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Abstract

We study the diffusive scaling limit for a chain of N coupled oscillators. In order to provide the system
with good ergodic properties, we perturb the Hamiltonian dynamics with random flips of velocities, so that
the energy is locally conserved. We derive the hydrodynamic equations by estimating the relative entropy
with respect to the local equilibrium state, modified by a correction term.
c⃝ 2013 Elsevier B.V. All rights reserved.
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0. Introduction

This paper aims at proving the hydrodynamic limit for a Hamiltonian system of N coupled
oscillators. The ergodic properties of Hamiltonian dynamics are poorly understood, especially
when the size of the system goes to infinity. That is why we perturb it by an additional
conservative mixing noise, as it has been proposed for the first time by Olla, Varadhan and
Yau [16] in the context of gas dynamics, and then in [11] in the context of Hamiltonian lattice
dynamics (see e.g. [1,2,7,3,4,6,10,15] for more recent related works).

We are interested in the macroscopic behavior of this system as N goes to infinity, after
rescaling space and time with the diffusive scaling. The system is considered under periodic
boundary conditions—more precisely we work on the one-dimensional discrete torus TN :=

{0, . . . , N−1}. The configuration space is denoted by ΩN := (R × R)TN . A typical configuration
is given by ω = (px , rx )x∈TN where px stands for the velocity of the oscillator at site x , and rx
represents the distance between oscillator x and oscillator x + 1. The deterministic dynamics is
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described by the harmonic Hamiltonian

H N =

N−1
x=0


p2

x

2
+

r2
x

2


. (0.1)

The stochastic perturbation is added only to the velocities, in such a way that the energy
of particles is still conserved. Nevertheless, the momentum conservation is no longer valid.
The added noise can be easily described: each particle independently waits an exponentially
distributed time interval and then flips the sign of velocity. The strength of the noise is regulated
by the parameter γ > 0. The total deformation


rx and the total energy


(p2

x + r2
x )/2 are

the only two conserved quantities. Thus, the Gibbs states are parametrized by two potentials,
temperature and tension: for β > 0 and λ ∈ R, the equilibrium Gibbs measures µN

β,λ on the

configuration space Ω N
:= (R × R)TN are given by the product measures

dµN
β,λ =


x∈TN

e−βex −λrx

Z(β, λ)
drx dpx , (0.2)

where ex := (p2
x + r2

x )/2 is the energy of the particle at site x , and Z(β, λ) is the normalization
constant. The temperature is equal to β−1 and the tension is given by λ/β.

The goal is to prove that the two empirical profiles associated to the conserved quantities
converge in the thermodynamic limit N → ∞ to the macroscopic profiles r(t, ·) and e(t, ·) which
satisfy an autonomous system of coupled parabolic equations. Let r0 : T → R and e0 : T → R
be respectively the initial macroscopic deformation profile and the initial macroscopic energy
profile defined on the one-dimensional torus T = [0, 1]. We want to show that the functions
r(t, q) and e(t, q) defined on R+ × T are solutions of

∂t r =
1
γ

∂2
q r,

∂t e =
1

2γ
∂2

q


e +

r2

2


,

q ∈ T, t ∈ R, (0.3)

with the initial conditions r(0, ·) = r0(·) and e(0, ·) = e0(·).
We approach this problem by using the relative entropy method, introduced for the first time

by H. T. Yau [19] for a gradient1 diffusive Ginzburg–Landau dynamics. For non-gradient models,
Varadhan [18] has proposed an effective approach. Funaki et al. followed his ideas in [12] to
extend the relative entropy method to some non-gradient processes and introduced the concept
of local equilibrium state of second order approximation.

The usual relative entropy method works with two time-dependent probability measures. Let
us denote by µN

0 the Gibbs local equilibrium associated to a deformation profile r0 and an energy
profile e0 (see (1.8) for the explicit formula). As we work in the diffusive scaling, we look at the
state of the process at time t N 2. We denote it by µN

t and we suppose that it starts from µN
0 . Let

µN
e(t,·),r(t,·) be the Gibbs local equilibrium associated to the profiles r(t, ·) and e(t, ·) which satisfy

(0.3).2 If we denote by f N
t and φN

t , respectively, the densities3 of µN
t and µN

e(t,·),r(t,·) with respect

1 A conservative system is called gradient if the currents corresponding to the conserved quantities are gradients.
2 For the sake of readability, in the following sections we will denote it by µN

βt (·),λt (·)
, where βt (·) and λt (·) are the

two potential profiles associated to r(t, ·) and e(t, ·) (see (1.5) and (1.8)).
3 The existence of these two densities is justified in Section 2.1.
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to a reference equilibrium measure µN
∗ := µN

1,0, we guess that φN
t is a good approximation of

the unknown density f N
t . We measure the distance between these two densities by their relative

entropy

HN (t) :=


Ω N

f N
t (ω) log

f N
t (ω)

φN
t (ω)

dµN
∗ (ω). (0.4)

Then, the strategy consists in proving that

lim
N→∞

HN (t)

N
= 0, (0.5)

and deducing that the hydrodynamic limit holds (for this last step, see [13,16] or [5]). In the
context of diffusive systems, the relative entropy method works if the following conditions are
satisfied.

• First, the dynamics has to be ergodic: the only time and space invariant measures for the
infinite system, with finite local entropy, are given by mixtures of the Gibbs measures in
infinite volume µβ,λ (see (1.15)). From [11], we know that the velocity-flip model is ergodic
in the sense above (see Theorem 1.3 for a precise statement).

• Next, we need to establish the so-called fluctuation–dissipation equations in the mathematics
literature. Such equations express the microscopic current of energy (which here is not a
discrete gradient) as the sum of a discrete gradient and a fluctuating term. More precisely, the
microscopic current of energy, denoted by jx,x+1, is defined by the local energy conservation
law

Lex = ∇ jx−1,x (0.6)

where L is the generator of the infinite dynamics. The standard approach consists in proving
that there exist functions fx and hx such that the following decomposition holds

jx,x+1 = ∇ fx + Lhx . (0.7)

Eq. (0.7) is called a microscopic fluctuation–dissipation equation. The term Lhx , when
integrated in time, is a martingale. Roughly speaking, Lhx represents rapid fluctuation,
whereas ∇ fx represents dissipation. Gradient models are systems for which hx = 0 with
the previous notations. In general, these equations are not explicit but we are able to compute
them in our model (see (A.16) and (A.17)).

• Finally, since we observe the system on a diffusive scale and the system is non-gradient,
we need second order approximations. If we want to obtain the entropy estimate (0.5) of
order o(N ), we cannot work with the measure µN

e(t,·),r(t,·): we have to correct the Gibbs
local equilibrium state with a small term. This idea was first introduced in [12] and then
used in [17] for interacting Ornstein–Uhlenbeck processes, and in [14] for the asymmetric
exclusion process in the diffusive scaling. However, as far as we know, it is the first time that
this is applied for a system with several conservation laws.

Recently, Even et al. [10] used the relative entropy method for a stochastically perturbed
Hamiltonian dynamics which is quite close to the dynamics of this paper: the time evolution is
governed by the same Hamiltonian of anharmonic oscillators but the process is perturbed by a
different noise—velocities are exchanged and not flipped. Besides, the boundary conditions are
mechanical instead of periodic. Contrary to this paper, the model is studied in the hyperbolic
scale, so that the authors do not need to modify the local equilibrium state.
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Up to present, the derivation of hydrodynamic equations for the harmonic oscillators perturbed
by the velocity-flip noise is not rigorously achieved (see e.g. [3]), mainly because the control of
large energies has not been considered so far. Indeed, to perform the relative entropy method, we
need to control the moments 

1
N


x∈TN

|px |
k


dµN

t , (0.8)

for all k > 1, uniformly in time and with respect to N . In fact, the only first several moments are
necessary to cut-off large energies (as it is explained in Section 2.2) and we need all the others
to obtain the Taylor expansion which appears in the relative entropy method (see Proposition 2.1
and Lemma A.2). Usually, the entropy inequality (2.24) reduces the control of (0.8) to the
estimate of the following equilibrium exponential moments

exp(δ|px |
k) dµN

1,0

with δ > 0 small. Unfortunately, in our model, these integrals are infinite for all k > 3 and all
δ > 0.

To avoid this problem, we could cut-off large velocities by taking a relativistic kinetic energy
(as done in [16]). Nevertheless, we should change the physics of the problem by modifying the
Liouville operator, and consequently the fluctuation–dissipation equations would not be available
any more. Similar difficulties have already appeared in other models: in [8], Bertini et al. do not
have these precious exponential moments to derive rigorously their results. In an other context,
Bonetto et al. [9] study the heat conduction in anharmonic crystals with self-consistent reservoirs,
and need energy bounds to complete their results. Bernardin [2] deals with a harmonic chain
perturbed by stochastic noise which is different from ours but has the same motivation: energy
is conserved, momentum is not. He derives the hydrodynamic limit for a particular value of the
intensity of the noise. In this case the hydrodynamic equations are simply given by two decoupled
heat equations. The author highlights that good energy bounds are necessary to extend his work
to other values of the noise intensity. In fact, only the following weak form is proved in his paper:

lim
N→+∞

 
1

N 2


x∈TN

p4
x


dµN

t = 0. (0.9)

In this work, we get uniform control of (0.8) (Theorem 1.2), thanks to a remarkable property of
our model: the set of convex combinations of Gaussian measures is preserved by the dynamics.
This is one of the main technical novelties in our work.

The next section contains a more precise description of the results outlined here, along with
the plan of the paper.

1. The model and the main results

1.1. Velocity-flip model

We consider the unpinned harmonic chain perturbed by the momentum–flip noise. Each
particle has the same mass that we set equal to 1. The configuration space is denoted by
Ω N

:= (R × R)TN .

A typical configuration is ω = (r, p) ∈ Ω N , where r = (rx )x∈TN and p = (px )x∈TN .
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The generator of the dynamics is given by L N := A N + γ S N , where, for any continuously
differentiable function f : Ω N

→ R,

A N ( f ) :=


x∈TN

[(px+1 − px ) ∂rx f + (rx − rx−1) ∂px f ] (1.1)

and

S N ( f )(r, p) :=
1
2


x∈TN

[ f (r, px ) − f (r, p)]. (1.2)

Here px is the configuration obtained from p by the flip of px into −px . The parameter γ > 0
regulates the strength of the random flip of momenta.

The operator A N is the Liouville operator of a chain of interacting harmonic oscillators,
and S N is the generator of the stochastic part of the dynamics that flips at random time the
velocity of one particle. The dynamics conserves two quantities: the total deformation of the
lattice R =


x∈TN

rx and the total energy E =


x∈TN
ex , where ex = (p2

x + r2
x )/2. Observe

that the total momentum is no longer conserved.
The deformation and the energy define a family of invariant measures depending on two

parameters. For β > 0 and λ ∈ R, we denote by µN
β,λ the Gaussian product measure on Ω N

given by

µN
β,λ(dr, dp) =


x∈TN

e−βex −λrx

Z(β, λ)
drx dpx . (1.3)

An easy computation gives that the partition function satisfies

Z(β, λ) =
2π

β
exp


λ2

2β


. (1.4)

In the following, we shall denote by µ[·] the expectation with respect to the measure µ. We
introduce L2(µN

β,λ), the space of functions f defined on Ω N such that µN
β,λ[ f 2

] < +∞. This is
a Hilbert space, on which A N is antisymmetric and S N is symmetric.

The thermodynamic relations between the averages of the conserved quantities r̄ ∈ R and
ē ∈ (0, +∞), and the potentials β ∈ (0, +∞) and λ ∈ R are given by

ē(β, λ) := µN
β,λ[ex ] =

1
β

+
λ2

2β2 ,

r̄(β, λ) := µN
β,λ[rx ] = −

λ

β
.

(1.5)

Let us notice that

∀ β ∈ (0, +∞), ∀ λ ∈ R, ē(β, λ) >
r̄2(β, λ)

2
. (1.6)

We assume that the system is initially close to a local equilibrium (defined as the following).

Definition 1. A sequence (µN )N of probability measures on Ω N is a local equilibrium
associated to a deformation profile r0 : T → R and an energy profile e0 : T → (0, +∞) if
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for every continuous function G : T → R and for every δ > 0, we have
lim

N→∞
µN

 1
N


x∈TN

G
 x

N


rx −


T

G(q)r0(q)dq

 > δ


= 0,

lim
N→∞

µN

 1
N


x∈TN

G
 x

N


ex −


T

G(q)e0(q)dq

 > δ


= 0.

(1.7)

Example 1.1. For any integer N we define the probability measures

µN
β0(·),λ0(·)

(dr, dp) =


x∈TN

exp(−β0(x/N )ex − λ0(x/N )rx )

Z(β0(·), λ0(·))
drx dpx , (1.8)

where β0(·) and λ0(·) are related to e0(·) and r0(·) by (1.5)
e0(·) = ē(β0(·), λ0(·)),

r0(·) = r̄(β0(·), λ0(·)).

Then, the sequence

µN

β0(·),λ0(·)


N is a local equilibrium, and it is called the Gibbs local equi-

librium state associated to the macroscopic profiles e0 and r0. Both profiles are assumed to be
continuous.

To establish the hydrodynamic limit corresponding to the two conservation laws, we look at the
process with generator N 2 L N , namely in the diffusive scale. The configuration at time t N 2 is
denoted by ωN

t , and the law of the process (ωN
t )t>0 is denoted by µN

t .

1.2. The thermodynamic entropy

The function

S(e, r) = inf
β>0,λ∈R

{λr + βe + log Z(β, λ)} (1.9)

is called the thermodynamic entropy. An easy computation, coming from the explicit expression
of the partition function, gives

S(e, r) = 1 + log(2π) + log


e −
r2

2


, when e −

r2

2
> 0. (1.10)

The relations (1.5) can be inverted according to

λ(e, r) =
∂S(e, r)

∂r
, β(e, r) =

∂S(e, r)
∂e

. (1.11)

Remark. These two equalities, together with (1.5), show that there exists a bijection between
the two sets


(β, λ) ∈ R2

; β > 0


and

(e, r) ∈ R2

; e > r2/2

. From the equations above, the

inverted relations can be written as

λ(e, r) = −
r

e − r2/2
, β(e, r) =

1

e − r2/2
. (1.12)
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We denote by Ψ the function

Ψ :


(e, r) ∈ R2

; e > r2/2


→


(β, λ) ∈ R2

; β > 0


(e, r) →


1

e − r2/2
, −

r
e − r2/2


.

If η = (e, r) and χ = (β, λ) satisfy the relations (1.5), then η and χ are said in duality and we
have

− S(e, r) + log Z(β, λ) = −η · χ. (1.13)

Here, the notation a · b stands for the usual scalar product between a and b.

1.3. Hydrodynamic equations

Let µ and ν be two probability measures on the same measurable space (X, F ). We define the
relative entropy H(µ|ν) of the probability measure µ with respect to the probability measure ν

by

H(µ|ν) = sup
f


X

f dµ − log


X
e f dν


, (1.14)

where the supremum is carried over all bounded measurable functions f on X .
The Gibbs states in infinite volume are the probability measures µβ,λ on Ω = (R×R)Z given

by

µβ,λ(dr, dp) =


x∈Z

e−βex −λrx

Z(β, λ)
drx dpx . (1.15)

We denote by τxϕ the shift of ϕ: (τxϕ)(ω) = ϕ(τxω) = ϕ(ω(x +· )). In this article the following
theorem is proved.

Theorem 1.1. Let (µN
0 )N be a sequence of probability measures on Ω N which is a local

equilibrium associated to a deformation profile r0 and an energy profile e0 such that e0 > r2
0/2

(see (1.8)). We denote by β0 and λ0 the potential profiles associated to r0 and e0:

(β0, λ0) := Ψ(e0, r0).

We assume that

H

µN

0 |µN
β0(·),λ0(·)


= o(N ) (1.16)

and that the initial profiles are continuous.
We also assume that the energy moments are bounded: let us suppose that there exists a

positive constant C which does not depend on N and t, such that

∀ k > 1, µN
t


x∈TN

ek
x


6 (Ck)k N . (1.17)

Let G be a continuous function on the torus T and ϕ be a local function which satisfies the
following property: there exists a finite subset Λ ⊂ Z and a constant C > 0 such that, for all
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ω ∈ Ω N , ϕ(ω) 6 C

1 +


i∈Λ ei (ω)


. Then,

µN
t

 1
N


x

G
 x

N


τxϕ −


T

G(y) ϕ̃(e(t, q), r(t, q))dq




−−−−→
N→∞

0 (1.18)

where ϕ̃ is the grand-canonical expectation of ϕ: in other words, for any (e, r) ∈ R2 such that
e > r2/2, let (β, λ) = Ψ(e, r) then

ϕ̃(e, r) = µβ,λ[ϕ] =


(R×R)Z

ϕ(ω) dµβ,λ(ω). (1.19)

Besides, e and r are defined on R+ × T and are solutions of
∂t r =

1
γ

∂2
q r,

∂t e =
1

2γ
∂2

q


e +

r2

2


,

q ∈ T, t ∈ R, (1.20)

with the initial conditions r(·, 0) = r0(·) and e(·, 0) = e0(·).

Remarks. 1. In order to prove the theorem, we shall show afterwards that H

µN

t |νN
χt (·)


=o(N ).

Here νN
χt (·)

is a probability measure which is close to the Gibbs local equilibrium

µN
β(t,·),λ(t,·) (1.8). The functions (β(t, ·), λ(t, ·)) are still related to e(t, ·) and r(t, ·) by (1.5).

This fact allows to establish the hydrodynamic limit in the sense given in the theorem. For
a proof, we refer the reader to [16, Corollary 2.2], [13] or [5].

2. Let us notice that the functions e, r, β and λ are smooth when t > 0, since the system of
partial differential equations is parabolic. Moreover, the function β−1

= e − r2/2 satisfies

∂t


1
β


=

1
2γ

∂2
q


1
β


+

1
γ

|∂qr |
2 >

1
2γ

∂2
q


1
β


. (1.21)

The supersolutions of the heat equation follow the minimum principle. Consequently, since
there exists c > 0 such that the initial profile β0 has the following property

∀ q ∈ TN , β0(q) > c > 0,

then we know that the function β satisfies:

∀ q ∈ TN , ∀ t ∈ [0, T ], βt (q) > c > 0. (1.22)

3. After some integrations by parts, a simple computation shows that

∂t


T

S(r(t, q), e(t, q)) dq


=

1
2γ


T


∂qβ(t, q)

β(t, q)

2

+ 2β(t, q) [∂qr(t, q)]2 dq

> 0 (1.23)

when r and e are the solutions of the hydrodynamic equations (1.20). This fact is in agreement
with the second thermodynamic principle.

In Section 3, we will show that the hypothesis on moments bounds (1.17) holds for a wide class
of initial local equilibrium states. Before stating the theorem, let us give some definitions.
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We denote by SN (R) the set of real symmetric matrices of size N . The correlation matrix
C ∈ S2N (R) of a probability measure ν on Ω N is the symmetric matrix C = (Ci, j )16i, j62N
defined by

Ci, j :=


ν[rir j ] i, j ∈ {1, . . . , N },

ν[ri p j ] i ∈ {1, . . . , N }, j ∈ {N + 1, . . . , 2N },

ν[pir j ] i ∈ {N + 1, . . . , 2N }, j ∈ {1, . . . , N },

ν[pi p j ] i, j ∈ {N + 1, . . . , 2N }.

(1.24)

Let us denote by ΣN the subset of R2N
× S2N (R) defined by the following condition:

(m, C) ∈ ΣN ⇔


mk = 0 for all k = N + 1 . . . 2N ,

Ci, j = 0 for all i ≠ j,
Ci,i > 0 for all i = 1 . . . 2N ,

Ci,i − m2
i = Ci+N ,i+N for all i = 1 . . . N .

(1.25)

Precisely, it means that m is of the form m = (m1, . . . , m N , 0, . . . , 0), and C is a diagonal
matrix whose diagonal components can be written as (m2

1 + α1, . . . , m2
N + αN , α1, . . . , αN ),

where αi > 0 for all i = 1 . . . N .
For (m, C) ∈ ΣN , we denote by Gm,C (·) the Gaussian measure with mean m and correlations

given by the matrix C . The covariance matrix of Gm,C (·) is thus C − mt m.

Lemma 1.1. Let λ(·) and β(·) be two functions of class C 1 defined on T, and µN
β(·),λ(·) be the

Gibbs local equilibrium defined by (1.8). If we denote by mβ(·),λ(·) and Cβ(·),λ(·) respectively the
mean vector and the correlation matrix of µN

β(·),λ(·), then we have

(mβ(·),λ(·), Cβ(·),λ(·)) ∈ ΣN and µN
β(·),λ(·) = Gmβ(·),λ(·),Cβ(·),λ(·)

.

Proof. This result comes from the explicit formula of µN
β(·),λ(·) given in (1.8). First, notice that

each momentum px is centered under µN
β(·),λ(·) and

µN
β(·),λ(·)[rx ] = −

λ

β

 x

N


. (1.26)

Second, we easily obtain the following expressions:

mβ(·),λ(·) =

−
λ

β


0
N


, . . . ,−

λ

β


N − 1

N


, 0, . . . , 0  

N

 , (1.27)

Cβ(·),λ(·) =


D 0N

0N D′


where


D = diag


· · · ,

1
β(x/N )

+
λ2(x/N )

β2(x/N )
, . . .


,

D′
= diag


· · · ,

1
β(x/N )

, . . .


. �

(1.28)

Now we state our second main theorem, which will be proved in Section 3.

Theorem 1.2. We assume that the initial probability measure µN
0 is a convex combination of

Gibbs local equilibrium states. More precisely, let σ be a probability measure whose support is
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included in ΣN . We assume that σ satisfies:

for all k > 1,


[K (m, C)]k dσ(m, C) < ∞, (1.29)

where K (m, C) := supi=1...N

Ci,i


. We define the initial probability measure µN

0 by

µN
0 (·) =


Gm,C (·) dσ(m, C). (1.30)

Then, (1.17) holds, and the conclusions of Theorem 1.1 are valid.

Remark. As in [3], we could consider a more general model, with a pinning potential. Instead
of the deformation rx , we now introduce the position qx of the particle x . The new pinning
Hamiltonian is given by

H p
N =


x∈TN

p2
x

2
+ ν2


x∈TN

q2
x

2
+


|x−y|=1,
x,y∈TN

(qx − qy)
2

4
. (1.31)

The strength of the pinning potential is regulated by the parameter ν > 0. The energy of site x is
now given by

ex =
p2

x

2
+ ν2 q2

x

2
+

1
4


y;|x−y|=1

(qx − qy)
2. (1.32)

The stochastic operator S p
N remains equal to S N , and the Liouville operator A p

N can be written
as follows:

A p
N =


x∈TN


px ∂qx − [(ν2

− ∆)q]x ∂px


, (1.33)

where ∆ is the discrete Laplacian: (∆u)x = ux+1 + ux−1 − 2ux .

Because of the presence of the pinning, the bulk dynamics conserves only one quantity: the total
energy


x ex . It follows that the Gibbs equilibrium measures µN

β are fully characterized by the

temperature β−1. Under µN
β , the variables px are independent of the qx and are independent

identically Gaussian variables of variance β−1. The qx are distributed according to a centered
Gaussian process with covariances given by

µN
β (qx qy) = Γ (x − y), such that


(ν2

− ∆)

Γ (z) =

1
β
1z=0. (1.34)

Observe that there exists C := C(ν) independent of N such that
µN

β (qx qy)

 6 C−1e−C |x−y| for

any N > 1.
These correlations make computations more technical, but the hydrodynamic limit can be

established by following the proof here (in [3, Section 3.2], a heuristic argument is given).
Assume that the system is initially distributed according to a Gibbs local equilibrium associated
to the energy profile e0(·), and define e(t, ·) as the evolved profile in the diffusive scale. Then, if
the energy moments are bounded like (1.17), e is the solution of the following heat equation

∂t e = ∂q(D(e)∂qe),
e(0, ·) = e0(·),

q ∈ T, t ∈ R, (1.35)
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where D(e) is the diffusivity given by

D := D(e) =
1/γ

2 + ν2 +


ν2(ν2 + 4)

. (1.36)

In our model, where the state space is not compact, what matters is the existence of moments
bounds. We will see in Section 3 that this existence can be easily justified by following the same
ideas which work for the unpinned model.

For the sake of simplicity, we will denote by et (·), rt (·), λt (·) and βt (·), respectively, the
functions q → e(t, q), q → r(t, q), q → λ(t, q), and q → β(t, q) defined on T.

1.4. Ergodicity of the infinite velocity-flip model

We conclude this part by giving the theorem of ergodicity, which is proved in [5, Sections 2.2
and 2.4.2], by following the ideas of [11]. Let us define, for all finite subsets Λ ⊂ Z, and for two
probability measures ν and µ on Ω := (R × R)Z, the restricted relative entropy

HΛ(ν|µ) := H(νΛ|µΛ) (1.37)

where νΛ and µΛ are the marginal distributions of ν and µ on Ω .

The Gibbs states in infinite volume are the probability measures µβ,λ on Ω given by

dµβ,λ :=


x∈Z

e−βex −λrx

Z(β, λ)
drx dpx . (1.38)

The formal generator of the infinite dynamics is denoted by L.

Theorem 1.3. Let ν be a probability measure on the configuration space Ω such that

1. ν has finite density entropy: there exists C > 0, such that for all finite subsets Λ ⊂ Z,

HΛ(ν|µ∗) 6 C |Λ|, (1.39)

with µ∗ := µ1,0 a reference Gibbs measure on (R × R)Z,
2. ν is translation invariant,
3. ν is stationary, i.e. for any compactly supported and differentiable function F(r, p),

A(F) dν = 0, (1.40)

4. the conditional probability distribution of p given the probability distribution of r, denoted
by ν(p|r), is invariant by any flip p → px , with x ∈ Z.

Then, ν is a mixture of infinite Gibbs states.

Corollary 1.1. If ν is a probability measure on Ω satisfying 1, 2 and if ν is stationary in the
sense that: for any compactly supported and differentiable function F(r, p),

L(F) dν = 0, (1.41)

then ν is a mixture of infinite Gibbs states.
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The outline of the rest of the paper is as follows. In the next section we expose the strategy
of the proof. We introduce the relative entropy HN (t) of µN

t with respect to a corrected local
equilibrium, and we prove a Gronwall estimate of the entropy production of the form

∂t HN (t) 6 C HN (t) + o(N ), (1.42)

where C > 0 does not depend on N . In Section 3 we prove Theorem 1.2.
We suppose that t belongs to a compact set [0, T ], T fixed. All estimates are uniform in

t ∈ [0, T ].

2. Entropy production

2.1. Introduction to the method

For the sake of simplicity, we denote all couples of the form (β(·), λ(·)) by χ(·).
The corrected Gibbs local equilibrium state νN

χt (·)
is defined by

νN
χt (·)

:=
1

Z(χt (·))


x∈TN

exp


− βt

 x

N


ex − λt

 x

N


rx

+
1
N

F


t,
x

N


· τx h(r, p)


drx dpx (2.1)

where Z(χt (·)) is the partition function and F, h are functions which will be precised later on.
The notation a · b still stands for the usual scalar product between a and b. An estimate of the
partition function Z(χt (·)) is performed in Appendix A.

We are going to use the relative entropy method, with the corrected local Gibbs state νN
χt (·)

instead of the usual one µN
χt (·)

. We define

HN (t) := H

µN

t |νN
χt (·)


=


Ω N

f N
t (ω) log

f N
t (ω)

φN
t (ω)

dµN
1,0(ω), (2.2)

where f N
t is the density of µN

t with respect to the reference measure µN
1,0. This is a solution, in

the sense of the distributions, of the Fokker–Planck equation

∂t ft = N 2 L∗

N ft (2.3)

where L∗

N = −A N + γ SN is the adjoint of L N in L2(µN
1,0). In the same way, φN

t is the density

of νN
χt (·)

with respect to µN
1,0 (which here is easily computable).

Thus, our purpose is now to prove (1.42). We begin with the following lemma.

Lemma 2.1.

∂t HN (t) 6


1

φN
t


N 2 L∗

N φN
t − ∂tφ

N
t


f N
t dµ1,0

= µN
t


1

φN
t


N 2 L∗

N φN
t − ∂tφ

N
t


. (2.4)
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Proof. The case where f N
t is smooth is proved in [13, Chapter 6, Lemma 1.4]. Here, we do not

know that f N
t is smooth, so that we refer the reader to the proof in [6, Section 3.2], which can

be easily followed. �

Now, we choose the correction term. We consider
F


t,
x

N


:=


−β ′

t

 x

N


, −λ′

t

 x

N


,

τx h(r, p) :=


rx

2γ


px+1 + px +

γ

2
rx


,

px+1

γ


.

(2.5)

Thus,

φN
t (r, p) =

(Z(1, 0))n

Z(χt (·))


x∈TN

exp


ex


−βt

 x

N


+ 1


− λt

 x

N


rx

+
1
N

F


t,
x

N


· τx h(r, p)


. (2.6)

We define ξx := (ex , rx ) and η(t, q) := (e(t, q), r(t, q)). If f is a vectorial function, we denote
its differential by D f .

In Appendix A, the following technical result is proved.

Proposition 2.1. The term (φN
t )−1


N 2 L∗

N φN
t − ∂tφ

N
t


is given by the sum of five terms in which

a microscopic expansion up to the first order appears. In other words,

1

φN
t


N 2 L∗

N φN
t − ∂tφ

N
t


=

5
k=1


x∈TN

vk


t,

x

N

 
J k

x − Hk


η


t,
x

N


− (DHk)


η


t,
x

N


·


ξx − η


t,

x

N


+ o(N ) (2.7)

where

k J k
x Hk(e, r) vk(t, q)

1 p2
x +rxrx−1+2γ pxrx−1 e +

r2

2
−1
2γ

∂2
q β(t, q)

2 rx + γ px r −
1
γ
∂2

q λ(t, q)

3 p2
x (rx + rx−1)

2 (2e− r2)


e +
3
2 r2


1
4γ

[∂qβ(t, q)]2

4 p2
x (rx + rx−1) r (2e − r2) 1

γ
∂qβ(t, q) ∂qλ(t, q)

5 p2
x e −

r2

2
1
γ
[∂qλ(t, q)]2

A priori the first term on the right-hand side of (2.7) is of order N , but we want to take advantage
of these microscopic Taylor expansions. First, we need to cut-off large energies in order to work
with bounded variables only. Second, the strategy consists in performing a one-block estimate:
we replace the empirical truncated current, which is averaged over a microscopic box centered
at x , by its mean with respect to a Gibbs measure with the parameters corresponding to the
microscopic averaged profiles.
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A one-block estimate will be performed for each term of the form
x∈TN

vk


t,

x

N

 
J k

x − Hk


η


t,
x

N


− (DHk)


η


t,
x

N


·


ξx − η


t,

x

N


. (2.8)

In the following the index k is omitted, whenever this does not cause confusion. We follow the
lines of the proof given in [5, Section 3.3], and inspired from [16]. A sketch of the proof for the
one-block estimate is given in Appendix B.

2.2. Cut-off of large energies

For x ∈ TN , we define Ax,M := {ex +ex−1 6 M}, Jx,M := Jx 1Ax,M , and ξx,M := ξx 1ex 6M .

Then, Jx,M and ξx,M are bounded by C(M) > 0.
We use twice the Cauchy–Schwartz inequality to write

µN
t


x∈TN

v


t,
x

N


Jx 1Ac

x,M



6 µN
t


x∈TN

v2


t,
x

N


J 2

x

1/2 
x∈TN

1Ac
x,M

1/2


6


µN

t


x∈TN

v2


t,
x

N


J 2

x

1/2 
µN

t


x∈TN

1Ac
x,M

1/2

. (2.9)

First, v2 (t, x/N ) is bounded by a constant which does not depend on N . Second, the term J 2
x

can be bounded above by the squared energy e2
x . The hypothesis (1.17) shows that there exists

C0 which does not depend on N such that
µN

t


x∈TN

v2


t,
x

N


J 2

x

1/2

6 C0 N 1/2. (2.10)

Moreover, the Markov inequality proves that

µN
t


x∈TN

1Ac
x,M


6


x∈TN

µN
t


1ex >M/2


+ µN

t


1ex−1>M/2


6

4
M


x∈TN

µN
t [ex ]

6
C1

M
N . (2.11)

Finally, we obtain a constant C independent of N such that

µN
t


x∈TN

v


t,
x

N


Jx 1Ac

x,M


6 C N ε(M). (2.12)

Observe that this estimate is in agreement with the Gronwall inequality we want to prove, since
we are going to divide by N . Thus, the error term is of order 1/M that goes to 0 as M → ∞.

Consequently, Jx can be replaced by Jx,M in (2.8), and similarly, ξx can be replaced by ξx,M .



M. Simon / Stochastic Processes and their Applications 123 (2013) 3623–3662 3637

2.3. One-block estimate

Now we prove that

1
N

µN
t


x∈TN

v


t,
x

N

 
Jx,M − H


η


t,
x

N



− (DH)

η


t,
x

N


·


ξx,M − η


t,

x

N


6 C

HN (t)

N
+ ε(N , M) (2.13)

with ε(N , M) −−−−−−−−→
M→∞,N→∞

0.

We denote by Λℓ(y) the box of length ℓ centered around y. We introduce the microscopic
average profiles

ηℓ,M (y) :=
1
ℓ


j∈Λℓ(y)

ξ j,M . (2.14)

We split TN into p = N/ℓ boxes Λℓ(x j ) centered at x j . Here ℓ is assumed to divide N for
simplicity. We will first let N → ∞, then ℓ → ∞ and then M → ∞.

First of all, we want to replace

1
N


x∈TN

v


t,
x

N


Jx,M (2.15)

by

1
p

p
j=1

v


t,
xk

N

1
ℓ


i∈Λℓ(x j )

Ji,M

 . (2.16)

The error term produced during this step can be written as

|RN | =
1
N


p

j=1


i∈Λℓ(x j )


v


t,

i

N


− v


t,

x j

N


Ji,M

 6 C1(M)
ℓ

N
. (2.17)

The last inequality comes from the smoothness of v, more preciselyv t,
i

N


− v


t,

x j

N

 6 C0
ℓ

N
. (2.18)

Similarly, we perform the same estimates for the other terms and it remains to prove that

µN
t

 1
p

p
j=1

v


t,
x j

N

1
ℓ


i∈Λℓ(x j )

Ji,M − H

η


t,
x j

N



− (DH)

η


t,
x j

N


·


ηℓ,M (x j ) − η


t,

x j

N


 (2.19)

vanishes as M, N , ℓ → ∞, the limit in N taken first, then the limit in ℓ and finally the limit in
M . The additive term which appears after performing this replacement can be bounded above by
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a term εN ,M,ℓ which depends on N , M and ℓ, but which is independent of the particular splitting
of TN into p boxes. This term is of order o(N ) in the Gronwall inequality we want to prove, in
the sense that

lim
M→∞

lim
ℓ→∞

lim
N→∞

N−1 µN
t [εN ,M,ℓ] = 0. (2.20)

Now we want to perform a one-block estimate. The main idea consists in replacing
ℓ−1

i∈Λℓ(x j )
Ji,M by H(ηℓ,M (x j )). This is achieved thanks to the ergodicity of the dynam-

ics (see Theorem 1.3). In order to use this ergodicity property, we have to work with a space
translation invariant measure. To obtain such a probability measure, we introduce a second aver-
age over the x j , 1 6 j 6 p. For each k ∈ {0, . . . , ℓ − 1}, we can split TN into p disjoint boxes
of length ℓ by writing

∀ k = 0, . . . , ℓ − 1, TN =

p
j=1

Λℓ(x j + k). (2.21)

Then, we average the different splittings mentioned above. More precisely, in Appendix B we
recall how to prove

lim sup
M→∞

lim sup
ℓ→∞

lim sup
N→∞

1
ℓ

ℓ−1
k=0

µN
t

×

 1
pℓ

p
j=1

v


t,
[x j + k]

N

 
i∈Λℓ(x j +k)

Ji,M − H(ηℓ,M (x j + k))


 = 0. (2.22)

2.4. Large deviations

The previous estimates are valid for any splitting of TN into p boxes of length ℓ. Thus, it
would be sufficient to prove (2.19) with every xi replaced by xi+k for arbitrary k ∈ {1, . . . , ℓ−1}.
Consequently, it is sufficient to prove (2.19) in an averaged form. Then, from the one-block
estimate, we have to deal with

1
ℓ

ℓ−1
k=0

µN
t


1
N

p
j=1

v


t,

[x j + k]

N


Ω


ηℓ,M (x j + k), η


t,

[x j + k]

N


, (2.23)

where Ω(w, u) := H(w) − H(u) − DH(u) · (w − u).

By definition of the entropy, for any α > 0 and any positive measurable function f we have
f dµ 6

1
α


log


eα f dν


+ H(µ|ν)


. (2.24)

This inequality, known as the entropy inequality, allows to show that: for any α > 0, (2.23) is
less than or equal to

HN (t)

α N
+

1
ℓ

ℓ−1
k=0

1
αN

log νN
χt (·)


e
αℓ
p

j=1 v


t,
[x j +k]

N


Ω

ηℓ,M (x j +k),η


t,

[x j +k]

N


. (2.25)

Notice that the last integral converges because all quantities are bounded.
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The first term is in agreement with the Gronwall inequality we want to obtain. We look at the
second term. Since we have arranged the sum over p disjoint blocks which are independently
distributed by νN

χt (·)
, the second term is equal to

1
ℓ

ℓ−1
k=0

1
αN

p
j=1

log νN
χt (·)


e
αℓv


t,

[x j +k]

N


Ω

ηℓ,M (x j +k),η


t,

[x j +k]

N


. (2.26)

We are going to show that this expression vanishes as M, N , ℓ → ∞ by using the large
deviation properties of the measure νN

χt (·)
, that locally is almost homogeneous. In fact, by using

the smoothness for the various involved functions, we can substitute the inhomogeneous product
measure νN

χt (·)
restricted to Λℓ(x j + k) with the homogeneous product measure µN

χt ([x j +k]/N ), in
each expectation of the previous expression. More precisely, we have the following lemma.

Lemma 2.2.

M1(N , ℓ, k, M) :=
1

αN

p
j=1

log νN
χt (·)


e
αℓ

vt,
[x j +k]

N


Ω

ηℓ,M (x j +k),η


t,

[x j +k]

N


(2.27)

can be replaced by

M2(N , ℓ, k, M) :=
1

αN

p
j=1

log µN
χt ([x j +k]/N )

×


e
αℓ

vt,
[x j +k]

N


Ω

ηℓ,M (x j +k),η


t,

[x j +k]

N


. (2.28)

The difference between these two terms is less than or equal to a small term which depends on
ℓ (but not on k) and vanishes in the N limit: there exists a constant C(ℓ, M, N ) which does not
depend on k such that

M1(N , ℓ, k, M) − M2(N , ℓ, k, M) 6 C(ℓ, M, N ) and C(ℓ, M, N ) −−−−→
N→∞

0. (2.29)

Remark. In the following, we will prove that

lim sup
M→∞

lim sup
ℓ→∞

lim sup
N→∞

M2(N , ℓ, k, M) = 0. (2.30)

In addition to this lemma, this implies that

lim sup
M→∞

lim sup
ℓ→∞

lim sup
N→∞

M1(N , ℓ, k, M) = 0, (2.31)

since M1(N , ℓ, k, M) is always nonnegative, and we know that, for all sequences an and bn ,

lim sup an 6 lim sup(an − bn) + lim sup bn . (2.32)

Proof. For each j ∈ {1, . . . , p}, the function

F j := exp

αℓ

v t,
[x j + k]

N


Ω


ηℓ,M (x j + k), η


t,

[x j + k]

N

 (2.33)

is bounded above by eCℓ, C > 0 (since ηℓ,M is bounded and t belongs to a compact set), and
depends on the configuration only through the coordinates in Λℓ(x j + k). Thus, each expectation
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appearing in the sum can be taken w.r.t the restriction to Λℓ(x j + k) of νN
χt (·)

. These restrictions
are inhomogeneous product measures but with slowly varying parameters and hence, each term
log νN

χt (·)
[F j ] can be replaced by log µN

χt ([x j +k]/N )[F j ] with a small error.

Indeed, the difference between these two terms is equal to

log µN
χt ([x j +k]/N )


1 +

F j (h j − 1)

µN
χt ([x j +k]/N )[F j ]



= log


1 +

µN
χt ([x j +k]/N )[F j (h j − 1)]

µN
χt ([x j +k]/N )[F j ]


(2.34)

with

h j := exp
 

i∈Λℓ(x j +k)

ξi,M ·


χt


i

N


− χt


x j + k

N



−
1
N

F


t,

i

N


· τi h +


log Z


χt


i

N


− log Z


χt


x j + k

N


. (2.35)

The inequality log(1 + x) 6 |x | (true for any real x) and the fact that µN
χt ([x j +k]/N )[F j ] > 1

reduce us to estimate

µN
χt ([x j +k]/N )[|F j (h j − 1)|]. (2.36)

By using the smoothness of χt and the inequality |ex
− 1| 6 |x |e|x |, one easily shows that there

exist positive constants C0, C(ℓ), and β̄ which do not depend on j such that

|F j (h j − 1)| 6
C(ℓ)ℓ

N

 
i∈Λℓ(x j +k)


ei,M + ei+1,M + 1


× exp

C0ℓ

N


i∈Λℓ(x j +k)


ei,M + ei+1,M + 1

 , and

dµN
χt ([x j +k]/N )

dµN
β̄,0


Λℓ(x j +k)

6 C(ℓ).

(2.37)

Hence, the total error performing by these replacements is bounded above:

M1(N , ℓ, k, M) − M2(N , ℓ, k, M) 6
1

αN
C1(ℓ, M) µN

β̄,0

×

exp

C0

p


i∈Λℓ(0)

[ei,M + ei+1,M + 1]




for some positive constant C1(ℓ, M).
It trivially goes to 0 as N goes to infinity for each given fixed ℓ. �
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Finally, we have to show that the limit

lim sup
M→∞

lim sup
ℓ→∞

lim sup
N→∞

1
ℓ

ℓ−1
k=0

1
αN

p
j=1

log µN
χt ([x j +k]/N )

×


e
αℓv


t,

[x j +k]

N


Ω

ηℓ,M ,η


t,

[x j +k]

N


(2.38)

vanishes. Here, ηℓ,M := ηℓ,M (0) = ℓ−1
i∈Λℓ(0) ξi,M .

The limit in p results in an integral over T because we have a Riemann sum. Moreover, the
integral does not depend on k so that the averaging over k disappears in the p limit. Hence, the
point is to estimate

lim sup
M→∞

lim sup
ℓ→∞

1
αℓ


T

log µN
χt (q)


eαℓv(t,q) Ω(ηℓ,M ,η(t,q))


dq. (2.39)

According to the Laplace–Varadhan theorem applied to these product measures µN
χt (q), and

according to the dominated convergence theorem, the previous limit is equal to

lim sup
M→∞

1
α


T

sup
z∈R2

{αv(t, q) Ω(z, η(t, q)) − IM (z, η(t, q))} dq, (2.40)

where IM (z, η(t, q)) is the rate function of the sequence


k−1k
i=1 ξi,M


k

as (rx , px )x∈TN are

distributed according to the homogeneous product measure µN
χt (q).

The function IM is the Legendre transform of the cumulant-generating function of ξ0,M :

IM (z, η(t, q)) = sup
y∈R2


y · z − log µN

χt (q)[e
y·ξ0,M ]


. (2.41)

Hence

lim inf
M→∞

IM (z, η(t, q)) > sup
y∈R2


y · z − log µN

χt (q)[e
y·ξ0 ]


= I (z, η(t, q)), (2.42)

where I (z, η(t, q)) is the rate function of


k−1k
i=1 ξi


k

as (ry, py)y are distributed according

to the homogeneous product measure µN
χt (q).

It follows, by Fatou’s lemma, that (2.40) is smaller than or equal to

1
α


T

sup
z

{αv(t, q) Ω(z, η(t, q)) − I (z, η(t, q))} dq. (2.43)

From now on we omit the dependence in (t, q) of the involved functions v and η. Recall that χ

and η are in duality (see (1.13)). An easy computation gives that

I (z, η) = sup
y


y · z − log


R2

ey·ξ eχ ·ξ−log Z(χ)drdp


= sup
y

{y · z − log Z(χ + y) + log Z(χ)}

= log Z(χ) + z · χ − S(z), (2.44)

where the last equality follows from the equality between the Fenchel–Legendre transform of
log Z and the function −S. We observe that I (η, η) = 0 and Dz I (z, η) = 0. Furthermore, I is
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strictly convex in z:

(D2
z I )(z, η) = (D2

z {−S})(z) > 0. (2.45)

Since Ω(η, η) = 0 and (DzΩ)(z, η) = (DH)(z) − DH(η), we also get: (DzΩ)(η, η) = 0.

Lemma 2.3. For α > 0 sufficiently small,

∀ z ∈ R2, ∀ q ∈ T, αv(t, q)Ω(z, η(t, q)) 6 I (z, η(t, q)). (2.46)

Proof. An easy computation provides an explicit expression for the rate function: if z = (z1, z2)

and η = (e, r) with e − r2/2 > 0 then

I (z, η) =
1

e − r2/2


r2

2
− z2r + z1


− log


z1 − z2

2/2

e − r2/2


− 1. (2.47)

From the inequality − log x > −x + 1 (satisfied for any x > 0), we get

I (z, η) >
1

2(e − r2/2)
(r − z2)

2. (2.48)

Thus, for a given η, the rate function z → I (z, η) is such that I (z, η) > cη|z − η|
2, where cη is

a positive constant. Moreover, according to (1.22),

∀ t ∈ [0, T ], ∀ q ∈ T, cη(t,q) > c > 0 (2.49)

Let us fix z ∈ R2. From the Taylor–Lagrange theorem, there exists a positive constant C such
that

Ω(z, η(t, q)) 6 C |z − η(t, q)|2 6 I (z, η(t, q)). (2.50)

More precisely, C is equal to

sup
(t,q)∈[0,T ]×T

∥D2 H(η(t, q))∥2. (2.51)

Since v is uniformly bounded, the result is proved. �

Consequently, for α small enough,

sup
z

{αv(t, q) Ω(z, η(t, q)) − I (z, η(t, q))} = 0, (2.52)

and we have finally proved that

∂t HN (t) 6 C HN (t) + RN ,ℓ,M (t) (2.53)

with

lim
M→∞

lim
ℓ→∞

lim
N→∞

1
N

 t

0
RN ,ℓ,M (s) ds = 0. (2.54)

By the Gronwall inequality we obtain: HN (t)/N −−−−→
N→∞

0 and Theorem 1.1 is proved.

3. Proof of Theorem 1.2: moments bounds

In the following, we prove the two conditions on the moments bounds for a class of local
equilibrium states. First, we assume that the initial law µN

0 is exactly the Gibbs local equilibrium
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measure µN
β0(·),λ0(·)

. Second, we extend the proof to the case where µN
0 is a convex combination

of Gibbs local equilibrium measures.
We need to control the moments µN

t


x ek

x


for all k > 1. The first two bounds (k = 1, 2)

would be sufficient to justify the cut-off of the currents, but here we need more because of
Lemma A.2 (which is necessary to prove Proposition 2.1). Since the chain is harmonic, Gibbs
states are Gaussian. We recall that all Gaussian moments can be expressed in terms of variances
and covariances. In the following, we first give an other representation of the dynamics of the
process, and then we prove the bounds and precise their dependence on k.

Let us highlight that, from now on, we consider the process with generator L N : it is not
accelerated any more. The law of this new process (ω̃t )t>0 is denoted by µ̃N

t . At the end of
this part, Theorem 1.2 will be easily deduced since all estimates will not depend on t , and the
following equality still holds:

µN
t = µ̃N

t N 2 . (3.1)

Remarks. 1. In the following, we always respect the decomposition of the space Ω N
=

RN
× RN . Let us recall that the first N components stand for r and the last N components

stand for p. All vectors and matrices are written according to this decomposition. Let ν be a
measure on Ω N . We denote by m ∈ R2N its mean vector and by C ∈ M2N (R) its correlation
matrix (see (1.24)). We can write m and C as

m = (ρ, π) ∈ R2N and C =


U Z∗

Z V


∈ S2N (R), (3.2)

where ρ := ν[r] ∈ RN , π := ν[p] ∈ RN and U, V, Z ∈ MN (R).
2. Thanks to the convexity inequality (a + b)k 6 2k−1 (ak

+ bk), for a, b > 0, we can write

ek
x 6

1
2


p2k

x + r2k
x


. (3.3)

Thus, instead of proving (1.17) we will show

µN
t


x∈TN

p2k
x


6 (Ck)k N and µN

t


x∈TN

r2k
x


6 (Ck)k N . (3.4)

3.1. Poisson process and Gaussian measures

We are going to use a graphical representation of the process (ω̃t )t>0.
Let us define

A :=



0 · · · · · · 0 −1 1 (0)
...

... 0
. . .

. . .

...
... 0

. . . 1
0 · · · · · · 0 1 0 0 −1
1 0 0 −1 0 · · · · · · 0

−1
. . . 0

...
...

. . .
. . . 0

...
...

(0) −1 1 0 · · · · · · 0


∈ M2N (R). (3.5)
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We now consider (mt , Ct )t>0, a Markov process on R2N
× S2N (R) whose generator is denoted

by G and defined as follows.

Take m := (ρ, π) ∈ R2N and C :=


U Z∗

Z V


∈ S2N (R), where ρ, π are two vectors in

RN , U, V are two symmetric matrices in SN (R) and Z is a matrix in MN (R). Hereafter, we
denote by Z∗ the transpose of the matrix Z .

The generator G N is given by

(G N v)(m, C) := (K N v)(m, C) + γ (H N v)(m, C), (3.6)

where

K N :=


i, j∈TN

(−AC + C A)i, j ∂Ci, j +


i∈TN


(πi+1 − πi )∂ρi + (ρi − ρi−1)∂πi


, (3.7)

and

(H N v)(m, C) :=
1
2


k∈TN

[v(mk, Ck) − v(m, C)]. (3.8)

Here,

mk
= (ρ, πk) and Ck

= Σ ∗

k · C · Σk =


U Z k∗

Z k V k


. (3.9)

In these last two formulas, πk is the vector obtained from π by the flip of πk into −πk , and Σk
is defined as

Σk =


In 0n
0n In − 2Ek,k


. (3.10)

More precisely,

Z k
i, j = (−1)δk,i Zi, j and V k

i, j = (−1)(δk,i +δk, j )Vi, j . (3.11)

We denote by Pm0,C0 the law of the process (mt , Ct )t>0 starting from (m0, C0), and by Em0,C0 [·]

the expectation with respect to Pm0,C0 .
For t > 0 fixed, let θ t

m0,C0
(·, ·) be the law of the random variable (mt , Ct ) ∈ R2N

× S2N (R),
knowing that the process starts from (m0, C0).

Recall that we denote by Gm,C (·) the Gaussian measure on Ω N with mean m ∈ R2N and
correlation matrix C ∈ S2N (R).

Lemma 3.1. Let µN
0 := µN

β0(·),λ0(·)
be the Gibbs equilibrium state defined by (1.8), where λ0(·)

and β0(·) are the two macroscopic potential profiles.
Then,

µ̃N
t =


Gm,C (·) dθ t

m0,C0
(m, C) (3.12)

where

m0 :=

−
λ0

β0


0
N


, . . . ,−

λ0

β0


N − 1

N


, 0, . . . , 0  

N

 (3.13)
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and

C0 :=


D 0N

0N D′


with


D = diag


. . . ,

1
β0(x/N )

+
λ2

0(x/N )

β2
0 (x/N )

, . . .


,

D′
= diag


. . . ,

1
β0(x/N )

, . . .


.

(3.14)

Proof. We begin with the graphical representation of the process (ω̃t )t>0, which is based on the
Harris description. Let (Ni )i∈TN be a sequence of independent standard Poisson processes of
intensity γ . In other words, we put on each site i ∈ TN an exponential clock of mean 1/γ . At
time 0 the process has an initial state ω0. Let T1 = inft>0 {∃ i ∈ TN , Ni (t) = 1} and i1 the site
where the infimum is achieved.

During the interval [0, T1), the process follows the deterministic evolution given by the
generator A N . More precisely, let F : (r, p) ∈ T2

N → A · (r, p) ∈ T2
N where A is given by

(3.5). Then, for any continuously differentiable function f : Ω N
→ R,

A N f (ω) = A · D f (ω), (3.15)

and during the time interval [0, T1), ω̃t follows the evolution given by the system: dy/dt = F(y).

At time T1, the momentum pi1 is flipped, and gives a new configuration. Then, the system
starts again with the deterministic evolution up to the time of the next flip, and so on. Let
ξ := (i1, T1), . . . , (ik, Tk), . . . be the sequence of sites and ordered times for which we have
a flip, and let us denote its law by P. Conditionally to ξ , the evolution is deterministic, and the
state of the process ω̃

ξ
t is given by

∀ t ∈ [Tk, Tk+1), ω̃
ξ
t = e(t−Tk )A

◦ Fik ◦ e(Tk−Tk−1)A
◦ Fik−1 ◦ · · · ◦ eT1 Aω0, (3.16)

where Fi is the map ω = (r, p) → (r, pi ).
If initially the process starts from ω0 which is distributed according to a Gaussian measure

µN
0 , then ω̃

ξ
t is distributed according to a Gaussian measure µ̃

ξ
t . Then, the density µ̃N

t is given
by

µ̃N
t (·) =


µ̃

ξ
t (·) dP(ξ). (3.17)

More precisely, the mean vector mξ
t and the correlation matrix Cξ

t of µ̃
ξ
t can be related to the

mean vector m0 and the correlation matrix C0 of µN
0 :

mξ
t = e(t−Tk )A

· Σik · e(Tk−Tk−1)A
· Σik−1 · · · eT1 A

· m0, (3.18)

and

Cξ
t = e(t−Tk )A

· Σik · e(Tk−Tk−1)A
· · ·Σi1 · eT1 A

· C0 · e−T1 A

·Σ ∗

i1
· · · e−(Tk−Tk−1)A

· Σ ∗

ik
e−(t−Tk )A. (3.19)

Eqs. (3.18) and (3.19) also give a graphical representation of the process (mt , Ct )t>0: during the
interval [0, T1), mt follows the evolution given by the (vectorial) system

dy

dt
= F(y) (3.20)
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(where F has been previously introduced for the process ω̃t ). At time T1, the component mi1+N
(which corresponds to the mean of pi1 ) is flipped, and gives a new mean vector. Then, the
deterministic evolution goes on up to the time of the next flip, and so on.

In the same way, during the interval [0, T1), Ct follows the evolution given by the (matrix)
system:

d M

dt
= −AM + M A (3.21)

(where A has been previously defined). At time T1, all the components Ci1, j and Ci,i1 when
j ≠ i1 and i ≠ i1 are flipped and the matrix CT1 becomes Σi1 · CT1 · Σ ∗

i1
. The generator of this

Markov process (mt , Ct )t>0 is exactly the one defined by (3.6). Consequently, for t > 0, the law
of the random variable (mt , Ct ) is θ t

m0,C0
, where

m0 =

−
λ0

β0


0
N


, . . . ,−

λ0

β0


N − 1

N


, 0, . . . , 0  

N

 (3.22)

and

C0 =


D 0N

0N D′


where


D = diag


· · · ,

1
β0(x/N )

+
λ2

0(x/N )

β2
0 (x/N )

, . . .


,

D′
= diag


· · · ,

1
β0(x/N )

, . . .


,

(3.23)

as it can be deduced from Lemma 1.1. Recall that in this section, µN
0 is given by

µN
0 (dr, dp) =


x∈TN

exp (−β0 (x/N ) ex − λ0(x/N )rx )

Z(β0(·), λ0(·))
drx dpx . (3.24)

It follows that the density µ̃N
t is equal to

µ̃N
t (·) =


µ̃

ξ
t (·) dP(ξ) =


Gm,C (·) dθ t

m0,C0
(m, C). � (3.25)

Remark. Observe that

µ̃N
t [px ] =


Gm,C (px ) dθ t

m0,C0
(m, C) =


πx dθ t

m0,C0
(m, C) = Em0,C0 [πx (t)], (3.26)

µ̃N
t [rx ] =


Gm,C (rx ) dθ t

m0,C0
(m, C) =


ρx dθ t

m0,C0
(m, C) = Em0,C0 [ρx (t)]. (3.27)

Lemma 3.2. Let (mt , Ct )t>0 be the Markov process defined above. As previously done, we
introduce ρ(t), π(t) ∈ RN and U (t), V (t), Z(t) ∈ MN (R) such that

mt = (ρ(t), π(t)) and Ct =


U (t) Z∗(t)
Z(t) V (t)


(3.28)

Then,

Pm0,C0 -a.s. , ∀ t > 0,


π2

y (t) 6 Vy,y(t),
ρ2

y(t) 6 Uy,y(t).
(3.29)
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Proof. First of all, let us notice that the quantities Vy,y(t) − π2
y (t) and Uy,y(t) − ρ2

y(t) are the
diagonal components of the symmetric matrix St := mt ·

t mt − Ct . From Lemma 3.1, we have

St =


Sξ

t dP(ξ). (3.30)

For any sequence of sites and ordered times ξ = (i1, T1), . . . , (ik, Tk), . . ., the symmetric matrix
Sξ

t is positive because this is the matrix of covariances of ω̃
ξ
t . It follows that St is positive, and

its diagonal components are all positive. �

Remark. In the case of the pinned chain, the matrix A is slightly different, but all the notations
and conclusions are still valid. The initial correlation matrix for the pinned model is not more
diagonal, but has non-trivial values on the upper and lower diagonals. The initial mean vector is
equal to 0R2N .

3.2. The evolution of (mt , Ct )t>0

Thanks to the regularity of β0 and λ0, we know that there exists a constant K which does not
depend on N such that

1
N


i, j


(Ui, j )

2(0) + (Vi, j )
2(0) + 2(Zi, j )

2(0)


6 K ,

1
N


i


Ui,i (0) + Vi,i (0)


6 K ,

1
N


i


(Ui,i )

k(0) + (Vi,i )
k(0)


6 K k, for all k > 1.

(3.31)

Moreover, one can easily show that

G


i, j

(Ui, j )
2
+ (Vi, j )

2
+ 2(Zi, j )

2


= 0 and G


i

Ui,i + Vi,i


= 0. (3.32)

It results that the two first inequalities of (3.31) are actually uniform in t , in the sense that
1
N

Em0,C0


i, j


(Ui, j (t))

2
+ (Vi, j (t))

2
+ 2(Zi, j (t))

2


6 K ,

1
N

Em0,C0


i


Ui,i (t) + Vi,i (t)


6 K .

(3.33)

We are going to see how this last inequality can be used in order to show (1.17). We denote by
uk(t) and vk(t) the two quantities

uk(t) = Em0,C0


i∈TN

U k
i,i (t)


,

vk(t) = Em0,C0


i∈TN

V k
i,i (t)


.

(3.34)
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Let us make the link with (1.17). In view of (3.25), we can write

µ̃N
t


p2k

y


=


Gm,C


p2k

y


dθ t

m0,C0
(m, C), (3.35)

µ̃N
t


r2k

y


=


Gm,C


r2k

y


dθ t

m0,C0
(m, C). (3.36)

We use the convexity inequality (a + b)2k 6 22k−1 (a2k
+ b2k) – which is true for all a, b ∈ R –

to get

µ̃N
t


p2k

y


=


Gm,C


(py − πy + πy)

2k


dθ t
m0,C0

(m, C)

6 22k−1


Gm,C


(py − πy)

2k


dθ t
m0,C0

(m, C)

+ 22k−1


π2k
y dθ t

m0,C0
(m, C). (3.37)

We deal with the two terms of the sum, separately. First, observe that Gaussian centered moments
are easily computable:

Gm,C


(py − πy)

2k


=


Vy,y − π2

y

k (2k)!

k! 2k . (3.38)

Then, 
y∈TN

 
Vy,y − π2

y

k (2k)!

k! 2k dθ t
m0,C0

(m, C)

6
(2k)!

k! 2k


vk(t) + Em0,C0


y∈TN

π2k
y (t)


. (3.39)

In the same way,


y∈TN

 
Uy,y − ρ2

y

k (2k)!

k! 2k dθ t
m0,C0

(m, C)

6
(2k)!

k! 2k


uk(t) + Em0,C0


y∈TN

ρ2k
y (t)


. (3.40)

Lemma 3.2 shows that

Em0,C0


y∈TN

π2k
y (t)


6 Em0,C0


y∈TN

V k
y,y(t)


= vk(t),

Em0,C0


y∈TN

ρ2k
y (t)


6 Em0,C0


y∈TN

U k
y,y(t)


= uk(t).

(3.41)
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As a result,
y

µ̃N
t


p2k

y


6

(2k)!

k!
vk(t) ∼ 2


4
e

k

kk vk(t), (3.42)


y

µ̃N
t


r2k

y


6

(2k)!

k!
uk(t) ∼ 2


4
e

k

kk uk(t). (3.43)

In a few words, to get (1.17), we need to estimate the two quantities uk(t) and vk(t), which are
related to Ct . That is what we do in the next section.

Remark. In the case of the pinned model, the px and qx remain centered during the evolution:
for all t > 0, mt = 0R2N . This simplifies the study since we do not need to center the variables.
The result is the same: we need to estimate uk(t) and vk(t).

3.3. The correlation matrix

Lemma 3.3. For any integer k not equal to 0, there exists a positive constant K which does not
depend on N and t such that

vk(t) 6 K k N ,

uk(t) 6 K k N .
(3.44)

Proof. First of all, (3.33) shows that, uniformly in t ,
u1(t) 6 K N
u2(t) 6 K N

and

v1(t) 6 K N
v2(t) 6 K N .

(3.45)

We observe that

uk(t) + vk(t) = Em0,C0


i∈TN

Ck
i,i (t)


=

 
i∈TN

(Cξ
i,i )

k(t) dP(ξ). (3.46)

Thanks to the dynamics description, we know the expression of the correlation matrix:
conditionally to ξ , for all t ∈ [Tk, Tk+1),

Cξ (t) = e(t−Tk )A
· Σik · e(Tk−Tk−1)A

· · ·Σi1 · eT1 A
· C0 · e−T1 A

·Σ ∗

i1
· · · e−(Tk−Tk−1)A

· Σ ∗

ik
e−(t−Tk )A. (3.47)

Consequently, since C0 and Cξ (t) are similar, we have:

∀ k ∈ N, Tr([Cξ (t)]k) = Tr(Ck
0 ) = O(N ). (3.48)

More precisely,

Tr(Ck
0 ) =


i∈TN

U k
i,i (0) + V k

i,i (0) =


i∈TN

1

βk
0 (i/N )

+


1

β0(i/N )
+

λ2
0(i/N )

β2
0 (i/N )

k

. (3.49)

From (3.31) we get Tr(Ck
0 ) 6 N K k , where K does not depend on N , ξ and t :

K := sup
u∈[0,1]


1

β0(u)
+

λ2
0(u)

β2
0 (u)


. (3.50)
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Now we show that the same inequality holds for


i [C
ξ
i,i ]

k(t). The matrix Cξ (t) is symmetric,
hence diagonalizable, and after denoting its eigenvalues by λ1, . . . , λ2N , we can write

Tr([Cξ (t)]k) =

2N
i=1

λk
i . (3.51)

We have now to compare
2N

i=1 λk
i with

2N
i=1[C

ξ
i,i ]

k(t). But, if we denote by P the orthogonal

matrix of the eigenvectors of Cξ (t), then we get Cξ (t) = (Pξ
t )∗ · D · Pξ

t , where D is the diagonal
matrix with the eigenvalues λ1, . . . , λ2N . For the sake of simplicity, we denote by (Pi, j )i, j the

components of Pξ
t . Then,

[Cξ
i,i ]

k(t) =


j,l

P∗

i, j D j,l Pl,i

k

=


j

P∗

i, jλ j Pj,i

k

=


j

P∗

i, j Pj,i · λ j

k

. (3.52)

But,


j P∗

i, j Pj,i = 1, since D is an orthogonal matrix. Consequently, we can use the convexity
inequality, and we obtain

i

[Cξ
i,i ]

k(t) 6


i


j

P∗

i, j Pj,iλ
k
j 6


j

λk
j = Tr([Cξ (t)]k) 6 N K k . (3.53)

Hence,

uk(t) + vk(t) 6


N K k dP(ξ) 6 N K k . � (3.54)

Remark. We notice that the same proof works for the pinned case. The only difference is
about the initial matrix C0, but the smoothness of the profile β0 is still true, and the estimate
Tr(Ck

0 ) = O(N ) is valid.

3.4. When µN
0 is a convex combination of Gibbs measures

As in Theorem 1.2, we now suppose that the initial probability measure µN
0 is a convex

combination of Gibbs states defined by

µN
0 (·) =


Gm0,C0(·) dσ(m0, C0). (3.55)

If initially the process starts from ω0 which is distributed according to a Gaussian measure
Gm0,C0 , we know from Lemma 3.1 that ω̃t is distributed according to a convex combination
of Gaussian measures written as

Gm,C (·) dθ t
m0,C0

(m, C). (3.56)

Consequently, in the case where µN
0 is given by (3.55), the law of the process ω̃t is given by

µ̃N
t (·) =

 
Gm,C (·) dθ t

m0,C0
(m, C)


dσ(m0, C0). (3.57)
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Let us recall that we want to control, for k > 1, µ̃N
t


x∈TN

p2k
x


and µ̃N

t


x∈TN

r2k
x


.

Following the lines of the previous section, we notice that it is sufficient to control two quantities:


Em0,C0


i∈TN

U k
i,i (t)


dσ(m0, C0),

Em0,C0


i∈TN

V k
i,i (t)


dσ(m0, C0).

(3.58)

Lemma 3.3 gives a constant C(λ0, β0) which does not depend on N and t such that
Em0,C0


i∈TN

U k
i,i (t)


6 [C(λ0, β0)]

k N ,

Em0,C0


i∈TN

V k
i,i (t)


6 [C(λ0, β0)]

k N .

(3.59)

More precisely,

C(λ0, β0) = sup
u∈[0,1]


1

β0(u)
+

λ2
0(u)

β2
0 (u)


. (3.60)

In order to keep the same control, we have to suppose that, for all k > 1,
[K (m, C)]k dσ(m, C) < ∞, where K (m, C) := sup

i∈TN

Ci,i . (3.61)

Finally, let us observe that all estimates are given for µ̃N
t but are still true for the accelerated law

µN
t . Indeed, the constants that appear do not depend on N and t .
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Appendix A. Proof of the Taylor expansions

Now we prove Proposition 2.1. For the sake of simplicity, we define
gx (r, p) := −

rx

2γ


px+1 + px +

γ

2
rx


,

fx (r, p) := −
px+1

γ
,

δx (r, p) := β ′
t

 x

N


gx + λ′

t

 x

N


fx = F


t,

x

N


· τx h(r, p).

(A.1)

First we will compute the first part that appears in the integral N 2

φN

t

−1 L∗

N φN
t , then we will

compute the second part −∂tφ
N
t /φN

t × f N
t .
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A.1. First term: the adjoint operator

Lemma A.1.

AφN
t =

φN
t

N 2


x∈TN

β ′′
t

 x

N

 
px+1rx +

p2
x + rxrx−1

2γ


− λ′′

t

 x

N

 
px+1 +

rx+1

γ



+
φN

t

N 2


x∈TN


L∗(δx ) + A(δx )


+ o


1
N


. (A.2)

Proof. First, remind that the expression of φN
t is given by

φN
t (r, p) =

(Z(1, 0))n

Z(χt (·))


x∈TN

exp


ex


−βt

 x

N


+ 1


− λt

 x

N


rx

+
1
N

F


t,
x

N


· τx h(r, p)


. (A.3)

By definition,

AφN
t = φN

t


x∈TN


1 − βt

 x

N


A(ex ) − λt

 x

N


A(rx )


+

φN
t

N


x∈TN

A(δx ). (A.4)

We write down the two conservation laws:

A(ex ) = je
x+1 − je

x where je
x := pxrx−1, (A.5)

A(rx ) = jr
x+1 − jr

x where jr
x := px . (A.6)

Hence,

AφN
t = φN

t


x∈TN


1 − βt

 x

N


∇( je

x )x − λt

 x

N


∇( jr

x )x


+

φN
t

N


x∈TN

A(δx ) (A.7)

where ∇( f )x = fx+1 − fx .
We are interested in the first two terms in the sum, and we compute a discrete summation by

part. Indeed,
y∈TN

fy∇(g)y = −


y∈TN

gy+1∇( f )y . (A.8)

We obtain the following terms:

βt


x + 1

N


− βt

 x

N


= β ′

t

 x

N

 1
N

+ β ′′
t

 x

N

 1

N 2 + O


1

N 3


, (A.9)

λt


x + 1

N


− λt

 x

N


= λ′

t

 x

N

 1
N

+ λ′′
t

 x

N

 1

N 2 + O


1

N 3


. (A.10)

First of all, we look at the term obtained in the sum with O

N−3


. We want to prove

N 2
 

x∈TN

px+1rx O


1

N 3


f N
t dµN

1,0 6 C HN (t) + o(N ). (A.11)
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We use the entropy inequality. Let ε : N → R be a bounded function. We get

1
N

 
x∈TN

px+1rx ε(N ) f N
t dµN

1,0

6
HN (t)

α
+

1
α

log


exp


α

N


x

px+1rx ε(N )


φN

t dµN
1,0. (A.12)

But, let us recall the inequality px+1rx 6 (p2
x+1 + r2

x )/2 and for N large enough, we have

νN
χt (·)


exp

 α

N
p2

xε(N )


∼N→∞


2π 2N

Nβ − 2αε(N )
×


β

2π
= O(1). (A.13)

We obtain a similar estimate for νN
χt (·)


exp


αN−1rxε(N )


.

Therefore, we have showed

1
N

 
x∈TN

px+1r2
x ε(N ) f N

t dµ1,0 6
HN (t)

α
+ O(1). (A.14)

Hence,

AφN
t =

φN
t

N


x∈TN


β ′

t

 x

N


px+1rx + λ′

t

 x

N


px+1


+

φN
t

N 2


x∈TN


β ′′

t

 x

N


px+1rx

+ λ′′
t

 x

N


px+1


+

φN
t

N


x∈TN

A(δx ) + o


1
N


. (A.15)

Moreover, we can compute two equations which are called “fluctuation–dissipation equations”.
In other words, we decompose the current of energy and the current of deformation as the sum
of a discrete gradient and a dissipative term:

px+1 = ∇


−rx

γ


x

+ L∗( fx ), (A.16)

px+1rx = ∇


−

p2
x + rxrx−1

2γ


x

+ L∗(gx ). (A.17)

We use the two Eqs. (A.16) and (A.17), and we obtain

AφN
t =

φN
t

N


x∈TN


β ′

t

 x

N

 
∇


−

p2
x + rxrx−1

2γ


x

+ L∗(gx )



+ λ′
t

 x

N

 
∇


−rx

γ


x

+ L∗( fx )


+

φN
t

N 2


x∈TN


β ′′

t

 x

N


px+1rx

+ λ′′
t

 x

N


px+1


+

φN
t

N


x∈TN

A(δx ) + o


1
N


. (A.18)
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We sum again by part, on the two terms with a gradient, and we obtain as before

AφN
t =

φN
t

N 2


x∈TN


β ′′

t

 x

N

 p2
x+1 + rxrx+1

2γ
+ px+1rx


+ λ′′

t

 x

N



×


rx+1

γ
+ px+1


+

φN
t

N


x∈TN

{A(δx ) + L∗(δx )} + o


1
N


. (A.19)

We get the result. �

Lemma A.2.

SφN
t =

φN
t

N


x∈TN

S(δx ) +
φN

t

4N 2


y∈TN


x∈TN

δx (py) − δx (p)

2

+ φN
t ε(N ), (A.20)

where µN
t


N 2ε(N )


= o(N ).

Proof. Thanks to the exponential term, we have

SφN
t =

φN
t

2


y∈TN


exp


1
N


x∈TN

δx (py) − δx (p)


− 1


. (A.21)

The main idea consists in noting that ex
−1 = x + x2/2+o(x2). We are going to give a rigorous

proof of this estimate in our context thanks to the hypothesis on the energy moments. More
precisely, in view of (1.42) and Lemma 2.1, we want to prove that

N 2µN
t


y∈TN


k>3

Fk
y

k! N k


= o(N ), where Fy =


x∈TN


δx (py) − δx (p)


. (A.22)

Let us compute Fy . We notice that in the following expression,
x∈TN

−β ′
t

 x

N

 rx

2γ


px+1 + px +

γ

2
rx


− λ′

t

 x

N

 px+1

γ
, (A.23)

the only terms which are changing when we flip p into py are

• the term when x = y, and the difference is

ry py

γ
β ′

t

 y

N


, (A.24)

• the term when x = y − 1, and the difference is

ry−1 py

γ
β ′

t


y − 1

N


+ λ′

t


y − 1

N


2py

γ
. (A.25)

In other words, we have to show that

N µN
t


y∈TN


k>3

|Fy |
k

k! N k


−−−−→
N→∞

0 (A.26)

with
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|Fy(t)| =

ry py

γ
β ′

t

 y

N


+

ry−1 py

γ
β ′

t


y − 1

N


+ λ′

t


y − 1

N


2py

γ


6 C0 |ry py | + C1 |ry−1 py | + C2 |py |

6 C0
r2

y + p2
y

2
+ C1

r2
y−1 + p2

y

2
+ C2 (1 + p2

y)

6 K (1 + ey + ey−1),

where K is a constant which does not depend on N and t .
First of all, we introduce the space Ay = {ey 6 1, ey−1 6 1}.

N


y∈TN

µN
t


k>3

(ey + ey−1 + 1)k K k 1{ey61, ey−161}

k! N k


6 N


y∈TN


k>3

(3K )k

k! N k

= N 2

k>3

(3K )k

k! N k −−−−→
N→∞

0. (A.27)

Since we have (ey+ey−1)
k1AC

y
6 (2ey+ey−1)

k , we deduce (ey+ey−1)
k1AC

y
6 Ck

0 ek
y+Ck

1 ek
y−1.

Consequently,

N


y∈TN

µN
t


k>3

|Fy |
k K k 1AC

y

k! N k


6 N


y∈TN

µN
t


k>3

ek
y K ′k

k! N k



+ N


y∈TN

µN
t


k>3

ek
y−1 K ′k

k! N k


. (A.28)

Now we deal with N


y∈TN
µN

t


k>3 ek

y/(k!N k)

. Remind that ek

y 6 2 (p2k
y + r2k

y ).

We are reduced to prove that

N


y∈TN

µN
t


k>3

p2k
y

k! N k


−−−−→
N→∞

0 and N


y∈TN

µN
t


k>3

r2k
y

k! N k


−−−−→
N→∞

0. (A.29)

We can flip the summations thanks to the Fubini theorem. From the hypothesis on the moments
bounds we get

N


y∈TN

µN
t


k>3

p2k
y

k! N k


6 N 2


k>3

(C k)k

k! N k −−−−→
N→∞

0. (A.30)

This last limit is deduced from the property of the series S(x) :=


k>3 kk xk−2/(k!) . It is a
power series which has a strictly positive radius and is continuous at 0. Then,

N 2

k>3

(C k)k

k! N k = C2S


C

N


−−−−→
N→∞

0. (A.31)

The same happens for the second sum. It follows that

N


y∈TN

µN
t


k>3

Fk
y

k! N k


−−−−→
N→∞

0. � (A.32)

After adding the two terms and get some simplifications, we obtain this following final result.
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Proposition A.1.

1

φN
t

N 2 L∗

N φN
t =


x∈TN


−∂2

q β


t,
x

N

 p2
x+1 + rx+1rx

2γ
+ px+1rx



− ∂2
q λ


t,
x

N

 rx+1

γ
+ px+1


+

1
4γ


x∈TN

p2
x


rx∂qβ


t,

x

N


+ rx−1∂qβ


t,

x − 1
N


+ 2∂qλ


t,

x − 1
N

2

+ o(N ). (A.33)

Proof. There are simplifications when we write (−A + γ S)(φN
t ). Actually,

φN
t

N


x∈TN

{−A(δx ) + γ S(δx ) − L∗(δx )} = 0. (A.34)

The result follows. �

A.2. Second term: the logarithmic derivative

First, we notice that ∂tφ
N
t /φN

t = ∂t {log(φN
t )}. Moreover,

log(φN
t ) = C +


x∈TN

ex


−βt

 x

N


+ 1


− λt

 x

N


rx − β ′

t

 x

N

 rx

2γ N

×


px+1 + px +

γ

2
rx


+ λ′

t

 x

N

 px

γ N
− log [Z (βt (·) , λt (·))] . (A.35)

We need to estimate the partition function Z(βt (·), λt (·)). More precisely, we compare this new
partition function to the exact partition function

Z̃(βt (·), λt (·)) =


x∈TN

2π

βt (x/N )
exp


λ2

t (x/N )

2βt (x/N )


. (A.36)

We prove the following lemma.

Lemma A.3.∂t log Z(βt (·), λt (·)) − ∂t log Z̃(βt (·), λt (·))

 = O(1) when N → ∞. (A.37)

Proof. First of all, remind that the exact expression of Z t := Z(βt (·), λt (·)) can be written as

Z t =


R2N

 
x∈TN

exp

−βt

 x

N


ex − λt

 x

N


rx

−
1
N

β ′
t

 x

N

 rx

2γ


px+1 + px +

γ

2
rx


−

1
N

λ′
t

 x

N

 px+1

γ


dpdr

= exp


1
2
∥bt∥

2


R2N
exp


−

1
2
⟨X − bt , Ct (X − bt )⟩


d X

= exp


1
2
∥bt∥

2


(2π)N
| det(Ct )|

1/2 (A.38)

where bt is a vector and Ct is a symmetric positive matrix.
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More precisely, one can see that

∥bt∥
2

=


x∈TN

λ2
t

βt

 x

N


+

1
N


x∈TN

ht

 x

N


(A.39)

where ht is a function that can be easily expressed with λt , βt , λ
′
t and β ′

t . Then, ht is smooth.

Moreover, Ct can be written as Ct = Dt + N−1 Ht with Dt a diagonal matrix and Ht a
symmetric matrix which has at most three non-zero components on each row and each column.
More precisely,

Dt =


. . . (0)

βt (x/N )

(0)
. . .

 , (A.40)

Ht =




. . . (0)

−(1/4)β ′
t (x/N )

(0)
. . .




. . . −(2γ )−1β ′
t (x/N ) (0)

−(2γ )−1β ′
t (x/N )

. . .

(0)
. . .




. . . (0)

. . . −(2γ )−1β ′
t (x/N )

(0) −(2γ )−1β ′
t (x/N )

. . .

 
0



. (A.41)

Now we write

∂t log Z t =
1
2


x

∂t


λ2

t

βt

 x

N


+

1
2
∂t log det(Ct ) +

1
N


x

∂t ht

 x

N


, (A.42)

∂t log Z̃ t =
1
2


x

∂t


λ2

t

βt

 x

N


+

1
2
∂t log det(Dt ). (A.43)

But,
N−2

x ∂t ht (x/N )
 = O(1) since ht is smooth.

It remains to show that the following quantity is bounded above by a constant that does not
depend on N :∂t


log

det Ct

det Dt

 =

∂t


log det


I +

1
N

D−1
t Ht


=

∂t {det(I + D−1
t Ht/N )}

det(I + D−1
t Ht/N )

 . (A.44)

We denote by Kt the matrix D−1
t Ht , which also has at most three non-zero components on each

row and each column, and by K ′
t the derivative of Kt with respect to t . We notice that for N large



3658 M. Simon / Stochastic Processes and their Applications 123 (2013) 3623–3662

enough, the matrix I + Kt/N is invertible, and we have∂t


log

det Ct

det Dt

 =

Tr(t com(I + Kt/N ) · (I + K ′
t/N ))

det(I + Kt/N )


=

Tr


I +

1
N

Kt

−1 
I + K ′

t

 , (A.45)

where com(A) is the comatrix of A.

Now we deal with (I + Kt/N )−1:


I +

1
N

Kt

−1

= I − Kt +


k>2

(−1)k

N k K k
t . (A.46)

But, the component (i, j) of K k
t can be written as


i1,...,ik

ai,i1 ai1,i2 · · · aik , j where ai, j are the
components of Kt . We know that there are at most three non-zero components on each row and
each column, and that they are all bounded by a constant C that does not depend on N (since βt
and λt are smooth). Then, it implies that |Tr(K k

t )| 6 N3kC.

It follows thatTr


I +

1
N

Kt

−1
 =

Tr


I − Kt +


k>2

(−1)k

N k K k
t


6 1 + |Tr(Kt )| + C


k>2

3k

N k−1 = O(1), (A.47)

because Tr(Kt ) = O(1) (we can compute it and again use the smoothness of the profiles).

In the same way, we show thatTr


K ′

t


I +

1
N

Kt

−1
 = O(1). (A.48)

It ends the proof. �

We deduce from the previous result that

∂t log [Z (βt (·) , λt (·))] =


x∈TN

−
∂tβt (x/N )

βt (x/N )
+ ∂tλt (x/N )

λt (x/N )

βt (x/N )

−
∂tβt (x/N )

2
λ2

t (x/N )

β2
t (x/N )

+ O(1). (A.49)

Consequently, we get the following statement.
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Proposition A.2.

∂t {log(φN
t )} =


x∈TN

−ex∂tβ


t,
x

N


− rx∂tλ


t,

x

N


−

rx

2γ N
∂t∂qβ


t,

x

N


×


px+1 + px +

γ

2
rx


−

px

γ N
∂t∂qλ


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x

N


+

∂tβ(t, x/N )

β(t, x/N )

− ∂tλ(t, x/N )
λ(t, x/N )

β(t, x/N )
+

∂tβ(t, x/N )

2
λ2(t, x/N )

β2(t, x/N )
, (A.50)

∂t {log(φN
t )} =


x∈TN

−


ex − e


t,

x

N


∂tβ


t,

x

N


+


rx − r


t,

x

N


∂tλ


t,

x

N


+ O(1). (A.51)

A.3. Ending proof

We are now able to prove the Taylor expansion. According to the results of the two previous
parts, we have

1

φN
t

N 2 L∗

N φN
t − ∂t {log(φN

t )}

=


x∈TN


−∂2

q β


t,
x

N

  p2
x + rx−1rx
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+ pxrx−1


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

t,
x

N

 rx

γ
+ px


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p2

x

4γ


(rx + rx−1)∂qβ


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x

N


+ 2∂qλ


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x

N

2

+


ex − e


t,

x

N


∂tβ


t,

x

N


+


rx − r


t,

x

N


∂tλ


t,

x

N


+ o(N ). (A.52)

Using the notations introduced in Section 2, it becomes:

1

φN
t

N 2 L∗

N φN
t − ∂t {log(φN

t )}

=


x∈TN


−

1
2γ

∂2
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

t,
x

N


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1
γ

∂2
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

t,
x

N


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1

4γ


∂qβ


t,

x

N

2
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x
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1
γ

∂qβ


t,
x

N


∂qλ


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x

N


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1
γ


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
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x

N

2
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x

+


ex − e


t,

x

N


∂tβ


t,

x

N


+


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
t,

x

N


∂tλ


t,

x

N


+ o(N ). (A.53)

We denote by Hk the function defined as follows:

Hk


η


t,
x

N


= µN

χt (x/N )


J k

0


. (A.54)
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The explicit formulations for Hk are given by Proposition 2.1. The sum
x∈TN


−

1
2γ

∂2
q β


t,
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N


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
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1
γ
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
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
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

t,
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+

1
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

t,
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N


∂qλ


t,

x

N


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
η


t,
x

N


+

1
γ


∂qλ


t,

x

N

2
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
η


t,
x

N


(A.55)

is of order o(N ) (thanks to the regularity of the functions e, r, β, λ), so that we can introduce it
in the right member of the equality (A.52).

Then, we obtain after computations

−
∂2

q β

2γ
∂e H1 −

∂2
q λ

γ
∂e H2 +


∂qβ

2
4γ

∂e H3 +
∂qβ∂qλ

γ
∂e H4

+


∂qλ

2
γ

∂e H5 = −∂tβ, (A.56)

and

−
∂2

q β

2γ
∂r H1 −

∂2
q λ

γ
∂r H2 +


∂qβ

2
4γ

∂r H3 +
∂qβ∂qλ

γ
∂r H4

+


∂qλ

2
γ

∂r H5 = ∂tλ. (A.57)

Indeed, these two quantities are respectively equal to

∂2
q β

2γ
−

[∂qβ]
2

γ


e +

r2

2


− 2r

∂qβ∂qλ

γ
−


∂qλ

2
γ

, (A.58)

and

∂2
q β

2γ
r +

∂2
q λ

γ
−


∂qβ

2
2γ

r (2e − 3r2) −
∂qβ∂qλ

γ
(2e − 3r2) + r


∂qλ

2
γ

. (A.59)

This concludes the proof and gives Proposition 2.1.

Appendix B. Proof of the one-block estimate

We just give a sketch of the proof, which is done in [5, Section 3.4]. First, we define the space
time average of distribution:

f̄ N
=

1
t N

N
i=1

 t

0
τi f N

s ds, (B.1)

and f̄ N
k its projection on {(ri , pi ) ∈ R2(k+1)

; i ∈ Λk := {−[k/2] − 1, . . . , [k/2] + 1}}.

We also denote dνN
= f̄ N 

i∈TN
dri dpi and dνN

k = f̄k
N 

i∈TN
dri dpi the corresponding

probability measures on R2N and R2(k+1).
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Observe first that (2.22) can be rewritten as

t lim sup
M→∞

lim sup
ℓ→∞

lim sup
N→∞

 
1ℓ


i∈Λℓ(0)

Ji,M − H(ηℓ,M (0))


 dνN

= 0, (B.2)

because

1
ℓ

ℓ−1
k=0

1
p

p
j=1

τx j +k =
1
N

N
x=1

τx . (B.3)

We can prove the first following lemma.

Lemma B.1. For each fixed k, the sequence of probability measures (νN
k )N>k is tight.

For any k let νk be a limit point of the sequence (νN
k )N>1. The sequence of probability measures

(νk)k>1 forms a consistent family and by Kolmogorov’s theorem there exists a unique probability
measure ν on (R × R)Z such that the restriction of ν on {(ri , pi ) ∈ R2(k+1)

; i ∈ Λk} is νk . One
has easily that ν is invariant by translations.

Lemma B.2. For any bounded smooth local function F(r, p), we have


L Fdν = 0.

Then, ν is a convex combination of grand canonical Gibbs measures µχ = µβ,λ: ν =
dρ(χ)µχ , with ρ a probability measure such that


dρ(χ)µχ [e j ] 6 C0 for any j ∈ Z.

Hence, it results that

lim sup
M→∞

lim sup
ℓ→∞

lim sup
N→∞

 
1ℓ


i∈Λℓ(0)

Ji,M − H(ηℓ,M (0))


 dνN

= lim sup
M→∞

lim sup
ℓ→∞


dρ(χ)

 
1ℓ


i∈Λℓ(0)

Ji,M − H(ηℓ,M (0))


 dµχ

= lim sup
M→∞


dρ(χ)

lim sup
ℓ→∞

 
1ℓ


i∈Λℓ(0)

Ji,M − H(ηℓ,M (0))


 dµχ

 , (B.4)

where the last equality is a consequence of the dominated convergence theorem. Since µχ is
ergodic with respect to {τx ; x ∈ Z}, the last term is equal to

lim sup
M→∞


dρ(χ)

µχ


J0,M


− H(µχ [η0,M ])

 . (B.5)

As M → ∞, µχ [J0,M ] converges to µχ [J0] = H

µχ [ξ0]


and µχ [ξ0,M ] to µχ [ξ0].

By Fatou’s lemma, the limit in M is equal to 0 and this concludes the proof of the one-block
lemma.
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