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Abstract

The model under consideration is a catalytic branching model constructed in Dawson and
Fleischmann (1997), where the catalysts themselves undergo a spatial branching mechanism.
The key result is a convergence theorem in dimension d =3 towards a limit with full intensity
(persistence), which, in a sense, is comparable with the situation for the “classical” continuous
super-Brownian motion. As by-products, strong laws of large numbers are derived for the Brow-
nian collision local time controlling the branching of reactants, and for the catalytic occupation
time process. Also, the catalytic occupation measures are shown to be absolutely continuous with
respect to Lebesgue measure. © 1997 Elsevier Science B.V.
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1. Introduction and review of main results

Consider two types of “particles” situated in RY, one of which we call the catalvsts,
the other the reactants. The catalysts perform a continuous super-Brownian motion
(SBM) ¢ with constant branching rate ©>0. The reactants are also super-Brownian,
however given g, their branching rate at time ¢ in the volume element db of RY is
just given by ¢,(db). In other words, first ¢ is realized, and then a continuous SBM
X=X¢= (XQ~P$;4) evolves with varying branching rates ¢,(db) (quenched approach).
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More precisely, the rate of branching of a reactant with (Brownian) path W is controlled
(in the sense of Dynkin’s, 1991, additive functional approach to superprocesses) by
the Brownian collision local time (BCLT) Ly g of ¢, formally described by

Ly, gy(dr) ::dr/g,(db)ab(W,), (1)

which exists non-trivially for dimensions d <3 (cf. Barlow et al,, 1991). In higher
dimensions, on the contrary, W and ¢ do not collide (see Barlow and Perkins, 1994,
Proposition 1.3), and therefore branching should not occur, which means that X¢ de-
generates to the heat flow. The catalytic SBM X? in R?, d <3, was constructed as a
continuous process in detail in Dawson and Fleischmann (1997).

It might be useful at this point to recall the longtime behavior of SBM with con-
stant branching rate, starting with a (not necessarily normalized) Lebesgue measure ¢
(Dawson, 1997). In dimension one, it suffers local extinction almost surely, in dimen-
sion two in probability, whereas in ¢ >3 it converges in law to a non-trivial steady
state with expectation / (persistence).

The study of the longtime behavior of the catalytic SBM X¢ was initiated in Dawson
and Fleischmann (1997), but restricted to dimension d = 1. In this case, X? behaves
quite differently than the usual spatial branching models in low dimensions. In fact,
if both the catalyst process ¢ and the catalytic SBM X¢ start off with the Lebesgue
measure /, then, for almost all catalyst process realizations, X; converges in probability
to the starting Lebesgue measure ¢ (persistence). This is caused by the clumping
features of the one-dimensional catalyst (Dawson and Fleischmann, 1988).

Here we continue the study of this model X¢ in the time—space catalytic medium g.
In dimension d =2 we get only some partial results, namely, some self-similarity prop-
erties (Proposition 13) and a random ergodic limit (Theorem 15). The question whether
or not persistence occurs in this “delicate” dimension is an open problem! (sec also
Remark 14).

But our main result concerns dimension d =3. Here we allow ¢ to start off with
the ergodic steady state (of the catalyst process) leading to a time-stationary (in law)
medium. Then with respect to the annealed distribution (defined in Assumption 16,
p.- 18), X; converges in law to some random measure of full intensity and finite variance
(convergence and persistence Theorem 18(a)). From this point of view, the time-
averaged process should obey a strong law of large numbers (Theorem 10). These two
results can be considered as a random medium analog of properties of the classical
SBM in higher dimensions. But note that it can be expected that the limit is different
from the classical one.

To complete the picture, we establish a strong law of large numbers for the BCLT
Liw,q1 (Theorem 5). We also show that the catalytic (weighted) occupation time process
Y, = fot dr X, has states which are absolutely continuous with respect to Lebesgue
measure.

! Persistence has meanwhile been shown in Etheridge and Fleischmann (1997).
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The log-Laplace functional v, =1 >0 of the catalytic SBM X at time 7 satisfies
(formally) the following reaction diffusion equation:

I

~ o v(s.a)= % Av(s,a) — o4(da) 1),2(s,a). s<t. aeR? (2)
with a terminal condition t,(s, )|;— . = / =0. (The backward setting reflects the tact
that, for ¢ fixed, the deterministic process v? i1s “dual” to the stochastic process Y.
where this duality is realized by the log-Laplace functional.) Via this connection, our
results can also be understood as a probabilistic contribution to the study of Eq. (2) hav-
ing a (random) singular reaction coefficient g,(da), describing a spatially heterogencous
catalytic reaction. Actually, our results give information on the long-time behavior of
the L'-norm [ /(da)t(s,a) of the solution to Eq. (2) as s — —~c if it “starts” at time ¢
with a finite mass [ /(da) f(a). In fact, we proved in Dawson and Fleischmann (1997)
that in the one-dimensional case one has convergence to the starting mass ] /(da) 1(a)
(persistence). Dimension two is open. © But the main result of the present paper es-
tablishes in dimension three a.s. convergence to a non-zero limit (possibly depending
on the medium p).

Note that the one-dimensional case resembles a bit a (two-dimensional) reaction
diffusion process of electrically charged species studied by Glitzky et al. (1996).
They got convergence to an equilibrium with exponential velocity. But our three-
dimensional model behaves differently in that we do not get an equilibrium at the
equation level.

For background on super-Brownian motions we refer to Dawson (1993 ).

2. Brownian collision local time

In this section we rigorously introduce the Brownian collision local time L = Ly .
and state in dimension d =3 a strong law of large numbers (Theorem 5).

2.1. Preliminaries

Fix a constant p>d with d =1 the dimension of space, and introduce the reference
Sfunction

dp(b):=(1+ b))%, be R 3)

Let 47 denote the space of all measurable functions f defined on R¢Y such that
|f1<cr¢, for some constant ¢,. Write 7/ for the subset of all continuous func-
tions f in AP such that f(b)/d,(b) has a finite limit as |b| — oc. Equipped with the
norm || £ :=lf/¢pll~, the Banach space 6% is separable. (Recall that the Banach
space of continuous functions on a compactum with the supremum norm is separable.)

2 As meanwhile shown in Fleischmann and Klenke (1996), in the two-dimensional model one has con-
vergence to a g-dependent limit.
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Set 7:=[0,T], T>0. Write $7! for the set of all continuous functions y defined
on / x R? such that ] Lcy¢p, s €1, for some constant ¢y,
Let .#, refer to the cone of all (non-negative) measures p defined on R? such that

Il = Gy i= [ ) (8 <o @

), is endowed with the coarsest topology such that the maps 1t — (i, f) are continuous
where f=¢, or €. Here €°°™ denotes the space of continuous functions on
R? with compact support (and the index + indicates the subset of all non-negative
members). Recall that each Lebesgue measure /7 belongs to .#,. Write i, for the
volume of the unit cube in RY measured with respect to /.

Let W =(W,Il,,) denote the Brownian motion in R on canonical path space of
continuous functions, with “generator” %A. (According to standard notation, I, is
the law of W if W starts at time s from a.) Furthermore, let p,(a, b) =p,(b — a) refer
to its continuous transition density function, and S ={S,: >0} to its semigroup. Set
O, = [ w(da)Il;,. We also introduce the (time-inhomogeneous) Brownian potential
kernel

t
Qua.0)=aub - )= [ drpdab) 0<s<t abeR 5)
S

2.2. Catalyst process ¢

For convenience, we give the following definition of the catalyst process ¢ (see
Dawson, 1993, Section 4.7).

Definition 1. (Catalyst process ¢). Write ¢ = (o, P, ,) for the continuous SBM in RY
with constant branching rate y > 0. Consequently, for fixed ¢ >0, the log-Laplace func-
tional of ¢ is given by

—log B ,explon. —f) = {1, —vi(s,)), s<t, p€ My, feBP (6)

where v, is the unique non-negative solution to (2) with g,(da) replaced by the con-
stant 7y, and with terminal condition v,(s, -)|,—,— = /. Here we always work with a mild
solution, that is with a solution to the equation in the integrated form, actually in
Dynkin’s probabilistic form

1
v(s,a)=1l, [f(W,)—/ ydr u,z(r,W,)], s<t, aeR” (7)
¢ is called the catalyst process.

Recall the expectation formula

Py ulon ) =S5 f), s<t, pe.dy, fe€RB. (8)

Recall also, that in dimensions d >3, with respect to P ., the catalyst process g; has
a non-trivial limit ¢, in law as ¢ T oo of full-intensity measure / (see, €.g. Dawson and
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Perkins, 1991, Proposition 6.1). Hence, here we can form the time-stationary contin-
uous . #,-valued process ¢ ={g,: r € R} whose one-dimensional laws £(¢,) coincide
with (0~ ). In this case we write ® and sometimes P_ .., for the law of o.

The following mixing property is taken from a general result in Fleischmann (1982b),
which was formulated in a time-discrete setting. For the present situation, a simplified
proof will be given.

Lemma 2. (Time-space mixing of all orders). In dimensions d =3, the catalyst pro-
cess 0 with the time—space-shift invariant law P is time—space mixing of all orders.
That is, for all finite sequences B,...,B, of Borel subsets of RY,

m

P((0r (B1 + b1 00, (Bu + b)) € (N — [ [ Pleo(B € ()

=1

as |(1i, b)) — (1;.5;)] — oo whenever i+ j. In particular, for f,g€ 6", the vector
({012 s {on-g)) is asymptotically independent as |t) — t2] — o (mixing in time).

Proof. First of all, recall the following covariance formula for g:
AT
Covy wllon. f) (0r- )1 =21, , / ydr S f (W) S g (W), 9

s<t., b, L€ .H, and f,ge%fomp; see ¢.g. Dawson and Fleischmann (1997, Propo-
sition 12(b), p. 230). Hence, the covariance density function of ¢ at [[t.51].[t2. b1}
with respect to P, is given by

oy A En
2 / 7 drpr—r—2-(b1, b2).

Letting s | —oc, we arrive at the covariance density function at [¢y, 5] and [#;, b2] of the
catalyst process ¢ with respect to P. Since P is invariant with respect to the time-space
shift and infinitely divisible, it suffices to show that this covariance density function
converges to 0 as |[f,51] — [f2,5:]| — >0 on the sets Ry x {|b) — ba| =¢}, ¢>0; sce
the remark after Theorem 2.0.2 in Fleischmann (1982a). Here we may set [t2,h2] =0
without loss of generality. Thus, it is sufficient to demonstrate that

0
/ drp—(b)—-0 as|(t,h) —+oc on R x{|p|=e}, >0
S —x

But the latter integral equals [IX drp,(b) and can be estimated from above by
<const[|p]*"¢ At~'2] with a constant const depending on & (We also later use the
symbol const to denote a constant which might be different at different places.) This
finishes the proof. [

2.3. Brownian collision local time Ly
Assumption 3. (Catalyst process). From now on we restrict our attention to dimen-

sions d <3, and assume, if not otherwise indicated, that the catalyst process ¢ iy
distributed according to Py, or to the stationary P, the latter of course only if d =3.



246 D.A. Dawson, K. Fleischmann/Stochastic Processes and their Applications 71 (1997) 241-257

For ¢>0 and given g, consider the following continuous additive functional Lfy,
of Brownian motion W:

L) = Ly (@)= dr [ 0.(d) p. (), (10)

describing the collision local time of the measure-valued path ¢ with the “g-vicinity”
of the Brownian path W.

Lemma 4. (Brownian collision local time Ly q)). Suppose Assumption 3 is satisfied,
and fix a constant 56(0,%). Then for almost all paths ¢ of the catalyst process,
there exists a continuous additive functional L =Lyy,q of the Brownian motion W,
called the Brownian collision local time (BCLT) of g, with the following properties.
(a) (Convergence) If  is a (strictly) positive function in €77, [ =[0,T], T >0, then
2

— 0.
&0

sup TI;, sup

seLacRY s<I<T

/Lﬂ(dr)x//,(W,)—/ L{dr) (W)

§

(b) (First two moments) For measurable y: R, x R4 R,, and s<t, ac RY,
! t
Moo [ Lina@) 4= [ dr [ 0:@byp,-.(a.b) o)

2

Hs,a l:/ L[W,Q](dr)Wr(VVr)jl

—2 / dr / d / 0,(db) / 0 (B )Py B) By (BB ) Y (B) e ().

Proof. This follows from Proposition 6, p. 256 and Theorem 4, p. 259 in Dawson and
Fleischmann (1997). O

2.4. A strong law of large numbers for Ly, in d =3

In this subsection we assume that Brownian motion W is distributed according to
Iy . First we recall that in dimension d =1 the total BCLT Ly, 4)(Ry) of ¢ is finite,
for almost all [/, ¢] (Dawson and Fleischmann, 1997, Proposition 7, p. 264). Next we
mention that in d =2 we have a self-similarity property for L = Lyy,,), see Corollary 12
below. But in dimension d =3, a strong law of large numbers holds (recall i, denotes
the volume of the unit cube):

Theorem 5. (Strong LLN for the BCLT). If d =3, then

T_IL[W’Q][O, T] T_T—) i/, H()QO X P(),/-CI,S. and H()‘() X P-a.s.
foe}

Proof (1) (Expectation) First of all, for s < 0, by the expectation formula in Lemma
4(b),

T
Moo x Py, T7L[0,T]=P,, T™! / dr{o,,p,) =is ()
0
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since by the expectation formula (8)

P.\x /0

S

i

/ (12)

(independent of the dimension d).

(2) (Variance estimate) Next we show that T'L[0, 7] has a [Tgo x PP, ,-variance
of order O(T~'?) as T 1 oc, uniformly in 5<0 (covering the cases s =0 and v =
corresponding to [%, and P, respectively, we are interested in).

In view of the second moment formula in Lemma 4(b).

T T . .
My o(L[0. T])* =2 / dr / @ [o(an) /g,-«db’)p,<<b>p,<_,-(b,b’).
J0O Jr N .

Therefore, by (12), by

//(dh)//(db’)pr(b) pr_ (b, 6"y =i;
and by step (1),

Moo < Py |T7IL[0,T] — i)

T T
:2T"'3/ dr/ dr’ Cov /[o(db), 0, (dB) pe(b) pyr_ (b, B). (13)
J0 r

But by (9), the latter covariance expression equals

211, / Sdt /dbprﬂ(W,,b)p,-<b>p2ru,.,,(W;.m.

Therefore, we may continue the r.h.s. of (13) with

v 7 F
:41/T*3/ dr/ dr’/ 7 dep2r—2i(0).
JA) Jr N

However, the internal integral is of order O((+* — r)~"?), uniformly in s<0. Hence.
altogether we get

Moo x P AT7L[0,T] — i/]% <const T2 (14)

uniformly in s <0.
{3) (Conclusion) Now the proof can easily be completed. From (14),

Moo P | T7VL[0,T] — i/ =) <conste 2 T2
By Borel-Cantelli,

S7*L[0,5*] — i, along the integers S — ~c, a.s.
But for $*< T < (S + 1)*,

(S+ )7L, ST L0, T)<S™*L[0.(S + 1)].

and the claimed a.s. convergence follows, finishing the proof.
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3. Occupation times

Here we rigorously introduce the catalytic SBM X¢, verify that its catalytic occu-
pation time Y¢ has absolutely continuous states, and satisfies a strong law of large
numbers, the latter in the case d = 3.

3.1. Catalytic SBM

Since the BCLT L =Ly, of Lemma 4 is a locally admissible additive functional
of Brownian motion # with “small” increments, one can conclude for the existence
of the catalytic SBM X¢ in the catalytic medium g:

Lemma 6. (Catalytic SBM X?). Under Assumption 3, for almost all realizations ¢ of

the catalyst process, the following statements hold.

(a) (Existence). There exists the continuous SBM X = X¢ = (X?, P¢,) with branching
Sunctional given by the BCLT L= Ly, g

(b) (Log-Laplace functional). The log-Laplace functional of X° is given by

—log P, exp(X;, —f) = (i, —v,(s,- ), (15)

S, uE My, [ EBP, where v, Is the unique non-negative solution to Dynkin’s
log-Laplace equation

vis,a)y= 11,4 [f(W,) - /t L(dr)vi(r, W,)} , (16)

s

s<t, ac R
(c) (Moments). Expectation and covariance of X¢ are given by

P XL ) =S5 f), S<t, pc My fERB?,

and
CO, LKy, £, (Xorr )]
~2 [ utda) / " o / 0 (dDID(r — 5,0,5)Sy —+ F(B)Srs—rg(b)
s<ty,ty, WE My, and f,g€ C.

Proof. See (Dawson and Fleischmann, 1997, Definition 5, p. 261) which is based on
Theorem 1(b) (p. 235), and formula (5.10). O

Note that (16) is the precise meaning of the catalytic reaction diffusion Eq. (2) with
reaction rate gy(da).

3.2. Absolutely continuous occupation time states

Since X is pathwise continuous, we may introduce the catalytic (weighted) occu-
pation time process Y =Y ={Y?: =0} related to X = X?, defined by ¥, := jot dr X,.
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Recall that for the “classical” continuous SBM, say X/, in dimensions d <3. the
related occupation measures Y,/ are absolutely continuous, i.e. density functions v,
exist (see e.g., Fleischmann, 1988). This property is shared also by the SBM X¢ in
the catalytic medium ¢. For a convenient formulation, we introduce the annealed law
P = P()A/P&f/. That 1s, the laws P(f, of X? given ¢ are averaged by means of the
distribution B, of .

Theorem 7. (Occupation densities). Under Assumption 3, for T>0 and = € R fixed,

the following statements hold.

(a) (Densities of Y,) With respect to the annealed law #, we obtain:

(al) (L>-densities) The LX(#))-limit of {Yr,pz.-)) as ¢] 0 exists and is denoted by
»r(z).

(a2) (Absolutely continuous states) With respect to %, the random measure Yy is
absolutely continuous with density function yr:
L (Yr(db)=vr(b)db)=1.

(a3) (First two moments) The following formulas hold:

2 () =),
T T —r T —r

4 ar, yr(z):Zif/ dr / dl/ dt’ pry(0)>0.
0 J0 Jo

(b) (Densities of Y?) For Py ,-a.a. catalyst process realizations ¢ we obtain:

(b1) (L*-densities) The L*(P§,)-limit of {Y7,p.(z.-)) as ¢ |0 exists and is denoted
by vi(z). '

(b2) (Absolutely continuous states) With respect to Py ,, the random measure Y; is
absolutely continuous with density function vi:

P (YH(db)y= yi(h)db)=1.

(b3) (First two moments) The following formulas hold.

T .
Varg , yt}(z):2i// dr/ 0.(db)qg 7 .(b,2)
JO .
(recall definition (5) of the Brownian potential kernel q).

Proof. We start with the proof of (b). According to (Dawson and Fleischmann, 1997,
Proposition 5, p. 240) it suffices to show that for almost all ¢,

,
1y, / Ly, o(dr)a} (W 2) —2 0 for F'=0and ¥'=T —r (17)
Jo ’ i
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By the expectation formula in Lemma 4(b)

T
Hs./

5

T
Lo (dr e () = i, / dr / 0, (dbYH (D). (18)

Hence, the 1.h.s. in (17) equals

T
o [0 [ e, 0.0
0

Since this is monotone in ¢, the limit as & | 0 exists (for each ¢). Thus, it is sufficient
to show that the expectation over ¢ converges to 0 as &| 0. But by (12), the latter
P, ,-expectation, s<0, is independent of s and equals

T str’ ctr’
i/ / dr / £(db)q7 o (b2)=1;T / dt / dr’' proe(0).
O r/ r/

Because the integrand is monotone decreasing in ¢ and ¢/, we may replace »’ by 0, and
since 7 is fixed we continue the latter formula line with

< const / dt/ dr'(+ +¢'y"9? <const ' o 0 since d <3.
0 0 &
This finishes the proof of (b). But then (a) immediately follows by averaging over the
medium. 0

In dimension d =3, let & denote the annealed law PP& , of the catalytic SBM
concerning the time-space stationary medium ¢ with law P.

Remark 8. (Occupation densities in the stationary case). Theorem 7 remains valid,
if in dimension d =3 we replace %y , by P, thus # by #.

Remark 9. (Occupation density field). 1t can be expected that for the catalytic occu-
pation time process Y¢ in all dimensions (d <3) a jointly continuous catalytic occupa-
tion density field ¢ exists,” as it does for the “classical” continuous SBM, established
by Sugitani (1989) and reproved in Dawson and Fleischmann (1997, Lemma 7, p. 243).

3.3. A strong law of large numbers for Y@ in d =3

First we recall that in dimension d = 1, the catalytic SBM X/ converges in Fy -
probability to / as ¢ T oo, for Py -almost all ¢, see Dawson and Fleischmann (1997,
Theorem 6, p. 273). This of course implies a law of large numbers for the related cat-
alytic occupation time process Y¢. In d =2, self-similarity properties hold instead, see
Proposition 13 below. Here now we restrict our attention to dimension 4 = 3. Recall
that %, and 2 denote the annealed laws of the catalytic SBM arising by averaging
Pg , over the medium ¢ by means of Py, and the stationary P, respectively.

3 As recently shown in Fleischmann and Klenke (1997), in dimension d =2,3 the catalytic SBM X¢
itself has actually a smooth density field defined on a time—space set of full Lebesgue measure.
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Theorem 10. (LLN for Y). If d =3, then

T’IY;’ —I—’» [ Pr-as. and  P-as.
Tl

Consequently, in dimension ¢ =3, the time-averaged X¢-process behaves for almost
all ¢ just as for the “classical” SBM. That is, here the uveraging principle holds: Finally,
only the expectation / of the medium ¢, is “effective”, leading to the expectation of
X*.

Proof. Since P, T='Y? =/ by the expectation formula in Lemma 6(c), as in step (3)
of the proof of Theorem 35, it suffices to show that for fixed />0 in the separable
Banach space %7,

AT Yr Y = (L ) <const T2 (19)

uniformly, in s<0. Here we wrote 2, for P(_/E‘;{/. s€[—=nc,0]. But

T v
Var‘;;_/<YT,_f'>:2I'I(,,,/ L(dr)[/ der.u;'_f'(Wz)} , (20)

0

see Dawson and Fleischmann (1997, formula (3.22)). Hence, the Lh.s. in (19) cquals

2T Mo, /
Jo

T 7
L(dr) { / de I,y f(W )}

Using the expectation formulas (18) and (12), we may continue with

T N T 2
::2i/T’3/ dr//(db) U dt/dzp,,.(l).z)f(:)} .
J0 f Jr .

Interchanging the order of integrations, and calculating the /(db)-integral, this can be
estimated from above by

T T T
<2</._;">2T’2/ dr/ dr/ dt’ proy—2(0).
JO Jr Jr

As in step (2) of the proof of Theorem 3, the internal integral can be estimated by

<const(f — )~ "2, and the claim follows. O

4. Self-similarities in dimension ¢ =2

Recall that in dimension d =2 the “classical” SBM ¢ with law B, is self-similar:
For K >0,

(K Vor(KV 20y £201 Z {o,: 120}, (21)

This has some consequences for the BCLT Ly, and the catalytic SBM X¢.
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4.1. A scaling property of Liw, g
We start with a scaling property of the Brownian collision local time:

Lemma 11. (Scaling of the BCLT). Fix d=2, s>0, acR? and K>0. Then for
I, o X By s~almost all [W, 0], and measurable g: Ry — R,

/L[W,Q](d”)K‘lg(K‘l’”): /L[K“ Wi Kok (K :A)](dr)g(r). (22)

Proof. Recalling the definition (10) of L, by definition of the BCLT L=Lpy , it
suffices to verify the claim with L replaced by LX* and L, respectively. Then by (10),

/Lf(p?_g](dr)K”g(K‘lr)= /dr/Qr(db)pm;(m,b)K"g(K'lr)-

By a change of variables, and using the self-similarity of the Brownian transition
density p, the r.h.s. can be written as

/ dr / K ok (K 2db) pu(K ™ Wi, b) g(r).

Again by (10), we arrive at the r.h.s. of (22) with L replaced by L, finishing the
proof. (O

Combining Lemma 11 with the self-similarities of Brownian motion W and ¢ (recall
(21)) we get the following result.

Corollary 12, (Self-similarity of the BCLT). For d =2 and K >0, with respect to
oo < Py,

K™ Liw o (K) Z L.
4.2. Self-similarities of [X¢,Y?]

Instead of the well-known self-similarity of the “classical” SBM in d =2 (as in (21)),
for the catalytic SBM we have the following versions (recall the catalytic occupation
time process Y introduced in the beginning of section 3.2):

Proposition 13. (Scaling and self-similarity of [X, Y]). Suppose d=2, K>0, and

T=0.

(a) (Scaling) For Py -almost all ¢ the following holds. If [X,Y] is formed with
respect to Py ,, then the pair

LK™ Xir (K2 ), K2 Yer (K V2]

. 3 —1 g2,
has the same law as [Xr, Y1) formed with respect to POK, ox (K25
(b) (Self-similarities) Formed either with respect to the random law F},, or the

annealed law 2, =Py /Py ,,
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_ ; — 2 M -
(K™ Xer(K' 2, K2 Yer(K'2)) = (X7, Yrl.
Proof. By Dawson and Fleischmann (1997, Hypothesis 2, p. 231, and notation 3.22),
for f.g in 47, and Py ,-aa. o,
— log £, exp[(X7, — f) + (Y. ~g)] = (/. t7(0,))

with
r -
vr(s,a) =1, [f'(Wr)Jr / dr_q(W.)A/ Liw gi(dryoz(r. W) .
0<s<T, acR’ Hence
~log P, exp[ (Xxr, —K " f(K™'2)) + (Yer, —K 2g(K "))

=(/.vx7(0.-)) = (£, Kvgr(0,K /%)), (23)

with

KT
Kexr(Ks, K" 2a)y = My g1, [f(K’”WKT)Jr/ dr K 'g(K~ "2,
K

h

KT
— Kﬁl / Ll ;,V.Q](dr)K‘z',}T(r, VV; )} .

Ks

Setting ur(s,a):=Kvgr(Ks,K'2a) (for the fixed K), by a change of variables and
using the scaling of BCLT Lemma 11 (with [s,a] replaced by (Ks.K'?a)), the latter
equation can be written as

T
up(s,a) =y iz, {f(KAm Wir) + / drg(K =" 2 Wy,

T
- / L[Kf‘ T K ox (KD 3_)]((1}")”?7‘-(",1{71 ZVI/}\’,-)} .

But W distributed according to [Ty 41 -, implies by scaling that the process t —K ' I,
has the law [T, ,. Therefore, the latter formula lines can be continued with

T T
= n.s'.u {f( W7) + / dr (}(VV,) - / L[W.K fok (KT 1_”((1}')”%-(]’, W;)} .

Hence, by uniqueness of the solution to the log-Laplace equation (see Dawson and
Fleischmann, 1997, Proposition 1(a), p. 255), we conclude that the 1.h.s. of (23) equals

~log PY, R exp[(Xr, — £) + (Y7, —g)).

This proves the claim (a). The statement (b) concerning the random law P, then
immediately follows from the self-similarity (21) of g, and the claim concering the

annealed law % results by integration with [% ,. This finishes the proof. ~J

Remark 14. (Open problems). By the self-similarity of X¢ with respect to the an-
nealed law 7, the distribution of X7 coincides with the law of TXX(T~'*.). Passing
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formally to 7'Too, we arrive at X2 and x{(0)7. This relates the questions of existence
of a limit X¢ with full expectation and of the existence of a density x/(0) of X at
the origin with full expectation, in the critical dimension d =2. But whether or not a
non-trivial limit X< exists remains open.*

4.3. A random ergodic limit

Recall that for the continuous SBM X’ in R? with constant branching rate and with
law Pol, , we have the following “random” ergodic limit:

T7'Y — y{(0)¢ in law,
TToc

where 3{(0) is the random density of the occupation measure Yl/ at time 1 at the
origin 0; see e.g. Fleischmann (1988). The two-dimensional catalytic SBM X? has a
similar property:

Theorem 15. (Random ergodic limit). Let d =2 and consider the catalytic SBM X*¢

with annealed law % = IFDo,/P(f s> or with Py s-random law P(f s

(a) (Annealed approach) T~'Y? converges in #-law as T oo towards the multiple
(0 of Lebesgue measure £, where y(0), is the L*(#)-density at 0 of the
catalytic occupation measure Y| at time 1, according to Theorem 7(al).

(b) (Quenched approach) The Py -random law of T~'Yf converges in Py ,-law as
T oo towards the Py s-random law of the multiple y(0) of Lebesgue measure
¢, where yX(0), given g, is the L2(P0@’ s )-density ar O of the catalytic occupation
measure Y° at time 1, according to Theorem 7(bl).

Proof. We start by proving part (b). Using the random self-similarity in Proposition
13(b), the Py ,-random law of 77'Y# coincides with that of T¥(7~'2.). But by
Theorem 7(b1), for f € €’ and P -almost all ¢

(TYAT 20 1) — SO S) in L)

implying the claim.
Part (a) follows analogously from the annealed self-similarity in Proposition 13(b),
and Theorem 7(al). O

Note that as opposed to dimensions 1 and 3, here the limit remains random after
the averaging procedure, since the Zs-variance of 31(0) is (strictly) positive, and the
Pof ,~variance of 3(0) is positive with Py ,-probability one.

4 These questions are meanwhile positively answered in Etheridge and Fleischmann (1997) and
Fleischmann and Klenke (1997).
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5. Persistence in dimension ¢ =3

In this final section we deal with the following situation (which occurred already in
Remark 8).

Assumption 16. (Time—space-shift invariance). Let d =3 and assume that the catu-
lyst process ¢ is distributed according to the time-space-shift invariant distribution
P (introduced in section 2.2), and consider the annealed lavw # = PP(;’ .

Remark 17. (Approximation). Working with the non-stationary catalyst process ¢ dis-
tributed according to Py, would require some additional approximations.

S5.1. Muin result
Now we are in a position to formulate our muin result:

Theorem 18. (Convergence and persistence of second order). Impose Assumption 16.

(a) (Annealed convergence) With respect to the annealed distribution 2, the catalvtic
SBM Xy converges in law as TToo to some limit X, with full intensity / and
[inite variance (persistence of second-order).

(b) (Random convergence) The P-random distribution of

Py (Xre)=:107

converges in P-law as TToc to some P-random distribution Q¢ with full inten-
sity und finite variance (persistence of second order). With P-probability one,

/Q‘;(dV)v:“ / QL @){v. f) = (L. 1) <ox. feAl.

Consequently, at the first sight, our catalytic SBM X¢ behaves similarly to the clas-
sical continuous SBM X’. However. the main difference should be that a new limit
occurs. For instance, the limiting random measure X of (a) should be differens from
the classical steady-state X7_.

5.2, Proof of the main theorem

The key of proof will be a backward technique: By the time-stationarity of the
random medium ¢ we may start X¢ at time —7 with /, and observe the state at time
0. Then we may continue for fixed realization ¢, sending — 7T to —oc, by exploiting
some backward monotonicities.

(1) (Convergence) First of all, for P-almost all ¢, the law Q% coincides with the
law P‘;"'T’_‘/”(XOG -). Here gr4(y is the catalyst process shifted by time 7. Hence, by
the time-shift invariance of the catalyst process ¢, the distribution of the random law

Qf coincides with that of the random law P%;,(X; € -). (Note that here we made a
transition in P-law, but after this we will continue for a fixed ¢.)
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Given g, we turn to the log-Laplace functional according to Lemma 6(b): For
feBl, writing (7, f)=: |/,

‘IOngT,/ exp (Xo, —f) =lvo(—=T )||1,

where by the log-Laplace equation (16),

0
lvo(=T, )i =M1,/ [f(Wo) —/TL[W,Q](dV)Ug(F,Wr)} .

Using the expectation formula in Lemma 4(b), this formula line can be continued with

0
— 17— is [ o / 0, (db)R(r.b).

But this non-negative expression is non-increasing® in the variable 7. Hence, the limit
of ||vp(—T,-)||i exists (for the fixed ¢) and determines a log-Laplace functional of a
random measure, its law denoted by Q% . (In fact, note that the family {Q%: T >0} is
relatively compact since all laws have expectation measure 7, see (24) below.) This
gives the convergence claim in (b). By averaging over g, the convergence statement
of (a) also follows.

(2) (Expectation bounds) For almost all g, from the expectation formula in Lemma

6(c),

/Qgr(dﬂ)/lZRf,XrEf, (24)
which implies for the limits that

/ng(du)uSZ, hence /[P’Q‘;o(d,u)MSK. (25)

Consequently, the limiting intensity measures in (b) and (a) are bounded by 7.
(3) (Variance bounds) Let again f €Y. Given g, by the variance formula in
Lemma 6(c),

0
Var® ., (Xo. f) =2i/ / ar [ oabs o),
T

which monotonically converges to

0
2, / dr / 0 (AB)S_, f(B)) as T1oc. 26)

Integrating ¢ with P, by the expectation formula (12) we get the monotone convergence
Pt ) 22 [ a@ose) [ ranso) [T @7
20 0

Note that by (12), the Lh.s. in (27) is the variance of (X7, f) with respect to the
annealed law 2. On the other hand, the r.h.s. is the variance expression related to the

5 Note that this monotonicity would be violated if we started ¢ at time —7 with ¢_7 = /. That is, the
present method only works for the time-stationary process ¢ on the whole time axis R.
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classical steady-state X;C (see, for instance, Dawson, 1977), hence is finite. Therefore,
also the limit (26) is finite P-a.s. But this implies that in (25) equalitics must hold
( persistence). Moreover, the variance of (X, /) is finite with respect to PQ¢_, hence,
also with respect to the laws Q¢ , given ¢. In other words, in both cases (a) and (b),

oc

we get persistence of second order. This finishes the proof. [
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