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Abstract

We consider a one-dimensional dynamical system driven by a vector field −U ′, where U is a multi-well
potential satisfying some regularity conditions. We perturb this dynamical system by a stable symmetric
non-Gaussian Lévy process whose scale decreases as a power function of time. It turns out that the limiting
behaviour of the perturbed dynamical system is different for slow and fast decrease rates of the noise
intensity. As opposed to the well-studied Gaussian case, the support of the limiting law is not located in the
set of global minima of U .
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Classical simulated annealing is a stochastic algorithm for determining the global minimum
of an unknown function U . Let U be a real-valued function on Rd with a unique global minimum.
The idea of the method consists in running a time-nonhomogeneous Gaussian-diffusion

dẐ(t) = −∇U (Ẑ(t))dt + σ(t)dW (t) (1.1)

with some dispersion matrix that satisfies σ(t) → 0 as t → +∞. Physically, the process Ẑ
describes an evolution of an overdamped Brownian particle in a potential energy landscape,
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σ(·) being the temperature. For small values of σ(·) the process spends most of the time in
the neighbourhoods of the potential’s local minima, occasionally making transitions between
adjacent wells. The goal of the simulated annealing consists in an appropriate choice of the
cooling rate σ(·) so that for large values of t the diffusion Ẑ(t) settles down in a neighbourhood
of the global minimum of U .

More precisely, the main result concerning the simulated annealing of the process Ẑ is as
follows. To guarantee convergence, one should choose σ 2(t) ≈

θ
ln(λ+t) with a positive cooling

rate θ , and some λ > 1 to parameterise the initial temperature σ(0). Then, there is a critical
value θ̂ > 0 such that if θ > θ̂ then Ẑ(t) converges (in probability) to the coordinate of the
global minimum of U , and the convergence fails otherwise. Moreover, the critical constant θ̂ is
the logarithmic rate −limσ→0σ

2 ln |λ1
σ | of the principal nonzero eigenvalue λ1

σ of the generator
of the time-homogeneous small-noise diffusion

dX̂(t) = −∇U (X̂(t))dt + σdW (t). (1.2)

Heuristic justification of this convergence is based on the observation that for small values of
σ(t) the process Ẑ(t) behaves roughly like a time-homogeneous process X̂ with a constant noise
intensity σ ≈ σ(t). The principal nonzero eigenvalue λ1

σ determines the convergence rate of X̂
to its invariant measure which is proportional to exp(−2U/σ). The weak limit of this invariant
measure as σ → 0 is a Dirac mass at the potential’s global minimum. Thus, if σ(t) is such that
t |λ1

σ(t)| → ∞ as t → ∞, then Ẑ(t) has enough time to settle down in the deepest potential well.

The asymptotic properties of the annealed process Ẑ have been studied mathematically by
many authors. We mention here the papers by Chiang, Hwang and Sheu [1] and Hwang and
Sheu [2,3] who developed a small-noise analysis of the corresponding forward Kolmogorov
equation and applied the Freidlin–Wentzell theory of randomly perturbed dynamical systems
(see [4]). On the other hand, Holley and Stroock in [5], and Holley, Kusuoka and Stroock [6]
proposed a Dirichlet form approach. We also refer the reader to the review paper [7] and further
references therein.

Simulated annealing has proved to be an effective optimisation tool with a solid theoretical
justification. However, its practical implementation has several negative features. First, it is
usually difficult to determine the cooling schedule θ̂ – or equivalently the logarithmic order of the
first eigenvalue λ1

σ – without a detailed information on the potential function U . In practice, the
cooling schedule is set by the method of trials and errors so that the optimisation procedure yields
satisfactory results. The second problem is the convergence rate. The logarithmic convergence of
σ(t) to zero leads to time-consuming optimisation procedures. Finally, due to the continuity of
the trajectories of Ẑ , the search for the global minimum becomes slow if U has many wells and
the initial value Ẑ(0) is chosen ‘far’ from the domain of attraction of the global minimum. We
refer the reader to the papers by Sorkin [8], Ingber [9] and Locatelli [10] for the discussion on
the restrictions of simulated annealing.

There is a number of papers devoted to various modifications of the classical algorithm. For
example, Szu and Hartley in their physical paper [11] introduced the so-called fast simulated
annealing which allows to perform a non-local search of the deepest well. A fast simulated
annealing process in the sense of [11] is a discrete time Markov chain where the next state is
obtained from the Euler approximation of (1.1) driven not by Gaussian noise but by Cauchy
noise. The new state is accepted according to the Metropolis algorithm introduced in [12]. The
acceptance probability is 1 if the potential value in the new state is smaller, i.e. the new position
is ‘lower’ in the potential landscape. If the new position is ‘higher’, it is accepted with the
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probability ∼ exp(−1U/σ), where 1U is the difference of the potential values in the new and
the old states, and σ is a decreasing temperature parameter. The advantage of this method consists
in faster transitions between the potential wells due to the heavy tails of the Cauchy distribution.
Moreover, the authors claim that the optimal cooling rate is algebraic, i.e. σ(t) ≈ t−1 which also
accelerates convergence. There are several practical implementations of this algorithm, e.g. by
Szu [13] and Nascimento et al. [14]. However, to our knowledge it is not proved whether it really
converges to the global minimum of U .

In this paper we consider a continuous-time annealed jump-diffusion driven by a symmetric
stable Lévy process with heavy tails. Our goal is to determine a cooling schedule σ(·) so that
the jump-diffusion converges to some nontrivial limit. We alert the reader that this limit (when it
exists) will not be a Dirac mass at the global minimum of U .

This paper can be seen as a sequel of [15–17] where the small-noise dynamics of heavy-
tailed Lévy-driven jump-diffusions were studied. We emphasize that our methods are purely
probabilistic.

2. Object of study and main result

Let (Ω ,F, (F)t≥0,P) be a filtered probability space. We assume that the filtration satisfies
the usual hypothesis in the sense of Protter [18], i.e. F0 contains all the P-null sets of F and is
right continuous. We consider a time-nonhomogeneous process Zλ = (Zλs,z(t))t≥s satisfying the
following one-dimensional stochastic differential equation

Zλs,z(t) = z −

∫ t

s
U ′(Zλs,z(u−))du +

∫ t

s

dL(u)

(λ+ u)θ
, 0 ≤ s ≤ t, z ∈ R, λ, θ > 0, (2.3)

where L is a Lévy process and U is a potential function. We make the following assumptions.
Assumptions on L:

L The process L is a symmetric α-stable process, α ∈ (0, 2), whose marginals have the Lévy-
Hinchin representation

ln EeiλL(t)
= t

∫
(eiλy

− 1 − iλyI{|y| ≤ 1})
dy

|y|1+α
= −tc(α)|λ|α,

c(α) = 2
∣∣∣cos

(πα
2

)
Γ (−α)

∣∣∣ . (2.4)

Assumptions on U :

U1 U ∈ C1(R) ∩ C3([−K , K ]) for some K > 0 large enough.
U2 U has exactly n local minima mi , 1 ≤ i ≤ n, and n − 1 local maxima si , 1 ≤ i ≤ n − 1,

enumerated in increasing order

−∞ = s0 < m1 < s1 < m2 < · · · < sn−1 < mn < sn = +∞. (2.5)

All extrema of U are nondegenerate, i.e. U ′′(mi ) > 0, 1 ≤ i ≤ n, and U ′′(si ) < 0,
1 ≤ i ≤ n − 1.

U3 |U ′(x)| > |x |
1+c as x → ±∞ for some c > 0.

As a time-homogeneous counterpart of Zλ, we consider the process Xε = (Xεx (t))t≥0 satisfying
the following stochastic differential equation

Xεx (t) = x −

∫ t

0
U ′(Xεx (u−))du + εL(t), t ≥ 0, x ∈ R, (2.6)
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where ε is a positive parameter. For small values of ε, the behaviour of Xε was studied in
our previous papers [15–17]. We also refer the reader to the works by Godovanchuk [19] and
Wentzell [20] for results on the large deviations due to large jumps.

Both processes Xε and Zλ can be seen as a perturbation of the deterministic dynamical system

X0
x (t) = x −

∫ t

0
U ′(X0

x (u))du, t ≥ 0, x ∈ R, (2.7)

by εL(t) and
∫ t

0
dL(u)
(λ+u)θ

respectively. Under the above assumptions on U , the underlying
deterministic equation (2.7) has a unique solution for any initial value x ∈ R and all t ≥ 0.
The local minima of U are stable attractors for the dynamical system X0, i.e. if x ∈ (si−1, si ),
1 ≤ i ≤ n, then X0

t (x) → mi as t → ∞. It is clear that the deterministic solution X0 does not
leave the domain of attraction in which it started.

From the physical point of view, Eqs. (2.3) and (2.6) describe the motion of an overdamped
Lévy particle in a potential energy landscape. The jump magnitude is parameterised by the
‘instant temperature’ (λ + t)−θ and ε respectively. In Eq. (2.3), the initial temperature (t = s)
equals (λ+ s)−θ . A positive cooling rate θ determines the speed of temperature decrease.

Since the Lévy process L is a semimartingale, the stochastic differential equations (2.3) and
(2.6) are well defined, see [18] for the general theory. However, since the drift term U ′ is not
globally Lipschitz, we need to show the existence and uniqueness of the strong solution of (2.3),
which can be done analogously to the time-homogeneous case considered in [17]. The processes
Xε and Zλ are also strong Markov and Feller.

It is necessary to notice that the evolution of the process starting at time s ≥ 0 is the same as
that of the process starting at time zero with a different initial temperature, namely

(Zλs,z(s + t))t≥0
d
= (Zλ+s

0,z (t))t≥0, (2.8)

and thus the particular values of s or λ do not influence asymptotic properties of the jump-
diffusion in the limit t → ∞. However, since our theory will work for low temperatures, it is
often convenient to study the jump-diffusion not for large values of s and t but for large values
of λ, and we do not omit λ in our notation.

As we have seen in the Gaussian case, a good candidate for the limiting distribution of Zλ(t) as
t → ∞ can be found among the limiting distributions of the time-homogeneous jump-diffusion
Xε as ε → 0. Although no closed-form formula for the invariant distribution of Xε is known,
one can use the metastability results for Xε, which state that for small values of ε the jump-
diffusion reminds of a continuous-time Markov chain on the set of stable attractors of U . Indeed,
the following theorem holds true.

Theorem 2.1 (metastability, [17]). Let Xε be a solution of (2.6). If x ∈ (si−1, si ), 1 ≤ i ≤ n,
then for t > 0

Xεx (ε
−αt) → Ymi (t), ε ↓ 0, (2.9)

in the sense of finite-dimensional distributions, where Y = (Yy(t))t≥0 is a Markov process on a
state space {m1, . . . ,mn} with the infinitesimal generator Q = (qi j )

n
i, j=1,

qi j = α−1
||s j−1 − mi |

−α
− |s j − mi |

−α
|, i 6= j,

−qi i = qi =

∑
j 6=i

qi j = α−1(|si−1 − mi |
−α

+ |si − mi |
−α). (2.10)
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It is easy to see from the form of Q that the limiting Markov chain Y is irreducible and positive-
recurrent. Denote by π0(dy) =

∑n
j=1 π

0
j δm j (dy) its unique stationary measure, δx (dy) being

a Dirac δ-function. This measure π0 is the candidate for the limiting distribution of Zλ(t),
t → +∞. However, as in the Gaussian case, the convergence depends on the cooling rate θ .

Our main result is formulated in the following theorems. For a measurable bounded function
f denote π0 f =

∫
f (x)π0(dx) =

∑n
j=0 f (m j )π

0
j .

Theorem 2.2 (slow cooling). Let Zλ be a solution of (2.3). Let αθ < 1. Then for any λ > 0,
z ∈ R and any continuous and bounded function f

E0,z f (Zλ(t)) → π0 f, t → ∞. (2.11)

If the cooling rate θ is above the threshold 1/α, the solution Zλ gets trapped in one of the wells
and thus the convergence fails. Consider the first exit time from the i th well σ̃ i

z (λ) = inf{t ≥ 0 :

Zλ0,z 6∈ (si−1, si )}. Then the following trapping result holds.

Theorem 2.3 (fast cooling). Let Zλ be a solution of (2.3). Let αθ > 1. There is ∆ > 0 such that
for any i = 1, . . . , n,

P0,z(σ̃
i (λ) < ∞) = O(λ1−αθ ), λ → ∞, (2.12)

uniformly for |z − mi | ≤ ∆.

As we see, the annealing procedure does not locate the global minimum of U , but reveals some
information on the spatial structure of the potential. For instance, if the coordinates of the local
minima are known or can be estimated, then with help of the invariant measure π0 one can
estimate the coordinates of the saddle points and thus the sizes of the domains of attraction. This
information can be useful for the global optimisation, since often the spatially biggest well is the
deepest at the same time, see [10,21].

To make calculations simpler, we consider only jump-diffusions driven by symmetric α-stable
non-Gaussian Lévy processes in this paper. In fact, our results are also expect to hold for jump-
diffusions driven by more general Lévy processes with generating triplet (G, ν, µ), where G ≥ 0
is the Gaussian variance, µ ∈ R is the drift, and the Lévy measure ν has regularly varying tails
of the same index and is not necessarily symmetric. In [17], Theorem 2.1 is proven in such a
setting.

The paper is organised as follows. In a preparatory Section 3 we decompose the driving
process L into small- and big-jump parts and study a one-well dynamics of the process Zλ for
large values of λ. Here we use results from our paper [17]. Then we study the slow cooling case
αθ < 1. Section 4 is devoted to the study of the mean first exit time from a single well. This is
technically the most complex part of the proof. In Section 5 we determine mean transition times
between the neighbourhoods of the wells’ minima and the corresponding transition probabilities.
In Section 6 we construct an embedded nonhomogeneous discrete-time Markov chain whose
distribution is asymptotically close to π0. In Section 7 we prove Theorem 2.2. The case of fast
cooling is short and is considered in Section 8. Finally, some calculations of Laplace integrals
are collected in the Appendix.

We use the notation I{A} for the indicator function of the set A and I{A, B} = I{A}I{B}.
The complement of a set A is denoted by Ac. In our estimates, we shall use c1, c2, etc. to denote
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positive constants without calculating their explicit values. On the other hand, c will denote the
constant from the estimate (3.25). As usual, 1X (t) = X (t)− X (t−).

Finally, we direct the reader’s attention to our paper [16], where we explain the results of
Theorems 2.2 and 2.3 on the physical level of rigour in the spirit of our previous work [22] and
illustrate them with some simulations.

Of course, the most intriguing question remains, namely whether one can construct a time-
nonhomogeneous jump-diffusion which settles down near the global minimum of the potential?
The answer to this question is affirmative and the numerical algorithm can be found in [23]. The
rigorous mathematical proof of its convergence will be presented in a forthcoming paper.

3. One-well dynamics of the annealed process with small jumps

3.1. Small and big jumps of L

For λ > 0, consider the decomposition L = ξλ + ηλ, where the Lévy processes ξλ and ηλ

have generating triplets (0, νλξ , 0) and (0, νλη , 0) with Lévy measures νξ (·) = ν(· ∩ |y| ≤ λθ/2)

and νη(·) = ν(· ∩ |y| > λθ/2). The process ξλ has a Lévy measure with compact support, and
the Lévy measure of ηλ is finite. Denote

β = βλ = νη(R) =

∫
R\[−λθ/2,λθ/2]

dy

|y|1+α
=

2
α
λ−αθ/2. (3.13)

Then, ηλ is a compound Poisson process with intensity βλ and jumps distributed according to
the law β−1

λ νλη (·). Denote by (τk)k≥0 the arrival times of ηλ with τ0 = 0. Let Tk = τk − τk−1

denote the successive inter-jump periods, and Wk = ηλτk
− ηλτk−

the jump sizes of ηλ. Then, the
three processes (Tk)k≥1, (Wk)k≥1 and (ξλ)t≥0 are independent. Moreover,

P(Tk ≥ u) =

∫
∞

u
βe−βsds = e−βu, u ≥ 0, and ETk =

1
β
, (3.14)

P(Wk < w) =
νλη (−∞, w)

νλη (R)
=

1
β

∫
(−∞,w)

I{|y| > λθ/2}
dy

|y|1+α
, w ∈ R. (3.15)

Of course, all random variables introduced above depend on λ. We shall usually suppress λ for
brevity.

Due to the strong Markov property, for any stopping time τ the process ξλt+τ−ξ
λ
τ , t ≥ 0, is also

a Lévy process with the same law as ξλ. For λ > 0 and λ1 ≥ 0, consider a small jump-diffusion
zλ,λ1 = (zλ,λ1

s,z (t))t≥s , s ≥ 0, z ∈ R, satisfying the following equation

zλ,λ1
s,z (t) = z −

∫ t

s
U ′(zλ,λ1

s,z (u−))du +

∫ t

s

dξλu
(λ+ λ1 + u)θ

. (3.16)

For j ≥ 1, consider the processes ξλ, j
t = ξλt+τ j−1

− ξλτ j−1
and

zλj (t, z) = z −

∫ t

τ j−1

U ′(zλj (u−, z))du +

∫ t

τ j−1

dξλ, j
u

(λ+ u)θ
, t ≥ τ j−1. (3.17)

The processes ξλ, j are independent copies of the ξλ and the strong Markov property implies that

(zλj (t + τ j−1, z))t≥0
d
= (z

λ,τ j−1
0,z (t))t≥0. In this notation, for z ∈ R and k ≥ 1, the solution of (2.3)
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has the following representation:

Zλ0,z(t + τλk−1) = zλk (t + τk−1, Zλ0,z(τ
λ
k−1))+

Wk

(λ+ τk)θ
I{t = Tk}, t ∈ [0, Tk]. (3.18)

The random path Zλ can be represented as a sum of a Poisson process with big time-dependent
jump sizes and small jump-diffusions living on the exponentially distributed independent inter-
arrival time intervals. Since the jump sizes |∆ξλ, j

u |/(τ j−1 + λ + u)θ → 0 as λ → ∞ for all
j ≥ 0 and u ≥ 0, we can consider the processes zλj and zλ,λ1 as small random perturbations

of the deterministic system X0 defined by (2.7). We are going to estimate the distance between
zλ,λ1 and X0 in terms of the small-jump process ξλ.

3.2. Exponential estimate on ξλ

Lemma 3.1. Let θ > 0. Then there exist constants γ0 > 0, q0 > αθ/2 and w > 0 such that for
any 0 < γ ≤ γ0 and 0 ≤ q ≤ q0 there is λ0 > 0 such that the inequality

P

(
sup

t∈[0,λq ]

|(λ+ λ1)
−θξλt | ≥ (λ+ λ1)

−γ

)
≤ exp(−(λ+ λ1)

w) ≤ exp(−λw) (3.19)

holds for all λ ≥ λ0 and λ1 ≥ 0.

Proof. The statement is obtained with help of the reflection principle for symmetric Lévy
processes and Chebyshev’s inequality analogously to Lemma 2.1 in [17]. �

3.3. Random perturbations by ξλ

In this section we study the one-well dynamics of the small-jump process zλ,λ1 defined in
(3.16) in the limit of large values of λ. We are going to use the estimates from [17] for the time-
homogeneous counterpart of zλ,λ1 . Inspecting the argument of Section 3 in [17], one notes that
path-wise estimates obtained there depend only on the size of random perturbations on finite time
intervals. In the present time-dependent case, we can also estimate the perturbation in terms of a
Lévy process ξλ. Indeed, fix T ≥ 0. Then for any 0 ≤ t ≤ T , λ > 0 and λ1 ≥ 0, integration by
parts yields∣∣∣∣∫ t

0

dξλs
(λ+ λ1 + u)θ

∣∣∣∣ ≤
2
λθ

sup
u∈[0,T ]

|ξλu |. (3.20)

Thus, we are in the setting of the paper [17] and can borrow the following results. For
definiteness, we assume that the well’s minimum is located at the origin and thus the
corresponding domain of attraction for X0

x (·) is a finite interval I = (a, b), −∞ < a < 0 < b <
+∞, if the well is inner, and I = (−∞, b) if it is peripheral. In the first case, we also assume
that a and b are nondegenerate local maxima of U . In the second case, b is a nondegenerate local
maximum of U , and |U ′(x)| increases to infinity faster than linearly as x → −∞ according to
assumption U3.

Let γ > 0. For λ > 0 sufficiently large, we define subintervals I1 := [a + λ−γ , b − λ−γ
] and

I2 := [a + λ−γ
+ λ−2γ , b − λγ − λ−2γ

] if a > −∞ (inner well), and I1 = (−∞, b − λ−γ
] and
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I2 = (−∞, b − λ−γ
− λ−2γ

] if a = −∞ (peripheral well). For t ≥ 0 we introduce events

Eλ,λ1(t) :=

{
ω : sup

s∈[0,t]
|(λ+ λ1)

−θξλs | ≤ (λ+ λ1)
−4γ

}
, Eλ(t) := Eλ,0(t). (3.21)

Obviously, if 0 < 4γ ≤ θ , λ ≥ 1 and 0 ≤ λ1 ≤ λ2, then

Eλ(t) ⊆ Eλ,λ1(t) ⊆ Eλ,λ2(t), t ≥ 0. (3.22)

In the case of a finite interval (a, b), we consider an event

Eλ,λ1
z (t) =

{
sup

s∈[0,t]
|zλ,λ1

0,z (s)− X0
z (s)| ≤

1

2(λ+ λ1)2γ

}
. (3.23)

In case of a peripheral well (−∞, b), we consider the dynamics of zλ,λ1
0,z separately for initial

values in (−∞,−A] and [−A, b] for some A big enough. For z ≤ b, consider the first entrance
time to [A, b], namely τλ,λ1

A (z) = inf{t ≥ 0 : zλ,λ1
0,z (t) ≥ −A}. Then there exists a constant TA

such that τλ,λ1
A (z) ≤ TA a.s. on Eλ,λ1(TA) for all z ≤ b [17, Lemma 2.3]. Then we define an

event Eλ,λ1
z (t) by

Eλ,λ1
z (t) =

{
sup

s∈[0,τA∧t]
zλ,λ1

0,z (s) ≤ −A + 1 and

sup
s∈[τA∧t,t]

|zλ,λ1
0,z (s)− X0

zλ,λ1 (τA)
(s − τA ∧ t)| ≤

1

2(λ+ λ1)2γ

}
. (3.24)

Now as Section 2 in [17] we obtain the following result.

Lemma 3.2. For any γ > 0, there is λ0 > 0 such that the inclusion Eλ,λ1(t) ⊆ Eλ,λ1
z (t) holds

almost surely for λ ≥ λ0 and λ1 ≥ 0 uniformly for t ≥ 0 and z ∈ [a+(λ+λ1)
−γ , b−(λ+λ1)

−γ
]

if the well is inner or z ∈ (−∞, b − (λ+ λ1)
−γ

] if the well is peripheral.

Lemma 3.2 compares the trajectories of the small jump-diffusion zλ,λ1
z with the underlying

deterministic trajectory X0
z in terms of the driving process ξλ, particularly on the event Eλ,λ1(t),

when ξλ does not essentially deviate from zero. Indeed, if the well is inner, then the random
path zλ,λ1

0,z is contained in a 1/(2(λ + λ1)
2γ )-neighbourhood of the deterministic trajectory X0

z .
If the well is peripheral, we have to take into account initial values z which are close to −∞, see
definition (3.24). If z ≤ −A, the process zλ0,z enters the compact [−A, b] in a.s. finite time first

and then follows the deterministic trajectory starting at the entrance point of zλ,λ1
0,z . If z ≥ −A,

the dynamics is the same as in the inner-well case.

3.4. One-well behaviour of zλ,λ1

In this section we exploit the properties of the deterministic trajectory X0 to show that on
appropriate time intervals the small jump-process zλ,λ1 does not leave the well and settles near
its local minimum with high probability.
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From the nondegeneracy assumptions U2 and U3 on the potential we can easily see that for
any γ > 0, any p > 0 and some c > 0 the estimates

|X0
z (t)| ≤ λ−2γ /2, t ≥ λp, z ∈ I1,

X0
z (t) ∈ (a + λ−γ

+ 2λ−2γ , b − λ−γ
− 2λ−2γ ), t ≥ cλ−γ , z ∈ I1,

(3.25)

hold for λ sufficiently large.
For j ≥ 1, define events

C j
y =

{
z
λ,τ j−1
0,y (s) ∈ I1, s ∈ [0, T j ), z

λ,τ j−1
0,y (T j )+

W j

(λ+ τ j )θ
∈ I1

}
,

C j,−
y =

{
z
λ,τ j−1
0,y (s) ∈ I1, s ∈ [0, T j ), z

λ,τ j−1
0,y (T j )+

W j

(λ+ τ j )θ
∈ I2

}
,

C̃ j
y =

{
z
λ,τ j−1
0,y (s) ∈ I1, s ∈ [0, T j ), z

λ,τ j−1
0,y (T j )+

W j

(λ+ τ j )θ
6∈ I1

}
.

(3.26)

Recalling definitions (3.23) and (3.24) denote also E j
y = E

λ,τ j−1
y (T j ), j ≥ 1.

Lemma 3.3. 1. For any γ > 0, p > 0 and λ sufficiently large, the inclusions

C j
y E j

y ∩ {T j ≥ λp
} ⊆

{
W j

(λ+ τk)θ
∈ I

}
∩ {T j ≥ λp

} ⊆

{
Wk

(λ+ τk)θ
∈ I

}
, (3.27)

C̃k
y Ek

y ∩ {Tk ≥ λp
} ⊆

{
Wk

(λ+ τk)θ
6∈ I2

}
∩ {Tk ≥ λp

} ⊆

{
Wk

(λ+ τk)θ
6∈ I2

}
, (3.28)

hold uniformly for y ∈ I1 and 1 ≤ j ≤ k, k ≥ 1.
2. For any γ > 0 and λ sufficiently large the inclusion

C j
y E j

y ∩

{
|W j |

λθ
≤

1

2λ2γ

}
∩

{
T j ≥

c

λγ

}
⊇ E j

y ∩

{
|W j |

λθ
≤

1

2λ2γ

}
∩

{
T j ≥

c

λγ

}
(3.29)

holds uniformly for y ∈ I1 and j ≥ 1.

Proof. The statement follows directly from Lemma 3.2, estimates (3.25) and a.s. monotonicity
of the arrival times τk , k ≥ 0. �

Finally, the exponential estimate of Lemma 3.1, inclusion (3.22) and Lemma 3.2 imply that
the probability of the event E j

y is exponentially close to 1, if the interval T j is not too long. For

q > 0, let E j = {ω : sups∈[0,λq ] |λ
−θξ

λ, j
s | ≤ λ−4γ

}.

Lemma 3.4. There are constants γ0 > 0, q0 > αθ/2 and w > 0 such that for any 0 < γ ≤ γ0
and 0 ≤ q ≤ q0, there is λ0 > 0 such that for all λ ≥ λ0 we have the inclusion
(E j

y )
c
∩ {T j ≤ λq

} ⊆ Ec
j . Consequently, the estimate P((E j

y )
c, T j ≤ λq) ≤ P(Ec

j ) ≤ exp(−λw)
holds uniformly for y ∈ I1 and j ≥ 1.

4. Exit from a single well, αθ < 1

For i = 1, . . . , n, consider the wells of the potential U with local minima at mi and denote
Ω i

= (si−1, si ). For γ > 0 and λ > 0, consider the λ-dependent inner neighbourhoods of
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the wells Ω i
λ = [si−1 + 2λ−γ , si − 2λ−γ

], where by convention Ω1
λ = (−∞, s1 − 2λ−γ

] and
Ωn
λ = [sn−1 + 2λ−γ ,+∞). We assume that λ is big enough so that Ω i

λ ⊂ Ω i .
Consider the following life times of the process Zλ in the potential wells Ω i :

σ i,λ
s,z = inf{t ≥ s : Zλs,z(t) 6∈ [si−1 + λ−γ , si − λ−γ

]}, s ≥ 0, 1 ≤ i ≤ n. (4.30)

In this section we prove the following proposition.

Proposition 4.1. Let αθ < 1. Then there is γ0 > 0 such that for any 0 < γ ≤ γ0 there is δ > 0
such that for all i, j = 1, . . . , n, i 6= j ,

Es,zσ
i,λ

− s = q−1
i (λ+ s)αθ (1 +O(λ−δ)),

Ps,z(Z
λ(σ i,λ) ∈ Ω j

λ ) = qi j q
−1
i (1 +O(λ−δ)), λ → +∞,

(4.31)

uniformly for s ≥ 0 and z ∈ Ω i
λ.

Note that σ i,λ is the exit time from a well, which is at λ−γ ‘bigger’ than Ω i
λ: to obtain uniform

estimates over z ∈ Ω i
λ for life times and transition probabilities we have to separate the initial

points z from the well’s boundary.
It follows from (2.8) that it suffices to prove Proposition 4.1 for s = 0. For simplicity, we

consider a well I = (a, b) with a local minimum at zero as defined in Section 3.3. Thus, in what
follows we study the exit time σ0,z(λ) = inf{t ≥ 0 : Zλ0,z 6∈ I1}.

4.1. Mean exit time — Estimate from above

Proposition 4.2. Let αθ < 1. Then there exists γ0 > 0 such that for any 0 < γ ≤ γ0 there is
δ > 0 such that for λ sufficiently large

E0,zσ(λ) ≤
α

|a|−α + b−α
λαθ (1 + λ−δ) (4.32)

uniformly for z ∈ I2.

4.1.1. Notation and technicalities
For 0 < p < q , γ > 0, λ ≥ 1 and 1 ≤ i ≤ k introduce events Ak = {λp

≤ Tk ≤ λq
},

Bk = {λ−γ /2
≤ Tk < λp

}, Dk = {kλp
≤ τk ≤ kλq

}, and Hi,k = {
|Wi |

(λ+kλp)θ
≤

1
λ2γ }. Consider

also events

Gi,k = Ai t
(
Bi ∩ Hi,k

)
and Gc

i,k = (Ai t Bi )
c
t (Bi ∩ H c

i,k), (4.33)

where “t” emphasizes that we take a union of disjoint sets. Representation (4.33) follows from
the disjointness of Ai and Bi . In what follows we shall need the estimates

r := P((Ai t Bi )
c) ≤ crλ

−αθ/2−γ /2 and P(Bi )P(H c
i,k) ≤ cr

λp+2αγ

(λ+ kλp)αθ
, (4.34)

which hold for some cr > 0.
For k ≥ 1 and 1 ≤ i ≤ k, let Fi,k = Gi,k or Gc

i,k . Then the total probability formula leads to
the following inequality:
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E0,zσ(λ)

≤

∞∑
k=1

E0,z[τkI{Dk}I{σ(λ) = τk}] +

∞∑
k=1

E0,z[τkI{Dk}I{σ(λ) ∈ (τk−1, τk)}] +

∞∑
k=1

E[τkI{Dc
k }]

=

∞∑
k=1

E0,z[τkI{σ(λ) = τk}I{G1,k , . . . ,Gk,k}]

+

∞∑
k=1

∑
(F1,k ,...,Fk−1,k )6=(G1,k ,...,Gk−1,k )

E0,z[τkI{Dk}I{σ(λ) = τk}I{F1,k , . . . , Fk−1,k ,Gk,k}]

+

∞∑
k=1

∑
F1,k ,...,Fk−1,k

E0,z[τkI{Dk}(I{σ(λ)=τk} + I{σ(λ) ∈ (τk−1, τk)})I{F1,k , . . . , Fk−1,k ,Gc
k,k}]

+

∞∑
k=1

∑
F1,k ,...,Fk−1,k

E0,z[τkI{Dk}I{σ(λ) ∈ (τk−1, τk)}I{F1,k , . . . , Fk−1,k ,Gk,k}]

+

∞∑
k=1

E[τkI{Dc
k }] =: M(z, λ)+ R1(z, λ)+ R2(z, λ)+ R3(z, λ)+ R4(λ). (4.35)

We show that the main contribution to the mean value of σ(λ) is made by the main term M ,
whereas the remainder terms Ri , i = 1, . . . 4, are negligible as λ → ∞.

To estimate the summands in (4.35) for z ∈ I1 and k ≥ 1, the following chain of inequalities
is deduced, which results in a factorisation formula

E0,z[τkI{Dk}I{σ = τk}I{F1,k, . . . , Fk,k}]

= E0,z
[
τkI{Dk}I{Zλ(s) ∈ I1, s ∈ [0, τk), Zλ(τk) 6∈ I1}I{F1,k, . . . , Fk,k}

]
= E

[
τkI{Dk}

k−1∏
j=1

E0,Zλ(τ j−1)
I
{

zλj (s) ∈ I1, s ∈[0, T j ), zλj (T j )+
W j

(λ+ τ j )θ
∈ I1, F j,k

}

× E0,Zλ(τk−1)
I{zλk (s) ∈ I1, s ∈ [0, Tk), zλk (Tk)+

Wk

(λ+ τk)θ
6∈ I1, F j,k}

]

≤ E

[
τkI{Dk}

k−1∏
j=1

sup
y∈I1

EI{C j
y , F j,k, Dk} × sup

y∈I1

EI{C̃k
y , Fk,k, Dk}

]
, (4.36)

with events C j
y , C̃ j

y , j ≥ 1, defined in (3.26).
Analogously,

E0,z[τkI{Dk}I{σ ∈ (τk−1, τk)}I{F1,k, . . . , Fk,k}]

≤ EτkI{Dk}

[
k−1∏
j=1

sup
y∈I1

EyI{C j
y , F j,k, Dk} × sup

y∈I1

EyI{Ĉk
y , Fk,k, Dk}

]
, (4.37)

with

Ĉk
y = {zλ,τk−1

0,y (s) 6∈ I1 for some s ∈ (0, Tk)}. (4.38)

The statement of the Proposition 4.2 will follow from the forthcoming lemmas where we estimate
the main and the remainder terms.
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4.1.2. Main term M(z, λ)

Lemma 4.3. Let αθ < 1. Then there exist γ0 > 0 and q0 > αθ/2 such that for any 0 < γ ≤ γ0,
any 0 < p < αθ/2 < q ≤ q0 there is δ > 0 such that for λ sufficiently large

M(z, λ) ≤
α

|a|−α + b−α
λαθ + λαθ−δ (4.39)

uniformly for z ∈ I1.

Proof. For the main term M , the estimate (4.36) takes the form:

E0,z[τkI{Dk}I{σ = τk}I{G1,k, . . . ,Gk,k}]

≤ E

[
τk

k−1∏
j=1

sup
y∈I1

EI{C j
y ,G j,k, Dk} × sup

y∈I1

EI{C̃k
y ,Gk,k, Dk}

]
. (4.40)

Let Lemma 3.4 hold for 0 < q ≤ q1, 0 < γ ≤ γ1 and w > 0 for some γ1 > 0, q1 > αθ/2
and λ sufficiently large. Then for any j ≥ 1, (E j

y )
c
∩ (A j t B j ) ⊆ Ec

j and P(Ec
j ) ≤ exp(−λw).

Moreover, the events Ec
j , j ≥ 1, are mutually independent and independent from the jump sizes

(W j ) j≥1 and arrival times (τ j ) j≥0. Recall the definition of the sets Hi,k form (4.33).

Step MA-1. Let k ≥ 1. With help of (3.27) from Lemma 3.3, we obtain for 1 ≤ j ≤ k − 1 and
y ∈ I1 that

I{C j
y ,G j,k, Dk} = I{C j

y , A j , Dk} + I{C j
y , B j , Dk}I{Hi,k}

= I{C j
y , A j , Dk}I{H c

i,k}I{E j
y } + I{C j

y , A j , Dk}I{Hi,k}

+ I{C j
y , A j , Dk}I{H c

i,k}I{(E
j
y )

c
} + I{C j

y , B j , Dk}I{Hi,k}

≤ I{A j , Dk}I
{

W j

(λ+ τk)θ
∈ I

}
I{H c

i,k} + I{A j , Dk}I{Hi,k}

+ I{A j , (E
j
y )

c
}I{H c

i,k} + I{B j , Dk}I{Hi,k}

≤ 1 − I
{

W j

(λ+ τk)θ
6∈ I

}
+ I{H c

i,k}I{E
c
j }. (4.41)

Step MA-2. With help of (3.28) from Lemma 3.3 for k ≥ 1 and y ∈ I1, we estimate

I{C̃k
y ,Gk,k, Dk} ≤ I{C̃k

y}I{Ak}I{Ek
y} + I{C̃k

y}I{Bk}I{Ek
y}(= 0)+ I{C̃k

y}I{Gk,k}I{(Ek
y)

c
}

≤ I
{

Wk

(λ+ τk)θ
6∈ I2

}
+ I{Ak t Bk}I{(Ek

y)
c
} ≤ I

{
Wk

(λ+ τk)θ
6∈ I2

}
+ I{Ec

k }. (4.42)

Consequently, using the independence of τk , W j and ξ j,λ, 1 ≤ j ≤ k, we get

E0,z[τkI{Dk}I{σ = τk}I{G1,k, . . . ,Gk,k}]

≤ E

[
τkI{Dk}

k−1∏
j=1

(
1 − I

{
W j

(λ+ τk)θ
6∈ I

}
+ I{H c

i,k}I{E
c
j }

)

×

(
I
{

Wk

(λ+ τk)θ
6∈ I2

}
+ I{Ec

k }

)]
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=

∫ kλq

kλp
e−βt (βt)k

(k − 1)!

[
1 − P

(
W1

(λ+ t)θ
6∈ I

)
+ P

(
H c

i,k

)
P(Ec

1 )

]k−1

×

[
P
(

W1

(λ+ t)θ
6∈ I2

)
+ P(Ec

1 )

]
dt. (4.43)

Then for any δ1 < γ the following estimates hold for λ being sufficiently big:

P
(

W1

(λ+ t)θ
6∈ I

)
=

A

β

1
(λ+ t)αθ

with A =
|a|

−α
+ b−α

α
,

P
(

W1

(λ+ t)θ
6∈ I2

)
=

|a + λ−γ
+ λ−2γ

|
−α

+ (b − λ−γ
− λ−2γ )−α

αβ

1
(λ+ t)αθ

≤
A

β

1 + λ−δ1

(λ+ t)αθ
,

P
(
H c

i,k

)
P(Ec

1 ) ≤
2 exp(−λw)

αβ

λ2γα

(λ+ kλp)αθ

≤
2 exp(−λw)

αA

(
λ+ kλq

λ+ kλp

)αθ Aλ2γα

β(λ+ kλq)αθ

≤
Aλ−δ1

β(λ+ t)αθ
, t ∈ [kλp, kλq

]. (4.44)

Finally, with help of Lemma A.1, we obtain the estimate for the main term:

M(z, λ) =

∞∑
k=1

E0,z
[
τkI{Dk}I{σ = τk}I{G1,k, . . . ,Gk,k}

]
≤

∞∑
k=1

∫ kλq

kλp
e−βt (βt)k

(k − 1)!

[
1 −

A

β

1 − λ−δ1

(λ+ t)αθ

]k−1 [
A

β

1 + λ−δ1

(λ+ t)αθ
+ exp(λ−w)

]
dt

≤

∫
∞

0
t exp

[
−

At

(λ+ t)αθ
(1 − λ−δ1)

] [
A

1 + λ−δ1

(λ+ t)αθ
+ β exp(λ−w)

]
dt

≤ A−1λαθ + λαθ−δ, (4.45)

for any 0 < δ < δ1 and λ sufficiently big. �

4.1.3. Remainder terms R1(z, λ), R2(z, λ) and R3(z, λ)

Lemma 4.4. Let αθ < 1. Then there exist γ0 > 0 and 0 < p0 < αθ/2 such that for any
0 < γ ≤ γ0, there is q0 = q0(γ ) > αθ/2 such that for any 0 < γ ≤ γ0, αθ/2 < q ≤ q0(γ ) and
any 0 < p ≤ p0, there is δ > 0 such that for λ sufficiently large

R1(z, λ), R2(z, λ), R3(z, λ) ≤ λαθ−δ (4.46)

uniformly for z ∈ I1.

Estimate of R1(z, λ). First, let γ0 and q0 be such that Lemma 3.4 holds for 0 < γ ≤ γ0,
αθ/2 < q ≤ q0 and some w > 0. Let k ≥ 1. To estimate the expectation E0,z[τkI{Dk}I{σ = τk}

I{F1,k, . . . , Fk−1,k,Gk,k}], we note that kλp
≤ τkI{Dk} ≤ kλq . Further, we apply (4.36) and

consider the following cases.
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Step R1-1. Let 1 ≤ j ≤ k − 1, F j,k = G j,k and y ∈ I1. Similarly to the step MA-1 of the
previous section, we obtain

I{C j
y ,G j,k, Dk} = I{C j

y , A j , Dk} + I{C j
y , B j , Dk}I{H j,k}

= I{C j
y , A j , Dk}I{H c

j,k}I{E j
y } + I{C j

y , A j , Dk}I{H j,k}

+ I{C j
y , A j , Dk}I{H c

j,k}I{(E
j
y )

c
} + I{C j

y , B j , Dk}I{H j,k}

≤ I{A j , Dk}I
{

W j

(λ+ τk)θ
∈ I

}
I{H c

j,k} + I{A j , Dk}I{H j,k}

+ I{A j , Dk}I{H c
j,k}I{(E

j
y )

c
} + I{B j , Dk}I{H j,k}

≤ I{A j t B j }

[
1 − I

{
W j

(λ+ kλq)θ
6∈ I

}
+ I{H c

j,k}I{E
c
j }

]
. (4.47)

Denote ϕλ,k := λαθ/2(λ+kλq)−αθ . Then, using the independence of T j , W j and I{Ec
j }, we obtain

for λ sufficiently large, uniformly for all k ≥ 1

EI{C j
y ,G j,k, Dk} ≤ P(A j t B j )

[
1 − P

(
W j

(λ+ kλq)θ
6∈ I

)
+ P(H c

j,k)P(E
c
j )

]
≤ (1 − r)

[
1 − c1ϕλ,k +

c2e−λwλ2γα

λ−αθ/2(λ+ kλp)αθ

]
≤ (1 − r)(1 − c3ϕλ,k).

(4.48)

Here we took into account that λ+kλq

λ+kλp ≤ 2λq−p for all 0 ≤ p ≤ q, k ≥ 0 and λ ≥ 1.
Step R1-2. Let 1 ≤ j ≤ k − 1, F j,k = Gc

j,k and y ∈ I1. Here we obtain directly from (4.34) that

EI{C j
y ,Gc

j,k, Dk} ≤ P(Gc
j,k) ≤ r +

crλ
p+2αγ

(λ+ kλp)αθ

≤ r + c4λ
−αθ/2+p+2αγ+αθ(q−p)

· ϕλ,k . (4.49)

We note that the exponent in the latter summand is strictly negative for γ , p and q − αθ/2 small
enough. Indeed,

−
αθ

2
+ p + 2αγ + αθ(q − p) = −

αθ

2
(1 − αθ)+ αθ

(
q −

αθ

2

)
+ (1 − αθ)p + 2αγ

< −
αθ

4
(1 − αθ) = −ρ < 0, (4.50)

if we demand additionally to previous assumptions that γ0 ≤
2
15θ(1 − αθ), p0 ≤

1
15αθ and

q0 −
αθ
2 ≤

1
15 (1 − αθ). This yields the estimate

EI{C j
y ,Gc

j,k, Dk} ≤ r + λ−ρϕλ,k (4.51)

for λ sufficiently big.
Step R1-3. As in MA-2, for y ∈ I1 and k ≥ 1, we have for λ sufficiently big that

EI{C̃k
y ,Gk,k, Dk} ≤ P

(
Wk

(λ+ kλp)θ
6∈ I2

)
+ P(Ec

k ) ≤ c5λ
−αθ/2. (4.52)
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Now we combine Steps R1-1, R1-2 and R1-3 and make summation over all
(F1,k, . . . , Fk−1,k) 6= (G1,k, . . . ,Gk−1,k) to obtain the estimate:∑

(F1,k ,...,Fk−1,k )6=(G1,k ,...,Gk−1,k )

E0,z
[
τkI{Dk}I{σ = τk}I{F1,k, . . . , Fk−1,k,Gk,k}

]
≤ kλq

k−2∑
m=0

(
k − 1

m

)
(1 − c3ϕλ,k)

m(1 − r)m(r + λ−ρϕλ,k)
k−1−m

· c5λ
−αθ/2

= c5kλq−αθ/2
[(1 − (c3(1 − r)− λ−ρ)ϕλ,k)

k−1
− (1 − c3ϕλ,k)

k−1(1 − r)k−1
]

= c5kλq−αθ/2 (1 − c6ϕλ,k
)k−1

[
1 −

(
1 −

r + λ−ρϕλ,k

1 − c6ϕλ,k

)k−1
]

≤ c5kλq−αθ/2 (1 − c6ϕλ,k
)k−1

[1 − (1 − c7λ
−αθ/2−ρ∧(γ /2))k−1

]

≤ c8k(k − 1)λq−αθ−ρ∧(γ /2)(1 − c6ϕλ,k)
k−1, (4.53)

where we used an elementary inequality 1 − (1 − x)k−1
≤ (k − 1)x , x ∈ [0, 1], k ≥ 1.

Demand now that q0 < 1 −αθ/2 to satisfy the assumptions of Lemma A.2, and q0 −αθ/2 <
ρ ∧ (γ /2). With help of the estimate (A.5), we finish the proof with δ such that 0 < δ <

ρ ∧ (γ /2)− (q − αθ/2). �

Estimate of R2(z, λ). Let γ0 and p0 and q0(γ ) be as in the estimate of R1(z, λ), and 0 < γ ≤ γ0,
0 < p ≤ p0 and αθ/2 < q ≤ q0(γ ). We estimate the factors in the factorisation formulae (4.36)
and (4.37).
Step R2-1. For k ≥ 1, y ∈ I1, we use the estimates from (4.48) and (4.51) from Steps R1-1 and
R1-2 for the factors EI{C j

y ,G j,k, Dk} and EI{C j
y ,Gc

j,k, Dk}, 1 ≤ j ≤ k − 1.
Step R2-2. For k ≥ 1 and y ∈ I1, we use again the estimate (4.51) of Step R1-2 to obtain

EI{Ck
y ,Gc

k,k, Dk} + EI{Ĉk
y ,Gc

k,k, Dk} ≤ P(Gc
k,k) ≤ λ−αθ/2−ρ∧(γ /2), (4.54)

with ρ defined in (4.50) and λ being sufficiently big. Then, with help of Lemma A.2, we estimate

R2(z, λ) =

∞∑
k=1

∑
F1,k ,...,Fk−1,k

E0,z[τk(I{σ = τk}

+ I{σ ∈ (τk−1, τk)})I{Dk}I{F1,k, . . . , Fk−1,k,Gc
k,k}]

≤ λq−αθ/2−ρ∧(γ /2)
∞∑

k=1

k
k−1∑
m=0

(
k − 1

m

)
(1 − c1ϕλ,k)

m(1 − r)m
(
r + λ−ρϕλ,k

)k−1−m

≤ λq−αθ/2−ρ∧(γ /2)
∞∑

k=1

k[1 − (c1(1 − r)+ λ−ρ)ϕλ,k]
k−1

≤ λq−αθ/2−ρ∧(γ /2)
∞∑

k=1

k(1 − c2ϕλ,k)
k−1

≤ c3λ
αθλq−αθ/2−ρ∧(γ /2)

≤ λαθ−δ, (4.55)

for 0 < δ < ρ ∧ (γ /2)− (q − αθ/2) and λ sufficiently big. �

Estimate of R3(z, λ). Let γ0 and p0 and q0(γ ) be as in the estimate of R1(z, λ), and 0 < γ ≤ γ0,
0 < p ≤ p0, and αθ/2 < q ≤ q0(γ ). For k ≥ 2 and y ∈ I1 denote ẑ(y) = zλ,τk−2

0,y (Tk−1) +

Wk−1
(λ+τk−1)

θ and consider a factorisation
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E0,z[τkI{Dk}I{σ ∈ (τk−1, τk)}I{F1,k, . . . , Fk−1,k,Gk,k}]

≤ E

[
τkI{Dk}

k−2∏
j=1

sup
y∈I1

EI{C j
y , F j,k, Dk} × sup

y∈I1

EI{Ck−1
y , Fk−1,k, Ĉẑ(y),Gk,k, Dk}

]
.

(4.56)

Step R3-1. For k ≥ 3 and y ∈ I1, we use the estimates from (4.48) and (4.51) from Steps R1-1
and R1-2 for the factors EI{C j

y ,G j,k, Dk} and EI{C j
y ,Gc

j,k, Dk}, 1 ≤ j ≤ k − 2.
Let us estimate the last factor in (4.56). Indeed, for y ∈ I1 we have

I{Ck−1
y , Fk−1,k, Ĉk

ẑ(y),Gk,k, Dk} ≤ I{Ck−1
y , Fk−1,k, Dk}I{ẑ(y) ∈ I1 \ I2}

+ I{Ck−1
y , Fk−1,k, Dk}I{ẑ(y) ∈ I2} sup

y∈I2

I{Ĉk
y ,Gk,k}

≤ I{Ck−1
y , Fk−1,k, Dk}I{ẑ(y) ∈ I1 \ I2} + sup

y∈I2

I{Ĉk
y ,Gk,k}. (4.57)

The last supremum in the previous formula can be estimated easily for y ∈ I2 as I{Ĉk
y ,Gk,k} ≤

I{Ĉk
y ,Gk,k, Ek

y}+ I{(Ek
y)

c
} ≤ I{Ec

k }. To estimate the first summand in the final estimate in (4.57)
we consider two cases.
Step R3-2. Fk−1,k = Gk−1,k . For y ∈ I1, analogously to Step MA-2, we obtain

I{Ck−1
y ,Gk−1,k, Dk}I{ẑ(y) ∈ I1 \ I2} ≤ I{Ck−1

y , Ak−1, Ek−1
y }I{ẑ(y) ∈ I1 \ I2}

+ I{Ck−1
y , Bk−1, Ek−1

y , Dk}I{Hk−1,k}I{ẑ(y) ∈ I1 \ I2}(= 0)+ I{Ec
k−1}

≤ I
{

Wk−1

(λ+ τk−1)θ
− a − λ−γ

∈ [−λ−γ , 2λ−2γ
]

}
+ I

{
Wk−1

(λ+ τk−1)θ
− b − λ−γ

∈ [−2λ−2γ , λ−2γ
]

}
+ I{Ec

k−1}

≤ I
{

Wk−1

λθ
− a − λ−γ

∈ [−λ−γ , 2λ−2γ
]

}
+ I

{
Wk−1

λθ
− b − λ−γ

∈ [−2λ−2γ , λ−2γ
]

}
+ I{Ec

k−1}. (4.58)

Under conditions Bk−1, Ek−1
y and Hk−1,k , the event {ẑ(y) ∈ I1 \ I2} is empty due to (3.25)

because X0
y(t) ∈ [a + λ−γ

+
3
2λ

−2γ , b − λ−γ
−

3
2λ

−2γ
] for all y ∈ I1 and t ≥ cλ−γ , and

|X0
y(t)− zλ,τk−2

0,y (t)| ≤
1
2λ

−2γ (in case of the inner well).
Taking the expectation yields,

EI{Ck−1
y ,Gk−1,k, Ĉk

ẑ(y),Gk,k} ≤ c1λ
−αθ/2−2γ . (4.59)

Step R3-3. Fk−1,k = Gc
k−1,k . For y ∈ I1, we use the estimate (4.54) from R2-2:

EI{Ck−1
y ,Gc

k−1,k}I{ẑ(y) ∈ I1 \ I2} ≤ P(Gc
k−1,k) ≤ λ−αθ/2−ρ∧(γ /2). (4.60)

Combining the estimates (4.59) and (4.60) we obtain for y ∈ I1 and Fk−1,k = Gk−1,k or Gc
k−1,k

that

EI{Ck−1
y , Fk−1,k, Ĉk

ẑ(y),Gk,k} ≤ λ−αθ/2−ρ∧(γ /2). (4.61)
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Finally, as in (4.55), with help of Lemma A.2, we obtain for z ∈ I1 that

R3(λ, z) = E0,z[τ1I{D1}I{σ ∈ (0, τ1)}I{G1,1}]

+

∞∑
k=2

∑
F1,...,Fk−1

E0,z
[
τkI{Dk}I{σ ∈ (τk−1, τk)}I{F1,k, . . . , Fk−1,k,Gk,k}

]
≤ λq

+ λq−αθ/2−ρ∧(γ /2)
∞∑

k=2

k(1 − c2ϕλ,k)
k−2

≤ λαθ−δ, (4.62)

with (as in Lemma 4.4) 0 < δ < q − αθ/2 − ρ ∧ (γ /2) and for λ sufficiently big. �

4.1.4. Remainder term R4(λ)

Lemma 4.5. Let αθ < 1. Then for any p and q such that 0 < p < αθ
2 < q, any 0 < δ < αθ/2,

the estimate

R4(λ) =

∞∑
k=1

E[τk(I{τk ≤ kλp
} + I{τk ≥ kλq

})] ≤ λαθ−δ (4.63)

holds for λ sufficiently large.

Proof. 1. Let 0 < p < αθ/2 and 0 < δ < αθ/2. With help of Stirling’s formula, we estimate

E[τkI{τk ≤ kλp
}] =

∫ kλp

0
e−βt (βt)k

(k − 1)!
dt

(
u =

t

kλp

)
=

∫ 1

0
[βuλpe−βuλp

]
k kk

(k − 1)!
kλpdu ≤

∫ 1

0
[βuλpe−βuλp

]
k k!

(k − 1)!
eke

1
12k

√
2πk

kλpdu

≤ c1λ
pk2

∫ 1

0
[βuλpe1−βuλp

]
kdu ≤ c1λ

pk[βλpe]k . (4.64)

Hence, for λ sufficiently big so that βλpe =
2e
α
λ−αθ/2+p

≤ 1/2, we have

∞∑
k=1

E[τkI{τk ≤ kλp
}] ≤ c1λ

p
∞∑

k=1

k
[
βλpe

]k
= c1λ

p βλpe

(1 − βλpe)2
≤ c2λ

2p−αθ/2
≤ λαθ−δ. (4.65)

2. Let q > αθ/2 and δ > 0. We estimate

E[τkI{τk ≥ kλq
}] =

∫
∞

kλq
e−βt (βt)k

(k − 1)!
dt

(
u =

kλq

t

)
=

1
β

1
(k − 1)!

∫ 1

0
exp

(
−
βkλq

u

)
(βkλq)k+1

uk+2 du ≤
1
β

1
(k − 1)!

e−βkλq
[βkλq

]
k+1, (4.66)

where the latter inequality follows from the monotonicity of the integrand on u ∈ (0, 1] for
βλq > 2, which holds for λ being big enough. Let also λ be such that e−βλq

eβλq < 1. Applying
Stirling’s formula yields

∞∑
k=1

E[τkI{τk ≥ kλq
}] ≤

1
β

∞∑
k=1

1
(k − 1)!

e−βkλq
(βkλq)k+1
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≤

∞∑
k=1

k2λq

√
2πk

(e−βλq
eβλq)ke

1
12k ≤ c3λ

2q−αθ/2e−βλq
≤ λαθ−δ. � (4.67)

Proof of Proposition 4.2. The statement of the proposition follows directly from Lemmas 4.3–
4.5 with γ0 being the minimal value for which these lemmas hold. �

4.2. Mean exit time — Estimate from below

Proposition 4.6. Let αθ < 1. There exists γ0 > 0 such that for any 0 < γ ≤ γ0, there is δ > 0
such that for all λ sufficiently large

E0,zσ(λ) ≥
α

|a|−α + b−α
λαθ (1 − λ−δ) (4.68)

uniformly for z ∈ I2. Moreover, for any 0 < δ < αθ

P0,z(σ (λ) ≥ λαθ−δ) → 1, (4.69)

uniformly for z ∈ I2 as λ → ∞.

Proof. 1. To obtain an estimate from below for the mean value, it is enough to consider the
exit at the arrival times of the compound Poisson process ηλ, i.e. to use a simple inequality
E0,zσ(λ) ≥

∑
∞

k=1 E0,z[τkI{σ = τk}].
Let γ > 0. For z ∈ I2 and k ≥ 1, consider the chain of inequalities analogous to (4.36), which

leads to the following factorisation formula:

E0,z[τkI{σ = τk}] = E0,z[τkI{Zλ(s) ∈ I1, s ∈ [0, τk), Zλ(τk) 6∈ I1}]

≥ E

[
τk

k−1∏
j=1

E0,Zλ(τ j−1)
I
{

zλj (s) ∈ I1, s ∈ [0, T j ), zλj (T j )+
W j

(λ+ τ j )θ
∈ I2

}

× E0,Zλ(τk−1)
I
{

zλk (s) ∈ I1, s ∈ [0, Tk), zλk (Tk)+
Wk

(λ+ τk)θ
6∈ I1

}]
≥ Eτk

[
k−1∏
j=1

inf
y∈I2

E0,yI
{

zλj (s) ∈ I1, s ∈ [0, T j ), zλj (T j )+
W j

(λ+ τ j )θ
∈ I2

}

× inf
y∈I2

E0,yI
{

zλk (s) ∈ I1, s ∈ [0, Tk), zλk (Tk)+
Wk

(λ+ τk)θ
6∈ I1

}]

= E

[
τk

k−1∏
j=1

inf
y∈I2

EI{C j,−
y } × inf

y∈I2
EI{C̃k

y}

]
(4.70)

with events Ck,−
y and C̃k

y , k ≥ 1, defined in Eq. (3.26).
Let Lemma 3.1 hold for 0 < γ ≤ γ0 and αθ/2 < q ≤ q0 for sufficiently big λ. Fix γ

and q satisfying the above inequalities and let 0 < p < αθ/2. Then there is w > 0 such that
P(Ec

1 ) ≤ exp(−λw) and P(T1 > λq) ≤ exp(−λw) for λ big enough. Let us estimate the factors
in the last expression in (4.70).
Step MB-1. Let k ≥ 2, 1 ≤ j ≤ k − 1 and y ∈ I2. Let the estimate (3.25) hold with a constant
c > 0 for λ being big enough. Denote H j := H j,0 = {

|W j |

λθ
≤

1
λ2γ }. Then

I{C j,−
y } ≥ I{C j,−

y , E j
y }
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≥ I{C j,−
y , E j

y , H j }I
{ c

λγ
≤ T j ≤ λq

}
+ I{C j,−

y , E j
y , H c

j }I{λ
p

≤ T j ≤ λq
}

≥ I{E j
y , H j }I

{ c

λγ
≤ T j ≤ λq

}
+ I

{
W j

(λ+ τ j )θ
∈ I2

}
I{E j

y , H c
j }I{λ

p
≤ T j ≤ λq

}

≥ I{H j }I
{

T j ≥
c

λγ

}
+ I

{
W j

λθ
∈ I2

}
I{H c

j }I{T j ≤ λq
} − 2I{(E j

y )
c
}I{T j ≤ λq

}

≥ I{H j } + I
{

W j

λθ
∈ I2

}
I{H c

j } − I
{

T j <
c

λγ

}
− I{T j > λq

} − 2I{Ec
j }

= 1 − I
{

W j

λθ
6∈ I2

}
− I

{
T j <

c

λγ

}
− I{T j > λq

} − 2I{Ec
j }. (4.71)

Hence, taking the expectation yields

EI{C j,−
y } ≥ 1 −

|a + λ−γ
+ λ−2γ

|
−α

+ (b − λ−γ
− λ−2γ )−α

αβ

1
λαθ

−
c1

λαθ/2+γ
− 3 exp(−λw)

≥ 1 −
A

β

1 + c2λ
−γ

λαθ
, A =

|a|
−α

+ b−α

α
> 0, (4.72)

for λ sufficiently big.
Step MB-2. Let k ≥ 1 and y ∈ I2. Then we estimate

I{C̃k
y} ≥ I{C̃k

y}I{Ek
y}I{λ

p
≤ Tk ≤ λq

}

≥ I
{

Wk

(λ+ τk)θ
6∈ I1

}
− I

{
Wk

λθ
6∈ I1

}
I{Tk ≤ λp

} − I{Tk ≥ λq
} − I{Ec

k },

E[I{Ck
y}|τk = t] ≥

A

β

1 − c3λ
−γ

(λ+ t)αθ
− c4λ

−αθ+p, (4.73)

for λ sufficiently big.
Finally, with help of equality (A.3) in Lemma A.1, we obtain the statement of the Proposition

with δ < γ ∧ δ1, λ being big and δ1 being a constant from Lemma A.1:

E0,zσ(λ) ≥

∞∑
k=1

∫
∞

0
e−βt (βt)k

(k − 1)!

[
1 −

A

β

1 + c2λ
−γ

λαθ

]k−1 [ A

β

1 − c3λ
−γ

(λ+ t)αθ
− c4λ

−αθ+p
]

dt

=

∫
∞

0
t exp

[
−A

t (1 + c2λ
−γ )

λαθ

] [
A

1 − c3λ
−γ

(λ+ t)αθ
− c4βλ

−αθ+p
]

dt

≥
λαθ

A
(1 − c5λ

−γ ) ≥
λαθ

A
(1 − λ−δ). (4.74)

2. Analogously, we estimate the probability (4.69) for any 0 < δ < αθ . Indeed, doing some
algebra yields

P0,z(σ (λ) ≥ λαθ−δ) ≥

∞∑
k=1

E0,zI{σ ≥ λαθ−δ}I{σ = τk}

≥

∞∑
k=1

∫
∞

λαθ−δ
βe−βt (βt)k−1

(k − 1)!

[
1 −

A

β

1 + c2λ
−γ

λαθ

]k−1 [ A

β

1 − c3λ
−γ

(λ+ t)αθ
− c4λ

−αθ+p
]

dt



1090 I. Pavlyukevich / Stochastic Processes and their Applications 118 (2008) 1071–1105

=

∫
∞

λαθ−δ
exp

[
−A

t (1 + c2λ
−γ )

λαθ

] [
A

1 − c3λ
−γ

(λ+ t)αθ
− c4βλ

−αθ+p
]

dt ≥ 1 − λ−δ1 , (4.75)

for big λ and 0 < δ1 < γ ∧ (αθ/2 − p) ∧ δ subject to the condition 0 < γ < 1 − αθ . �

4.3. Transition probability

Let a′ < b′ be such that I ∩ [a′, b′
] = ∅. For γ > 0, consider the interval I ′

1 =

[a′
+ λ−γ , b′

− λ−γ
].

Proposition 4.7. Let αθ < 1. There exists γ0 > 0 such that for any 0 < γ ≤ γ0, there is δ > 0
such that for λ sufficiently large

P0,z(Z
λ(σ (λ)) ∈ I ′

1) ≥
||a′ |

−α
− |b′ |

−α
|

a−α + b−α
(1 − λ−δ) (4.76)

uniformly for z ∈ I2.

Proof. Assume for definiteness that b < a′ < b′
≤ +∞. As in the previous section, we use the

following simple estimate:

P0,z(Z
λ(σ (λ)) ∈ I ′

1) ≥

∞∑
k=1

E0,zI{Zλ(τk) ∈ I ′

1}I{σ = τk}. (4.77)

Let γ > 0. For z ∈ I2, similarly to the estimate (4.70) we have

E0,zI{Zλ(τk) ∈ I ′

1}I{σ = τk} ≥

k−1∏
j=1

inf
y∈I2

EI{C j,−
y } × inf

y∈I2
EI{Fk

y }, (4.78)

with C j,−
y defined in (3.26) and

Fk
y =

{
zλ,τk−1

0,y (s) ∈ I1, s ∈ [0, Tk), zλ,τk−1
0,z (Tk)+

Wk

(λ+ τk)θ
∈ I ′

1

}
. (4.79)

Choose 0 < γ ≤ γ0, 0 < p < αθ/2 < q ≤ q0 as in Proposition 4.6. Then the estimate (4.72)
holds with some constant c1 for λ sufficiently big. Let k ≥ 1 and y ∈ I2. As in (4.73), we
estimate

I{Fk
y } ≥ I{Fk

y }I{Ek
y}I{λ

p
≤ Tk ≤ λq

}

≥ I
{

Wk

(λ+ τk)θ
∈ I ′

1

}
− I

{
Wk

λθ
> c

}
I{Tk ≤ λp

} − I{Tk > λq
} − I{Ec

k },

E[I{Fk
y }|τk = t] ≥

A′

β

1 − c2λ
−γ

(λ+ t)αθ
− c3λ

−αθ+p, A′
=

||b′ |
−α

−|a′ |
−α

|

α
, (4.80)

for λ sufficiently big. Combining these estimates we obtain

P0,z(Z
λ(σ (λ)) ∈ I ′

1)

≥

∞∑
k=1

∫
∞

0
βe−βt (βt)k−1

(k − 1)!

[
1 −

A

β

1 + c1λ
−γ

λαθ

]k−1 [ A′

β

1 − c2λ
−γ

(λ+ t)αθ
− c3λ

−αθ+p
]

dt

=

∫
∞

0
exp

[
−A

t (1 + c1λ
−γ )

(λ+ t)αθ

] [
A′

1 − c2λ
−δ

(λ+ t)αθ
− c3βλ

−αθ+p
]

dt ≥
A′

A
(1 − λ−δ)

(4.81)
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for 0 < δ < γ and λ → ∞. �

Proof of Proposition 4.1. The first statement of Proposition 4.1 follows immediately from
Propositions 4.2 and 4.6. The estimate from below for the transition probability from the potential
well Ω i

λ to the well Ω j
λ , i 6= j , follows from Proposition 4.7. Further, it follows from the

conditions
∑

j 6=i P0,z(Zλ(σ i (λ)) ∈ Ω j
λ ) ≤ 1 and

∑
j 6=i

qi j
qi

= 1 that P0,z(Zλ(σ i (λ)) ∈ Ω j
λ ) ≤

qi j
qi

(
1 +

qi
min j 6=i qi j

λ−δ
)

. Hence, the estimate from above holds for any 0 < δ′ < δ and λ

sufficiently big. Finally, we note that all estimates are uniform over 1 ≤ i ≤ n. �

5. Transition times

Let ∆0 =
1
2 min1≤i≤n(|mi − si−1|∧ |mi − si |). For 0 < ∆ ≤ ∆0, consider ∆-neighbourhoods

of the potential’s local minima Bi = {y : |y − mi | ≤ ∆}, i = 1, . . . , n and the stopping times
τ

i,λ
s,z = inf{u ≥ s : Zλs,z(u) ∈ ∪ j 6=i B j }. If z ∈ Bi , then τ i,λ

s,z denotes the transition time from
the ∆-neighbourhood of mi to a ∆-neighbourhood of some other potential’s minimum. For all
j 6= i , we also consider the corresponding transition probabilities Ps,z(Zλ(τ i,λ) ∈ B j ). The goal
of this section is the following theorem.

Theorem 5.1. For any 0 < ∆ ≤ ∆0, there is δ > 0 such that

E0,zτ
i,λ

= q−1
i λαθ (1 +O(λ−δ)) and

P0,z(Z
λ(τ i,λ) ∈ B j ) = qi j q

−1
i (1 +O(λ−δ)),

(5.82)

as λ → +∞ uniformly for z ∈ Bi , i, j = 1, . . . , n, i 6= j .

Remark 5.2. Under the conditions of Theorem 5.1, we easily obtain from (2.8) that uniformly
for s ≥ 0

Es,zτ
i,λ

= s + E0,zτ
i,λ+s

= s + q−1
i (s + λ)αθ

(
1 +O(λ−δ)

)
,

Ps,z(Z
λ(τ i,λ) ∈ B j ) = qi j q

−1
i

(
1 +O(λ−δ)

)
, λ → +∞.

(5.83)

To prove Theorem 5.1, we consider some auxiliary stopping times. Let γ > 0. For i =

1, . . . , n − 1, denote U i
λ = {y : |y − si | ≤ 2λ−γ

} the small neighbourhood of the saddle
point si , and Uλ = ∪

n−1
i=1 U i

λ. Consider the following stopping times

T i,λ
s,z = inf

{
u ≥ s : Zλs,z(u) ∈ ∪ j 6=i Ω j

λ

}
, i = 1, . . . , n,

Si,λ
s,z = inf{u ≥ s : Zλs,z(u) 6∈ U i

λ}, i = 1, . . . , n − 1,

Sλs,z = inf{u ≥ s : Zλs,z(u) 6∈ Uλ}.

(5.84)

Lemma 5.3. Let αθ < 1. There is γ0 > 0 such that for any 0 < γ ≤ γ0, there is δ > 0 such that
the estimate

Es,z Sλ ≤ (s + λ−δ(s + λ)αθ )(1 +O(λ−δ)) (5.85)

holds uniformly for z ∈ Uλ and s ≥ 0 for λ sufficiently large.
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Proof. 1. Let 0 < γ ≤ γ0 < θ and 0 < δ < αγ . First, we estimate the mean exit time Es,z Si,λ

for 1 ≤ i ≤ n. We note that for z ∈ U i
λ,

Sλ,is,z − s ≤ inf
{

u ≥ 0 :
|∆L(u)|

(λ+ s + u)θ
>

4
λγ

}
a.s., (5.86)

i.e. the process leaves the neighbourhood U i
λ if the absolute value of a jump exceeds the size

of the neighbourhood. Denote for brevity µ := λ + s, ψµ,λ(k) := (µ + kλαθ−δ)−αθ , and
J k
λ := ((k − 1)λαθ−δ, kλαθ−δ]. For k ≥ 1, introduce events

Ak :=

 sup
u∈J k

λ

|∆L(u)|

(µ+ u)θ
≤

4
λγ

 ⊆

 sup
u∈J k

λ

ψµ,λ(k)
1/α

|∆L(u)| ≤
4
λγ

 =: Bk,

Ac
k :=

 sup
u∈J k

λ

|∆L(u)|

(µ+ u)θ
>

4
λγ

 ⊆

 sup
u∈J k

λ

ψµ,λ(k − 1)1/α|∆L(u)| >
4
λγ

 =: B̂k . (5.87)

Hence we can estimate

max
1≤i≤n−1

sup
z∈U i

λ

Es,z Si,λ
− s ≤

∞∑
k=1

kλαθ−δP(A1 · · · Ak−1 Ac
k)

≤ λαθ−δ
∞∑

k=1

kP(B1) · · · P(Bk−1)P(B̂k), (5.88)

where the factorisation in the latter formula is due to the independence of increments of L .
Further, recalling that the number of jumps on the interval (0, t], t > 0, with the absolute value
bigger than a positive a is a Poisson random variable with mean t

∫
|y|>a ν(dy), we calculate the

probabilities

P(Bk) = exp

(
−2λαθ−δ

∫
∞

4ψµ,λ(k)
1/α

λγ

dy

y1+α

)
= exp

(
−c1ψµ,λ(k)λ

αγ+αθ−δ
)
,

P(B̂k) = 1 − exp

(
−2λαθ−δ

∫
∞

4ψµ,λ(k)
1/α

λγ

dy

y1+α

)
= 1 − exp

(
−c1ψµ,λ(k − 1)λαγ+αθ−δ

)
(5.89)

with c1 =
2

4αα . Thus, with help of Lemma A.3, we obtain the uniform estimate

max
1≤i≤n−1

sup
z∈U i

λ

Es,z Si,λ
≤ s + c2(λ+ s)αθλ−αγ (5.90)

for λ sufficiently large.

2. Leaving U i
λ, the process Zλ either enters ∪

n
i=1 Ω i

λ, or jumps to some U j
λ , j 6= i . Consider the

probability Ps,z(Zλ(Si,λ) ∈ ∪ j 6=i U j
λ ). If ai j = s j − si , 1 ≤ i, j ≤ n − 1, j 6= i , then the jump
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of Zλ at the exit time must be of the order ai j . Let a :=
1
2 min1≤i< j≤n−1 ai j , and define events

Ãi j
k :=


{
∃u ∈ J k

λ :
∆L(u)

(µ+ u)θ
∈ [ai j −

2
λγ
, ai j +

2
λγ

]

}
, ai j > 0{

∃u ∈ J k
λ :

∆L(u)

(µ+ u)θ
∈ [ai j +

2
λγ
, ai j −

2
λγ

]

}
, ai j < 0

⊆

{
sup

u∈((k−1)λαθ−δ,kλαθ−δ]
: |∆L(u)| ≥ aψµ,λ(k − 1)1/α

}
=: B̃k .

(5.91)

Analogously to (5.89), we get for c3 =
2

aαα , that P(B̃k) = 1 − exp(−c3λ
αθ−δψµ,λ(k − 1)). Then

with help of Lemma A.3, we obtain for all s ≥ 0 and λ sufficiently big that

max
1≤i≤n−1

sup
z∈U i

λ

Ps,z

(
Zλ(Si,λ) ∈ ∪ j 6=i U j

λ

)
≤ max

1≤i≤n−1

∞∑
k=1

∑
j 6=i

P(A1, . . . , Ak−1, Ãi j
k )

≤ (n − 2)
∞∑

k=1

P(B1, . . . , Bk−1, B̃k) ≤ c4λ
−αθ+δ−αγ . (5.92)

3. Before exiting Uλ, the process Zλ may jump several times between different neighbourhoods
U j
λ . Denote these times Sλ(0) < Sλ(1) < . . . < Sλ( j) < · · · . If z ∈ U i

λ, then it is clear
that Es,z Sλ(0) ≤ Es,z Si,λ. For a nonnegative random variable σ , the elementary inequality
(x + y)a ≤ xa

+ ya
≤ x + 1 + ya , x, y ≥ 0, 0 ≤ a ≤ 1, yields that E(σ + λ)a ≤ Eσ + 1 + λa .

For j ≥ 1, we apply the strong Markov property to obtain with help of (5.90) that

Es,z Sλ( j) ≤ Es,z sup
z∈Uλ

ESλ( j−1),z Sλ(0) ≤ Es,z
[
Sλ( j − 1)+ c2λ

−αγ (Sλ( j − 1)+ λ)αθ
]

≤ (1 + c2λ
−αγ )Es,z Sλ( j − 1)+ c2λ

−αγ (1 + λαθ ), (5.93)

and thus for j ≥ 1, we obtain for z ∈ Uλ that

Es,z Sλ( j) ≤ (1 + c2λ
−αθ ) j

 max
1≤i≤n

sup
z∈U i

λ

Es,z Si,λ
+ c2λ

−αγ (1 + λαθ )

 . (5.94)

The probability that Zλ jumps j times between neighbourhoods U i
λ before it leaves Uλ

is estimated by (c4λ
−αθ+δ−αγ ) j . Finally, for λ sufficiently big such that c4λ

−αθ+δ−αγ (1 +

c2λ
−αθ ) ≤ 1/2 we get in the limit of large λ that

Es,z Sλ ≤ max
1≤i≤n

sup
z∈U i

λ

Es,z Si,λ
+

 max
1≤i≤n

sup
z∈U i

λ

Es,z Si,λ
+ c2λ

−αγ (1 + λαθ )


×

∞∑
j=1

[c4λ
−αθ+δ−αγ (1 + c2λ

−αθ )] j

≤ s + c2λ
−αγ (s + λ)αθ + c5λ

−αθ+δ−αγ (s + c2λ
−αγ (s + λ)αθ + c2λ

−αγ (1 + λαθ ))

≤ (s + λ−δ(s + λ)αθ )(1 +O(λ−δ)). � (5.95)
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Lemma 5.4. Let αθ < 1. There is γ0 > 0 such that for any 0 < γ ≤ γ0, there is δ > 0 such that

Es,zT i,λ
=

(
s + q−1

i (λ+ s)αθ
)
(1 +O(λ−δ)),

Ps,z(Z
λ(T i,λ) ∈ Ω j

λ ) = qi j q
−1
i (1 +O(λ−δ)), λ → +∞,

(5.96)

holds uniformly for z ∈ Ω i , s ≥ 0 and 1 ≤ i, j ≤ n, i 6= j .

Proof. 1. Let γ0 satisfy conditions of Proposition 4.1 and Lemma 5.3, s ≥ 0 and z ∈ Ω i
λ.

Obviously, T i,λ
s,z ≥ σ

i,λ
s,z a.s. Then for λ big enough and some δ1 > 0 such that Proposition 4.1

holds, we have

Ps,z(T
i,λ

= σ i,λ) =

∑
j 6=i

Ps,z(Z
λ(σ i,λ) ∈ Ω j

λ ) ≥ 1 − c1λ
−δ1 . (5.97)

Consequently,

Ps,z(Z
λ(T i,λ) ∈ Ω j

λ ) = Ps,z(Z
λ(σ i,λ) ∈ Ω j

λ , T i,λ
= σ i,λ)

+ Ps,z(Z
λ(T i,λ) ∈ Ω j

λ , T i,λ > σ i,λ)

≥ Ps,z(Z
λ(σ λ) ∈ Ω j

λ )− P(T i,λ > σ i,λ) ≥ qi j q
−1
i − c1λ

−δ1 . (5.98)

The converse inequality follows easily from the identity q−1
i

∑
j 6=i qi j = 1 (see also the proof of

Proposition 4.1).
2. Before entering ∪ j 6=i Ω j

λ , the process Zλ may repeatedly visit Uλ and Ω i
λ. There are two

possibilities, namely

Ω i
λ → Uλ → · · · → Ω i

λ → Uλ → Ω i
λ → ∪ j 6=i Ω j

λ ,

Ω i
λ → Uλ → · · · → Ω i

λ → Uλ → Ω i
λ → ∪ j 6=i Ω j

λ .
(5.99)

We estimate the length of the second longer transition. Denote σ( j) the j th hitting time of Uλ in
this cycle, and ρ( j) the first hitting time of Ω i

λ after σ( j), where by convention ρ(0) = s, and

T ( j) be the transition time from Ω i
λ to ∪ j 6=i Ω j

λ on the event {Zλ visits Uλ j times}.
Let Proposition 4.1 and Lemma 5.3 hold for some δ1 and λ sufficiently large. Due to

Proposition 4.1, the probability to jump into a set Uλ from Ω i
λ is bounded by c1λ

−δ1 , and the
strong Markov property implies that the probability of making the cycle Ω i

λ � Uλ exactly
j times is bounded by (c1λ

−δ1) j . There is a constant q > 0 such that for all s ≥ 0 and λ
sufficiently large supz∈Ω i

λ
Es,zσ

i,λ
≤ s + q(s + λ)αθ . Due to Lemma 5.3, we have the estimate

supz∈Uλ Es,z Sλ ≤ 2(s + (s + λ)αθ ). Then the strong Markov property yields

Es,zT ( j) ≤ Es,z sup
z′∈Ω i

λ

Eρ( j),z′σ i,λ

≤ Es,z[ρ( j)+ q(ρ( j)+ λ)αθ ] ≤ (1 + q)Es,zρ( j)+ q(1 + λαθ ),

Es,zσ( j) ≤ Es,z sup
z′∈Ω i

λ

Eρ( j−1),z′σ i,λ
≤ Es,z[ρ( j − 1)+ q(ρ( j − 1)+ λ)αθ ]

≤ (1 + q)Es,zρ( j − 1)+ q(1 + λαθ ),

Es,zρ( j) ≤ Es,z sup
z′∈Uλ

Eσ( j),z′ Sλ ≤ 2Es,z[σ( j)+ (σ ( j)+ λ)αθ ]

≤ 3Es,zσ( j)+ 2(1 + λαθ ). (5.100)
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Thus for j ≥ 1, the previous recursive estimates give

Es,zρ( j) ≤ 3(1 + q)Es,zρ( j − 1)+ (3q + 2)(1 + λαθ ) ≤ c2Es,zρ( j − 1)+ c2λ
αθ ,

Es,zρ( j) ≤ c j
2Es,zρ(0)+ c2

c j−1
2 − 1

c2 − 1
λαθ ≤ c j

2(s + c3λ
αθ ),

Es,zT ( j) ≤ (1 + q)c j
2s + c3(1 + q)c j

2λ
αθ

+ q(1 + λαθ ) ≤ c4c j
2(s + λαθ ). (5.101)

Finally, we obtain the statement of the lemma

Es,zT i,λ
≤ Es,zσ

i,λ
+ c4(s + λαθ )

∞∑
j=1

(c1c2λ
−δ1) j

≤ (s + q−1
i (s + λ)αθ )(1 +O(λ−δ))

(5.102)

with 0 < δ < δ1 and λ sufficiently big. �

Proof of the Theorem 5.1. 1. Let Lemma 5.4 hold for 0 < γ ≤ γ0 and δ1 > 0. It is clear that for
z ∈ Bi the inequalities σ i,λ

0,z ≤ T i,λ
0,z ≤ τ

i,λ
0,z hold a.s. The main contribution to τ i,λ

0,z is made by the

switching time T i,λ
0,z , for if the trajectory enters Ω j

λ for some j 6= i , it follows the deterministic
trajectory with high probability and thus reaches the set B j in a short time due to (3.25). Namely
for 0 < p < αθ ,

P0,z(τ
i,λ

≤ T i,λ
+ λp) → 1 (5.103)

as λ → ∞. Indeed, on the event Aλ = {ω : supt∈[0,λp] |
∫ t

0
dL(u)

(T i,λ+λ+u)θ
| ≤ λ−4γ

}, the trajectory

Zλ0,z(t + T i,λ) follows the deterministic trajectory X0
Zλ0,z(T

i,λ)
(t) in the sense of (3.23) or (3.24)

and (5.103) follows from the estimate P0,z(Ac
λ) ≤ λ−δ2 for some positive δ2. Further,

P0,z(Z
λ(τ i,λ) ∈ B j ) ≥ P0,z(Z

λ(τ i,λ) ∈ B j , Zλ(T i,λ) ∈ Ω j
λ , Aλ)

≥ P(Zλ(T i,λ) ∈ Ω j
λ )− P(Ac

λ) ≥ qi j q
−1
i (1 − λ−δ1)− λ−δ2 . (5.104)

The converse estimate is obtained analogously to Proposition 4.1.
2. Before entering ∪ j 6=i B j , the process Zλ may repeatedly make cycles Ω i

λ � ∪ j 6=i Ω j
λ . Taking

into account (5.103) and that p < αθ , we obtain the estimate for the mean transition time E0,zτ
i,λ

analogously to that of E0,zT i,λ. �

6. Embedded Markov chain

Let 0 < ∆ ≤ ∆0 and B := ∪
n
i=1 Bi . For s ≥ 0 and z ∈ B, consider the stopping times and

indices τλs,z(0) = s, mλ
s,z(0) =

∑n
i=1 i · I{z ∈ Bi }, and

τλs,z(k) = inf
{

t ≥ τλs,z(k − 1) : Zλs,z(t) ∈ ∪ j 6=mλ
s,z(k−1) B j

}
,

mλ
s,z(k) =

n∑
i=1

i · I{Zλs,z(τ
λ
s,z(k)) ∈ Bi }, k ≥ 1.

(6.105)

Consider a Markov chain (Uλ
s,z(k))k≥0 with the state space B such that

Uλ
s,z(k) = Zλs,z(τ

λ
s,z(k)). (6.106)
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Since for all k ≥ 0 and s ≥ 0, Es,zτ
λ(k) < ∞, the Markov chain Uλ(k) is well-defined. Note

that Uλ is not stationary since its one-step transition probabilities depend on the position of Zλ.
The goal of this section is to compare the distribution of Uλ(k) for k → +∞ with the invariant

distribution π0 of the limiting Markov chain from Theorem 2.1. Denote p(k)s,z ( j) := Ps,z(Uλ(k) ∈

B j ) and ps,z( j) := Ps,z(Uλ(1) ∈ B j ).

Lemma 6.1. For any 0 < ∆ ≤ ∆0 and ε > 0, there are λ0 ≥ 0 and k0 ≥ 0 such that for λ ≥ λ0

and k ≥ k0 the estimate max1≤ j≤n |p(k)s,z ( j)− π0
j | ≤ ε holds uniformly for z ∈ B and s ≥ 0.

Proof. To prove Lemma 6.1, we compare the time-nonhomogeneous Markov chain U with
a time-homogeneous irreducible Markov chain which has the stationary distribution π0

=∑n
j=0 π

0
j δm j . We adapt the argument by Kartashov [24], which was developed for more general

continuous-time Markov processes.
1. Denote pi j = qi j/qi if i 6= j and pi i = 0. Then (pi j )

n
i, j=1 is a stochastic matrix. Let

(Vz(k))k≥0 be a time-homogeneous Markov chain on B with the transition kernel Q(z, A) =∑n
i=1

[
I{z ∈ Bi }

∑n
j=1 pi jδm j (A)

]
. Then V is an irreducible recurrent Markov chain with the

invariant measure π0. Denote Q(k)
z (A) ≡ Q(k)

s,z (A) := Ps,z(V (k) ∈ A) and Qs,z(A) := Q(1)
z (A).

The Markov chain V is geometrically ergodic, and we denote

ρ = sup
z∈B

max
1≤ j≤n

∞∑
k=0

|Q(k)
z (B j )− π0

j |. (6.107)

Let 0 < ∆ ≤ ∆0 and 0 < ε < 1. According to Theorem 5.1, we choose λ0 > 0 such that for
λ ≥ λ0

sup
z∈Bi

|Ps,z(Z
λ(τ i,λ) ∈ B j )− pi j | <

ε

4n2ρ
, (6.108)

uniformly for s ≥ 0 and 1 ≤ i, j ≤ n. For k ≥ 0 consider the distance d(k) :=

supz∈B max1≤ j≤n

∣∣∣P(k)0,z (B j )− Q(k)
z (B j )

∣∣∣. Fix k ≥ 1 and 1 ≤ j ≤ n. For z ∈ B, consider a

decomposition

P(k)0,z (B j )− Q(k)
0,z(B j ) =

k∑
i=1

[
E0,z Q(k−i)

τ (i),U (i)(B j )− E0,z Q(k−i+1)
τ (i−1),U (i−1)(B j )

]
. (6.109)

For i = 1, . . . , k, we transform the summands in the latter formula

E0,z Q(k−i)
τ (i),U (i)(B j )− E0,z Q(k−i+1)

τ (i−1),U (i−1)(B j )

= E0,zEτ(i−1),U (i−1)Q
(k−i)
U (1) (B j )− E0,zEτ(i−1),U (i−1)Q

(k−i)
V (1) (B j )

=

n∑
l=1

[E0,z Pτ(i−1),U (i−1)(Bl)− E0,z Qτ(i−1),U (i−1)(Bl)]Q(k−i)
ml

(B j )

=

n∑
l=1

[E0,z Pτ(i−1),U (i−1)(Bl)− E0,z Qτ(i−1),U (i−1)(Bl)][Q(k−i)
ml

(B j )− π0
j ]

=

n∑
l=1

[(E0,z Pτ(i−1),U (i−1)(Bl)− E0,z Pτ(i−1),V (i−1)(Bl))
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− (E0,z Qτ(i−1),U (i−1)(Bl)− E0,z Qτ(i−1),V (i−1)(Bl))][Q(k−i)
ml

(B j )− π0
j ]

+

n∑
l=1

[E0,z Pτ(i−1),V (i−1)(Bl)− E0,z Qτ(i−1),V (i−1)(Bl)][Q(k−i)
ml

(B j )− π0
j ]

=:

n∑
l=1

Az(i, l)[Q(k−i)
ml

(B j )− π0
j ] +

n∑
l=1

Bz(i, l)[Q(k−i)
ml

(B j )− π0
j ]. (6.110)

For z ∈ Bi , 1 ≤ i ≤ k and 1 ≤ j ≤ n, we estimate

|Az(i, l)| := |E0,z Pτ(i−1),U (i−1)(Bl)− E0,z Pτ(i−1),V (i−1)(Bl)

− E0,z Qτ(i−1),U (i−1)(Bl)− E0,z Qτ(i−1),V (i−1)(Bl)|

=

∣∣∣∣∣ n∑
m=1

∫
Bm

(P(i−1)
0,z (du)− Q(i−1)

0,z (du))Pτ(i−1),u(Bl)

−

n∑
m=1

∫
Bm

(P(i−1)
0,z (du)− Q(i−1)

0,z (du))Qτ(i−1),u(Bl)

∣∣∣∣∣
≤

n∑
m=1

|Q(i−1)
0,z (Bm)− Q(i−1)

0,z (Bm)| × max
1≤m≤n

sup
s≥0,u∈Bm

|Ps,u(Bl)− Qu(Bl)|

< nd(i − 1) ·
ε

4n2ρ
= d(i − 1) ·

ε

4nρ
. (6.111)

Analogously,

|Bz(i, l)| := |E0,z Pτ(i−1),V (i−1)(Bl)− E0,z Qτ(i−1),V (i−1)(Bl)|

≤ max
1≤m≤n

sup
s≥0,u∈Bm

|Ps,u(Bl)− Qu(Bl)| ≤
ε

4n2ρ
. (6.112)

Taking into account estimates (6.110) and (6.112), we obtain from (6.109) that

d(k) <
ε

4nρ

k∑
i=1

d(i − 1)
n∑

l=1

|Q(k−i)
ml

(B j )− π0
j | +

ε

4n2ρ

k∑
i=1

n∑
l=1

|Q(k−i)
ml

(B j )− π0
j |

<
ε

4

(
max

0≤i≤k−1
d(i)+ 1

)
. (6.113)

Finally, d(0) = 0 implies that d(k) < ε/2 for all k ≥ 1. The time-homogeneous Markov chain
V (k) converges to its stationary distribution geometrically fast, and hence there is k0 ≥ 1 such
that for k ≥ k0

max
z∈B

max
1≤ j≤n

|Q(k)
z (B j )− π0

j | <
ε

2
. (6.114)

The statement of the lemma follows from the triangle inequality. �
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7. Slow cooling, αθ < 1. Proof of Theorem 2.2

Lemma 7.1. Let αθ < 1. There is γ0 > 0 such that for any 0 < γ ≤ γ0, 0 < δ < αθ and
0 < ∆ ≤ ∆0

max
1≤i≤n

sup
z∈Ω i

λ

P0,z(Z
λ(t) 6∈ Bi for some t ∈ [λδ, 2λδ]) → 0, λ → +∞. (7.115)

Proof. Choose γ0 > 0 such that Proposition 4.1 holds and let 0 < ∆ ≤ ∆0. Then for 0 < γ ≤ γ0

and some 0 < p < δ consider an event Aλ =

{
sup0≤t≤λp

∣∣∣∫ t
0

dL(u)
(λ+u)θ

∣∣∣ ≤
1
λ4γ

}
as in the proof of

Theorem 5.1. Fix i = 1, . . . , n. Due to (3.25), the inequality |Zλ0,z(λ
p) − mi | ≤ ∆/2 holds on

Aλ a.s. for all z ∈ Ω i
λ. For any ε > 0, one has the probability P(Ac

λ) < ε/2 for λ sufficiently
large (see estimates Eqs. (5.87) and (5.89)). Then

sup
z∈Ω i

λ

P0,z
(
Zλ(u) 6∈ Bi for some u ∈ [λδ, 2λδ]

)
≤ sup

|z−mi |≤∆/2
Pλp,z(Z

λ(u) 6∈ Bi for some u ∈ [λp, 2λδ])+ P(Ac
λ)

≤ sup
|z−mi |≤∆/2

P0,z(Z
λ+λp

(u) 6∈ Bi for some u ∈ [0, 2λδ − λp
])+ P(Ac

λ)

≤ sup
|z−mi |≤∆/2

P0,z(σ
i,λ+λp

∆ ≤ 2λδ − λp)+ P(Ac
λ), (7.116)

where σ i,λ
∆ is the first exit time from Bi of the process Zλ0,z . Due to the estimate (4.69) in

Proposition 4.6, we obtain for λ sufficiently large that

sup
|z−mi |≤∆/2

P0,z(σ
i,λ+λp

∆ ≤ 2λδ − λp) ≤ sup
|z−mi |≤∆/2

P0,z(σ
i,λ+λp

∆ ≤ (λ+ λp)δ1) <
ε

2
,

(7.117)

for δ < δ1 < αθ and λ sufficiently large so that (2λδ − λp)/(λ + λp)δ1 ≤ 1. Since the number
of wells is finite, the statement of the lemma holds uniformly for all 1 ≤ i ≤ n for λ large
enough. �

Lemma 7.2. Let αθ < 1. For any λ > 0 and 0 < ∆ ≤ ∆0, we have

P0,z(Z
λ(t) 6∈ B) → 0, t → +∞, (7.118)

uniformly for all z ∈ R.

Proof. Let ε > 0. The Markov property implies that

P0,z(Z
λ(t) 6∈ B) = E0,z

[
P0,Zλ(s)(Z

λ+s(t − s) 6∈ B)
]

(7.119)

for any 0 ≤ s ≤ t . Fix γ > 0 and 0 < δ < αθ such that Lemmas 5.3 and 7.1 hold for λ ≥ λ1, λ1
being sufficiently big. In particular, supz∈Uλ E0,z Sλ ≤ λαθ−δ for λ ≥ λ1. For t > 0 and λ > 0,
let st be a solution of the equation t − st = 2(λ+ st )

αθ−δ/2. It is clear that st exists and is positive
for large values of t , and st → ∞ as t → ∞. Let t1 be big enough such that µ := λ+ st ≥ λ1 for
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t ≥ t1. Denote µ̂ := µαθ−δ/2. Then due to the Chebyshev inequality, there is t2 ≥ t1 such that

sup
z∈Uµ

P0,z

(
Sµ ≥

1
2 µ̂
)

≤ 2µ−δ/2 < 1
2ε, t ≥ t2. (7.120)

Moreover, due to Lemma 7.1, there is t3 ≥ t2 such that the right-hand side of the Eq. (7.119)
with s = st and z ∈ ∪

n
i=1 Ωλ+st is estimated as

sup
z∈
⋃n

i=1 Ωλ+st

P0,z(Z
λ+st (t − st ) 6∈ B) = sup

z∈
⋃n

i=1 Ωµ

P0,z(Z
µ(2µ̂) 6∈ B)

≤ max
1≤i≤n

sup
z∈Ω i

µ

P0,z
(
Zµ(u) 6∈ Bi for some u ∈ [µ̂, 2µ̂]

)
< 1

2ε, t ≥ t3. (7.121)

Finally, consider the right-hand side of the Eq. (7.119) for s = st and z ∈ Uλ+st :

P0,z(Z
λ+st (t − st ) 6∈ B) ≤ P0,z

(
Zµ(2µ̂) 6∈ B, Sµ ≤

1
2 µ̂
)

+ P0,z

(
Sµ > 1

2 µ̂
)

< E0,z

[
I
{

Sµ ≤
1
2 µ̂
}

PSµ,Zµ(Sµ)(Z
µ(2µ̂) 6∈ B)

]
+

1
2ε

≤ E0,z

I
{

Sµ ≤
1
2 µ̂
}

max
1≤i≤n

sup
z∈Ω i

µ

P0,z(Z
µ+Sµ(2µ̂− Sµ) 6∈ Bi )

+
1
2ε

≤ max
1≤i≤n

sup
z∈Ω i

µ

P0,z(Z
µ+Sµ(u) 6∈ Bi , u ∈ [(µ+ Sµ)αθ−δ/2, 2(µ+ Sµ)αθ−δ/2])

+
1
2ε < ε, (7.122)

where we used the inequality (µ + s)a ≤ 2µa
− s ≤ 2(µ + s)a for 0 ≤ s ≤ µa/2, µ ≥ 0,

0 < a ≤ 1, and applied Lemma 7.1. �

Proof of the Theorem 2.2. Let ε > 0, f be a bounded continuous real function, and | f (x)| ≤

C f for all x ∈ R. We show that for any z ∈ R and λ > 0 there is t0 > 0 large enough such that
|E0,z f (Zλ0,z(t))−

∑n
i= j π

0
i f (m j )| ≤ ε for t ≥ t0.

Choose 0 < ∆ ≤ ∆0 such that max1≤ j≤n supy∈B j
| f (y) − f (m j )| ≤

ε
8 . Choose t1 ≥ 0

such that according to Lemma 7.2 the estimate P0,z(Zλ(t) 6∈ B) ≤
ε

8C f
holds for t ≥ t1, and

according to Lemma 6.1 the estimate supz∈B max1≤ j≤n |P(Uλ+t
s,z (k) ∈ B j ) − π0

j | ≤
ε

8nC f
holds

for t ≥ t1, k ≥ k0 and all s ≥ 0. Denote λ1 := λ + t1 and apply the Markov property to obtain
for t ≥ 0

E0,z f (Zλ(t + t1)) = E0,zE0,Zλ(t1) f (Zλ1(t)) ≤ sup
z∈B

E0,z f (Zλ1(t))

+ C f P0,z(Z
λ(t1) 6∈ B), (7.123)

with the last summand bounded by ε/8. Let (τλ1
0,z(k))k≥0 be transition times defined in (6.105).

For z ∈ B, consider a (non-Markovian) jump process (Z̃λ1
0,z(t))t≥0 defined by

Z̃λ1
0,z(t) =

∞∑
k=0

Uλ1
0,z(k)I{t ∈ [τλ1(k), τλ1(k + 1))}. (7.124)
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For z ∈ B and t ≥ 0, we estimate

|E0,z f (Zλ1(t))− π0 f | ≤

n∑
i=1

E0,z | f (Zλ1(t))− f (mi )|I{Zλ1(t) ∈ Bi }

+

n∑
i=1

| f (mi )| · |P0,z(Z
λ1(t) ∈ Bi )− P0,z(Z̃

λ1(t) ∈ Bi )|

+

n∑
i=1

| f (mi )| · |P0,z(Z̃
λ1(t) ∈ Bi )− π0

i | + C f P0,z(Z
λ1(t) 6∈ B). (7.125)

The first summand in (7.125) does not exceed ε/8 due to the definition of ∆. To estimate the
second summand in (7.125), we apply the total probability formula to obtain for any 1 ≤ i ≤ n
that

|P0,z(Z
λ1(t) ∈ Bi )− P0,z(Z̃

λ1(t) ∈ Bi )|

= |P0,z(Z
λ1(t) ∈ Bi , Z̃λ1(t) ∈ Bi )+ P0,z(Z

λ1(t) ∈ Bi , Z̃λ1(t) 6∈ Bi )[= 0]

− P0,z(Z̃
λ1(t) ∈ Bi , Zλ1(t) ∈ Bi )− P0,z

(
Z̃λ1(t) ∈ Bi , Zλ1(t) ∈ ∪ j 6=i Bi

)
[= 0]

− P0,z(Z̃
λ1(t) ∈ Bi , Zλ1(t) 6∈ B)| ≤ P0,z(Z̃

λ1(t) ∈ Bi , Zλ1(t) 6∈ B) (7.126)

and thus
n∑

i=1

| f (mi )|P0,z(Z
λ1(t) ∈ Bi )− P0,z(Z̃

λ1(t) ∈ Bi )| ≤ C f P0,z(Z
λ1(t) 6∈ B). (7.127)

According to Lemma 7.2 we choose t2 > 0 such that P0,z(Zλ1(t) 6∈ B) ≤
ε

4C f
for t ≥ t2. Finally,

to estimate the third summand in (7.125) consider for 1 ≤ i ≤ n

|P0,z(Z̃
λ1(t) ∈ Bi )− π0

i | ≤ |P0,z(Z̃
λ1(t) ∈ Bi , t ≥ τλ1(k0))− π0

i | + P0,z(t < τλ1(k0))

≤ sup
k≥k0

|P0,z(U
λ1(k) ∈ Bi )− π0

i | + P0,z(t < τλ1(k0)). (7.128)

Since E0,zτ
λ1(k0) < ∞, we apply Chebyshev’s inequality to get

sup
z∈B

P0,z(τ
λ1(k0) > t) ≤

ε

8nC f
(7.129)

for t ≥ t3 ≥ t2. Thus, we obtain the statement of the theorem for all t ≥ t1 + t3. �

8. Fast cooling, αθ > 1

Proof of the Theorem 2.3. Consider a well Ω i and assume for definiteness that mi = 0. We
prove the statement of the theorem for the stopping time σ(λ) = {t ≥ 0 : |Zλ0,z(t)| > a} for
some 0 < a < |si−1| ∧ si . Since the properties of Zλ(t) for t ∈ [0, σ (λ)] are determined by the
jump process L and the values of the potential U (x) for x ∈ [−a, a], we assume that U ′(·) is
globally Lipschitz with constant K > 0.

It is clear that

P0,z(σ (λ) < ∞) =

∞∑
k=1

P0,z

(
sup

t∈(0,k−1]

|Zλ0,z(t)| ≤ a, sup
t∈(k−1,k]

|Zλ0,z(t)| > a

)
. (8.130)
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Let X0
z (t) be the deterministic trajectory of the underlying dynamical system. Denote δ =

1
2 min{a − X0

a(1), a − |X0
−a(1)|} and ∆ = a − δ. Then for any |z| ≤ a, Gronwall’s lemma

yields

sup
t∈[0,1]

|Zλ0,z(t)− X0
z (t)| ≤ eK sup

t∈[0,1]

∣∣∣∣∫ t

0

dL(s)

(λ+ s)θ

∣∣∣∣ ≤ 2eK
sup

t∈[0,1]

|L(s)|

λθ
. (8.131)

For λ ≥ λ0, λ0 being sufficiently large, and |z| ≤ ∆, we estimate

P0,z

(
sup

t∈(0,1]

|Zλ(t)| > a

)
≤ P0,z

(
sup

t∈(0,1]

|Zλ(t)− X0
z (t)| > δ

)

≤ P

(
sup

t∈[0,1]

|L(s)| ≥ λθ
δ

2eK

)
≤ 4P

(
L(1) ≥ λθ

δ

2eK

)
≤ c1λ

−αθ . (8.132)

For k ≥ 2, we apply (2.8) and (8.132) to obtain

P0,z

(
sup

t∈(0,k−1]

|Zλ(t)| ≤ a, sup
t∈(k−1,k]

|Zλ(t)| > a

)

≤ sup
|z|≤a

P0,z

(
sup

t∈(0,1]

|Zλ+k−2(t)| ≤ a, sup
t∈(1,2]

|Zλ+k−2(t)| > a

)

≤ sup
|z|≤a

P0,z

(
sup

t∈(0,1]

|Zλ+k−2(t)− X0
z (t)| > δ

)
+ sup

|z|≤∆
P0,z

(
sup

t∈(0,1]

|Zλ+k−1(t)| > a

)
≤ c1(λ+ k − 2)−αθ + c1(λ+ k − 1)−αθ . (8.133)

Finally, estimating the sum by an integral we find that

P0,z(σ (λ) < ∞) ≤ 2c1

∞∑
k=0

1
(λ+ k)αθ

≤
2c1

αθ − 1
1

(λ− 1)αθ−1 . � (8.134)
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Appendix. Asymptotic estimates of sums and integrals

The arguments of Sections 4 and 5 involve asymptotic estimates of sums and integrals
which can be reduced to the so-called Laplace type integrals of the form I (λ) =∫ b

a q(u) exp(−λp(u))du, where λ → +∞ is a big parameter. For the general theory, we refer
the reader to the book by Olver [25, Chapter 3, Sections 7–9]. Roughly speaking, the evaluation
method of I (λ) is based on the observation, that in the limit of big λ the main contribution to
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I (λ) comes from the neighbourhood of the global minimum of p(u) over [a, b]. For example, if
p(u) attains its minimum at a, and p′(a) > 0 and q(a) 6= 0, then we can approximate

I (λ) ≈ eλp(a)
∫

∞

a
q(a)e−λp′(a)(u−a)du = eλp(a) q(a)

λp′(a)
, λ → +∞. (A.1)

The precise results and estimates of the error terms can be found in [25], Theorems 7.1 and 8.1
and Section 9.4 in Chapter 3. Below we formulate the estimates that we use in our proofs.

Lemma A.1. Let αθ < 1, A > 0, δ > 0 and Aλ = A(1 + O(λ−δ)). Then there is δ1 > 0 such
that ∫

∞

0

At

(λ+ t)αθ
exp

(
−

Aλt

(λ+ t)αθ

)
dt =

λαθ

A
(1 +O(λ−δ1)), (A.2)∫

∞

0

At

(λ+ t)αθ
exp

(
−

Aλt

λαθ

)
dt =

λαθ

A
(1 +O(λ−δ1)), λ → +∞. (A.3)

Proof. First, we note that condition αθ < 1 guarantees convergence of the integrals for all
positive A, δ and λ. To prove (A.2), we introduce a new variable u =

λ+t
λ

to obtain an integral
of Laplace type:∫

∞

0

At

(λ+ t)αθ
exp

(
−

Aλt

(λ+ t)αθ

)
dt = Aλ2−αθ

∫
∞

1

u − 1
uαθ

exp
(

−
u − 1
uαθ

Aλλ
1−αθ

)
du.

(A.4)

The big parameter here is equal to Aλλ1−αθ . Applying the Laplace method, we obtain the
equality (A.2) for some δ1 > 0. The second equality is proved analogously. �

Recall the notation ϕλ,k = λαθ/2(λ+ kλq)−αθ introduced in the Step R1-1 of Lemma 4.4. It
is clear that ϕλ,k → 0 as λ, k → ∞.

Lemma A.2. Let αθ < 1, c > 0 and 0 < q < 1 − αθ/2. Then there are C > 0 and λ0 > 0 such
that for λ > λ0

∞∑
k=2

k(k − 1)
(
1 − cϕλ,k

)k−1
≤ Cλ3αθ/2, (A.5)

∞∑
k=1

k
(
1 − cϕλ,k

)k−1
≤

∞∑
k=2

k
(
1 − cϕλ,k

)k−2
≤ Cλαθ . (A.6)

Proof. First we prove (A.5). Using the elementary inequality ln(1−x) ≤ −x , x < 1, we estimate
uniformly for all k ≥ 2 and λ such that cλ−αθ/2 < 1:(

1 − cϕλ,k
)k−1

= e(k−1) ln(1−cϕλ,k ) ≤ e−c(k−1)ϕλ,k ≤ c1e−ckϕλ,k . (A.7)

We also note, that due to the condition αθ < 1, the sum (A.5) converges. Further, for λ
sufficiently large, we can estimate the sum by an integral, which can be transformed to an integral
of Laplace type. Indeed,

∞∑
k=2

k(k − 1)
(
1 − cϕλ,k

)k−1
≤ c1

∞∑
k=1

k2e−ckϕλ,k
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≤ c2

∫
∞

0
x2 exp

(
−

cx

λ−αθ/2(λ+ xλq)αθ

)
dx

(
u =

λ+ xλq

λ

)
= c2λ

3(1−q)
∫

∞

1
(u − 1)2 exp

(
−cλ1−αθ/2−q u − 1

uαθ

)
du ≤ Cλ3αθ/2. (A.8)

Here we used Theorem 7.1 in [25] to evaluate the latter Laplace integral with the big parameter
λ1−αθ/2−q .

The estimate (A.6) is obtained analogously by reducing the second sum to a Laplace integral

λ2(1−q)
∫

∞

1
(u − 1) exp

(
−cλ1−αθ/2−q u − 1

uαθ

)
du ≤ Cλαθ , λ → +∞. � (A.9)

Recall the notation ψµ,λ(k) = (µ + kλαθ−δ)−αθ , µ, λ > 0, k ≥ 0, from the proof of
Lemma 5.3.

Lemma A.3. Let αθ < 1. For any c > 0, γ > 0, 0 < δ < αθ , there are C > 0 and λ0 > 0 such
that for all µ ≥ λ ≥ λ0

λαθ−δ
∞∑

k=1

k exp

(
−cλαγ+αθ−δ

k−1∑
j=1

ψµ,λ( j)

)
λαγ+αθ−δψµ,λ(k − 1) ≤ Cµαθλ−αγ ,

(A.10)
∞∑

k=1

exp

(
−cλαγ+αθ−δ

k−1∑
j=1

ψµ,λ( j)

)
ψµ,λ(k − 1) ≤ Cλ−αθ+δ−αγ . (A.11)

Proof. We prove the estimate (A.10). For µ ≥ λ big enough and k ≥ 1, we can consider an
integral instead of a sum, namely

k−1∑
j=1

ψµ,λ( j) ≥ c1

∫ k−1

0
ψµ,λ(x)dx = c2λ

−αθ+δ
[
(µ+ (k − 1)λαθ−δ)1−αθ

− µ1−αθ
]
.

(A.12)

This leads to the following inequality:

λαθ−δ
∞∑

k=1

k exp

(
−cλαγ+αθ−δ

k−1∑
j=1

ψµ,λ( j)

)
λαγ+αθ−δψµ,λ(k − 1)

≤ λαγ+2αθ−2δ exp[c3λ
αγµ1−αθ

]

∞∑
k=0

(k + 1)ψµ,λ(k) exp
[
−c3λ

αγ (µ+ kλαθ−δ)1−αθ
]
.

(A.13)

The latter sum can be again approximated by an integral with a big parameter and evaluated with
help of Laplace’s method. Indeed,

∞∑
k=0

k + 1
(µ+ kλαθ−δ)αθ

exp[−c3λ
αγ (µ+ kλαθ−δ)1−αθ

]

≤ c4

∫
∞

0

x + 1
(µ+ xλαθ−δ)αθ

exp[−c3λ
αγ (µ+ xλαθ−δ)1−αθ

]dx

(
u =

µ+ xλαθ−δ

µ

)
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≤ c5λ
−2αθ+2δµ2−αθ

∫
∞

1

u − 1
uαθ

exp[−c3λ
αγµ1−αθu1−αθ

]du

≤ c6λ
−2αθ+2δµ2−αθ exp[−c3λ

αγµ1−αθ
]

×

∫
∞

1
(u − 1) exp[−c3(1 − αθ)λαγµ1−αθ (u − 1)]du

≤ c7λ
−2(αγ+αθ−δ)µαθ exp[−c3λ

αγµ1−αθ
]. (A.14)

Combining (A.13) and (A.14) yields that the sum under consideration is less than c7µ
αθλ−αγ .

The estimate (A.11) is obtained analogously. �
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Their Applications 116 (4) (2006) 611–642.
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