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Abstract

The two-parameter Poisson–Dirichlet distribution is the law of a sequence of decreasing nonnegative
random variables with total sum one. It can be constructed from stable and gamma subordinators with the
two parameters, α and θ , corresponding to the stable component and the gamma component respectively.
The moderate deviation principle is established for the distribution when θ approaches infinity, and the large
deviation principle is established when both α and θ approach zero.
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1. Introduction

For α in (0, 1) and θ > −α, let Uk, k = 1, 2, . . ., be a sequence of independent random
variables such that Uk has Beta(1− α, θ + kα) distribution. Set

Xα,θ1 = U1, Xα,θn = (1−U1) · · · (1−Un−1)Un, n ≥ 2. (1.1)
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Then with probability one
∞∑

k=1

Xα,θk = 1,

and the law of (Xα,θ1 , Xα,θ2 , . . .) is called the two-parameter GEM distribution. The law of the
descending order statistic P(α, θ) = (P1(α, θ), P2(α, θ), . . .) of (Xα,θ1 , Xα,θ2 , . . .) is called the
two-parameter Poisson–Dirichlet distribution and is denoted by Πα,θ .

The two-parameter Poisson–Dirichlet distribution is a natural generalization to Kingman’s
one-parameter Poisson–Dirichlet distribution which corresponds to α = 0. Many properties of
the one-parameter Poisson–Dirichlet distribution have generalizations in the two-parameter
setting including but not limited to the sampling formula (cf. [8,17]), the Markov–Krein identity
(cf. [7,20]), and subordinator representation (cf. [13,18]), and large deviations (cf. [3,9]). A
comprehensive study of the two-parameter Poisson–Dirichlet distribution is found in Pitman and
Yor [18] including relations to subordinators, Markov chains, Brownian motion and Brownian
bridges. The detailed calculations of moments and parameter estimations were carried out in
Carlton [2]. In [6] and the references therein one can find connections between two-parameter
Poisson–Dirichlet distribution and models in physics including mean-field spin glasses, random
map models, fragmentation, and returns of a random walk to origin. The two-parameter
Poisson–Dirichlet distribution has also been used in macroeconomics and finance [1].

The objective of this article is to obtain the two-parameter generalizations to results in
[11,10] including the moderate deviation principle and large deviation principle (henceforth,
MDP and LDP). The methods used here are similar to that used in [11,10]. The main differences
and complications are in the structure of the density function and the subordinator representation
where the independency is replaced by exchangeability. Thus the exponential moment is obtained
through a combination of Campbell’s theorem and the de Finetti type representation obtained
in [17].

The paper is organized as follows. Section 2 includes several preliminary distributional results.
Two MDPs are obtained in Section 3 when θ goes to infinity. The LDP is established in Section 4
when both α and θ go to zero. Concepts such as local LDP and partial LDP are used as defined in
Definition 2.1 in [11] and Definition 2.2 in [3]. The reference [5] is our main source for general
theory and techniques on large deviations.

2. Preliminaries

This section begins with the definitions of LDP and MDP. Afterwards we collect several
existing results, slightly reformulated to our setting, on the relationship between subordinators
and the two-parameter Poisson–Dirichlet distribution. These are then used in deriving the
marginal distributions of the two-parameter Poisson–Dirichlet distribution.

Definition 2.1. Let E be a Polish space, and {Xθ : θ > 0} be a family of E-valued random
variables. The law of Xθ is denoted by Pθ . The family of probability measures {Pθ : θ > 0} (or
the family {Xθ : θ > 0}) is said to satisfy a LDP with speed λ(θ) and rate function I (·), if for
any closed set F and open set G in E

lim sup
θ→∞

λ(θ) log Pθ (F) ≤ − inf
x∈F

I (x),

lim inf
θ→∞

λ(θ) log Pθ (G) ≥ − inf
x∈G

I (x),

for any c > 0, {x : I (x) ≤ c} is compact.
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Remark. The speed defined here is reciprocal of the one in [5].

Definition 2.2. Let {Xθ : θ > 0} be a family of random variables satisfying that there are
functions b(θ) > 0, c(θ), and a finite non-deterministic random variable X such that

lim
θ→∞

b(θ) = ∞,

and b(θ)[Xθ − c(θ)] converges to Z in distribution as θ tends to infinity. Let a(θ) satisfy

lim
θ→∞

a(θ) = ∞, lim
θ→∞

a(θ)

b(θ)
= 0.

The family {Pθ : θ > 0} or equivalently the family {Xθ : θ > 0} is said to satisfy a MDP with
speed λ(θ) (depending on a(θ)) and rate function I (·) if the family {a(θ)[Xθ − c(θ)] : θ > 0}
satisfies a LDP with speed λ(θ) and rate function I (·). Thus the MDP for {Xθ : θ > 0} is the
LDP for {a(θ)[Xθ − c(θ)] : θ > 0}.

A subordinator {ρs, s ≥ 0} is an increasing stochastic process with stationary independent
increment. If the drift component is zero, then the Laplace transform of ρs is given by

E (exp(−λρs)) = exp
{

s
∫
∞

0
(e−λx

− 1)Λ(dx)

}
, λ ≥ 0, (2.1)

where Λ is the Lévy measure on (0,+∞) describing the distribution of the jump sizes. All
subordinators considered in this paper have zero drift component.

For any t > 0, let V ρ
1 (t) ≥ V ρ

2 (t) ≥ · · · denote the jump sizes of {ρs, s ≥ 0} over the interval
[0, t] in decreasing order. Clearly,

ρt =

∞∑
i=1

V ρ
i (t). (2.2)

If

Λ(dx) = cαx−(1+α)dx .

for some cα > 0, then the subordinator is called a stable subordinator with index α and is denoted
by {τs, s ≥ 0}. Without loss of generality, we choose cα = α

Γ (1−α) in this paper, where Γ (·) is
the gamma-function. The gamma subordinator, denoted by {γs : s ≥ 0}, has Lévy measure

Λ(dx) = x−1e−x dx, x > 0.

For θ > 0, set

ζ(α, θ) = γθ/α, (2.3)

T = T (α, θ) = τζ(α,θ), (2.4)

and

Vi (T ) = V τ
i (ζ(α, θ)), i ≥ 1. (2.5)

For n ≥ 1, set

Cα,θ =
Γ (θ + 1)

Γ
(
θ
α
+ 1

) , (2.6)
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Cα,θ,n =
Γ (θ + 1)Γ

(
θ
α
+ n

)
αn−1

Γ (θ + nα)Γ
(
θ
α
+ 1

)
Γ (1− α)n

. (2.7)

Theorem 2.1. Assume that {τs, s ≥ 0} and {γs, s ≥ 0} are independent.
(1) The law of the random sequence(

V τ
1 (1)

τ1
,

V τ
2 (1)

τ1
, . . .

)
is Πα,0;
(2) The random sequence(

V1(T )

T
,

V2(T )

T
, . . .

)
has the two-parameter Poisson–Dirichlet distribution Πα,θ as the law, and is independent of T ,
which has a Gamma(θ, 1) distribution.
(3) For any nonnegative measurable function f on the product space [0, 1]∞,

EΠα,θ [ f (P1, P2, . . .)] = Cα,θE
[
τ−θ1 f

(
V τ

1 (1)

τ1
,

V τ
2 (1)

τ1
, . . .

)]
. (2.8)

Proof. Part (1) is obtained in [16]. Part (2) is proposition 21 in [18]. The result in part (3) is
essentially Corollary 3.15 in [16]. �

The next result appears as Theorem 5.4 in [12] and we give a different proof here.

Theorem 2.2. For each β > 0 and any p, define

Gα,β(p) = P (P1(α, β) ≤ p) . (2.9)

Then for any n ≥ 1, the joint density function of (P1(α, θ), . . . , Pn(α, θ)) is given by

gα,θ,n(p1, . . . , pn) = Cα,θ,n

(
1−

n∑
i=1

pi

)θ+nα−1

(
n∏

i=1
pi

)1+α Gα,θ+nα

 pn

1−
n∑

i=1
pi

 , (2.10)

where 0 < pn < · · · < p1,
∑n

i=1 pi < 1.

Proof. It follows from Perman’s formula (cf. [15]) that for any n > 1, the joint density function

of
(
τ1,

V τ
1 (1)
τ1

, . . . ,
V τ

n (1)
τ1

)
is given by

φn (t, p1, . . . , pn) = (cα)
n−1 p̂−1

n (p1 · · · pn−1)
−(1+α) t−(n−1)αφ1

(
t p̂n, pn/ p̂n

)
(2.11)

where

p̂n = 1− p1 − · · · − pn−1, (2.12)

and φ1(t, u) satisfies

φ1(t, u) = cαt−αu−(1+α)
∫ u

1−u∧1

0
φ1(t (1− u), v)dv. (2.13)
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Putting together (2.8), (2.11) and (2.13), and integrating out the t coordinate, it follows that

gα,θ,n (p1, . . . , pn)

= Cα,θ (cα)
n−1 p̂−1

n (p1 · · · pn−1)
−(1+α)

∫
∞

0
t−(θ+(n−1)α)φ1

(
t p̂n, pn/ p̂n

)
dt

= Cα,θ (cα)
n−1 p̂θ+(n−1)α−2

n (p1 · · · pn−1)
−(1+α)

∫
∞

0
s−(θ+(n−1)α)φ1

(
s, pn/ p̂n

)
ds

= Cα,θ (cα)
n p̂θ+nα−1

n

(p1 · · · pn−1 pn)
(1+α)

∫ pn
p̂n+1
∧1

0
dx
∫
∞

0
s−(θ+nα)φ1

(
s
(
1− pn/ p̂n

)
, x
)

ds

= Cα,θ (cα)
n ( p̂n+1)

θ+nα−1

(p1 · · · pn−1 pn)
(1+α)

∫ pn
p̂n+1
∧1

0
dx
∫
∞

0
u−(θ+nα)φ1(u, x)du

=
Cα,θ (cα)n

Cα,θ+nα

( p̂n+1)
θ+nα−1

(p1 · · · pn−1 pn)
(1+α)

Gα,θ+nα

 pn

1−
n∑

i=1
pi

 , (2.14)

which leads to (2.10). �

Theorem 2.3. For any s > 0,

Fα,θ (s) = P(V1(T ) ≤ s)

=

(
1+ cα

∫
∞

s
z−(1+α)e−zdz

)−θ/α
=

(
1+ cαs−α

∫
∞

1
z−(1+α)e−szdz

)−θ/α
. (2.15)

Proof. For each s > 0, it follows from Theorem 2.1 and the property of the Poisson random
measure that

Fα,θ (s) = E(P(V1(T ) ≤ s|ζ(α, θ)))

= E
(

exp
{
−cαζ(α, θ)

∫
∞

s
x−(α+1)e−x dx

})
= E

(
exp

{
−cαγθ/αs−α

∫
∞

1
z−(α+1)e−szdz

})
from which (2.15) follows. �

3. MDPs for large θ

Assume θ > 0 in this section and let

β(α, θ) = log θ − (α + 1) log log θ − log Γ (1− α). (3.1)

Let ξ1 ≥ ξ2 ≥ · · · denote the points of a Poisson random measure with intensity measure
given by

e−x dx, x ∈ R.
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It is known (cf. [12]) that, as θ tends to infinity, θP(α, θ) − β(α, θ)(1, 1, . . .) converges in
distribution to (ξ1, ξ2, . . .), and for m ≥ 2

√
θ

[
θm−1Γ (1− α)

Γ (m − α)
Hm(P(α, θ))− 1

]
⇒ Zα,m,

where

Hm(P(α, θ)) =
∞∑

i=1

Pi (α, θ)
m

is the homozygosity of order m and Zα,m is a normal random variable with mean zero and
variance

σ 2
α,m =

Γ (2m − α)Γ (1− α)
Γ (m − α)2

+ α − m2.

In this section we establish the MDPs associated with these limiting results.

3.1. MDP for the two-parameter Poisson–Dirichlet distribution

Let a(θ) satisfy

lim
θ→∞

a(θ)

θ
= 0, lim

θ→∞
a(θ) = ∞. (3.2)

It is clear that

lim
θ→∞

a(θ)

(
P(α, θ)−

β(α, θ)

θ
(1, 1, . . .)

)
→ (0, 0, . . .). (3.3)

The LDP (cf. definition 2.1 in [11]) associated with (3.3) is called the MDP for P(α, θ) and
will be established in this subsection. We start with the MDP for P1(α, θ).

Lemma 3.1. The family {a(θ)
(

P1(α, θ)−
β(α,θ)
θ

)
: θ > 0} satisfies a LDP on R as θ converges

to infinity with speed a(θ)
θ

and rate function

I1(x) =

{
x, x ≥ 0
∞, otherwise.

Proof. By Theorem 2.1, P1(α, θ) has the same distribution as V1(T )/T . Thus we only need to
establish the MDP for V1(T )/T . By direct calculation,

a(θ)

(
V1(T )

T
−
β(α, θ)

θ

)
= a(θ)

(
V1(T )− β(α, θ)+ β(α, θ)

T
−
β(α, θ)

θ

)
=
θ

T
a(θ)

(
V1(T )

θ
−
β(α, θ)

θ

)
+

a(θ)β(α, θ)

θ

(
θ

T
− 1

)
.

It follows from Lemma 2.1 and Corollary 3.1 in [11] that for any δ > 0,

lim sup
θ→∞

a(θ)

θ
log P

(
a(θ)

∣∣∣∣V1(T )

T
−

V1(T )

θ

∣∣∣∣ ≥ δ) = −∞.
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This shows that a(θ)( V1(T )
T −

β(α,θ)
θ
) and a(θ)( V1(T )−β(α,θ)

θ
) are exponentially equivalent.

Therefore it suffices to establish the MDP for V1(T )/θ . First consider x satisfying

lim
θ→∞

[
θ

a(θ)
x + β(α, θ)

]
= +∞. (3.4)

Clearly (3.4) holds for all nonnegative x . It may also hold for negative x depending on the growth
rates of θ/a(θ) and β(α, θ). For any s > 0, set

M(s) =

(∫
∞

s
z−(1+α)e−zdz

)−1

, N (s) = s1+αes .

Then it is clear that

lim
s→∞

N (s)

M(s)
= 1. (3.5)

Choosing θ large enough so that θ
a(θ) x + β(α, θ) > 0, then it follows from (2.15) that

P

{
a(θ)

(
V1(T )− β(α, θ)

θ

)
≤ x

}
= Fα,θ

(
θ

a(θ)x + β(α, θ)

)

=


1+

cα

M
(

θ
a(θ) x + β(α, θ)

)
M( θ

a(θ) x+β(α,θ))

−θ/

(
αM

(
θ

a(θ) x+β(α,θ)
))
, (3.6)

which, combined with (3.5), implies that

lim
θ→∞

a(θ)

θ
log P

(
a(θ)

(
V1(T )− β(α, θ)

θ

)
≤ x

)

= lim
θ→∞

a(θ)

θ
log

1+
cα

M
(

θ
a(θ) x + β(α, θ)

)
M( θ

a(θ) x+β(α,θ))

− lim
θ→∞

a(θ)

θ

θ

αN
(

θ
a(θ) x + β(α, θ)

)
= − lim

θ→∞

a(θ)

θ

θ(log θ)1+αΓ (1− α)

αθ
(

θ
a(θ) x + β(α, θ)

)1+α
e

θ
a(θ) x

=

{
0, x ≥ 0
−∞, x < 0.

(3.7)

If (3.4) fails, then x must be strictly negative. If there exists a subsequence θ ′ such that the
limθ ′→∞(

θ ′

a(θ ′) x + β(α, θ
′)) = ∞, then the above argument shows that

lim
θ ′→∞

a(θ ′)

θ ′
log P

(
a(θ ′)

(
V1(T )− β(α, θ ′)

θ ′

)
≤ x

)
= −∞.

It remains to consider the case of

lim sup
θ→∞

[
θ

a(θ)
x + β(α, θ)

]
<∞.
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Since, by Theorem 2.3, V1(T ) converges to infinity as θ converges to infinity, it follows that

lim
θ→∞

a(θ)

θ
log P

(
a(θ)

(
V1(T )− β(α, θ)

θ

)
≤ x

)
= −∞. (3.8)

Putting all these together, we obtain that

lim
θ→∞

a(θ)

θ
log P

(
a(θ)

(
V1(T )− β(α, θ)

θ

)
≤ x

)
= 0, x ≥ 0, (3.9)

and

lim sup
θ→∞

a(θ)

θ
log P

(
a(θ)

(
V1(T )− β(α, θ)

θ

)
≤ x

)
= −∞, x < 0. (3.10)

For x ≥ 0, it follows from (2.15) that

lim
θ→∞

a(θ)

θ
log P

(
a(θ)

(
V1(T )− β(α, θ)

θ

)
≥ x

)

= lim
θ→∞

a(θ)

θ
log

1−

1+
cα

M
(

θ
a(θ) x + β(α, θ)

)
−θ/α


= lim
θ→∞

a(θ)

θ
log


1+

cα

M
(

θ
a(θ) x + β(α, θ)

)
θ/α − 1


= lim
θ→∞

a(θ)

θ
log

(
cαθ

α
N−1

(
θ

a(θ)
x + β(α, θ)

))

= lim
θ→∞

a(θ)

θ
log

( log θ
θ

a(θ) x + β(α, θ)

)1+α

e−
θ

a(θ) x

 = −x . (3.11)

Putting (3.11) and (3.10) together, we obtain that for any M > 0 one can find a compact set
KM = [−M,M] such that

lim sup
θ→∞

a(θ)

θ
log P

(
a(θ)

(
V1(T )− β(α, θ)

θ

)
6∈ KM

)
≤ −M. (3.12)

Hence, the family {a(θ)
(

V1(T )−β(α,θ)
θ

)
: θ > 0, α ∈ (0, 1)} is exponentially tight.

For any s > 0, the density function of V1(T ) is given by

F ′α,θ (s) =
θcα
αN (s)

(
1+

cα
M(s)

)−(1+θ/α)
.

By arguments similar to those used in (3.7) and (3.11), we obtain that for x > 0

lim
θ→∞

a(θ)

θ
log

θcα

αN
(

θ
a(θ) x + β(α, θ)

) = −x, (3.13)
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and

lim
θ→∞

a(θ)

θ
log

1+
cα

M
(

θ
a(θ) x + β(α, θ)

)
−(1+θ/α) = 0. (3.14)

Choosing δ > 0 so that x − δ > 0. Since for any y in [x − δ, x + δ],

F ′α,θ

(
θ

a(θ)
y + β(α, θ)

)

≤
θcα

αN
(

θ
a(θ) (x − δ)+ β(α, θ)

)
1+

cα

M
(

θ
a(θ) (x + δ)+ β(α, θ)

)
−(1+θ/α) (3.15)

and

F ′α,θ

(
θ

a(θ)
y + β(α, θ)

)

≥
θcα

αN
(

θ
a(θ) (x + δ)+ β(α, θ)

)
1+

cα

M
(

θ
a(θ) (x − δ)+ β(α, θ)

)
−(1+θ/α) , (3.16)

it follows that

− x − δ ≤ lim inf
θ→∞

a(θ)

θ
log P

(
a(θ)

(
V1(T )− β(α, θ)

θ

)
∈ (x − δ, x + δ)

)
≤ lim sup

θ→∞

a(θ)

θ
log P

(
a(θ)

(
V1(T )− β(α, θ)

θ

)
∈ [x − δ, x + δ]

)
≤ −x + δ. (3.17)

The equality (3.9) combined with (3.10) implies that

lim
δ→0

lim inf
θ→∞

a(θ)

θ
log P

(
a(θ)

(
V1(T )− β(α, θ)

θ

)
∈ (−δ, δ)

)
= lim
δ→0

lim sup
θ→∞

a(θ)

θ
log P

(
a(θ)

(
V1(T )− β(α, θ)

θ

)
∈ [−δ, δ]

)
= 0. (3.18)

This combined with (3.10) and (3.17) implies that the family{
a(θ)

(
P1(α, θ)−

β(α, θ)

θ

)
: θ + α > 0, α ∈ (0, 1)

}
satisfies a local LDP. By Theorem (P) in Pukhalskii [19], the exponential tightness (3.12) leads
to a partial LDP for the family. The local LDP combined with the partial LDP implies the
result. �

Theorem 3.2. For each n ≥ 1, the family{
a(θ)

(
P1(α, θ)−

β(α, θ)

θ
, . . . , Pn(α, θ)−

β(α, θ)

θ
, . . .

)
: θ > 0

}
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satisfies a LDP on R∞ with speed a(θ)
θ

and rate function

I (x1, x2, . . .) =


∞∑

i=1

xi , x1 ≥ · · · ≥ 0

∞, otherwise.

(3.19)

Proof. Since R∞ can be identified with the projective limit of Rn, n = 1, . . ., by Theorem 3.3
in [4], it suffices to verify that for each n ≥ 2, the family{

a(θ)

(
P1(α, θ)−

β(α, θ)

θ
· · · , Pn(α, θ)−

β(α, θ)

θ

)
: θ > 0

}
satisfies a LDP on Rn with speed a(θ)

θ
and rate function

In(x1, . . . , xn) =


n∑

i=1

xi , if 0 ≤ xn ≤ · · · ≤ x1.

+∞, otherwise.

(3.20)

For any x1 ≥ x2 · · · ≥ xn , θ
a(θ) xn + β(α, θ) > 0, we can choose θ large enough so that

xi

a(θ)
+
β(α, θ)

θ
> 0, i = 1, . . . , n,

and
n∑

i=1

(
xi

a(θ)
+
β(α, θ)

θ

)
< 1.

Then it follows from the linear transformation and Theorem 2.2 that the density function

hα,θ,n(x1, . . . , xn)

of

a(θ)

(
P1(α, θ)−

β(α, θ)

θ
· · · , Pn(α, θ)−

β(α, θ)

θ

)
is given by

a(θ)−ngα,θ,n

(
x1

a(θ)
+
β(α, θ)

θ
, . . . ,

xn

a(θ)
+
β(α, θ)

θ

)

=

(
1

a(θ)

)n

Cα,θ,n

 n∏
i=1

(
θ

θ
a(θ) xi + β(α, θ)

)α+1


×

(
1−

(
θ

a(θ)

n∑
i=1

xi + nβ(α, θ)

)/
θ

)θ+nα−1

×Gα,θ+nα


θ

a(θ) xn + β(α, θ)

θ −

(
θ

a(θ)

n∑
i=1

xi + nβ(α, θ)

)
 . (3.21)
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Since β(α, θ)/θ is a decreasing function of θ , it follows from direct calculation that for xn > 0

Gα,θ+nα


θ

a(θ) xn + β(α, θ)

θ −

(
θ

a(θ)

n∑
i=1

xi + nβ(α, θ)

)
 ≥ Gα,θ+nα

(
xn

a(θ)
+
β(α, θ)

θ

)

≥ Gα,θ+nα

(
xn

a(θ + nα)

a(θ + nα)

a(θ)
+
β(α, θ + nα)

θ + nα

)
= P

(
a(θ + nα)

(
P1(α, θ + nα)−

β(α, θ + nα)

θ + nα

)
≤

a(θ + nα)

a(θ)
xn

)
.

Since

a(θ + nα)

a(θ)
xn >

xn

2

for θ large enough, applying the MDP result in Theorem 2.3 to P1(α, θ + nα), we obtain that for
xn > 0

a(θ)

θ
log Gα,θ+nα


θ

a(θ) xn + β(α, θ)

θ −

(
θ

a(θ)

n∑
i=1

xi + nβ(α, θ)

)
→ 0.

For xn < 0, set

ψ(x1, . . . , xn; θ, α) = a(θ)


θ

a(θ) xn + β(α, θ)

θ −

(
θ

a(θ)

n∑
i=1

xi + nβ(α, θ)

) − β(α, θ + nα)

θ + nα

 .
Then

Gα,θ+nα


θ

a(θ) xn + β(α, θ)

θ −

(
θ

a(θ)

n∑
i=1

xi + nβ(α, θ)

)


= P

(
a(θ)

(
P1(α, θ + nα)−

β(α, θ + nα)

θ + nα

)
< ψ(x1, . . . , xn; θ, α)

)
and

lim
θ→∞

ψ(x1, . . . , xn; θ, α) = xn < 0

which implies that

lim
θ→∞

a(θ)

θ
log Gα,θ+nα


θ

a(θ) xn + β(α, θ)

θ −

(
θ

a(θ)

n∑
i=1

xi + nβ(α, θ)

)
 = −∞.
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Therefore

a(θ)

θ
log hα,θ,n(x1, . . . , xn)→−

n∑
i=1

xi , xn > 0, (3.22)

a(θ)

θ
log hα,θ,n(x1, . . . , xn)→−∞, xn < 0. (3.23)

For x1 ≥ x2 · · · ≥ xn , let B((x1, . . . , xn), δ) denote the closed ball centered at (x1, . . . , xn)

with radius δ, and B◦((x1, . . . , xn), δ) be the corresponding open ball. Let Pα,θ,n denote the law

of a(θ)
(

P1(α, θ)−
β(α,θ)
θ
· · · , Pn(α, θ)−

β(α,θ)
θ

)
. By controlling the density function from below

and above using the boundary values of the balls in ways similar to that of (3.15) and (3.16), we
obtain that for xn > 0,

lim
δ→0

lim sup
θ→∞

a(θ)

θ
log Pα,θ,n (B((x1, . . . , xn), δ))

= lim
δ→0

lim inf
θ→∞

a(θ)

θ
log Pα,θ,n

(
B◦((x1, . . . , xn), δ)

)
= −

n∑
i=1

xi , (3.24)

and for any xn < 0,

lim
δ→0

lim sup
θ→∞

a(θ)

θ
log Pα,θ,n (B((x1, . . . , xn), δ))

= lim
δ→0

lim inf
θ→∞

a(θ)

θ
log Pα,θ,n

(
B◦((x1, . . . , xn), δ)

)
= −∞. (3.25)

If xr−1 > 0, xr = 0 for some 1 ≤ r ≤ n, then the upper estimate is obtained from that of

a(θ)
(

P1(α, θ) −
β(α,θ)
θ
· · · , Pr−1(α, θ) −

β(α,θ)
θ

)
. The lower estimates when xr = 0 for some

1 ≤ r ≤ n are obtained by approximating the boundary with open subsets away from the
boundary. These combined with (3.24) and (3.25) imply the local LDP.

Noting that
⋃n

i=1{a(θ)
(

Pi (α, θ)−
β(α,θ)
θ

)
> L} = {a(θ)

(
P1(α, θ)−

β(α,θ)
θ

)
> L}, it follows

that

lim
L→∞

lim sup
θ→∞

a(θ)

θ
log P

{
n⋃

i=1

{
a(θ)

(
Pi (α, θ)−

β(α, θ)

θ

)
> L

}}
= −∞. (3.26)

On the other hand,

lim sup
θ→∞

a(θ)

θ
log P

{
n⋃

i=1

{
a(θ)

(
Pi (α, θ)−

β(α, θ)

θ

)
< −L

}}

≤ lim sup
θ→∞

a(θ)

θ
log P

{
a(θ)

(
Pn(α, θ)−

β(α, θ)

θ

)
≤ −L

}
= −∞, (3.27)

which combined with (3.26) implies the exponential tightness. The theorem then follows from
the local LDP and the exponential tightness. �
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3.2. MDP for the homozygosity

Let m ≥ 2 be a fixed integer in this subsection. The scale factor

a(θ) = θr

for some constant r in ((m − 1)/(2m − 1), 1/2). One can choose positive constant h and integer
l ≥ 3 so that

l ≥
2

(2m − 1)r − (m − 1)
,

1− 2r < h <
r

m − 1
l − 2

l
.

For any set A, χA denotes the indicator function of A. For any n ≥ 1, set

G(n)
α,θ,h =

∞∑
i=1

V n
i (T )χ{Vi (T )≤θh}, G(n)

α,θ =

∞∑
i=1

V n
i (T ),

and define

Gα,θ,h =

(
G(1)
α,θ,h − E(G(1)

α,θ,h),G(m)
α,θ,h − E(G(m)

α,θ,h)
)
,

Gα,θ =

(
T − θ,G(m)

α,θ − E(G(m)
α,θ )

)
.

For any s, t in R, define

Λ(s, t) =
1
2

(
s2
+

2Γ (m − α)Γ (m + 1)
Γ (m)Γ (1− α)

st +

(
Γ (2m − α)

Γ (1− α)
+ α

(
Γ (m − α)
Γ (1− α)

)2
)

t2

)
.

It follows by direct calculation that the Fenchel–Legendre transform of Λ(s, t) is given by

Λ∗(x, y) = sup
s,t
{sx + t y − Λ(s, t)}

=
Γ (1− α)

2(Γ (1− α)Γ (2m − α)+ (α − m2)Γ 2(m − α))

×

((
Γ (2m − α)+ α

Γ 2(m − α)

Γ (1− α)

)
x2
− 2mΓ (m − α)xy + Γ (1− α)y2

)
, (3.28)

for x, y in R.

Lemma 3.3. The family { a(θ)
θ

Gα,θ,h : θ > 0} satisfies a LDP on space R2 with speed a2(θ)
θ

and
rate function Λ∗(·, ·).

Proof. For any s, t ∈ R, let

g(x) = sx + t xm, ϕh(x) =
g(x)χ{x≤θh}

a(θ)
.

It follows by direct calculation that∫ θh

0
(eϕh(x) − 1)x−(1+α)e−x dx =

∫ θh

0

g(x)

a(θ)
x−(1+α)e−x dx
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+
1
2

∫ θh

0

g2(x)

a2(θ)
x−(1+α)e−x dx +

l∑
k=3

1
k!

1
ak(θ)

∫ θh

0
(sx + t xm)k x−(1+α)e−x dx

+ O

(
∞∑

k=l+1

1
k!

1
ak(θ)

(|s| + |t |θh(m−1))kΓ (k − α)

)

=

∫ θh

0

g(x)

a(θ)
x−(1+α)e−x dx +

1
2

∫ θh

0

g2(x)

a2(θ)
x−(1+α)e−x dx + o

(
1

a2(θ)

)
, (3.29)

which implies that for θ large enough,∣∣∣∣∣
∫ θh

0
(eϕh(x) − 1)x−(1+α)e−x dx

∣∣∣∣∣ < c−1
α .

It follows from Proposition 21 in [18] and Campbell’s theorem (cf. page 28 in [14]) that

E
(

exp
{

1
a(θ)

(
sG(1)

α,θ,h + tG(m)
α,θ,h

)})
= E

(
exp

{
∞∑

i=1

ϕh(Vi (T ))

})

= E

(
E

(
exp

{
∞∑

i=1

ϕh(Vi (T ))

}∣∣∣∣∣ ζ(α, θ)
))

= E

(
exp

{
cαγ

(
θ

α

)∫ θh

0
(eϕh(x) − 1)x−(1+α)e−x dx

})

= exp

{
−
θ

α
log

(
1− cα

∫ θh

0
(eϕh(x) − 1)x−(1+α)e−x dx

)}
. (3.30)

Putting (3.29) and (3.30) together, we get that

E
(

exp
{

1
a(θ)

(
s
(

G(1)
α,θ,h − E(G(1)

α,θ,h)
)
+ t

(
G(m)
α,θ,h − E(G(m)

α,θ,h)
))})

= exp

{
θcα

2αa2(θ)

(
cα

(∫
∞

0
g(x)x−(1+α)e−x dx

)2

+

∫
∞

0
g2(x)x−(1+α)e−x dx + o

(
1

a2(θ)

))}

= exp
(

θ

a2(θ)

(
Λ(s, t)+ o

(
1

a2(θ)

)))
,

which leads to

lim
θ→∞

a2(θ)

θ
log E

(
exp

{
1

a(θ)

[
s(G(1)

α,θ,h − E(G(1)
α,θ,h))+ t (G(m)

α,θ,h − E(G(m)
α,θ,h))

]})
= Λ(s, t). (3.31)

The lemma now follows from (3.28) and the Gärtner–Ellis theorem (cf. page 44 in [5]). �
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Next we prove the main result of this subsection.

Theorem 3.4. The family {a(θ)
(
θm−1Γ (1−α)

Γ (m−α) Hm(P(α, θ))− 1
)
: θ > 0} satisfies a LDP with

speed a2(θ)
θ

and rate function z2

2σ 2
α,m

.

Proof. By an argument similar to that used in [11], one can show that Gα,θ,r and Gα,θ have the
same LDP. On the other hand, by direct calculation,

a(θ)

(
θm−1Γ (1− α)

Γ (m − α)
Hm(P(α, θ))− 1

)
=

a(θ)

θ
(θ − T )

m∑
k=1

(
θ

T

)k

+

(
θ

T

)m a(θ)(G(m)
α,θ − E(G(m)

α,θ ))

θΓ (m − α)/Γ (1− α)
.

Since for any fixed integer i ≥ 1 and any δ > 0

lim
θ→∞

a2(θ)

θ
log P

(∣∣∣∣∣
(
θ

T

)i

− 1

∣∣∣∣∣ ≥ δ
)
= −∞,

it follows from an argument similar to that used in the proof of Lemma 2.1 in [11] that

a(θ)

θ
(θ − T )

m∑
k=1

(
θ

T

)k

and
(
θ

T

)m a(θ)(G(m)
α,θ − E(G(m)

α,θ ))

θΓ (m − α)/Γ (1− α)

are exponentially equivalent to

m
a(θ)

θ
(θ − T ) and

a(θ)(G(m)
α,θ − E(G(m)

α,θ ))

θΓ (m − α)/Γ (1− α)
,

respectively. Hence,

a(θ)

(
θm−1Γ (1− α)

Γ (m − α)
Hm(P(α, θ))− 1

)
and

ma(θ)(θ − T )

θ
+

a(θ)(G(m)
α,θ − E(G(m)

α,θ ))

θΓ (m − α)/Γ (1− α)

are exponentially equivalent, and thus have the same LDP.
The fact that

inf
yΓ (1−α)
Γ (m−α) −mx=z

Λ∗(x, y) =
z2

2σ 2
α,m

,

combined with Lemma 3.3 and the contraction principle, implies the result. �

4. LDP for small parameters

Set

a(α, θ) = α ∨ |θ |, b(α, θ) = (− log(a(α, θ)))−1,
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and let

∇ =

{
p = (p1, p2, . . .) : p1 ≥ p2 ≥ · · · ≥ 0,

∞∑
i=1

pi ≤ 1

}
be equipped with the subspace topology of [0, 1]∞, and M1(∇) be the space of all probability
measures on ∇ equipped with the weak topology. Then Πα,θ belongs to M1(∇).

For any δ > 0, it follows from the GEM representation (1.1) that

P
(

Xα,θ1 > 1− δ
)
≤ P (P1(α, θ) > 1− δ) .

By direct calculation, we have

lim
a(α,θ)→0

P
(

Xα,θ1 > 1− δ
)
= 1.

Therefore, Πα,θ converges in M1(∇) to δ(1,0,...) as a(α, θ) converges to zero. In this section, we
establish the LDP associated with this limit. This is a two-parameter generalization to the result
in [10].

For any n ≥ 1, set

∇n =

{
(p1, . . . , pn, 0, 0, . . .) ∈ ∇ :

n∑
i=1

pi = 1

}
,

∇∞ =

∞⋃
i=1

∇i .

Lemma 4.1. The family {P1(α, θ) : α + θ > 0, 0 < α < 1} satisfies a LDP on [0, 1] as a(α, θ)
goes to zero with speed b(α, θ) and rate function

S1(p) =


0, p = 1

k, p ∈

[
1

k + 1
,

1
k

)
, k = 1, 2, . . .

∞, p = 0.

(4.1)

Proof. Let {Xα,θi : i = 1, 2, . . .} be defined in (1.1). For any n ≥ 1, set

P̃n
1 (α, θ) = max{Xα,θi : 1 ≤ i ≤ n}.

Then it follows from direct calculation that for any δ > 0

P{P1(α, θ)− P̃n
1 (α, θ) > δ} ≤ P{(1−U1) · · · (1−Un) ≥ δ}

≤ δ−1
n∏

i=1

θ + iα
θ + iα + 1− α

,

which leads to

lim sup
a(α,θ)→0

b(α, θ) log P{P1(α, θ)− P̃n
1 (α, θ) > δ} ≤ −n.
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Thus the families {P̃n
1 (α, θ) : 0 < α < 1, θ+α > 0}n=1,2,... are exponential good approxima-

tions to the family {P1(α, θ) : 0 < α < 1, θ + α > 0}. By the contraction principle, the family
{P̃n

1 (α, θ) : 0 < α < 1, θ + α > 0} satisfies a LDP on [0, 1] as a(α, θ) goes to zero with speed
b(α, θ) and rate function

In(p) =


0, p = 1

k, p ∈

[
1

k + 1
,

1
k

)
, k = 1, 2, . . . , n − 1

n, else.

The lemma now follows from the fact that

S1(p) = sup
δ>0

lim inf
n→∞

inf
|q−p|<δ

In(q). �

Theorem 4.1. The family {Πα,θ : α + θ > 0, 0 < α < 1} satisfies a LDP on ∇ as a(α, θ) goes
to zero with speed b(α, θ) and rate function

S(p) =

{
n − 1, p ∈ ∇n, pn > 0, n ≥ 1

∞, p 6∈ ∇∞.
(4.2)

Proof. It suffices to establish the LDP for finite dimensional marginal distributions since the
infinite dimensional LDP can be derived from the finite dimensional LDP through approximation.

It follows from the theorem in section 2 of [21] and Theorem 2.2 that for any n ≥ 2, (P1(0,
α + θ), P2(0, α + θ), . . . , Pn(0, α + θ)) and (P1(α, θ), P2(α, θ), . . . , Pn(α, θ)) have respective
joint density functions

g0,α+θ,n(p1, . . . , pn) = (α + θ)
n

(
1−

n∑
i=1

pi

)θ+α−1

n∏
i=1

pi

P

P1(0, α + θ) ≤
pn

1−
n∑

i=1
pi

 ,
and

gα,θ,n(p1, . . . , pn) = Cα,θ,n

(
1−

n∑
i=1

pi

)θ+nα−1

(
n∏

i=1
pi

)1+α P

P1 (α, nα + θ) ≤
pn

1−
n∑

i=1
pi

 ,
where p1 > p2 > · · · > pn > 0,

∑n
i=1 pi < 1.

For any n ≥ 2, set

4n =

{
(p1, . . . , pn) : p1 ≥ p2 ≥ · · · ≥ pn ≥ 0,

n∑
i=1

pi ≤ 1

}
, (4.3)
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and

Sn(p1, . . . , pn) =



0, (p1, p2, . . . , pn) = (1, 0, . . . , 0)

l − 1, 2 ≤ l ≤ n,
l∑

k=1

pk = 1, pl > 0

n + S1

 pn

1−
n∑

i=1
pi

∧ 1

 , n∑
k=1

pk < 1, pn > 0

∞, else.

(4.4)

It follows from Lemma 2.4 in [10] that for any n ≥ 2, the family

{(P1(0, α + θ), P2(0, α + θ), . . . , Pn(0, α + θ)) : θ + α > 0, 0 < α < 1}

satisfies a LDP on space4n with speed b(α, θ) and rate function Sn as a(α, θ) tends to zero. The
main idea in the proof is to establish the local LDP since 4n is compact. This follows from the
establishment of the equality

lim
a(α,θ)→0

b(α, θ) log g0,α+θ,n(p1, . . . , pn) = −Sn(p1, . . . , pn) (4.5)

in five different cases.
In our current setting, everything is the same except the density function. By Lemma 4.1,

the LDP estimations for P
(

P1(α, nα + θ) ≤ pn
1−
∑n

i=1 pi

)
is the same as the LDP estimations for

P
(

P1(0, α + θ) ≤
pn

1−
∑n

i=1 pi

)
. By direct calculation, we have

lim
a(α,θ)→0

b(α, θ) log(α + θ)n = lim
a(α,θ)→0

b(α, θ) log Cα,θ,n = −n,

lim
a(α,θ)→0

b(α, θ) log


(

1−
n∑

i=1
pi

)θ+α−1

n∏
i=1

pi



= lim
a(α,θ)→0

b(α, θ) log


(

1−
n∑

i=1
pi

)θ+nα−1

(
n∏

i=1
pi

)1+α

 = 0.

Therefore,

lim
a(α,θ)→0

b(α, θ) log gα,θ,n(p1, . . . , pn) = lim
a(α,θ)→0

b(α, θ) log g0,α+θ,n(p1, . . . , pn)

= −Sn(p1, . . . , pn)

and the family {(P1(α, θ), P2(α, θ), . . . , Pn(α, θ)) : θ + α > 0, 0 < α < 1} satisfies a LDP as
a(α, θ) goes to zero with speed b(α, θ) and rate function Sn . �
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