 , which is the minimum of 2 and the first time (after 0) the system
s in an ideal state. Consider the random system state at θn

1 . Consider its any subsequential
imit in distribution. By Lemma 7, this distributional limit is such that, almost surely, the state
s either a main equilibrium state (MES) or it is an ideal state. (A small subtlety here: we use
he fact that, as n → ∞, the probability that a perturbation occurs immediately at a time of

itting an ideal state, vanishes.)
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Consider stopping time θn
2 , which is the minimum of θn

1 + 2 and the first time after θn
1 the

system is in an ideal state. Note that, as n → ∞, the time to wait for a perturbation converges
to exponentially distributed one with mean 1/λ; in particular, uniformly in all large n, the
probability that a time to wait for a perturbation is less than 1, is at least ϵ = (1 − e−λ)/2. If
the state at θn

1 was ideal, then with probability ≥ ϵ, there will be a perturbation in [θn
1 , θ

n
1 +1].

Using Lemma 11, we conclude that any subsequential limit in distribution of the system state
at θn

2 is either a MES with probability at least ζ = ϵδ > 0, or it is an ideal state. (The δ is as
efined in Lemmas 10 and 11.)

We define stopping times θn
k for all k ≥ 2 analogously to the definition of θn

2 . By induction,
e conclude that any distributional limit of the system state at θn

k is such that it is either a
ES with probability at least 1 − (1 − ζ )k−1, or it is an ideal state. Note that θn

k ≤ 2k. Finally,
sing Lemma 5(i), we establish that any subsequential limit in distribution of the system state
t time 2k is such that with probability at least 1 − (1 − ζ )k−1, the state is a MES. This is
rue for any fixed initial states for each n, and any k. This implies that the limit of stationary
istributions of the process is concentrated on MESes. □

. I-perturbations model

Unless specified otherwise, in this section we consider the model with I-perturbations.

.1. Some preliminary facts

As a corollary of Lemma 1, we obtain the following fact.

emma 14. Suppose 0 < ρ < h. Assume there are no perturbations in the (scaled) time
nterval [0, 1]. Then, uniformly on the initial states at time 0, which may contain one or multiple
lusters,

lim
n→∞

P{At (scaled) time 1 the system is in an ideal state} = 1.

roof of Lemma 14. For each n, consider an arbitrary system state at time 0, and pick any
luster (if any). Let us show that, uniformly on the initial states and the choice of the cluster,

lim
n→∞

P{The cluster will disappear before (scaled) time 1} = 1. (27)

LOG, let the right edge of the cluster be located at (scaled) coordinate 0. Then, the “best
ase”, in terms of the cluster not disappearing for as long as possible, is when this cluster
ontains all particles in the system. Indeed, consider the sequence of particles by going left
rom the right edge of the cluster. The particle may join the cluster only in this order — they
annot jump over each other. Moreover, the location at which each initially present particle
oins the cluster (if the cluster does not disappear by then) is non-random and determined in
dvance. If all particles are initially in the cluster, this obviously minimizes their time to join
he cluster (because they are already in it). Then we can use coupling to show that, w.p.1, the
nitial state with all particles in the cluster minimizes the time for the right-edge particle of
he cluster to rejoin it on the left, after breaking away on the right and traveling clock-wise.
This is because after breaking away it will move unobstructed at speed 1 to the pre-determined
ocation where it would rejoin the cluster.) We continue to observe that, w.p.1, the time for the
econd particle breaking away from the right to rejoin the cluster is minimized. An so on. This
mplies that, given the coupling, w.p.1, the time before the cluster dissolves is maximized.
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From the law of large numbers, we easily verify that, for a fixed ϵ > 0 such that ρ+ ϵ < 1,
s n → ∞,

lim
n→∞

P{The cluster “dissolves” before the particle initially at 0 reaches point −ρ − ϵ}

= 1.

This implies (27).
We are not done, because the total number of initial clusters may increase to infinity with n.

However, the following observation resolves this case. Fix a small ϵ > 0, such that ρ+ ϵ < 1.
The argument we used above for a single cluster easily generalizes to show the following
property:

lim
n→∞

P{All clusters, which at time 0 overlap with [−ϵ, 0],

will disappear before (scaled) time 1} = 1. (28)

Indeed, if at time 0 we “fill in” all holes within the scaled interval [−ϵ, 0] with additional
particles, we produce a single cluster (completely covering [−ϵ, 0]), then the original and
modified processes can be coupled so that the disappearance of the cluster in the modified
system implies the disappearance of all clusters initially overlapping with [−ϵ, 0] in the original
system. Note that the total (scaled) number of particles in the modified system is at most ρ+ϵ.
Therefore, (27) applies to the modified system, which proves (28). Obviously, (28) implies the
lemma statement, because the circle can be covered by a finite number of ϵ-long intervals. □

From Lemma 14 we obtain the following corollary.

Lemma 15. Consider the system with I-perturbations. Suppose ρ < h. Then, uniformly on
ll sufficiently large n and all initial process states, the probability that the process reaches an
deal state at some time t1 < 1 is at least e−λ/2.

roof. The probability that there are no perturbations in [0, 1] converges to e−λ. It remains to
pply Lemma 14. □

emma 16. Suppose ρ < h. Then, uniformly in n, the steady-state number of clusters is
tochastically upper bounded by a proper (finite w.p.1) random variable.

roof. It suffices to show that the lemma statement holds for all sufficiently large n. Fix an
rbitrary integer k. By Lemma 15, uniformly on all initial states at time 0, the probability
hat the process reaches an ideal state in [0, k] is at least 1 − (1 − e−λ/2)k . Considering
he time interval from hitting an ideal state within [0, k] until k, and taking into account the
Bernoulli) structure of the perturbation process, we easily obtain the following. (Recall also
hat a perturbation can increase the number of clusters by at most 2.) Uniformly on the initial
tates and in all large n, with probability at least 1− (1−e−λ/2)k , the number of clusters in the
ystem is stochastically dominated by a random variable 2(1 + H2λk), where H2λk has Poisson
istribution with mean 2λk. Since this is true for all integers k, we obtain a uniform (in n)
tochastic upper bound on the number of clusters in steady-state. □

.2. HSPs and their properties

In this subsection we define HSPs for I-perturbation process, describe their properties, and
ive corresponding hydrodynamic limit results. For our purposes, it will suffice to consider
226



S. Shneer and A. Stolyar Stochastic Processes and their Applications 131 (2021) 201–235

i
A
c

F
e
r
c
c
w
a
f
w
b
a
a
i
a
i
ℓ

a
i

o
e
e

i
(

(
c
(

4

T
s
l
τ

φ

HSPs with a finite number of initial clusters. The definitions and results are described
nformally, because, in essence, they are straightforward generalizations of those for the
-perturbation model. We believe this informal description is sufficient — an interested reader

an easily fill in all formalities.
HSP on a (finite or infinite) interval [0, T ] has the following structure:

{ f (·, t), t ∈ [0, T ]; [ℓi (t), ri (t), τi (t)], t ∈ [0, T ], [αi , βi ], i = 0, 1, . . .}. (29)

unction f (·, t) describes the HSP state at t . The times αi ≤ βi ≤ ∞ are the beginning and
nd times of the existence of i-cluster, and ℓi (t), ri (t), τi (t) = ri (t) − ℓi (t) are the left-end,
ight-end and the length of the i th cluster at time t . There is at most a finite number of initial
lusters (at time 0) – they are indexed by i = 0, 1, . . . in an arbitrary order; for those initial
lusters, αi = 0. HSP has at most a finite number of clusters by any finite time t (i.e., those
ith αi ≤ t). At any given time t , the clusters present at t do not overlap. New clusters

re indexed in the order of their appearance, i.e. in the order of increasing αi . We adopt the
ollowing convention: if in a pre-limit process a cluster divides into two due to a perturbation,
e “ignore” this fact and still treat the divided cluster as one; this does not cause problems,
ecause the “holes” created within a cluster remain “invisible” in the corresponding HSP on
ny finite time interval, in the sense that their “size” remains 0 and their existence does not
ffect the dynamics (derivatives) of the left and right ends, ℓi (t) and ri (t), of the original cluster
n the HSP. Given this convention, except possibly time 0, no more than one new cluster may
ppear (due to a perturbation) at any time t > 0. By another convention, before cluster i exists,
.e. for t < αi , ℓi (t) = ri (t) = τi (t) = 0; and after it disappears, i.e. for t ≥ βi , τi (t) = 0 and
i (t) = ri (t) remain frozen at their value at βi . Convergence in the HSP definition is understood
s convergence to [αi , βi ] and Skorohod convergence to [ℓi (t), ri (t), τi (t)], t ∈ [0, T ], for each
, and the Skorohod convergence to f (·, t), t ∈ [0, T ],.

For each cluster i , we have the (same as in the case of A-perturbations) Lipschitz properties
f ℓi (t), ri (t), τi (t) within [αi , βi ]. If we denote τ (t) =

∑
i τi , it is still Lipschitz. We have

xactly same properties describing the dynamics of each τi (t) in terms of the density at its left
dge ℓi (t).

Finally, the following properties hold for ρ < h, and are proved analogously to the way it
s done for A-perturbations:
i) Denote by Ui the set of those time points in [0,∞), where τ ′

i (t) > 0. Then,∑
i

L(Ui ) ≤ 1/(1 + p).

ii) For each cluster i , we have that αi < ∞ implies βi ∧ T − αi < 1, i.e., the duration of any
luster is less than 1.
iii) We have (18):∫ T

0
τ (t)dt ≤ C̄ = 1 +

1
2(1 + p)

.

.3. I-perturbations, low-density result

heorem 17. Consider the model with I-perturbations and ρ < h. Then, as n → ∞, the
equence of the stationary distributions of [ f n(·, t), τ n(t)] is such that its any subsequential
imit is concentrated on the states with τ = 0 and finite number of clusters. In other words,
n(∞) ⇒ 0 [equivalently, Eτ n(∞) → 0] and, consequently, the limiting flux (typical flux)
(ρ) = ρ.
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Proof of Theorem 17 is essentially same as that of Theorem 9. We do use the fact that both
the pre-limit process and the HSPs have a finite number of clusters on any finite interval —
this means that, just like for A-perturbations, convergence of pre-limit trajectories to an HSP
implies τ n(·) → τ (·) u.o.c. □

.4. I-perturbations, high density result and conjecture

It is natural to conjecture that for I-perturbations, h < ρ < 1/2, the same result as
heorem 12 for A-perturbations holds.

onjecture 18. Consider the model with I-perturbations and h < ρ < 1/2. Then,

φ(ρ) = φ∗.

The proof of Theorem 12, however does not completely go through. The key difficulty
is that, for I-perturbations with h < ρ < 1/2, the number of clusters in steady-state is not

niformly stochastically bounded. The key ideas of the proof of Theorem 12 can be applied to
btain the following partial result, which shows that, when ρ > h, the limiting flux is strictly

less than ρ.

Theorem 19. For any ϵ > 0, there exists δ > 0, such that for all large n and the density
ρ ∈ (h + ϵ, 1/2), the flux φ(ρ, n) < ρ − δ.

We do not give a proof of this partial result, because it is a much more involved version of
he proof of Theorem 12, and does not provide new insights.

Conjecture 18 is supported by extensive simulations. The simulations confirm that when
> h the limiting flux is indeed φ∗. Furthermore, they show that the system “typical” state

is “close to” MES in that it contains essentially a single cluster, “punctured” by holes due to
perturbations. Fig. 4 contains snapshots of the states of two systems (with n = 400 sites in the
eft plot and n = 900 sites in the right plot) with the values λ = 1, p = 1/2 and ρ = 0.4 (so

indeed 1/2 > ρ > h = p/(1 + p)). The systems are started from a random state, where the
initially occupied sites are a random sample of ρn sites out of n without replacement, and the
snapshots are taken after 107 time slots. For each site i the plots show x(i) ∗ x(i + 1), where
x(i) is 1 or 0 if site i is a particle or a hole, respectively. This is a convenient way to observe
lusters in a large system. One can see that there is a single cluster on the left and essentially
ne cluster on the right, except it is “punctured” by two holes.

. A related zero-range model

Consider the following version (generalization) of TASEP-H. As before, there are ρn
articles moving clockwise on n sites forming a circle. There are no perturbations. At each time,
he following occurs. A particle that has holes as both neighbors, moves right with probability

∈ (0, 1]. A particle that has another particle as the left-neighbor and a hole as the right-
eighbor, moves right with probability p ∈ (0, 1). This model, as we will see shortly, can be

viewed as a zero-range model, considered in [7]. Denote by vπ (ρ; n) and φπ (ρ; n) the steady-
tate particle velocity and flux, respectively, of this system. (Subscript π will indicate that we
efer to a flux for this model, as opposed to TASEP-H.) It is shown in [7] that the stationary
228
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Fig. 4. The states of the system with n = 400 (left) and n = 900 (right) sites, after 107 time slots.

distribution of this process has a product-form; moreover, the expressions are derived, which
allow to determine the limiting steady-state particle velocity and limiting flux,

vπ = vπ (ρ) = lim
n→∞

vπ (ρ; n), φπ = φπ (ρ) = lim
n→∞

φπ (ρ; n),

in the same asymptotic regime as in this paper, with n → ∞ and particle density ρ staying
constant. If π = 1, we obtain exactly the basic TASEP-H model (without perturbations), so
that φ1 = ρ for any ρ < 1/2. If π = 1 − ϵ < 1, but close to 1, then the zero-range model can
be viewed as TASEP-H with “perturbations” of a different kind; namely, at each time, with
small probability ϵ > 0, a free particle stays in place instead of moving right. Note, however,
that in the zero-range model (with π independent of n) the “perturbation” rate is much higher
– O(1) per particle per unit time – than for our TASEP-H with perturbations model, where the
perturbation rate is O(1/n2) per particle per unit time.

Using the results of [7], we will prove the following

Theorem 20. We have

lim
π→1

φπ (ρ) =

{
ρ, ρ < h,
φ∗

= p(1 − ρ), ρ > h.
(30)

n other words, limπ→1 φπ (ρ) = φ(ρ), where φ(ρ) is the limiting flux of TASEP-H with
-perturbations. In particular, for h < ρ < 1/2, φπ (ρ) is discontinuous at π = 1.

roof. Consider the equivalent model with holes moving left: a hole with exactly one
onsecutive particle immediately to the left, moves left with probability π ; a hole with two
r more consecutive particles immediately to the left, moves left with probability p. For
onvenience, denote by γ = 1 − ρ the density of holes.

Let ηπ = ηπ (ρ) denote the limiting (in n → ∞) steady-state velocity of a hole. The relation
o the velocity of a particle vπ is via the equality of fluxes: (1 − ρ)ηπ = ρvπ .

It is clear that (30) it is equivalent to

lim
π→1

φπ =

{
1 − γ, γ > 1 − h,

pγ, γ < 1 − h.
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This, in turn, is equivalent to

lim
π→1

ηπ =

{
1−γ

γ
, γ > 1 − h,

p, γ < 1 − h.

Let us use notation q =
1 − γ

γ
. Note that as h = p/(1 + p), the condition γ > 1 − h is

equivalent to q < p. So finally, we conclude that in order to show (30), it is sufficient to show
that

lim
π→1

ηπ =

{
q, q < p,
p, q > p,

(31)

r simply limπ→1 ηπ = q ∧ p.
Results of [7] are directly applicable to the model seen as movement of holes. In the notation

f [7, Section 5], p(1) = π , p(k) = p for k ≥ 2. The function f (k) (as in [7, Section 5]) in
ur case is then as follows (we can get rid of the common factor 1 − π , because this function
s defined up to a positive factor):

f (0) = 1, f (1) =
1
π
,

f (k) =
1 − π

πp

(
1 − p

p

)k−2

, k ≥ 2.

ote that the generating function of { f (k)} is

G(z) =

∞∑
k=0

f (k)zk
= 1 +

z
π

+
1 − π

πp
z2

1 − ( 1−p
p )z

; (32)

clearly, for real z ∈ [0, p/(1 − p)), G(z) is increasing and G(z) ↑ ∞, z ↑ p/(1 − p), and it is
easy to check that same is true for the function zG ′(z)/G(z).

From [7] the (limiting in n → ∞) fugacity z∗
= z∗(γ, π) satisfies the equation

1 − γ = γ z∗
∂ log G(z∗)

∂z∗
= γ

z∗G ′(z∗)
G(z∗)

. (33)

ote that (33) defines the fugacity z∗ uniquely, and z∗ is also clearly continuous w.r.t. π ∈ (0, 1)
and (1 − γ )/γ ∈ (0,∞), viewed as parameters. (We will only use the continuity in π .)

The expression for the velocity ηπ in terms of fugacity z∗, is as follows (analogous to (11)
in [7], holds for z = z∗):

ηπ = [π z f (1) + p
∞∑

k=2

zk f (k)]G(z)−1.

The equation above gives the dependence of ηπ on z∗. For the zero-range model that we
consider, this dependence is very simple, and it holds for a quite general function p(k) (with
p(0) = 0 and 0 < p(k) ≤ δ < 1 for k ≥ 1). We have

f (0) = 1,

f (k) =
1

1 − p(k)

k∏
m=1

1 − p(m)
p(m)

, k ≥ 1.

Note that

p(k) f (k) =
p(k)

1 − p(k)

k∏ 1 − p(m)
p(m)

=

k−1∏ 1 − p(m)
p(m)

= (1 − p(k − 1)) f (k − 1).

m=1 m=1
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Hence the expression for ηπ is (we write z instead of z∗ for simplicity below)

ηπ =

∑
∞

k=1 p(k) f (k)zk

G(z)
=

∑
∞

k=1(1 − p(k − 1)) f (k − 1)zk

G(z)

=
z
∑

∞

k=1 f (k − 1)zk−1
− z

∑
∞

k=1 f (k − 1)p(k − 1)zk−1

G(z)

=
zG(z) − zηπG(z)

G(z)
= z − zηπ .

herefore,

ηπ =
z∗

z∗ + 1
, or z∗

=
ηπ

1 − ηπ
. (34)

ote that the dependence of ηπ on π ∈ (0, 1) (and γ ∈ (0, 1)) is continuous.
Using (33) and (34), for a fixed γ , we will now study the limit of ηπ as π ↑ 1, and will

prove (31).
Substituting (32) into (33), and then z∗

= ηπ/(1 − ηπ ), we obtain

(q − ηπ )(p − ηπ )(ηπ (p − π − πp) + πp) = p2(1 − π )ηπ (1 − ηπ ). (35)

ote that, as π ↑ 1, the RHS of (35) converges to 0, while staying positive, because for π < 1
elocity cannot be 1, and cannot be 0 (in view of the LHS of (35)).

Note that ηπ ≤ q must hold for any π , because q is the max velocity achievable for the
oles, achieved when all particles move at speed 1. Therefore, to show that ηπ ≤ q ∧ p, it
uffices to show that ηπ ≤ p in the case p < q . If π = p, we have ηp ≤ p simply because the
elocity of a hole in this case cannot possibly exceed p. It is also easy to see that ηp < p. (In
act, in this case the velocity is known explicitly: ηp = (1 −

√
1 − 4pγ (1 − γ ))/(2γ ), cf. [7].)

As we continuously increase π in the interval [p, 1), the RHS of (35) must stay positive, so
for all those π we must have ηπ < p. This completes the proof of the fact that ηπ ≤ q ∧ p
or all π < 1.

Finally, again, as we continuously increase π in the interval [p, 1), velocity ηπ changes
ontinuously, the RHS of (35) must stay positive and converge to 0. The only option is that
π → q ∧ p as π ↑ 1. □

. Discussion and further conjectures

Our analysis of the TASEP-H model with perturbations suggests a number of generalizations
nd extensions. We discuss some of them.

.1. More general perturbation rates

Consider TASEP-H with A-perturbations. Recall that for this process there are no perturba-
ions as long as a cluster exists. As n → ∞, the average time it takes the cluster in a MES
o dissolve, “should” grow exponentially fast with n. (A standard large-deviations analysis
hould apply.) Therefore, if the inter-perturbation times grow sub-exponentially in n, then the
raction of time when the system spends in MES will dominate. This basic intuition leads to
onjecture 21.

We will say that a positive non-increasing function g(k) → 0, k → ∞ is sub-exponential,
r write g(k) = SUBEXP(k), if

lim
k→∞

log(g(k))/k = 0.
231



S. Shneer and A. Stolyar Stochastic Processes and their Applications 131 (2021) 201–235

p
I
r
(

(

t
f

C
1
(

(

6

m
c
“
p
e

a
u
P
b
p
s
(
s

f
w
a
b
T

I
p

Conjecture 21. Consider the model with either A-perturbations or I-perturbations. Sup-
ose, the probability of a perturbation (under the corresponding conditions for A- and
-perturbations) at a given time is ρng(n), where g(n) = SUBEXP(n). (g(n) is the perturbation
ate, per particle per time unit.) Then the limiting flux (typical flux) is as follows.
i) If 0 < ρ < h,

φ(ρ) = lim
n→∞

φ(ρ; n) = ρ.

ii) If h < ρ < 1/2,

φ(ρ) = lim
n→∞

φ(ρ; n) = φ∗.

The intuition that leads to Conjecture 21 for TASEP-H with perturbations, as well as
he informal connection between TASEP-H and the zero-range model, also suggests that the
ollowing conjecture is very plausible.

onjecture 22. Consider the zero-range model. Suppose, parameter π depends on n so that
− π (n) = SUBEXP(n). Then the following holds.

i) If 0 < ρ < h,

lim
n→∞

φπ (n)(ρ; n) = ρ.

ii) If h < ρ < 1/2,

lim
n→∞

φπ (n)(ρ; n) = φ∗.

.2. Slow-to-start model

Consider the following model, which is a discrete-time version of the slow-to-start (STS)
odel, studied in [4]. The model is exactly as TASEP-H, except for the following. When a

luster of particles “dissolves” – i.e., the cluster has consisted of exactly two particles, its
right” particle breaks away, and no particle joins the “left” particle from the left – the “left”
article (which now has holes on both sides) does not become free immediately; instead, at
ach consecutive time it moves forward and becomes free with probability p.

The STS model is primarily motivated by the movement of cars on a road. A car moves at
constant speed (normalized to 1), unless it is blocked by a stopped car ahead; when the car is
nblocked, it resumes movement not immediately, but after some delay (hence, “slow start”).
aper [4] studies the continuous STS model on the real line, with particles (cars) represented
y points moving continuously at constant speed, unless stopped by running into a not moving
article ahead, and with exponentially distributed restart times. The results of [4] concern the
ystem evolution from an initial state, where none of the particles moves, towards a state where
in a sense) all particles move without bumping into each other. (Loosely speaking, the latter
tate is an absorbing state in the terminology of this paper.)

Considering the typical flux of the discrete-time STS model, described above, is of interest
or the same reasons as for TASEP-H. The STS model with A-perturbations is defined the same
ay as for TASEP-H, i.e. a perturbation is applied with certain probability when all particles

re free. (Recall that for STS model a particle is free when it not only has holes on both sides,
ut also is actually moving.) The STS model with I-perturbations is defined exactly as for
ASEP-H.

It is not hard to check that the main results of the present paper for TASEP-H with A- and
-perturbations hold as is for the discrete-time STS model with A- and I-perturbations. Same

roofs apply, with slight modifications.
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ppendix A. Proof of Proposition 8

The result is derived from Theorem 1.2.5 – a ballot theorem – in [11].
Without loss of generality, we can assume that m = n. (Otherwise, m and all kr can be

escaled by the same factor, and this obviously does not change N .) Then, conditions (19) and
20) become, respectively,

ψ( j + r ) − ψ( j) < r, r = 1, . . . , n, (A.1)

nd

N ≥ ⌈n − ψ(n)⌉. (A.2)

or each integer j ≥ 0, let η( j) = 1 if (A.1) holds, and η( j) = 0 otherwise. (So that, N =
n−1
0 η( j).) Let us extend the definition of ψ( j) to all real u ≥ 0 by letting ψ(u) = ψ(⌊u⌋).

or each u ≥ 0, let δ(u) = 1 if

v − u ≥ ψ(v) − ψ(u) for all v ≥ u, (A.3)

and δ(u) = 0 otherwise. Denote by D the set of those u ∈ [0, n), for which δ(u) = 1.
By Theorem 1.2.5 in [11], L(D) = n − ψ(n), where L denotes the Lebesgue measure. For
ny interval [ j, j + 1), j = 0, 1, . . . , n − 1, observe the following: if δ(u) = 1 for some

j < u < j + 1, then necessarily η( j) = 1. Indeed, in this case, for any r = 1, . . . , n,

r − [ψ( j + r ) − ψ( j)] = (u − j) + ( j + r − u) − [ψ( j + r ) − ψ(u)] ≥ u − j > 0,

here the first inequality is by (A.3). This implies that for each interval [ j, j + 1) such that
(D ∩ [ j, j + 1)) > 0 we have η( j) = 1. Since, obviously, L(D ∩ [ j, j + 1)) ≤ 1 for any j ,
nd

n−1∑
j=0

L(D ∩ [ j, j + 1)) = L(D) = n − ψ(n),

e see that the (integer) number N of those j ∈ {0, 1, . . . , n − 1} for which η( j) = 1 cannot
e less than n − ψ(n). This proves (20). □

ppendix B. A CSMA model indirectly motivating the holdback property of TASEP-H

In this section we describe an interacting particle system, which is a model of a fairly
ealistic wireless network under a CSMA protocol. This system is far more complicated than
ASEP-H, but exhibits qualitatively similar behavior. We will formulate some hypotheses and
iscuss the difficulties one faces in analyzing such a system. We briefly introduce the model
ere and refer to [10] for an account of known results on the topic, in particular stability
nalysis.

As in the TASEP-H setting, there are n sites arranged in a circle, and ρn particles, moving
lockwise (“right”) in discrete time. (A time index is sometimes referred to as a “time slot”.)
he particle density ρ ∈ (0,∞) (not necessarily less than 1). At each time a particle may move

o its right-neighbor site. There is no restriction on the number of particles present at a site at a
233
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Fig. B.5. Formal and typical flux in the CSMA model, versus density ρ, as suggested by simulations. For ρ < h∗

nd ρ > 1/2 the formal and typical fluxes coincide.

iven time. A particle may move to the right-neighbor site even if that site has other particles.
he particles that do move at a given time are chosen according to a randomized competition
escribed as follows. At each time the sites are given access priorities, forming a permutation
f numbers 1, . . . , n, picked independently (across time slots), uniformly at random from all
ossible permutations. From the site with the highest priority, if it is not empty (has one or
ore particles), exactly one particle (chosen at random, say) moves to its right-neighbor site.
rom the site with the second-highest priority, exactly one particle moves to the right-neighbor
ite, as long as the site is not empty and that no particle has already moved from any of its
wo neighbor sites. And so on until all sites are checked in their priority order. The procedure
escribed above is repeated independently over time slots.

The restriction that a particle can only move from a site if no particle moved from any of the
eighbors of the site models the interference in wireless networks, and it is the most important
haracteristic of models of these networks.

We are interested in the flux of this system. As in the TASEP-H model, if ρ < 1/2 an ideal
absorbing) state will be eventually reached and the system will stay in it, thus the formal flux
s equal to ρ as long as ρ < 1/2 (see Fig. B.5).

A typical flux is defined analogously to that for TASEP-H, i.e. as the limit of the flux of
he system with perturbations, as n → ∞. The typical flux that we observe in simulations is
hown in Fig. B.5. (The typical flux plot in Fig. B.5 is just a qualitative illustration — it does
ot describe a specific simulation experiment.) We observe that the typical flux is monotone
ncreasing, asymptotically converging to the parking constant c = (1/2)(1 − e−2) ≈ 0.43
s ρ → ∞. The asymptotic limit c is intuitive. Indeed, as ρ → ∞, almost all sites will
234
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be occupied most of the time. If so, when n is large, the fraction of sites that will move a
particle at a given time will be equal to the expected number of cars parked per space-slot in
the so-called discrete parking system (we refer to [10] for an explanation of the connections
between the models). We also conjecture that there is a phase transition at some density level
h∗. The conjectured phase transition should be qualitatively similar to that for TASEP-H model.
Namely, when the density ρ < h∗, the clusters that may emerge will not have a tendency to
grow very large, because, if/when they become large they “lose” particles on the right faster
than “acquire” new particle on the left (due to free particles joining it). As a result, when
ρ < h∗ almost all (in the n → ∞ limit — all) particles remain free. If ρ > h∗, very large
lusters form and contain a non-zero fraction of particles, while the density of particles in the
parse intervals is h∗. (The value of h∗ is not known to us. A simple heuristic argument leads
s to believe that h∗

≥ 1/9. Indeed, the rate at which particles “break away” on the right from
cluster, followed by a sparse interval, is at least 1/8; within any two time slots, a particle

reaks away with probability at least (1/2)2. And if the density of the sparse interval on the
eft of the cluster is less than 1/9, then particles join the cluster on the left at the rate at most
1/9)/(1 − 1/9) = 1/8. Thus, if the overall particle density ρ < 1/9, clusters should have a
endency to dissolve.)

We further conjecture that for ρ > 1/2 the formal flux coincides with the typical flux. That
s, the formal flux has a negative “jump” at ρ = 1/2, and then is equal to the typical flux for
> 1/2 (see Fig. B.5).
We note that an analysis of the system in this section is much more difficult than that of the

ASEP-H system due to a number of reasons, including, but not limited to, the following: at any
ime, any cluster may in principle break into any number of clusters even without perturbations;
imilarly, any number of clusters may merge and form a much larger cluster; even if the right-
ost site of a cluster moves a particle to the right, the latter particle does not necessarily break

way from the cluster, because the site may have had other particles in it.
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