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Abstract 

The model under consideration is a catalytic branching model constructed in Dawson and 
Fleischmann (1997), where the catalysts themselves undergo a spatial branching mechanism. 
The key result is a convergence theorem in dimension d 3 towards a limit with full intensity 
(persistence), which, in a sense, is comparable with the situation for the "classical'" continuous 
super-Brownian motion. As by-products, strong laws of large numbers are derived for the Brow- 
nian collision local time controlling the branching of reactants, and for the catalytic occupation 
time process. Also, the catalytic occupation measures are shown to be absolutely continuous wilh 
respect to Lebesgue measure. © 1997 Elsevier Science B.V. 
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1. Introduction and review of main results 

Consider two types of "particles" situated in [R ~l, one of which we call the cata/ysts, 

the other the reactants .  The catalysts perform a continuous super-Brownian motion 

(SBM) ~ with constant branching rate 7 > 0 .  The reactants are also super-Browniam 

however given ~), their branching rate at time t in the volume element db of R,t is 

just given by ~(db) .  In other words, first ~o is realized, and then a continuous SBM 

X =X'- '  = ( X  ~, P ~ , )  evolves with t~ar.l'ing branching rates (jt(db) l q u e n c h e d  approach). 
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More precisely, the rate of  branching of a reactant with (Brownian) path W is controlled 
(in the sense of  Dynkin's, 1991, additive functional approach to superprocesses) by 
the Brownian collision local time (BCLT) L[w.o] of ~, formally described by 

L[w,~](dr) := dr f or(db) 6b(W~), (1) 

which exists non-trivially for dimensions d~<3 (cf. Barlow et al., 1991). In higher 

dimensions, on the contrary, W and ~ do not collide (see Barlow and Perkins, 1994, 
Proposition 1.3), and therefore branching should not occur, which means that Xe de- 
generates to the heat flow. The catalytic SBM X~' in ~d, d ~< 3, was constructed as a 
continuous process in detail in Dawson and Fleischmann (1997). 

It might be useful at this point to recall the longtime behavior of  SBM with con- 

stant branching rate, starting with a (not necessarily normalized) Lebesgue measure ( 
(Dawson, 1997). In dimension one, it suffers local extinction almost surely, in dimen- 
sion two in probability, whereas in d ~>3 it converges in law to a non-trivial steady 
state with expectation ((persistence).  

The study of the longtime behavior of  the catalytic SBM X o was initiated in Dawson 
and Fleischmann (1997), but restricted to dimension d = 1. In this case, X ~ behaves 
quite differently than the usual spatial branching models in low dimensions. In fact, 
if both the catalyst process ~o and the catalytic SBM XQ start off with the Lebesgue 
measure {, then, for almost all catalyst process realizations, Xt Q converges in probability 
to the starting Lebesgue measure # (persistence). This is caused by the clumping 
features of the one-dimensional catalyst (Dawson and Fleischmann, 1988). 

Here we continue the study of this model X ~ in the time-space catalytic medium ~. 
In dimension d = 2 we get only some partial results, namely, some se l f  similarity prop- 
erties (Proposition 13) and a random ergodic limit (Theorem 15). The question whether 
or not persistence occurs in this "delicate" dimension is an open problem 1 (see also 
Remark 14). 

But our main result concerns dimension d = 3. Here we allow ~ to start off with 
the ergodic steady state (of the catalyst process) leading to a time-stationary (in law) 
medium. Then with respect to the annealed distribution (defined in Assumption 16, 
p. 18), Xt converges in law to some random measure of  full intensity and finite variance 
(converoence and persistence Theorem 18(a)). From this point of view, the time- 
averaged process should obey a stron9 law o f  large numbers (Theorem 10). These two 
results can be considered as a random medium analog of properties of  the classical 
SBM in higher dimensions. But note that it can be expected that the limit is different 
from the classical one. 

To complete the picture, we establish a strong law o f  large numbers for the BCLT 
L[w,~,] (Theorem 5). We also show that the catalytic (weighted) occupation time process 
Yt := Jo dr Xr has states which are absolutely continuous with respect to Lebesgue 
measure. 

I Persistence has meanwhile been shown in Etheridge and Fleischmann (1997). 
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The log-Laplace functional tt = v; >~0 of  the catalytic SBM X, e at time t satisfies 

(formally)  the following reaction diffusion equation: 

? t @ ~ . a ) =  1 ~Avt(s ,a) -o , . (da) l~ ,~(s ,a) ,  s<~t, a ~ A  d (2) &. 

with a terminal condition vt(s,.)[, t -  f>~O. (The backward setting reflects the facl 

that, for (j fixed, the deterministic process v '~' is "dual" to the stochastic process X ~', 

where this duality is realized by the log-Laplace functional.) Via this connection, our 

results can also be understood as a probabilistic contribution to the study of  Eq. (2) ha~- 

ing a (random) singular reaction coefficient 0~(da), describing a spatially heteroqeneous 

catalytic reaction. Actually, our results give information on the long-time behavior of  

the LI-norm f / ' ( d a )  v(s, a) of  the solution to Eq. (2) as s ~ ">c if  it "starts" at time t 

with a finite mass f / ( d a )  f ( a ) .  In fact, we proved in Dawson and Fleischmann (1997) 

that in the one-dimensional case one has convergence to the starting mass J ' / ( d a )  / ( a )  

(persistence). Dimension two is open. : But the main result of  the present paper es- 

tablishes in dimension three a.s. convergence to a non-zero limit (possibly depending 

on the medium (~)). 

Note that the one-dimensional case resembles a bit a ( two-dimensional)  reaction 
d([litsion process of electrically charged species studied by Glitzky et al. (1996). 

They got convergence to an equilibrium with exponential velocity. But our three- 

dimensional model behaves differently in that we do not get an equilibrium at the 

equation level. 

For background on super-Brownian motions we refer to Dawson (1993). 

2. Brownian collision local time 

In this section we rigorously introduce the Brownian collision local time L l, ll~.,:l, 
and state in dimension d = 3 a strong law of  large numbers (Theorem 5). 

2.1. Prel#ninaries 

Fix a constant p > d with d ~> 1 the dimension of  space~ and introduce the r~f/brenc~" 
junction 

@ ( b ) : =  (1 + ]hi2) - p 2 ,  b c  ~d. (3) 

Let . ~ '  denote the space of  all measurable functions f defined on [R d such that 

[ / l  ~<Cr@ for some constant c / .  Write c6P;/ for the subset of  all continuous func- 

tions f in ~ I ,  such that f ( b ) / 4 p ( b )  has a finite limit as Ib]-~ oc. Equipped with the 

norm I I . f l ]  : II.f/(opll~, the Banach space ~P: /  is s~Tarable. (Recall that the Banach 

space of  continuous functions on a compactum with the supremum norm is separable. ) 

2 As meanwhile shown in Fleischmann and Klenke (1996), in the two-dimensional model onc has con- 
vergence to a 0-dependent limit. 
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Set I : =  [0, T], T~>0. Write c u d  for the set of  all continuous functions ~ defined 
on I × ~d such that [~bs[ <~c~(gp, sEl,  for some constant c~. 

Let ,/Hp refer to the cone of all (non-negative) measures /~ defined on ~a such that 

]]flHp := (/~, ~p ) :=  / I t ( db )~p (b )<+~ .  (4) 

~ p  is endowed with the coarsest topology such that the maps # --+ (/~, f )  are continuous 
where f = ~bp or f c cg~omp. Here cgcomp denotes the space of continuous functions on 
Ed with compact support (and the index+indicates the subset of  all non-negative 

members). Recall that each Lebesgue measure # belongs to dYp. Write iz for the 
volume of the unit cube in Ed measured with respect to {. 

Let W=(W, IIs, a) denote the Brownian motion in Ed on canonical path space of 

1 (According to standard notation, Hs ~ is continuous functions, with "generator" ~A. 
the law of W if W starts at time s from a.) Furthermore, let pt(a,b)=pt(b a) refer 
to its continuous transition density function, and S={St: t~>0} to its semigroup. Set 
Hs,~ := f/z(da)/7 .... We also introduce the (time-inhomogeneous) Brownian potential 
kernel 

qs, t(a,b)=qs, t ( b - a ) : =  drpr(a,b), O<<.s<~t, a, bENd. (5) 

2.2. Catalyst process 

For convenience, we give the following definition of the catalyst process 0 (see 
Dawson, 1993, Section 4.7). 

Definition 1. (Catalyst process ~). Write ~ =(~ ,  Izs,~) for the continuous SBM in ~d 

with constant branching rate 7 > 0. Consequently, for fixed t ~> 0, the log-Laplace Junc- 
tional of 0 is given by 

- log ~,u e x p ( ~ t , - f )  = (/~,-vt(s, .)), s<~t, l~ E ,/Hp, f E ~P, (6) 

where vt is the unique non-negative solution to (2) with ffs(da) replaced by the con- 
stant 7, and with terminal condition vt(s,.)]s_t = f .  Here we always work with a mild 
solution, that is with a solution to the equation in the integrated form, actually in 
Dynkin's probabilistic form 

[ f' ] vt(s,a)=Ils, a f ( ~ ) -  7drv~(r, Wr) , s~t ,  aEN J. (7) 

is called the catalyst process. 

Recall the expectation formula 

Ps, u(ot, f )=(# ,S t_s f ) ,  s<~t, pE~C/p, f E ~  p. (8) 

Recall also, that in dimensions d>~3, with respect to •0,/, the catalyst process Ot has 
a non-trivial limit ~ in law as t Y oc of full-intensity measure # (see, e.g. Dawson and 
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Perkins, 1991, Proposition 6.1). Hence, here we can form the t ime-stationao' contin.- 

uous .//p-valued process 0 = {0t: t ~/R} whose one-dimensional laws £/'((j:) coincide 

with 5*':({.:~ ). In this case we write P and sometimes P ~ . /  for the law of  ~o. 
The tbllowing mixing property is taken from a general result in Fleischmann (1982b), 

which was formulated in a time-discrete setting. For the present situation, a simplilied 
proof  will be given. 

Lemma 2. (Time-space  mixing of  all orders). In dimensions d>~3, the catah'st pro- 

tess 0 with the time space-shift invariant law P is time spaee mixin~l o l  all order.~. 

That is, Jbr all [inite sequences BI . . . . .  Bm q/" Borel subsets o f  R J, 

P((0,, (B~ + b~) . . . . .  0t,,,(B,,, + bin)) e ( ' ) )  --+ i l l  P(00(B, ) e (")) 
/ 1 

• ( /  c o m p  as I(t,,b,) (t / ,b/)l--+oc whenever i ¢ j .  In particular, .~or . / , ,q~ % , the ~'eetor 

( (0 , , , J} ,  (0,~,,q}) is asymptotically independent as Itl - tel ~ ~ '  (mixinq in time). 

Proof.  First of  all, recall the following eovariam'e jbrmula  for 0: 

Cov,..,,[(<j,,,f},(O,:,.q)]=2lI,.:, , 7dr  S:, , . f  (W,.)S,._,.q(fg.), (9) 

s41tl,12, It C ,//p, and ./.,ftGgcomp; see e.g. Dawson and Fleischmann (1997, Propo- 

sition 12(b), p. 230). Hence, the eovariance densi O, function of  0 at [[tl,b~].[t>he!l 
with respect to IP,.: is given by 

"9 [ % :" te 
? dr Pt,-,_- -2r(bl, b2 ). 

Letting s i ,~c, we arrive at the covariance density function at [ti ,b]] and [t2, h2] of the 
catalyst process o with respect to P. Since [P is invariant with respect to the time space 
shift and infinitely divisible, it suffices to show that this covariance density function 
converges to 0 as L[tl,&] [t2,b2][---+ ~o on the sets I~+ × {Ibl - b 2 l  >e},  ~:>0; see 
the remark after Theorem 2.0.2 in Fleischmann (1982a). Here we may set [&,b2] 0 

without loss of  generality. Thus, it is sufficient to demonstrate that 

' /" drp ,  , (b) - -+0 as I<t,l,)l--++~ on ~+ × {1:,[>~:}, , :>0.  

But the latter integral equals .tl ~ drp, .(b)  and can be estimated from above by 
~<const[Ibl 2 -d At i..2] with a constant const depending on ~:. (We also later use the 
symbol const to denote a constant which might be different at different places.) This 
finishes the proof. [] 

2..3. Brownian collision local time L[w,,,] 

Assumption 3. (Catalyst process). From now on we restrict our attention to dimen- 
sions d <~3, and assume, !I" not otherwise indicate~L that the catalyst process ~) is 
distributed aecordinq to gDo,/ or to the stationa W P, the latter o f  course onO: ( / d  3. 
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For ~>0 and given 4, consider the following continuous additive functional L~w,o 1 
of Brownian motion W: 

:= Li:~;~j(dr ) := dr f 4~(db) p~(W~, b), (10) U:(dr) 

describing the collision local time of the measure-valued path ~ with the "e-vicinity" 
of the Brownian path W. 

Lemma 4. (Brownian collision local time L[w,Q]). Suppose Assumption 3 b satisfied, 
and f ix  a constant ~ E (0, ¼). Then for  almost all paths 4 of  the catalyst process, 
there exists a continuous additive functional L =L[mo ] of  the Brownian motion W, 
called the Brownian collision local time (BCLT) of  4, with the Jbllowin9 properties. 
(a) (Convergence) I f  ~ is a (strictly)positive function in ~6 'p'1, I = [ 0 ,  T], T>0 ,  then 

[ [ '  , mr) 2 
H,a sup d,, L ~ ' ( d r ) ~ ( ~ ) - d  L(dr)~, (  ,0. sup 

s E L a C R < ;  "' ,s'<~t<~T c . L 0  

(b) (First two moments) For measurable i f :R+ x ~a ~__, ~+, and s<~t, a ~ ~a, 

/" ( S  17s, a LlwM(dr)~4(W~)= dr ~r(db)p~_~(a,b)t~(b), 
, i s  

H+.,a[~'tL[w.Sdr)~r(Wr)] 2 

S ' l " i l  = 2  dr dr'  or(db) O,,(dbZ)p,,_,.(a,b)p,, r(b, bt)@(b)@,(b'). 
J F , ~  

Proof. This follows from Proposition 6, p. 256 and Theorem 4, p. 259 in Dawson and 
Fleischmann (1997). [] 

2.4. A strong law o f  large numbers Jor L[w,o] in d----- 3 

In this subsection we assume that Brownian motion W is distributed according to 
H0,0. First we recall that in dimension d =  1 the total BCLT L[w,d(~+) of ~ is finite, 
for almost all [W, C] (Dawson and Fleischmann, 1997, Proposition 7, p. 264). Next we 
mention that in d = 2 we have a self-similarity property for L = L[w.oj, see Corollary 12 
below. But in dimension d = 3, a strong law of large numbers holds (recall i/ denotes 
the volume of the unit cube): 

Theorem 5. (Strong LLN for the BCLT). I f  d = 3, then 

T-IL[~;~][O, T] ~ it, Ho, o × Po, l-a.s, and Ho, o x ~-a.s. 
rj~c 

Proof (1) (Expectation) First of all, for s ~< O, by the expectation formula in Lemma 
4(b), 

IIo, oXP, , iT- IL[O,T]=Px,  e T  -I dr(~r, pr)=ie  (11) 
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since by the expectation formula (8) 

[P~-. t O, - ~ l  (12) 

(independent of  the dimension d). 

(2) (Variance estimate) Next we show that T IL[0, T] has a H0.0 x P, j -variance 
of  order O(T 1.2) as TToc ,  uniformly in s~<0 {covering the cases s 0 and ,v ..... -~ 
con'esponding to [?o./ and P, respectively, we are interested in). 

In view of  the second moment formula in Lemma 4(b), 

/+ i / Ho.o(L[O,T])2=2 dr dr '  0,.(db) [~,.,(db')p,.(b)p,., ,.(b,b'). 
I 0 ,I r ,1  <! 

Therefore, by {12), by 

/ ( dh )  / ( db ' )  ,.(b,b' 17 . . /  p,.(b) p,., ) =  ~ 

and by step (1), 

/I0.0 × g(~.! IT-iL[O,T] -i/I 2 

~ = 2 T  -2 dr dr/Cov,.i[O,.(db),o,,(dh')]p,.(b)p,. ,.(b,b'). (13) 
• / 0  d r 

But by (9). the latter covariance expression equals 

/ /d 2II , , /  7dt  bp~ t(Wr, b)p,.(b)p>,_,, t(It;,b). 

Therefore, we may continue the r.h.s, of  (13) with 

/ 'L ' I  4 it T 2 dr dr '  3' dt P2,-' -2,(0). 
, 0 , r 

However, the internal integral is of order O ( ( r ' -  r) 12), uniformly in s~O. Itoncc, 
altogether we get 

/7o.o × P,../IT-ELI0, T] - ill 2 ~<const T -1'2 (14) 

uniformly in s <~0. 

(3) (Conclusion) Now the proof can easily be completed. From (14). 

/7,,0 × P~.,{IT-1L[O, T] - i/I >,:} ~<const ~.-e T- i  2. 

By Borel Cantelli, 

S 4L[0, S 4] ~ il along the integers S ~ oc, a.s. 

But f o r  S 4 < ~ T < ( S  q- 1 )  4, 

(S + 1 )-4L[0,$4] ~< T IL[0,  T] <~S-4L[O,(S + 1 )4], 

and the claimed a.s. convergence follows, finishing the proof• 
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3. Occupation times 

Here we rigorously introduce the catalytic SBM X0, verify that its catalytic occu- 
pation time Yo has absolutely continuous states, and satisfies a strong law of large 
numbers, the latter in the case d = 3. 

3.1. Catalytic S B M  

Since the BCLT L=L[w, ol of Lemma 4 is a locally admissible additive functional 
of Brownian motion W with "small" increments, one can conclude for the existence 
of the catalytic S B M  XQ in the catalytic medium O: 

Lemma 6. (Catalytic SBM XO). Under Assumption 3, for almost all realizations 0 of  
the catalyst process', the jbllowing statements hold: 
(a) (Existence). There exists the continuous S B M  X = X  °- = (X °-, P~¢:, ) with branching 

functional given by the B C L T  L=L[w,o]. 
(b) (Log-Laplace functional). The log-Laplace functional o f  X ° is given by 

- logP£p exp{X, , - f )  = (p,-v t (s , .  )), (15) 

s <~ t, ~ E o,#p, f E ~P, where vt # the unique non-negative solution to Dynkin's 
log-Laplace equation 

v t ( s , a )=H .... [ f ( W t ) -  ~"L(dr)v2(r,W~)],  (16) 

s~ t ,  a E ~  a. 
(c) (Moments). Expectation and covariance oJ'X ~ are given by 

and 

Cov~ [(Y,,, ,f), {iV,:, g)] 

=2 f  (da) f' 'edr f or(db)p(r- 
S<.tl,t2, ~lE J//[p, and f ,  g<~.,~ °rap. 

s, a, b)St, _ r f (b )& 2_~g(b), 

Proof. See (Dawson and Fleischmann, 1997, Definition 5, p. 261) which is based on 
Theorem l(b) (p. 235), and formula (5.10). [] 

Note that (16) is the precise meaning of the catalytic reaction diffusion Eq. (2) with 
reaction rate 0s(da). 

3.2. Absolutely continuous occupation time states 

Since X Q is pathwise continuous, we may introduce the catalytic (weighted) occu- 
pation time process Y =  Ye = {YtO: t~>0} related to X = X  Q, defined by Yt := Jo drXr. 
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Recall that for the "classical" continuous SBM, say X / ,  in dimensions d<~3, the 
related occupation measures Y/ are absolutely continuous, i.e. density functions y~ 
exist (see e.g., Fleischmann, 1988). This property is shared also by the SBM A"-' in 
the catalytic medium (2. For a convenient formulation, we introduce the annealed law 
~ / : -Po . /Po ' / .  That is, the laws P<~,/ of X ~-' given (j are averaged by means of the 
distribution P0,/ of (2. 

Theorem 7. (Occupation densities). Under Assumption 3, Jor T > 0 and z c ~': fixed, 
the jbllowing statements hoht. 
(a) (Densities of Y¢) With respect to the annealed law -:/ we obtain: 
(al '~ (L2-densities) The L2(;~/ )-limit o /  (YT, p+;(z, ")) as c [ 0 exists and is denoted hi' 

yr(z) .  
(a21 (Absolutely continuous states) With respect to +:/, the random measure YT i,s 

absolute@ continuous with density Junction YT: 

;~/(YT(db) = yT(b) db)=  I. 

(a3) (First two moments) The jollowin 9 formulas hold: 

:~/ yT(Z ) =-- i/ , 

.T 
a r / y r ( z )  = 2 i 2 j() 

• T r £.T r 
dr .L  dt. d/pt~t , (0)>0.  

(b) (Densities of It ') For Po,/-a.a. catalyst process realizations ~ we obtain: 
(b l) (L2-densities) The L2(p~/)-l imit  o f  (YT, p,:(z,.)) as +: ~ 0 exists aml is denoted 

h:, y~(:). 
(b2) (Absolutely continuous states) With respect to P~'./, the random measure Y~ is 

absolutely continuous with density.Btnction YT: 

Po. / (Yr(db)= y~r(b)db ) 1. 

(b3) (First two moments) The followin# [brmulas hoht: 

<?j =_ 

£Tdr./" + 
Var0. / y~.(z) = 2 i/ (2,-(db)q~. T-,-(b, z ) 

(recall definition (5) of  the Brownian potential kernel q). 

Proof. We start with the proof of (b). According to (Dawson and Fleischmann, 1997, 
Proposition 5, p. 240) it suffices to show that for almost all o, 

0 T 11o,/ Liw, e](dr)q,2,,:~r,(W,-,z) ---~ 0 for / 0 and r ' =  T - r. < 17) 
• ~: J 0 
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By the expectation formula in Lemma 4(b) 

Hs.~ L[w,(,](dr)O~(Wr)=i~ dr ~r(db)Or(b ). (18) 
S 

Hence, the l.h.s, in (17) equals 

i~.)[ordr/~r(db)q2;~,+r'(b,z) • 

Since this is monotone in e, the limit as e + 0 exists (for each ~). Thus, it is sufficient 

to show that the expectation over ~) converges to 0 as c+0.  But by (12), the latter 

P~,t-expectation, s ~<0, is independent o f  s and equals 

f o r f  , f , : + r ' f c + r '  i~ dr #(db)q?,~+,.,(b,z)=iZT J~, dt J~, dt'p,+r(O). 

Because the integrand is monotone decreasing in t and / ,  we may replace r ~ by 0, and 
since T is fixed we continue the latter formula line with 

~<const dt d / ( t  + t~) -a''2 ~<const e 1''2 ~ 0 since d~<3. 
c.LO 

This finishes the proof of  (b). But then (a) immediately follows by averaging over the 

medium. [] 

[ppO In dimension d = 3 ,  let .~ denote the annealed law Fd, / of  the catalytic SBM 

concerning the time-space stationary medium 0 with law P. 

Remark  8. (Occupation densities in the stationary case). Theorem 7 remains valid, 

if in dimension d = 3 we replace P0,/ by P, thus ~ /  by ~ .  

Remark  9. (Occupation density field). It can be expected that for the catalytic occu- 

pation time process g~' in all dimensions (d ~<3) a jointly continuous catalytic occupa- 
tion density field y~' exists, 3 as it does for the "classical" continuous SBM, established 

by Sugitani (1989) and reproved in Dawson and Fleischmann (1997, Lemma 7, p. 243). 

3.3. A strong law of  large numbers Jor Ye in d =  3 

First we recall that in dimension d = 1, the catalytic SBM Xt c' converges in P~r- 
probability to c p as t ~" oc, for P0,z-almost all ~), see Dawson and Fleischmann (1997, 

Theorem 6, p. 273). This o f  course implies a law of  large numbers for the related cat- 
alytic occupation time process Ye. In d = 2, self-similarity properties hold instead, see 

Proposition 13 below. Here now we restrict our attention to dimension d = 3 .  Recall 
that ~ /  and ~ denote the annealed laws of  the catalytic SBM arising by averaging 
P~/ over the medium ~ by means o f  P0,r and the stationary P, respectively. 

3 As recently shown in Fleischmann and Klenke (1997), in dimension d = 2,3 the catalytic SBM X '2 
itself has actually a smooth density field defined on a time-space set of full Lebesgue measure. 
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Theorem 10. (LLN for Y). I f  d = 3 ,  then 

T lye, --+ /, :~/-a.s. and :~-a.s. 
7 1 -,c 

Consequently, in dimension d = 3, the time-averaged X~-process behaves for almost 
all ~) just as for the "classical" SBM. That is, here the averaqinq principle holds: Finally, 
only the expectation / of the medium L)t is "effective", leading to the expectation of 
X ~ ' 

~ 0  - -  ] 0 Proof. Since ~ / Y  Y~ / by the expectation formula in Lemma 6(c), as in step (3) 
of the proof of Theorem 5, it suffices to show that for fixed ./>~0 in the separable 
Banach space ~t~:/ 

• ~ / I T - ' ( Y T , J )  (< , f ) ]2<cons tT  ,.2 (i~)) 

uniformly, in s~ 0 .  Here we wrote P,.I for ~,.IP(~,i, ,~'~ [-'>c,0]. But 

T ,7' ]2 
Var~/{YT,.[) 2 H o , / ~  L (d r ) [ / . .  d t H . )  /(W~) , (20) 

see Dawson and Fleischmann (1997, lbrmula (3.22)). Hence, the 1.h.s. in (19) equals 

2 T -P,../IIo/ L(dr) dt lI,.,));f(~;) . 

Using the expectation formulas (18) and (12), we may continue with 

Interchanging the order of integrations, and calculating the /(db)-integral, this can be 
estimated from above by 

-,~2(f, 1)" dr dt dt'pr~,, 2,-(0). 

As in step (2) of the proof of Theorem 5, the internal integral can be estimated by 
~<cons t ( t - r )  12, and the claim follows. [] 

4. Self-similarities in dimension d - - 2  

Recall that in dimension d = 2 the "classical" SBM (~ with law P0,/ is selj:similar: 
For K > 0 ,  

{K 1 . , . - ~ 2 .  = {~o,. t>~0}. (21) 

This has some consequences for the BCLT Liln~, 1 and the catalytic SBM X:'. 
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4.1. A scaling property of  L[w,e] 

We start with a scaling property of the Brownian collision local time: 

Lemma 11. (Scaling of the BCLT). Fix d = 2 ,  s>~O, aC• 2, and K>0.  Then for 
11~,, x Po, f-almost all [W, ~], and measurable g:R+ ~-+ ~+, 

J L[~,o.l(dr)K-l g(K-'r) = f L[K-, 2W~,.,K-I~I(.(KI 2.)l(dr)g(r). (22) 

Proof. Recalling the definition (10) of U, by definition of the BCLT L=L[w,a] it 
suffices to verify the claim with L replaced by L x': and U, respectively. Then by (10), 

By a change of variables, and using the self-similarity of the Brownian transition 
density p, the r.h.s, can be written as 

f dr f K 'O~Kr(KL~2db)pe(K-'/2WKr, b)g(r). 

Again by (10), we arrive at the r.h.s, of (22) with L replaced by U, finishing the 
proof. [] 

Combining Lemma 11 with the self-similarities of Brownian motion W and 0 (recall 
(21)) we get the following result. 

Corollary 12. (Self-similarity of the BCLT). For d = 2  and K > 0 ,  with respect to 

Ho, o × Po,~, 

K lL[w,~](K.) f L[w,& 

4.2. Se l f  similarities of  [X~', Ye] 

Instead of the well-known self-similarity of the "classical" SBM in d = 2 (as in (21)), 
for the catalytic SBM we have the following versions (recall the catalytic occupation 
time process Y introduced in the beginning of section 3.2): 

Proposition 13. (Scaling and self-similarity of [X, Y]). Suppose d = 2, K > 0, and 
T>~O. 
(a) (Scaling) For Po,/-almost all ~ the following holds. I f  IX, Y] is formed with 

respect to P~F, then the pair 

[K- I XKr (K U2. ), K-2 YKr (K 1/2 )] 

has the same law as [Xr, Yr] jormed with respect to poK/ 'e~(K' 2.). 
(b) (Self-similarities) Formed either with respect to the random law P~',/, or the 

annealed law ~ / =  Po, tP~t, 
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[K IXKT(KI:2.),K-2yxr(KI/2. )] f [XT, Yr]. 

Proof. By Dawson and Fleischmann (1997, Hypothesis 2, p. 231, and notation 3.22), 
for [..q in ;~f,  and P0,/-a.a. 0, 

- logP~/exp[(Xr, - f )  + {Yr, - .q)]:  (/, r r(0, . ))  

with 

rT.(s,a) I!,.. [.f(Wr) 
0~<:;~<K a ~ R  2. Hence 

with 

+ dr .q( 14~. ) -  L[w<,l(dr)v~(r. , 

- logP~', exp[(X~-r, - K  ' f (K- ' :2 . ) )  + (Yxr, K 2q(K ,/2.))] 

={f,t:KT(O,')) ({,Kt?KT(O, KI/2.)). (23) 

Remark 14. (Open problems). By the self-similarity of X c' with respect to the an- 
nealed law .~/, the distribution of X./ coincides with the law of 7X~(T 1'2.). Passing 

I ~K KT Krxr(K,s, Kt:2a)=HK.,.x,2,, .fl(K-12WKT)+ d r K  I q (K  12~/~.) 
5' 

- K I Liw.c,l(dr)K2v~7(r, W,.) . 
s 

Setting Ur(S,a):=KVKT(Ks, Kl/2a) (tbr the fixed K), by a change of variables and 
using the scaling of BCLT Lemma 11 (with [s,a] replaced by Ks, Kl:2a)), the latter 
equation can be written as 

lq,(s,a)=H~.~.~.,:, f ( K - I / 2 W x r ) +  drg(K 12Wx,.) 
, ,s 

( ] -- L[K 12tt.i,K ,~,~lK~:.el(dr)u~(r,K 12WKr) 

But W distributed according to I1K,,.K, 2, implies by scaling that the process t ~ K  12 Wxr 
has the law H,..,. Therefore, the latter formula lines can be continued with 

[ ( ( ] = H,. . . . .  /'(WT") + dr0(W,.) L[w,x ,,~(~,.~ :ll(dr)u~(r, D~.) . 

Hence, by uniqueness of the solution to the log-Laplace equation (see Dawson and 
Fleischmann, 1997, Proposition l(a), p. 255), we conclude that the r.h.s, of (23) equals 

- l ogP~ f2 ;~ Ix ' : ) exp[ (Xr , - - f )  + {Yr, g)]. 

This proves the claim (a). The statement (b) concerning the random law P~/ then 
immediately follows from the self-similarity (21) of ~), and the claim concerning the 
annealed law :~/ results by integration with lP0./. This finishes the proot\ 
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formally to TTo~, we arrive at X~  and x~(O){. This relates the questions of existence 
of a limit X~ with full expectation and of the existence of a density x[(0) of X(' at 
the origin with full expectation, in the critical dimension d = 2. But whether or not a 
non-trivial limit X~  exists remains open. 4 

4.3. A random ergodic limit 

Recall that for the continuous SBM X ~ in [~2 with constant branching rate and with 
law P0~,f we have the following "random" ergodic limit: 

T - ' Y r / r ~ y ( ( O ) ~  in law, 

where y((0)  is the random density of the occupation measure YI t at time l at the 
origin 0; see e.g. Fleischmann (1988). The two-dimensional catalytic SBM X e has a 
similar property: 

Theorem 15. (Random ergodic limit). Let d = 2 and consider the catalytic S B M  Xe 
with annealed law ~ / =  P0,~P~, or with Po,~-random law P~F" 
(a) (Annealed approach) T- lYe  converges in ~r-law as T T oc towards" the multiple 

yt(O)f of  Lebesgue measure {, where yl(O), is the L2(~r)-density at 0 of  the 
catalytic occupation measure YI at time l, according to Theorem 7(al). 

(b) (Quenched approach) The Po/-random law of T - lYe  converges in Po/-law as 
T T oc towards the Po, t-random law of the multiple y~(O)# of  Lebesgue measure 
~, where y~(O), given ~, is" the Lz(P~,e)-density at 0 of  the catalytic occupation 
measure Yl" at time 1, according to Theorem 7(bl ). 

Proof. We start by proving part (b). Using the random self-similarity in Proposition 
13(b), the [P0,f-random law of T-tY~ ' coincides with that of TYI(T-I/~.). But by 
Theorem 7(bl), for f C c g+ p;n and P0,t-almost all 

(TYle(T-1/2")'f) r ~ .  y~(O)({,f) in L2(P~/), 

implying the claim. 
Part (a) follows analogously from the annealed self-similarity in Proposition 13(b), 

and Theorem 7(al). [] 

Note that as opposed to dimensions 1 and 3, here the limit remains random after 
the averaging procedure, since the ~/-variance of yl(0) is (strictly) positive, and the 
P0e/-variance of y~(0) is positive with P0/-probability one. 

4 These questions are meanwhile positively answered in Etheridge and Fleischmann (1997) and 
Fleischmann and Klenke (1997). 
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5. Persistence in dimension d 3 

In this final section we deal with the following situation (which occurred already in 

Remark 8). 

Assumption 16. (Time-space-shift invariance). Let d = 3 and assume that the cam- 

lyst process ~ is distributed according to the time space-sh(fl im,ariant distribution 

P (introduced in section 2.2), and consider the annealed law .¢ = PP0./- 

Remark 17. (Approximation).  Working with the non-stationary catalyst process ~2 dis- 

tributed according to Po,/ would require some additional approximations. 

5. I. Main result 

Now we are in a position to formulate our main result: 

Theorem 18. (Convergence and persistence of  second order). Impose Assumption 16. 

(a) (Annealed convergence) With respect to the annealed distribution ,~, the catah,tic 

S B M  Xr conver.qes in law as T T ~ to some limit X ~  with JMl intensity / amt 

,finite rariance (persistence of second-order). 

(b) (Random convergence) The P-random distribution q f  

, _ .  o <}'~ (xT ~ . ) - .  O~ 

cotwer,qes in P-law as T To c, to some P-random distribution Q ~  with Jidl inten- 

sity and )qnite variance (persistence o f  second order): With P-probability one, 

/ J 0 d ' Q_~(dv)v= / ,  Q%(dv) l (v , j )  _ ( / , j .} i2<,x , ,  .[.~,~+/,. 

Consequently, at the first sight, our catalytic SBM X ~-' behaves similarly to the clas- 
sical continuous SBM X/ .  However, the main difference should be that a new limil 

occurs. For instance, the limiting random measure X~ of  (a) should be d(Obrenl from 

the classical steady-state X~ .  

5.2. Proo/' q[" the main theorem 

The key of  proof will be a backward technique: By the time-stationarity of  the 

random medium Q we may start X 0 at time - T  with / ,  and observe the state at time 
0. Then we may continue for f i xed  realization 0, sending - T  to 7v, by exploiting 
some backward monotonicities. 

(1) (Convergence) First of  all, for D-almost all 0, the law Q~ coincides with the 
law pC,,-.,¢v T,/ b ~o ~ ")" Here OT+b) is the catalyst process shifted by time T. Hence, by 
the time-shift invarianee of  the catalyst process O, the distribution of  the random law 

QT coincides with that of  the random law P~T/(Xo ~ .). (Note that here we made a 
transition in P-law, but after this we will continue for a fixed L).) 
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Given ~, we turn to the log-Laplace functional according to Lemma 6(b): For 
f E ~'+P, writing ({, f}  =: I[f[li, 

-logP°r,l exp {X0,-f} = llv0(-T, ')11,, 

where by the log-Laplace equation (16), 

[ ; J IIv0(-T,.)lll  = t / -T , f  f(W0) - rL[<o](dr)v2(r, Wr). 

Using the expectation formula in Lemma 4(b), this formula line can be continued with 

l /  = Jl.flll - ix dr Or(db)vg(r,b). 
7" 

But this non-negative expression is non-increasing 5 in the variable T. Hence, the limit 
of Ilv0(-T,.)ll ,  exists (for the fixed 0) and determines a log-Laplace functional of a 
random measure, its law denoted by Q~. (In fact, note that the family {Q~: T>~0} is 
relatively compact since all laws have expectation measure {, see (24) below.) This 
gives the convergence claim in (b). By averaging over 0, the convergence statement 
of (a) also follows. 

(2) (Expectation bounds) For almost all 0, from the expectation formula in Lemma 
6(c), 

f Q~(dp)# = P~/Xr =- (24) {, 

which implies for the limits that 

/ Q ~ ( d p ) # ~ < &  hence f (25) 

Consequently, the limiting intensity measures in (b) and (a) are bounded by (. 
(3) (Variance bounds') Let again f E~+ p. Given 0, by the variance formula in 

Lemma 6(c), 

Var° r,i(Xo,.f} =2i t  dr Or(db)[S_rf(b)] 2, 
T 

which monotonically converges to 

0 P 

2 i / [  dr [ o~r(db)[S_rf(b)] 2 as TToc. (26) 
d - -  ~c d 

Integrating 0 with P, by the expectation formula (12) we get the monotone convergence 

/ j L P Varo/(Xr, f )  S 2 E(dx)f(x) /(dy)f(y) drp2r(x,y). (27) 
rT sc 

Note that by (12), the 1.h.s. in (27) is the variance of (XT, f )  with respect to the 
annealed law 2 .  On the other hand, the r.h,s, is the variance expression related to the 

5 Note that this monotonic i ty  would  be violated i f  we started ¢ at t ime T with f f -T  {. That  is, the 

present  method only  works  for the t ime-s ta t ionary process  ¢ on the whole  t ime axis IR. 
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classical steady-state X~  (see, for instance, Dawson, 1977), hence is finite. Therefore, 
also the limit (26) is finite P-a.s. But this implies;that in (25) equalities must hold 
(persistence). Moreover, the variance of IX..~,f) is finite with respect to P Q~ ,  hence, 
also with respect to the laws Q~,  given o. In other words, in both cases (a) and (b), 
we get persistence of second order. This finishes the proof. 

References 

Barlow, M.T., Evans, S.N., Perkins, E.A., 1991. Collision local times and measure-valued processes. ('an. 
J. Math. 43(5), 897 938. 

Barlow, M.T., Perkins, E.A., 1994. On the filtration of historical Brownian motion. Ann. Probab. 22. 
1-;:73 1294. 

Dawson, D.A., 1977. The critical measure diffusion process. Z. Wahrsch. Verw. Gebietc 40, 125 145. 
Dawson, D.A., 1993. Measure-valued Markov processes. 111: Hennequin, P.L., (ed.), l':~cole d'dtd dc 

probabilites de Saint Flour XXI-1991, Lecture Notes in Mathematics, vol. 1541. Springer, Berlin, pp 
1 26/). 

Dawson, D.A., Fleischmann, K., 1988. Strong clumping of critical space-time branching models in subcritical 
dimensions. Stoch. Proc. Appl. 30, 193 208. 

Dawson, D.A., Fleischmann, K., 1997. A continuous super-Brownian motion in a super-Brownian medium. 
J. Thcoret. Probab. 10(1), 213 276. 

Dawson, D.A., Perkins, E.A., 1991. Historical processes. Mem. Amer. Math. Soc. 454. 
1)ynkin, ll.B., 1991. Branching particle systems and superprocesses. Ann. Probab. 19, 1157 1194. 
Etheridge, A.M., Fleischmann, K., 1997. Persistence of a two-dimensional super-Brownian rnotion in a 

catalytic medium. Probab. Theor. Relat. Fields, in print. 
Fleischmann, K.. Klenke, A., 1996. Convergence to a non-trivial equilibrium for two-dimensional catalytic 

supcr-Brownian motion. Preprint No. 305, WIAS Berlin. 
Fleischmann, K., Klenke, A., 1997. Smooth density field of catalytic super-Brownian motion. Prcprim No 

331, WIAS Berlin. 
Fleischmann, K., 1982a. Mixing properties of  infinitely divisible random measures and an application iu 

branching theory. Carleton Mathematical Lecture Notes, 43. 
Fleischmann, K., 1982b. Space-time mixing in a branching model. In: Advances in Filtering and Optimal 

Control, Lecture Notes in Control and Information Sciences, vol. 42. Cocoyoc, Mexico, pp. 125 130. 
Flcischmann, K., 1988. Critical behavior of  some measure-valued processes. Math. Nachr. 135, 131 147. 
Glitzky, A., Gr6ger, K., H/inlich, R., 1996. Free energy and dissipation rate for reaction diffusion processes 

of electrically charged species. Appl. Anal. 60, 201 217. 
Sugitani, S., 1989. Some properties for the measure-valued branching diffusion process. J. Math. Soc. Japan 

41(3), 437 462. 


