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Abstract

Given a reference random variable, we study the solution of its Stein equation and obtain universal
bounds on its first and second derivatives. We then extend the analysis of Nourdin and Peccati by bounding
the Fortet–Mourier and Wasserstein distances from more general random variables such as members of the
Exponential and Pearson families. Using these results, we obtain non-central limit theorems, generalizing
the ideas applied to their analysis of convergence to Normal random variables. We do these in both Wiener
space and the more general Wiener–Poisson space. In the former space, we study conditions for convergence
under several particular cases and characterize when two random variables have the same distribution. In the
latter space we give sufficient conditions for a sequence of multiple (Wiener–Poisson) integrals to converge
to a Normal random variable.
c⃝ 2014 Published by Elsevier B.V.
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1. Introduction

Recent years have seen exciting research on combining Stein’s method with Malliavin cal-
culus in proving central and non-central limit theorems. The delicate combination of these tools
can be attributed to Nourdin and Peccati who intertwined an integration by parts formula from
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Malliavin calculus with an ordinary differential equation called a Stein equation. Much work
has been done to compare Normal or Gamma random variables (r.v.’s) with another r.v. (having
unknown distribution). See [12,13,19,20] for results on the convergence of multiple (Wiener)
integrals to a standard Normal or Gamma law. [3,26] discuss Cramer’s theorem for Normal and
Gamma distributions applied to multiple integrals. [28] gives probability tail bounds in terms of
the Normal probability tail, with [8] applying the same techniques to give tail bounds in terms of
the probability tail of other r.v.’s (e.g. Pearson distributions).

In [15], Nourdin and Peccati found a clever link between Stein’s method and Malliavin cal-
culus. This was used to derive the Nourdin–Peccati upper bound (NP bound) on the Wasserstein,
Total Variation, Fortet–Mourier and Kolmogorov distances of a generic r.v. from a Normal r.v.,
and lay the groundwork for comparisons to a more general r.v. (with such results leading to
non-central limit theorems). These authors and Reinert (see [16]) applied this NP bound to ob-
tain a second order Poincaré-type inequality useful in proving central limit theorems (CLTs) in
Wiener space. Specifically, they proved CLTs for linear functionals of Gaussian subordinated
fields. Particular instances are when the subordinated process is fractional Brownian motion
(fBm) or the solution to the Ornstein–Uhlenbeck (O–U) stochastic differential equations (SDE)
driven by fBm. They also characterized convergence in distribution to a Normal r.v. for multiple
stochastic integrals.

Later in [21] these ideas were applied to prove the NP bound in Poisson space (pure jump
processes), which was used to obtain Berry–Esséen bounds for arbitrary tensor powers of O–U
kernels. Keeping in line with attempts to extend these results as far as possible, [29] proved an
NP bound in Wiener–Poisson space. The author applied similar ideas found in [16] to derive a
second order Poincaré-type inequality and use it to prove CLTs for a continuous average of a
product of two O–U processes (one in Wiener space and the other in Poisson space) which lives
in the second chaos of Wiener–Poisson space. Also, it was proved that under mild conditions,
the small jump part of a functional in the first Poisson chaos is approximately equal in law to
a functional in the first Wiener chaos with the same kernel (useful when simulating a fractional
Lévy process as a process with finitely many jumps plus a fBm). All these results show the
importance of this NP bound and the potential it has as an effective tool in proving non-central
limit theorems, CLTs and characterizations.

Let Z be absolutely continuous with respect to Lebesgue measure with known density.
Typical instances are when Z is Normal, Gamma, or another member of the Pearson family
of distributions. X is another r.v. whose properties are not as easy to determine as with Z , our
“target” r.v. We may have a hunch that X has the same distribution as Z , or in the case of
sequences, a belief that {Xn} converges in law to the distribution of Z . We thus want to compare
X with Z . How different are the laws of X and Z for instance (and we need to make precise the
sense in which they are different)? What conditions will ensure that X has the same law as Z?
For a sequence {Xn}, what sufficient conditions ensure convergence to Z in distribution? In this
regard, we wish to measure the distance between (the laws of) X and Z by a metric dH which
induces a topology that is equal to or stronger than the topology of convergence in distribution: if
dH (Xn, Z) → 0, then Xn → Z in distribution.

The motivation for this paper is to find the widest generalization of the NP bound by
applying it to a target r.v. which is neither Normal nor Gamma, and in both Wiener space and
Wiener–Poisson space. This is worked out in [10] but the conditions needed to apply the NP
bound are quite restrictive (it was also carried out only in Wiener space). The conditions we are
introducing here are more general, and are still wide enough in scope to cover a Z belonging to
the Exponential family or the Pearson family. We point out that Wiener–Poisson space is more
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inclusive than Wiener space (which can be identified with a subspace of the former). In fact, it
includes processes with jumps, and therefore considers Poisson space too as a subspace (also by
identification). Nevertheless, even if Wiener space is less general, we can apply our techniques
to a wider class of target r.v. Z than in Wiener–Poisson space (which requires boundedness of
the second derivative of the solution of Stein’s equation, something not needed in Wiener space).

Our main results are the NP bounds on dH (X, Z) in Wiener space and in Wiener–Poisson
space. The main result in Wiener space (Theorem 13) is

dH (X, Z) ≤ kE |g∗ (X) − gX |

≤ k
E g∗ (X)2

− E

g∗ (Z)2+ |E [XG∗ (X)] − E [ZG∗ (Z)]| +

E g2
X


− E


g2

Z

.
The main result in Wiener–Poisson space (Theorem 25) is

dH (X, Z) ≤ k


E |g∗ (X) − gX | + E

x (DX)2
 , −DL−1 X


H


.

Here, gX := E[⟨DX, −DL−1 X⟩H|X ] is a random variable defined using Malliavin calculus
operators, specifically, the Malliavin derivative D and the inverse of the infinitesimal generator
L of the O–U semigroup. It would be helpful to think of gX as an object belonging exclusively to
X . On the other hand, g∗(·) is a function whose support is the support of Z , taking on nonnegative
numbers as values and gZ := g∗(Z). It will depend only on the density of Z , and is independent
of the structure of X . As such, it is an object belonging solely to Z . In the second term of the first
bound above, G∗ is an antiderivative of g∗, provided it exists. If Z has the necessary (Malliavin)
differentiability properties, g∗(·) actually coincides with E[⟨DZ , −DL−1 Z⟩H|Z = ·] (PZ -a.s.),
thus explaining the choice of notation gZ for g∗(Z) which is similar to gX . This also allows
us to make sense of the NP bounds in the following way: if we want to know how different
the laws of X and Z are, then we need to know how different (in the L1 sense) gX =

E[⟨DX, −DL−1 X⟩H|X ] and g∗(X) = E[⟨DZ , −DL−1 Z⟩H|Z = X ] are. In Wiener–Poisson
space, we consider in addition how close the jump part E[⟨|x (DX)2

|, | − DL−1 X |⟩H] is to 0,
which makes sense since Z belongs to Wiener space (subspace of the Wiener–Poisson space
without jumps).

In our bounds above, k is a constant that does not depend on X but on Z and the metric we are
using. For convergence problems, we do not need its specific value since the convergence will
follow from the convergence ofE

g∗ (Xn) − gXn

 to 0. This presupposes we have such a constant
k. This constant appears as a bound (∥φ∥∞ ≤ k) for some function φ, which is related to the
solution of the underlying Stein equation. In particular, since we have a Stein equation for each Z
(the target r.v.), k depends on Z . Finding such a bound k is easy when Z is Normal: g∗ is constant,
and consequently, the Stein equation is simpler. If g∗ vanishes at a finite endpoint of the support
of Z , the challenge now is to find a bound for ∥φ/g∗∥∞. To the best of our knowledge, [10]
(Kusuoka and Tudor) presents the first attempt to find such a sup norm bound when Z is not
Normal. Their result is presented below as Lemma 7. In Theorem 9 we improve their result, and
this paves the way for the needed bound we stated for the general non-Normal case.

The paper is organized as follows. In Section 2, we review the operators we need from Malli-
avin calculus. We also define the functions g∗ and G∗ as well as the random variables gX and gZ ,
studying carefully their properties (needed in the subsequent sections). Section 3 contains pre-
liminaries on Stein’s method. Here we find universal bounds on the first and second derivatives of
the solution of the general Stein equation. Our main result in Wiener space is in Section 4, where
we give a tractable upper inequality which is easier to compute. We also characterize when the
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law of X is the same as that of Z . Said result is applied to specific cases when g∗ is a polynomial
and when {Xn} is a sequence of multiple integrals. As an example, we prove the convergence of a
bilinear functional of a Gaussian subordinated field to a χ2 r.v. by computing some moments and
showing their convergence to desired values. In Section 5, we extend the main result to the more
general Wiener–Poisson space. Here, we work out some sufficient conditions for convergence to
a Normal law and convergence of the fourth moment.

2. Elements of Malliavin calculus and tools

For the sake of completeness, we include here a brief survey of the needed Malliavin calculus
objects. The r.v.


DX, −DL−1 X


H

is a key element that bridges Stein’s method and Malliavin
calculus. D is the Malliavin derivative operator and L is the generator of the Ornstein–Uhlenbeck
semigroup.

2.1. Wiener space

Nualart presents in Chapter 1 of [18] a very good exposition on Malliavin calculus in Wiener
space. We mention here the elements that we need. Let H be a real separable Hilbert space.
Assume a probability space (Ω , F ,P) over which W = {W (h) : h ∈ H} is an isonormal
Gaussian process. By definition, this means W is a centered Gaussian family such that
E [W (h1) W (h2)] = ⟨h1, h2⟩H. We may also assume that F is the σ -field generated by W .
The white noise case is when H = L2 (T, B, µ) where (T, B) is a measurable space and µ

is a σ -finite atomless measure. The Gaussian process W is then characterized by the family
of r.v.’s {W (A) : A ∈ B, µ (A) < ∞} where W (A) = W (1A). We can then think of W as an
L2 (Ω , F ,P) random measure on (T, B). This is called the white noise measure based on µ.
An important example is when T = [0, ∞) and µ is Lebesgue measure. In this case, if we
write Wt = W


1[0,t]


for t ≥ 0, then {Wt }t≥0 is a standard Brownian motion embedded in our

isonormal Gaussian process.

The qth Hermite polynomial Hq is given by Hq (x) = (−1)q ex2/2 dq

dxq


e−x2/2


for q ≥ 1

and H0 (x) = 1. The qth Wiener chaos Hq is defined as the subspace of L2 (Ω) = L2 (Ω , F ,P)

generated by the r.v.’s


Hq (W (h)) : h ∈ H, ∥h∥H = 1

. In the white noise case H = L2

µ ([0, 1]),
each Wiener chaos consists of iterated multiple (Wiener) integrals

Iq ( f ) := q!

 1

0

 t1

0
· · ·

 tq−1

0
f

t1, t2, . . . , tq


dWtq · · · dWt2dWt1

with respect to W , where f ∈ H⊙q is a symmetric nonrandom kernel. When f is nonsymmetric,
we let f denote its symmetrization, and Iq( f ) = Iq(f ).

All elements of H1 are Gaussian and all elements of H0 are deterministic. It is well-
known that L2 (Ω) can be decomposed into an infinite orthogonal sum of the Wiener chaoses,
i.e. L2 (Ω) = ⊕

∞

q=0 Hq . In the white noise case, any F ∈ L2 (Ω) admits a Wiener chaos
decomposition of multiple integrals

F =

∞
q=0

Iq


fq


(1)

where each symmetric fq ∈ H⊙q
= L2

µ (T q) is uniquely determined by F . Note that I0 ( f0) =

f0 = E [F] and E

Iq


fq


= 0 for q ≥ 1.
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Consider an orthonormal system {ek : k ≥ 1} in H. For f ∈ H⊗p and g ∈ H⊗q , the contraction
of order r ≤ min {p, q} is the element f ⊗r g ∈ H⊗(p+q−2r) defined by

f ⊗r g =

∞
i1,...,ir


f, ei1 ⊗ · · · ⊗ eir


H⊗r


g, ei1 ⊗ · · · ⊗ eir


H⊗r .

Even if f and g are symmetric, f ⊗r g may be nonsymmetric so we denote its symmetrization
by f ⊗r g. In the white noise case H = L2

µ (T ), the contraction is given by integrating out r
variables. Thus, if f ∈ L2

µ (T p) and q ∈ L2
µ (T q), we have f ⊗r g ∈ L2

µ


T p+q−2r


and

( f ⊗r g)

t1, . . . , tp+q−2r


=


T r

f

t1, . . . , tp−r , s1, . . . , sr


× g


tp+1, . . . , tp+q−r , s1, . . . , sr


dµ (s1) · · · dµ (sr ) .

The product of two multiple integrals is

Iq ( f ) Ip (g) =

p∧q
r=0

r !

 p

r

 q

r


Iq+p−2r ( f ⊗r g) . (2)

The Malliavin derivative of a random variable F ∈ L2 (Ω) is an H-valued random variable
denoted by DF . In the white noise case H = L2

µ (T ), if F = I1 ( f ) =


T f (t) dWt , then D
maps F to an L2

µ (T )-valued element: Dr F = f (r) for r ∈ T . In general, if F ∈ L2 (Ω) admits
the decomposition (1), then

Dr F =

∞
q=1

q Iq−1


fq (r, ·)

. (3)

It is possible to iterate this definition to obtain a well defined form for Dk . We denote by Dk,p

the domain of Dk in L p (Ω), that is F is in Dk,p if and only if
k

j=0 E
D j F

p
L p

µ(T )


< ∞. In

the white noise case, F with the above decomposition is in D1,2 if and only if E

∥DF∥

2
L2

µ(T )


=

∞

q=1 q · q!
 fq

2
L2

µ(T q )
< ∞. We use the following notation: D∞

= ∩k≥1 ∩p≥1 Dk,p. D

satisfies the chain rule formula: D ( f (F)) = f ′ (F) DF when F ∈ D1,2 and f is continuously
differentiable with bounded derivative. One may relax this to f Lipschitz as long as F has an
absolutely continuous law. By approximation, it is possible to prove that this chain rule holds
also when f ′ is not bounded, but we require that F ∈ D∞ and f ′ is continuous with at most
polynomial growth.

D has an adjoint, the divergence operator δ, so that if F ∈ Dom δ ⊂ L2 (Ω; H), then
δ (F) ∈ L2 (Ω) and E [δ (F) G] = E


⟨F, DG⟩H


for any G ∈ D1,2. In the white noise case,

δ is called the Skorohod integral: for F ∈ Dom δ ⊂ L2
µ×P (T × Ω) with chaos representation

F (t) =


∞

q=0 Iq


fq (t, ·)


where each fq ∈ L2
µ⊗(q+1) is symmetric in the last q variables,

δ (F) =


∞

q=0 Iq+1
 fq


if


∞

q=0 (q + 1)!
fq

2
L2

µ⊗(q+1)
< ∞, i.e. F ∈ Dom δ.

One other operator we need, L , acts on F as in (1) in this way: L F = −


∞

q=1 q Iq


fq

. Its

domain consists of F for which


∞

q=1 q2
·q!
 fq

2
L2

µ(T q )
< ∞. L also happens to be the infinites-

imal generator of the Ornstein–Uhlenbeck semigroup Tt , defined by Tt F =


∞

q=0 e−qt Iq


fq

.
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One important relation is δDF = −L F . More than L , we need its pseudo-inverse L−1 defined
by L−1 F = −


∞

q=1
1
q Iq


fq

. It easily follows that L L−1 F = F − E [F].

2.2. Wiener–Poisson space

Assume a complete probability space (Ω , F ,P) over which L = {Lt }t≥0 is a Lévy pro-
cess. By definition, this means L has stationary and independent increments, is continuous in
probability, and L0 = 0. Suppose L is càdlàg, centered, and E


L2

1


< ∞. We may also as-

sume F is generated by L. Let L have Lévy triplet

0, σ 2, ν


and thus, Lévy–Itô decomposition

Lt = σ Wt +


[0,t)×R0
xdN (s, x) where W = {Wt }t≥0 is a standard Brownian motion, N is the

compensated jump measure (defined in terms of ν) and R0 = R−{0}. See [1,22] for more about
Lévy processes.

Consider now the measure µ on B

R+

× R


where R+
= {t : t ≥ 0} and

dµ (t, x) = σ 2dtδ0 (x) + x2dtdν (x) (1 − δ0 (x)) .

Analogous to a Gaussian process W being extended to a random measure (which we also
denoted by W ) in Wiener space, L can be extended to a random measure M (see [9]) on
R+

× R, B

R+

× R


. This is used to construct (in an analogous way to the Itô integral
construction) an integral on step functions, and then by linearity and continuity, extended to
L2

µ⊗q = L2

R+

× R
q

, B

R+

× R
q

, µ⊗q

. We also denote it by Iq . As in Wiener space,

1. Iq ( f ) = Iq
 f ;

2. Iq is linear;
3. E


Iq ( f ) Ip (g)


= 1{q=p}q!


(R+×R)

q fgdµ⊗q .

Thus, when F = Iq( f ), E[F2
] = E[Iq( f )2

] = q!∥f ∥
2
L⊗q

µ

.

Contractions are defined slightly differently. Suppose f ∈ L2
µ⊗q and g ∈ L2

µ⊗p . Let r ≤

min {q, p} and s ≤ min {q, p} − r . The contraction f ⊗
s
r g ∈ L2

µ⊗(q+p−2r−s) is defined by
integrating out r variables and sharing s of the remaining variables:


f ⊗

s
r g

(z, u, v) =


s

i=1

xi


⟨ f (·, z, u) , g (·, z, v)⟩L2

µ⊗r

where z ∈

R+

× R0
s

, zi = (ti , xi ) , u ∈

R+

× R0
q−r−s and v ∈


R+

× R0
p−r−s . Its

symmetrization is f ⊗s
r g. We need the following product formula later (see [11] for the proof):

Iq ( f ) Ip (g) =

p∧q
r=0

p∧q−r
s=0

r !s!
 p

r

 q

r

 p − r

s


q − r

s


Iq+p−2r−s


f ⊗

s
r g

. (4)

We may think of this as a more general version of the product formula (2) where we only
consider s = 0 since there are no jump components to be shared (which appear in the definition
of f ⊗

s
r g).

We have briefly narrated a setup parallel to what was done in Wiener space. See [24] for
a more detailed exposition. This time though, we have only considered H = L2


R+

× R,

B

R+

× R

, µ


as underlying Hilbert space, with inner product ⟨ f, g⟩H =


R+×R f (z) g (z)
dµ (z). There is as yet no Malliavin calculus theory developed for a more general abstract Hilbert
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space. While we do not have a chaos decomposition via orthogonal polynomials (like Hermite
polynomials in Wiener space; see [7]), we still have a comparable decomposition proved by Itô
(Theorem 2, [9]): for F ∈ L2 (Ω , F ,P),

F =

∞
q=0

Iq


fq


where fq ∈ L2
µ⊗q . (5)

With this decomposition, we can define the Malliavin derivative operator and Skorohod inte-
gral operator. Define Dom D as the set of F ∈ L2 (Ω) for which


∞

q=1 qq!
 fq

2
L2

µ⊗q
< ∞ and

Dz F =

∞
q=1

q Iq−1


fq (z, ·)

.

It is instructive to consider the derivatives Dt,0 and Dz where z = (t, x) has x ≠ 0. This
will enable us to better understand the similarities, and where they end, between the Malliavin
calculus of Wiener space and that of Wiener–Poisson space. See [24,23] for more details on the
following discussion. We consider two spaces on which we can embed Dom D. For F ∈ L2 (Ω),
we say F ∈ Dom D0 iff


∞

q=1 qq!


R+

 fq ((t, 0) , ·)
2

L2
µ⊗(q−1)

dt < ∞ and F ∈ Dom D J iff
∞

q=1 qq!


R+×R0

 fq (z, ·)
2

L2
µ⊗(q−1)

dµ (z) < ∞. In fact, Dom D = Dom D0
∩Dom D J . Since

W and N are independent, we can think of Ω as a cross product of the form ΩW × ΩJ where
ΩW = C


R+


and ΩJ consists of the sequences ((t1, x1) , (t2, x2) , . . .) ∈

R+

× R0
N (with a

few other technical conditions).

• The derivative Dt,0 can be interpreted as the derivative with respect to the Brownian motion
part. In fact, if ν = 0, then Dt,0 F =

1
σ

DW
t F where DW is the classical Malliavin derivative

(defined in Wiener space); the 1
σ

comes from the fact that we are differentiating with respect to
σ Wt and not just Wt . From the isometry L2 (Ω) ≃ L2


ΩW ; L2 (ΩJ )


, consider F ∈ L2 (Ω)

as an element of L2

ΩW ; L2 (ΩJ )


. A smooth F then has the form F =

n
i=1 Gi Hi where

each Gi is a smooth Brownian random variable and Hi ∈ L2 (ΩJ ). We can then define DW

by DW F =
n

i=1


DW Gi


Hi , where DW Gi is the classical Malliavin derivative. It can be

shown that this definition can be extended to a subspace Dom DW
⊂ Dom D0, so that for

F ∈ Dom DW , as expected,

Dt,0 F =
1
σ

DW
t F. (6)

For functionals of the form F = f (G, H) ∈ L2 (Ω) having G ∈ Dom DW , H ∈ L2 (ΩJ ),
and such that f is continuously differentiable with bounded partial derivatives in the first
variable, we have a chain rule result: F ∈ Dom D0 and Dt,0 F =

1
σ

∂ f
∂x (G, H) DW

t G. We may
loosen the restriction on f to a.e. differentiability if G is absolutely continuous.

• The derivative Dz, z = (t, x) with x ≠ 0, is a difference operator: for F ∈ Dom D J

Dz F =
F

ωt,x


− F (ω)

x

where, if Ψz F is the right-hand expression, then E


R+×R0
(Ψz F)2 dµ (z)


< ∞. The

idea is to introduce a jump of size x at time t which is captured by the realization ωt,x .
For ω =


ωW , ωJ


, we define ωt,x by simply adding the time–jump pair (t, x) to ωJ . For
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F = f (G, H) ∈ L2 (Ω) with G ∈ L2 (ΩJ ), H ∈ Dom D J and f continuous, we have this
chain rule result:

Dz F =
f

G, H


ωt,x


− f (G, H (ω))

x
=

f (G, x Dz H + H (ω)) − f (G, H (ω))

x
.

If f is differentiable, then by the mean value theorem, for some random θz ∈ (0, 1),

Dz F =
∂ f

∂y
(G, θz x Dz H + H (ω)) Dz H.

The following unified chain rule will be very useful (see Proposition 2 in [29]): If F ∈

Dom DW
∩ Dom D J , DF ∈ L2

µ, f ∈ C k−1 has a bounded first derivative and f (k−1) is a.e.
differentiable, then for z ∈ (t, x) ∈ R+

× R,

Dz f (F) =

k−1
n=1

f (n)(F)

n!
xn−1(Dz F)n

+

 Dz F

0

f (k)(F + xu)

(k − 1)!
xk−1(Dz F − u)k−1du. (7)

In the case where f (k−1) is differentiable everywhere, the chain rule is

Dz f (F) =

k−1
n=1

f (n)(F)

n!
xn−1(Dz F)n

+
f (k)(F + θz x Dz F)

k!
xk−1(Dz F)k (8)

for some function θz ∈ (0, 1) for all z = (t, x) ∈ R+
× R.

We now define the adjoint of D (see [24] again). Suppose F ∈ L2

R+

×R×Ω , B

R+

× R


× F , µ × P


with F (z) =


∞

q=0 Iq


fq (z, ·)


where each fq ∈ L2
µ⊗(q+1) is symmetric in the

last q variables. In this case, the Skorohod integral of F is δ (F) =


∞

q=0 Iq+1
fq


where

∞

q=0 (q + 1)!
fq

2
L2

µ⊗(q+1)
< ∞, i.e. F ∈ Dom δ (by definition). Furthermore, E [δ (F) G] =

E

⟨F, DG⟩L2

µ


for any G ∈ Dom D.

Finally, we define as before L = −δD: for F as in (5), L F = −


∞

q=1 q Iq


fq

. The pseudo-

inverse is defined by L−1 F = −


∞

q=1
1
q Iq


fq

. We have again L L−1 F = F − E [F].

Remark 1. Write z⃗q = (z1, . . . , zq), with zi = (ti , xi ) for all i . Define

W =


F =

∞
q=0

Iq( fq) ∈ Dom D0
: fq ∈ L2

µ⊗q , and for every q,

fq(z⃗q) = 0 if xi ≠ 0 for some i


.

Notice from the previous discussion that if fq(z⃗q) = 0 because xi ≠ 0, then Iq( fq) coincides
with an iterated multiple (Wiener) integral. Therefore, Wiener space can be seen as a subspace
of Wiener–Poisson space (similarly for Poisson space as a subspace). Moreover, W coincides
with the subspace D1,2 (through embedding). The relevance of these facts is that if we have a
r.v. F ∈ W , then the chain rule formula and the Malliavin calculus operators are exactly (up to a
constant) the same as those in Wiener space (as explained earlier in this subsection). Furthermore,
the results (from other papers) in Wiener space can be replicated in W and so the conclusions
will hold in Wiener–Poisson space, but within W . From now on, D1,2 will mean the subspace
D1,2 in Wiener space or the respective embedding W in Wiener–Poisson space.



190 R. Eden, J. Vı́quez / Stochastic Processes and their Applications 125 (2015) 182–216

2.3. The random variables gX , gZ and the functions g∗, G∗

From this point on, H will be taken as L2

R+

× R, B

R+

× R

, µ


if we are in Wiener–
Poisson space. Now suppose F has mean 0. We have the following integration by parts formulas.

• If F ∈ Dom DW
∩ Dom D J and f ∈ C 1 with bounded first derivative a.e. differentiable,

E [F f (F)] = E


−DL−1 F, DF

H

f ′ (F)


+E


−DL−1 F,

 DF

0
f ′′(F + xu)x(DF − u)du


H


. (9)

• If F ∈ Dom DW
∩ Dom D J and f is twice differentiable with bounded first derivative,

E [F f (F)] = E


−DL−1 F, DF

H

f ′ (F)


+E


−DL−1 F,
f ′′(F + θ·x DF)

2
x(DF)2


H


. (10)

• If F ∈ D1,2 (see Remark 1) and f is continuously differentiable with bounded derivative (or
f is Lipschitz if F has a density),

E [F f (F)] = E


−DL−1 F, DF

H

f ′ (F)

. (11)

Remark 2. Notice that the ideas employed to prove that the chain rule (D f (F) = f ′(F)DF)
holds if f is a polynomial and F ∈ D∞, can be reproduced through the relation (6) obtaining the
applicability of the chain rule for functionals in a fixed Wiener–Poisson chaos. Therefore, using
formula (10), it follows that for X = Iq (g) (in a fixed Wiener–Poisson chaos),

E


Xr+1


=
r

q
E


Xr−1
∥DX∥

2
H


+

r (r − 1)

2q
E


x (DX)3 , (X + θ·x DX)r−2

H


.

These formulas provide the link to the use of Malliavin calculus techniques in solving prob-
lems related to Stein’s method. Since F = L L−1 F = −δDL−1 F , we have

E [F f (F)] = E

−δDL−1 F · f (F)


= E


−DL−1 F, D f (F)


H


.

A direct application of the chain rule for Wiener–Poisson space, choosing k = 2 in (7) and (8),
yields (9) and (10) respectively, and an application of the respective chain rule in Wiener space
yields (11).

Assumption A. Z has mean 0 and support (l, u) with −∞ ≤ l < 0 < u ≤ ∞. The density ρ∗

of Z is known, and it is continuous in its support. X is either in D1,2 (Wiener space case) or in
Dom DW

∩ Dom D J (Wiener–Poisson space case), and it also has mean 0.

Caution: Notice that in the previous subsection we used x ∈ R to denote the jump component of
z ∈ R+

× R in our state space. On the other hand, we are using Z to denote the target r.v. and
X the r.v. with unknown distribution. A confusion may arise in the usage of x and X , or z and
Z . However, we will stick with current notation for consistency with existing literature. In this
regard, we urge the reader to keep in mind that x represents the size of the jump while X is a
random variable not (directly) related to x . On the other hand, z is a jump (time of the jump, size
of the jump) while Z is the target r.v. which has no jumps.
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Remark 3. In some results, we will consider instead of X a sequence {Xn} of random variables.
In this case, we have the same assumptions (and corresponding functionals, defined below) for
each Xn . The continuity assumption of the density ρ∗ is not strong at all, since general processes
like solutions of stochastic differential equations driven by Brownian motion or (under mild
conditions) fractional Brownian motion (for example see [2]) have continuous densities.

Define the random variable gX = E
 

DX, −DL−1 X

H

 X


for any Malliavin differentiable

r.v. X in the domain of L−1. Nourdin and Peccati proved that gX ≥ 0 almost surely (Proposition
3.9, [15]). Closely related is the function

g∗ (z) =


 u

z yρ∗ (y) dy

ρ∗ (z)
= −

 z
l yρ∗ (y) dy

ρ∗ (z)
if z ∈ (l, u)

0 if z ∉ (l, u).

(12)

Let gZ = g∗(Z). It must be pointed out that ϕ(z) :=
 u

z yρ∗ (y) dy = −
 z

l yρ∗ (y) dy > 0 for
all z ∈ (l, u). Since ρ∗ is (necessarily) bounded (Assumption A), ϕ(z)/ρ∗(z) is strictly positive
(inside the support). Furthermore, g∗ (z) > 0 for every z ∈ (l, u). Notice that using this definition
of g∗ we can conclude that

g∗(z)ρ∗(z)
′

= ϕ′(z) = −zρ∗(z).

One can retrieve the density ρ∗ given g∗ using the following noteworthy density formula
Stein [25] proved2:

ρ∗ (z) =
E |Z |

2g∗ (z)
exp


−

 z

0

y

g∗ (y)
dy


. (13)

Proposition 4. g∗ necessarily satisfies the following: 0

l

y

g∗ (y)
dy = −∞

 u

0

y

g∗ (y)
dy = ∞. (14)

Proof. With ϕ(z) defined as before, Nourdin and Viens (Theorem 3.1 [17]) showed that z

0

y

g∗(y)
dy = ln

ϕ(0)

ϕ(z)
.

Since ϕ(z) → 0 as z → u and as z → l, the result follows. �

Conversely, given the density ρ∗ of Z , we can compute g∗ using (12). Some examples of
known distributions with their g∗ are given in Table 1. Recall that g∗(z) = 0 outside the support.

Remark 5. • The necessary conditions in Proposition 4 are actually not new. Stein (Lemma
VI.3 [25]) has pointed out that these are necessary for a continuous function g∗, strictly
positive on an interval (l, u), to correspond to a unique probability density function ρ∗ having
mean 0, with g∗ and ρ∗ related by (12) and (13).

• Suppose g∗ (x) = α (x − l)p for some constant α > 0 and the support of Z is (l, ∞). Then
∞

0
x

g∗(x)
dx = ∞ if and only if p ≤ 2, and

 0
l

x
g∗(x)

dx = −∞ if and only if 1 ≤ p.
Similarly, if g∗ (x) = α (u − x)q over the support (−∞, u), 1 ≤ q ≤ 2 necessarily. Also, if

2 Nourdin and Viens proved it in the case where Z ∈ D1,2 in [17].
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Table 1
Common distributions with their ρ∗ and g∗.

Normal (−∞, ∞); σ > 0, C−1
=

√
2πσ

ρ∗(z) = Ce−z2/(2σ2) g∗(z) = σ 2

Gamma (l, ∞); l = −rs, r > 0, s > 0, C−1
= srΓ (r)

ρ∗(z) = C (z − l)r−1 e−(z−l)/s g∗(z) = s (z − l)

χ2(l, ∞); l = −v, d.f. v > 0, C−1
= 2v/2Γ (v/2)

ρ∗(z) = C (z − l)
v
2 −1 e−(z−l)/2 g∗(z) = 2 (z − l)

Exponential (l, ∞); l = −
1
λ

, C = λ > 0
ρ∗(z) = Ce−λ(z−l) g∗(z) =

1
λ (z − l)

Beta (l, u); l = −
r

r+s , r > 0, s > 0, u = 1 + l, C−1
= β(r, s)

ρ∗(z) = C(z − l)r−1(1 + l − z)s−1 g∗(z) =
1

r+s (z − l)(1 + l − z)

Pearson Type IV (−∞, ∞); t = −
s

2(r−1)
, r > 3

2

ρ∗(z) = C


1 + (z − t)2
−r

es tan−1(z−t) g∗(z) =
1

2(r−1)


1 + (z − t)2


Student’s T (−∞, ∞); d.f. v > 2, C =

Γ ((v+1)/2)
√

vπΓ (v/2)

ρ∗(z) = C


1 + z2/v
−(v+1)/2

g∗(z) =
v

v−1


1 + z2/v


Inverse Gamma (l, ∞); l = −

s
r−1 , r > 3, s > 0, C =

sr−1

Γ (r−1)

ρ∗(z) = C(z − l)−r e−s/(z−l) g∗(z) =
1

r−2 (z − l)2

Uniform (l, u); u = −l > 0, C−1
= 2u

ρ∗(z) = C g∗(z) =
1
2


u2

− z2


Pareto (l, ∞); r > 2, l < 0, C = r(−l)r (r − 1)r

ρ∗(z) = C(z − rl)−(r+1) g∗(z) =
1

r−1 (z − l)(z − rl)

Laplace (−∞, ∞); r > 0, C = r/2
ρ∗(z) = Ce−r |z| g∗(z) =

1
r2 (1 + r |z|)

Lognormal (l, ∞); l = −eµ+σ2/2, σ > 0, p(z) =
ln(z−l)−µ

σ , C−1
= −

√
2πσe2µ/ l

ρ∗(z) = C exp


−
[p(z)+σ ]2

2


g∗(z) = σe2µ exp


[p(z)+σ ]2

2

 p(z)
p(z)−σ

e−s2/2ds

g∗ (x) = O (x p) and the support is (−∞, ∞), then p ≤ 2. If g∗ (x) = α (u − x)q (x − l)p

over the support (l, u), then p ≥ 1 and q ≥ 1 necessarily.

Let G∗ (z) =
 z

0 g∗ (y) dy be the indefinite integral of g∗ (assuming g∗ ∈ L1(l, u)). Consider
the situations where the chain rule formula on G∗ (z) is applicable. If we take f = G∗ in (11),
then

E [gX g∗ (X)] = E [G∗ (X) X ] . (15)

Assumption A′. Along with Assumption A, one of the following conditions is satisfied:

• g∗ has at most polynomial growth and X ∈ D∞.
• g∗ is a polynomial of degree m and X ∈ D1,m+2.
• ∥g∗∥∞ < ∞ and the support of the law of X is contained in (l, u).
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3. Stein’s method and the Stein equation

Stein’s method is a set of procedures that is often used to measure distances between random
variables such as X and Z . More precisely, we are measuring the distance between the laws of X
and Z . These distances take the form

dH (X, Z) = sup
h∈H

|E [h (X)] − E [h (Z)]| (16)

where H is a suitable family of functions. If we take HW = {h : ∥h∥L ≤ 1} where ∥·∥L is the
Lipschitz seminorm, then dW = dHW is called Wasserstein distance. The bounded Wasserstein
(Fortet–Mourier) distance corresponds to H F M = {h : ∥h∥L + ∥h∥∞ ≤ 1}. Clearly, dF M ≤ dW .
dF M is important because it metrizes convergence in distribution: dF M (Xn, Z) → 0 if and

only if Xn
Law
−→ Z . dW on the other hand induces a topology stronger than that of convergence in

distribution.
Nourdin and Peccati [15] mentioned other useful metrics. We have the Total Variation distance

when HT V = {1B : B is Borel} and the Kolmogorov distance when HK =

1(−∞,z] : z ∈ R


.

The latter for example is suited for the analysis of probability tails. However, in this paper, we
will only consider dW and dF M as we try to find bounds for dH (X, Z) by exploiting properties
of Lipschitz functions h ∈ H.

A Stein equation is at the root of Stein’s method. Given Z and a test function h, the Stein
equation is the differential equation

g∗ (x) f ′ (x) − x f (x) = h (x) − E [h (Z)] . (17)

Observe that f = fh in (23) is a solution. If the law of X is “close” to the law of Z , then
we expect E [h (X)] − E [h (Z)] to be close to 0, for h belonging to a large class of functions.
Consequently, E


g∗ (X) f ′ (X) − X f (X)


would have to be close to 0. In fact, subject to certain

technical conditions, the left-hand side of Eq. (17) provides a characterization of the law of Z :

E

g∗ (X) f ′ (X) − X f (X)


= 0 if and only if X

Law
= Z (in the equation, information about the

law of Z is coded in g∗). The following proposition states this result in its precise form. For a
quick proof, see Proposition 6.4 in [15]. The first statement is Lemma 1 in [25] by Stein.

Lemma 6 (Stein’s Lemma).

1. If f is continuous, piecewise continuously differentiable, and E

g∗ (Z)

 f ′ (Z)
 < ∞, then

E

g∗ (Z) f ′ (Z) − Z f (Z)


= 0. (18)

2. If for every differentiable f , x →
g∗ (x) f ′ (x)

+ |x f (x)| is bounded and

E

g∗ (X) f ′ (X) − X f (X)


= 0, (19)

then X
Law
= Z.

Let H = H F M or H = HW . Using (17) on (16), we have

dH (X, Z) ≤ sup
h∈H

E g∗ (X) f ′

h (X) − X fh (X)
 (20)

where each fh is the solution given by (23) for the Stein equation, for a corresponding h ∈ H.
Here the integration by parts formulas (9) and (11) allow us to rewrite the term E[X fh(X)] in
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terms of the derivatives of fh and the r.v. gX , as we pointed out before. For instance, in Wiener
space,

dH (X, Z) ≤ sup
h∈H

E g∗ (X) f ′

h (X) − gX f ′

h (X)


= sup
h∈H

E  f ′

h (X) (g∗ (X) − gX )
 . (21)

Thus, to ensure that the distance between X and Z is small, g∗ (X) should be close to gX . We
also need to have a good control of f ′

h (X). One way of addressing this, taking note of Corollary
6.5 in [15], is by assuming a universal bound for E


f ′

h (X)2 for all h ∈ H since

dH (X, Z) ≤


sup
h∈H

E


f ′

h (X)2
×


E

(g∗ (X) − gX )2. (22)

The first factor is intractable since it requires us to consider conditions on X in relation to
all solutions fh . If however we have a uniform bound for f ′

h , then we can avoid imposing an
additional restriction on X . In this case, we only need to worry about how close g∗ (X) is to gX
in L2 (Ω). In fact, such a bound allows us to just consider how close g∗ (X) is to gX in L1 (Ω).
It is then interesting to see how information about the law of Z is contained in its Malliavin
derivative. Notice though that this discussion needs to be modified slightly in Wiener–Poisson
space, since the integration by parts formula (9) involves also the second derivative. Thus, we
need to control (in a uniform way) both the first and second derivatives of the solution of the
Stein equation. Due to this extra requirement, as will be seen later, we will not be able to apply
our tools to as wide a scope of target r.v. Z , as we would be able to do in Wiener space.

3.1. Bound for f ′

The solution of the Stein equation (17) that we are interested in is the function fh given
by (23). We emphasize here that each such solution is determined by a particular function h (of
course, the r.v. Z is also used as input). In the sequel, for the sake of brevity, we drop the subscript
h from the solution f and its derivatives.

The Normal case in Wiener space:
If Z is standard Normal (g∗(z) = 1), the Stein equation is f ′ (x) − x f (x) = h (x) −

E [h (Z)] and it has solution f (x) = ex2/2
 x
−∞

[h (y) − E [h (Z)]] e−y2/2dy. Stein proved
(Lemma II.3 in [25]) that

 f ′


∞
≤ 2 ∥h − E [h (Z)]∥∞. In fact,

 f ′


∞
≤ min


2∥h −

E [h (Z)] ∥∞, 4
h′


∞


(see Lemma 2.3 [5]). For h ∈ H F M ,

 f ′


∞
≤ 4. It follows from

(21) that dF M (X, Z) ≤ kE [|1 − gX |] ≤ k

E

(1 − gX )2 with k = 4. Similar estimates for

h ∈ HW lead to a bound for dW of the same form but with k = 1 (Lemma 4.2 [4], Lemma
1.2 [15]). How close the law of X is to the standard Normal law depends on how close gX is to
gZ = 1 (in the L1 sense).
In the general case, the Stein equation (17) has solution

fh (x) =
1

g∗ (x) ρ∗ (x)

 x

l
[h (y) − mh] ρ∗ (y) dy

=
−1

g∗ (x) ρ∗ (x)

 u

x
[h (y) − mh] ρ∗ (y) dy (23)
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for x ∈ (l, u), where mh := E [h (Z)]. If x ∉ (l, u) (in case the support is not R), it follows
easily from (17) and since g∗(x) = 0, that fh(x) = −

h(x)−mh
x . We then see that if l > −∞, by

L’Hôpital’s rule,

lim
x→l+

fh(x) = lim
x→l+

[h(x) − mh] ρ∗(x)

−xρ∗(x)
= lim

x→l−
fh(x)

so that fh is continuous at x = l (and similarly, also at x = u if u < ∞).
The proof of the bound for f ′ when Z is Normal can be adapted to find a constant bound

for g∗ f ′ in the non-Normal case. If g∗ is uniformly bounded below by a positive number, we
easily get a uniform bound for f ′. Unfortunately, this is not always the case. In Table 1 we can
see several examples of target r.v.’s for which g∗ can get arbitrarily close to 0 in its support (for
example, when Z is Gamma and g∗ (z) = s (z − l)+). Kusuoka and Tudor in [10, Proposition
3] proved the following proposition to address this issue. We state it in the following form using
notation and assumptions we have set.

Lemma 7. Suppose we have the following conditions on g∗.

1. If u < ∞, then limx→u g∗ (x) / (u − x) > 0.
2. If l > −∞, then limx→l g∗ (x) / (x − l) > 0.
3. If u = ∞, then limx→u g∗ (x) > 0.
4. If l = −∞, then limx→l g∗ (x) > 0.

Then the solution f of the Stein equation (17), for a given test function h with ∥h∥∞ < ∞ andh′


∞
< ∞, has derivative bounded as follows: f ′


∞
≤ k


∥h∥∞ +

h′


∞


(24)

where the constant k depends on Z alone, and not on h.

Unfortunately, conditions 1 and 2 are too restrictive. Consider for instance a r.v. Z with support
(l, ∞) and g∗ (x) = α (x) (x − l)p, where α(x) is uniformly bounded below by some α0 > 0.
From Remark 5, 1 ≤ p ≤ 2 necessarily. Among all g∗ of this form, Lemma 7 is thus only able
to assure the needed boundedness of f ′ when p = 1. For instance, when Z is Inverse Gamma
or Lognormal, condition 2 fails (see the corresponding g∗ in Table 1). This stresses the need for
less restrictive conditions on g∗ that would allow us to include these cases and much more. The
first requirement in order to achieve this is a good representation of the derivative f ′.

Proposition 8. For x ∈ (l, u), the derivative f ′ of the solution f = fh given in (23), of the Stein
equation (17), is

f ′ (x) =
1

g2
∗ (x) ρ∗ (x)

 u

x

 x

l
[1 − Φ (s)] Φ (t)


h′ (t) − h′ (s)


dtds

where Φ(x) =
 x

l ρ∗(t)dt is the cumulative distribution function of Z.

Proof. First,

h (x) − mh =

 x

l
[h (x) − h (s)] ρ∗ (s) ds +

 u

x
[h (x) − h (s)] ρ∗ (s) ds

=

 x

l

 x

s
h′ (t) dt


ρ∗ (s) ds −

 u

x

 s

x
h′ (t) dt


ρ∗ (s) ds
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=

 x

l

 t

l
ρ∗ (s) ds


h′ (t) dt −

 u

x

 u

t
ρ∗ (s) ds


h′ (t) dt

=

 x

l
Φ (t) h′ (t) dt −

 u

x
[1 − Φ (t)] h′ (t) dt

and so, from (23),

g∗ (x) ρ∗ (x) f (x) =

 x

l
[h (y) − mh] ρ∗ (y) dy

=

 x

l

 y

l
Φ (t) h′ (t) dt


ρ∗ (y) dy

−

 x

l

 u

y
[1 − Φ (t)] h′ (t) dt


ρ∗ (y) dy

=

 x

l

 x

t
ρ∗ (y) dy


Φ (t) h′ (t) dt

−

 x

l

 t

l
ρ∗ (y) dy


[1 − Φ (t)] h′ (t) dt

−

 u

x

 x

l
ρ∗ (y) dy


[1 − Φ (t)] h′ (t) dt

=

 x

l
[Φ (x) − Φ (t)] Φ (t) h′ (t) dt −

 x

l
Φ (t) [1 − Φ (t)] h′ (t) dt

−

 u

x
Φ (x) [1 − Φ (t)] h′ (t) dt.

Canceling some terms and solving for f ,

f (x) = −
1 − Φ (x)

g∗ (x) ρ∗ (x)

 x

l
Φ (t) h′ (t) dt −

Φ (x)

g∗ (x) ρ∗ (x)

 u

x
[1 − Φ (t)] h′ (t) dt. (25)

Observe that if x < 0,

0 = E[Z ] =

 x

l
tρ∗(t)dt +

 u

x
tρ∗(t)dt ≤ xΦ(x) + g∗(x)ρ∗(x)

while if x > 0,

0 = E[Z ] =

 x

l
tρ∗(t)dt +

 u

x
tρ∗(t)dt ≥ −g∗(x)ρ∗(x) + x[1 − Φ(x)].

Therefore, 0 ≤ −xΦ (x) ≤ g∗(x)ρ∗(x) → 0 as x → l and 0 ≤ x [1 − Φ (x)] ≤ g∗(x)ρ∗(x) →

0 as x → u. When we then integrate by parts, x

l
Φ (t) dt = tΦ (t)

x
l
−

 x

l
tρ∗ (t) dt = xΦ (x) + g∗ (x) ρ∗ (x) (26) u

x
[1 − Φ (t)] dt = t [1 − Φ (t)]

u
x
+

 u

x
tρ∗ (t) dt

= −x [1 − Φ (x)] + g∗ (x) ρ∗ (x) . (27)
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Finally, from (17),

g∗ (x) f ′ (x) = x f (x) + h (x) − mh

=


−

x [1 − Φ (x)]
g∗ (x) ρ∗ (x)

+ 1
 x

l
Φ (t) h′ (t) dt

−


xΦ (x)

g∗ (x) ρ∗ (x)
+ 1

 u

x
[1 − Φ (t)] h′ (t) dt

=
1

g∗ (x) ρ∗ (x)

 u

x
[1 − Φ (s)] ds

 x

l
Φ (t) h′ (t) dt

−
1

g∗ (x) ρ∗ (x)

 x

l
Φ (t) dt

 u

x
[1 − Φ (s)] h′ (s) ds

which leads to the given form of f ′. �

The bound (24) is not directly suited for dW where we do not have a prescribed bound
on ∥h∥∞. A workaround, as pointed out in [10], is that for each h ∈ HW , we pass on the
analysis to a sequence {hn} converging to h uniformly in every compact set, where {hn} ⊂
h ∈ C1

0 :
h′


∞
≤ 1


. However, with the help of the previous lemma, we can overcome this

complication by giving a bound for f ′ in terms of only ∥h′
∥∞. Recall that if h is Lipschitz, it

is a.e. differentiable and
h′


∞
= ∥h∥L .3 Thus, the upper bound obtained here is immediately

well suited for all f ∈ FF M and for all f ∈ FW .

Theorem 9. If applicable, assume conditions 3 and 4 from Lemma 7. Suppose there exists a
positive function g̃ ∈ C 1(l, u) such that

1. 0 < limx→u g∗ (x) /g̃ (x) ≤ limx→u g∗ (x) /g̃ (x) < ∞ and g̃′(u−) := limx→u− g̃′(x) ∈ R
exists.4

2. 0 < limx→l g∗ (x) /g̃ (x) ≤ limx→l g∗ (x) /g̃ (x) < ∞ and g̃′(l+) := limx→l+ g̃′(x) ∈ R
exists.

Then the solution f of the Stein equation (17), for a given test function h with
h′


∞
< ∞, has

derivative bounded as follows: f ′


∞
≤ k

h′


∞
(28)

where the constant k depends on Z alone, and not on h.

Proof. If the support is not R, suppose x ∉ (l, u) so that f (x) = −
h(x)−mh

x , and so f ′(x) =

−
h′(x)

x +
h(x)−mh

x2 . The first term of f ′ is bounded as
−h′(x)/x

 ≤
h′


∞
/|l| if x < l when

l > −∞ (
h′


∞
/u if x > u when u < ∞). For the second term,h(x) − mh

x2

 =
1

x2

 u

l
h(x)ρ∗(y)dy −

 u

l
h(y)ρ∗(y)dy


≤

1

x2

 u

l
|h(x) − h(y)| ρ∗(y)dy

3 This is shown as follows: if x ≤ y, |h(y) − h(x)| =
 y

x h′(z)dz
 ≤

 y
x

h′(z)
 dz ≤ ∥h′

∥∞(y−x) = ∥h′
∥∞|y−x |,

implying that
h′

∞

≥ ∥h∥L . And trivially,
h′

∞

≤ ∥h∥L .
4 R stands for the extended real numbers, i.e. R = [−∞, ∞].
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≤
∥h∥L

x2

 u

l
|x − y|ρ∗(y)dy

≤
∥h∥L

x2 (|x | + E[|Z |]) = ∥h∥L


1
|x |

+
E[|Z |]

x2


.

If x < l when l > −∞, the second factor is bounded by 1/|l| + E[|Z |]/ l2 (we have a similar
bound when u < ∞).

Assume now that x is in the support of Z . Note that from Proposition 8,

 f ′ (x)
 ≤

2
h′


∞

g2
∗ (x) ρ∗ (x)

 u

x
[1 − Φ (s)] ds

 x

l
Φ (t) dt. (29)

Fix l ′ and u′ s.t. l < l ′ < 0 < u′ < u. Since g∗(x)ρ∗(x) is continuous and strictly positive
on [l ′, u′

], it attains its minimum m := inf[l ′,u′] g∗(x)ρ∗(x) > 0 on this compact set. Also by

continuity of the density M := sup[l ′,u′] ρ∗(x) < ∞, and g∗ (x) =
g∗(x)ρ∗(x)

ρ∗(x)
≥

m
M > 0 on

l ′, u′

, so g2

∗(x)ρ∗(x) ≥
m2

M . By the continuity and positivity of I1(x) :=
 u

x [1 − Φ (s)] ds
and I2(x) :=

 x
l Φ (t) dt we conclude that K := sup[l ′,u′] (I1(x) ∨ I2(x)) < ∞. By (29),

| f ′(x)| ≤
2M K 2

m2

h′


∞
on

l ′, u′


.

Since l ′ and u′ were arbitrarily chosen, we only need to prove now that limx→l
 f ′ (x)

 ≤

k1∥h′
∥∞ and limx→u

 f ′ (x)
 ≤ k2∥h′

∥∞ for some finite constants k1 and k2. Due to the
symmetry of the arguments it suffices to prove just one of these limits. Suppose l ′ was chosen
small enough so that g̃ ∈ C 1


l, l ′


, and for some constants 0 < c ≤ C < ∞, cg∗ (x) ≤ g̃ (x) ≤

Cg∗ (x) on

l, l ′


.

• Case 1: l > −∞.

We show that the limit of the right-hand side of (29) is finite as x → l. Note that in this
case,

 u
x [1 − Φ (s)] ds = g∗ (x) ρ∗ (x) − x [1 − Φ (x)] → |l|. By L’Hôpital’s rule,

lim
x→l

 f ′ (x)
 ≤ 2

h′


∞
|l| lim

x→l

C
 x

l Φ (t) dt

g̃ (x) g∗ (x) ρ∗ (x)

≤ 2
h′


∞
|l| C lim

x→l

Φ (x)

−x g̃ (x) ρ∗ (x) + g̃′ (x) g∗ (x) ρ∗ (x)

≤ 2
h′


∞
|l| C lim

x→l

Φ (x)
−cx + g̃′ (x)


g∗ (x) ρ∗ (x)

≤
2
h′


∞
|l| C

g̃′

l+

− cl

lim
x→l

ρ∗ (x)

−xρ∗ (x)
=

2
h′


∞
C

g̃′

l+

− cl

.

Since g̃

l+


:= limz→l+ g̃(z) = 0 and g̃ ≥ 0, we may assume l ′ is small enough so g̃′
≥ 0 on

l, l ′

. Consequently, g̃′


l+


≠ cl < 0.

• Case 2: l = −∞.

Since limx→−∞
g∗ (x) > 0, we may suppose l ′ is small enough so that for some constant

m0 > 0, g∗ (x) ≥ m0 over

−∞, l ′


.
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lim
x→−∞

 f ′ (x)
 ≤ 2∥h′

∥∞ lim
x→−∞


g∗ (x) ρ∗ (x) − x [1 − Φ (x)]

  x
−∞

Φ (t) dt

g2
∗ (x) ρ∗ (x)

≤ 2
h′


∞


lim

x→−∞

 x
−∞

Φ (t) dt

m0
+ lim

x→−∞

−x
 x
−∞

Φ (t) dt

g2
∗ (x) ρ∗ (x)


= 2

h′


∞
lim

x→−∞

|x |
 x
−∞

Φ(t)dt

g2
∗(x)ρ∗(x)

.

There are two subcases to consider depending on the behavior of g̃(x) as x → −∞. From
the continuity of g̃ and the existence of g̃′(l+), L := limx→−∞ g̃(x) necessarily exists. If
L < ∞, then limx→−∞

g̃(x)
|x |

= 0. If L = ∞, then by L’Hôpital’s rule, limx→−∞
g̃(x)
|x |

=

− limx→−∞ g̃′(x) = −g̃′(l+). In either case, limx→−∞
g̃(x)
|x |

exists.

– Subcase 1: limx→−∞
g̃(x)
|x |

= ∞

Note that by (26),
 x
−∞

Φ(t)dt = xΦ(x) + g∗(x)ρ∗(x) ≤ g∗(x)ρ∗(x) so

|x |
 x
−∞

Φ(t)dt

g2
∗(x)ρ∗(x)

≤ C
|x |g∗(x)ρ∗(x)

g̃(x)g∗(x)ρ∗(x)
= C

|x |

g̃(x)
.

Therefore

lim
x→−∞

 f ′ (x)
 ≤ 2

h′


∞
C lim

x→−∞

|x |

g̃(x)
= 0 < ∞.

– Subcase 2: limx→−∞
g̃(x)
|x |

< ∞

Similarly from (26),

|x |
 x
−∞

Φ(t)dt

g2
∗(x)ρ∗(x)

≤

 x
−∞

|x |

|t | g∗(t)ρ∗(t)dt

m0g∗(x)ρ∗(x)
≤

 x
−∞

g∗(t)ρ∗(t)dt

m0g∗(x)ρ∗(x)
.

Therefore,

lim
x→−∞

 f ′ (x)
 ≤

2∥h′
∥∞

m0
lim

x→−∞

 x
−∞

g∗(t)ρ∗(t)dt

g∗(x)ρ∗(x)
≤

2∥h′
∥∞

m0
lim

x→−∞

g∗(x)ρ∗(x)

−xρ∗(x)

≤
2∥h′

∥∞

m0
lim

x→−∞

g̃(x)

c|x |
< ∞.

The proof that limx→u
 f ′ (x)

 ≤ k2∥h′
∥∞ for some k2 < ∞ is similar. �

Note that if g∗ is uniformly bounded below in a neighborhood of l > −∞ (or for u < ∞)
then condition 2 (1 in the case of u) from Theorem 9 is not required (see discussion before
Lemma 7). In the statement of the previous theorem, we can take g̃ = g∗ if g∗ is continuously
differentiable (at least locally C 1 close to the endpoints of the support), and in this case the
conditions are trivially met. In other words, if we can check that g∗ ∈ C 1(l, u) then bound (28) is
automatically true (given the existence of g̃′(u−) and g̃′(l+)). These new conditions are met by
all r.v.’s in the Exponential family, Pearson family, and practically any other r.v. whose density
is C 1 and is strictly positive in its support. If g∗ is not continuously differentiable, we can still
get the bound but we are required to approximate g∗ by a continuously differentiable function g̃
near the endpoints of the support. For example, consider the Laplace distribution where g∗(x) =
1
c2 (1 + c|x |) (see Table 1). In this case g∗ is differentiable everywhere except at 0. Therefore we
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can choose g̃(x) = g∗(x) for all x ∈

−∞, l ′


∪

u′, ∞


(with −∞ < l ′ < 0 < u′ < ∞) and

g̃(x) = φ(x) on (l ′, u′) where φ is a smooth function such that g̃ is differentiable at l ′ and u′.

Assumption B. We have the following conditions on g∗.

1. For some positive g̃ ∈ C 1 (l, u),
(a) 0 < limx→u g∗ (x) /g̃ (x) ≤ limx→u g∗ (x) /g̃ (x) < ∞.
(b) 0 < limx→l g∗ (x) /g̃ (x) ≤ limx→l g∗ (x) /g̃ (x) < ∞.
(c) g̃′(l+) and g̃′(u−) exist.

2. If u = ∞, then limx→u g∗ (x) > 0.
3. If l = −∞, then limx→l g∗ (x) > 0.

3.2. Bound for f ′′

We reiterate that when we refer to a solution f of the Stein equation, we mean the solution fh
given by (23). It is in fact determined by a test function h, but we will drop here the subscript h
for brevity.

For our convergence in distribution results in Wiener–Poisson space, we need a boundedness
result for f ′′. The existence of f ′′ demands more conditions on g∗ such as differentiability, which
is understandable since we are requiring greater regularity in the solution of the Stein equation.
In this setting, the existence of f ′′ will also immediately force most conditions of Theorem 9
to be satisfied. If we want to work with dW or dF M , we need to consider Lipschitz functions h,
and for any such test function, we can only hope for it to be differentiable almost everywhere.
Consequently, f ′′ must be understood in the almost everywhere sense, i.e., f ′′ is a version of the
second derivative of f such that wherever the second derivative does not exist, f ′′ will have a
value of 0.

Before setting out to find a bound, we point out the unfortunate fact that our results here will
not apply to as wide a range of target r.v. Z as what happened for the first derivative. More
specifically, we will not be able to give a finite bound for

 f ′′ (x)
 when l > −∞ or u < ∞,

as we were able to do for
 f ′ (x)

 in Theorem 9. See the paragraph before Remark 10 for a
counterexample: a bounded Lipschitz function h such that if the support of Z is (l, ∞)  R,
then f ′′(x) does not tend to a finite limit as x → l. A similar counterexample can be constructed
for a r.v. Z with support (−∞, u)  R, or with support (l, u)  R.

First, we make preliminary computations on f ′′. Differentiating (17) gives us the second
derivative

f ′′ (x) =
x − g′

∗ (x)

g∗ (x)
f ′ (x) +

1
g∗ (x)

f (x) +
1

g∗ (x)
h′ (x)

which, after considering the form of f in Eq. (25) and of f ′ given in Proposition 8, reduces to

f ′′ (x)

=
A (x)

 x
l Φ (t) h′ (t) dt + B (x)

 u
x [1 − Φ (s)] h′ (s) ds + g2

∗ (x) ρ∗ (x) h′ (x)

g3
∗ (x) ρ∗ (x)

(30)

where, with the help of (26) and (27),

A (x) =

x − g′

∗ (x)
  u

x
[1 − Φ (s)] ds − g∗ (x) (1 − Φ (x))

= g∗ (x) ρ∗ (x)

x − g′

∗ (x)

− Q(x) (1 − Φ (x)) (31)
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B (x) = −

x − g′

∗ (x)
  x

l
Φ (t) dt − g∗ (x)Φ (x)

= g∗ (x) ρ∗ (x)

g′
∗ (x) − x


− Q(x)Φ (x) . (32)

Here, we defined for our convenience the function Q as

Q(x) = x2
− xg′

∗(x) + g∗(x). (33)

Let d (x) = g3
∗ (x) ρ∗ (x) and n (x) = f ′′ (x) d (x), the indicated denominator and numerator,

respectively, of f ′′ (x). As x → l, both d (x) and n (x) tend to 0. If h′ happens to be
differentiable, then by L’Hôpital’s rule, limx→l f ′′ (x) = limx→l n′ (x) /d ′ (x). It can be shown
that

A′ (x) =

2 − g′′

∗ (x)
  u

x
[1 − Φ (s)] ds (34)

and B ′ (x) = −

2 − g′′

∗ (x)
  x

l Φ (t) dt . Therefore

n′ (x) = A′ (x)

 x

l
Φ (t) h′ (t) dt + A (x)Φ (x) h′ (x) + B ′ (x)

×

 u

x
[1 − Φ (s)] h′ (s) ds − B (x) [1 − Φ (x)] h′ (x)

+

−xg∗ (x) ρ∗ (x) + g′

∗ (x) g∗ (x) ρ∗ (x)


h′ (x) + g2
∗ (x) ρ∗ (x) h′′ (x)

=

2 − g′′

∗ (x)
  u

x
[1 − Φ (s)] ds

 x

l
Φ (t) h′ (t) dt −


2 − g′′

∗ (x)


×

 x

l
Φ (t) dt

 u

x
[1 − Φ (s)] h′ (s) ds + [A (x)Φ (x) − B (x) (1 − Φ (x))

−

x − g′

∗ (x)


g∗ (x) ρ∗ (x)


h′ (x) + g2
∗ (x) ρ∗ (x) h′′ (x)

=

2 − g′′

∗ (x)


g2
∗ (x) ρ∗ (x) f ′ (x) + 0 · h′ (x) + g2

∗ (x) ρ∗ (x) h′′ (x)

and so

lim
x→l

f ′′ (x) = lim
x→l


2 − g′′

∗ (x)


g2
∗ (x) ρ∗ (x) f ′ (x) + g2

∗ (x) ρ∗ (x) h′′ (x)
2g′

∗ (x) − x


g2
∗ (x) ρ∗ (x)

= lim
x→l

2 − g′′
∗ (x)

2g′
∗ (x) − x

f ′ (x) + lim
x→l

h′′ (x)

2g′
∗ (x) − x

.

Define the function h (x) =
4
3 (x − l)3/2 on (l, 0), h (x) =

4
3 |l|3/2 on [0, ∞) and h (x) = 0

on (−∞, l]. This function is clearly Lipschitz. Note that h′′ (x) =
1

√
x−l

on (l, 0). We now

consider the same assumptions from Theorem 9 and see that limx→l
 f ′ (x)

 ≤ k
h′


∞
and

limx→l
h′′(x)

2g′
∗(x)−x = ∞. We have thus found a Lipschitz function h for which limx→l

 f ′′ (x)
 =

∞.

Remark 10. From the above discussion we cannot expect to have a universal bound on the
second derivative of f unless the support of the target r.v. is (−∞, ∞). This is consistent with the
known NP bound in Wiener–Poisson space developed in [29], where Z was Normal and hence
had (−∞, ∞) for support. For the rest of this subsection, we will then assume that l = −∞ and
u = ∞.
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Lemma 11. Suppose that on some (−∞, −R] ∪ [R, ∞) for some constant R ≥ 0, g∗ is twice

differentiable with g′′
∗(x) < 2, and

 x−g′
∗(x)

Q(x)

 is bounded as |x | → ∞. Then for some constant

R′
≥ R, A(x) ≤ 0 and B(x) ≤ 0 for all x ∈ (−∞, −R′

] ∪ [R′, ∞).

Proof. Recall the functions A, B and Q in (31)–(33). On (−∞, −R] ∪ [R, ∞), we define the
functions

r(x) = −
A(x)

Q(x)
= 1 − Φ(x) −

x − g′
∗(x)

Q(x)
g∗(x)ρ∗(x)

s(x) = −
B(x)

Q(x)
= 1 − r(x) = Φ(x) +

x − g′
∗(x)

Q(x)
g∗(x)ρ∗(x).

Then, using (34) and (27),

[Q(x)]2r ′(x) = −A′(x)Q(x) + A(x)Q′(x)

= −(2 − g′′
∗(x))


∞

x
[1 − Φ(s)]ds Q(x) + A(x)(2x − xg′′

∗(x))

[Q(x)]2r ′(x)

2 − g′′
∗(x)

= −Q(x)


∞

x
[1 − Φ(s)]ds + x A(x)

= −Q(x) [−x[1 − Φ(x)] + g∗(x)ρ∗(x)] + x

g∗ (x) ρ∗ (x)


x − g′

∗ (x)


− Q(x) (1 − Φ (x))]
= −Q(x)g∗(x)ρ∗(x) + xg∗(x)ρ∗(x)(x − g′

∗(x)) = −g2
∗(x)ρ∗(x).

Since g′′
∗(x) < 2, then r ′(x) < 0 for all x ∈ [R, ∞). As x → ∞, 1−Φ(x) → 0, g∗(x)ρ∗(x) →

0 and
 x−g′

∗(x)

Q(x)

 is bounded. Therefore, r(x) ≥ limx→∞ r(x) = 0 on [R, ∞). Consequently,

limx→∞ s(x) = 1 so that by the continuity of s, there is some R′
u ≥ R such that s(x) ≥ 0 on

[R′
u, ∞).
Similar statements can be proved for r and s on (−∞, −R]. The computations above

show that s′(x) = −r ′(x) > 0 on (−∞, −R] and so s(x) ≥ limx→−∞ s(x) = 0 for all
x ∈ (−∞, −R]. Because it follows that limx→−∞ r(x) = 1, then for some R′

d ≥ R, r(x) ≥ 0 on
(−∞, −R′

d ]. If we take R′
= max{R′

u, R′

d}, r(x) ≥ 0 and s(x) ≥ 0 on I := (−∞, R′
]∪[R′, ∞).

Therefore, for any x ∈ I , A(x) and B(x) have the same sign. Now we show they are both non-
positive. Observe that

D(x) := A(x)

 x

−∞

Φ(t)dt + B(x)


∞

x
[1 − Φ(s)]ds

=


x − g′

∗ (x)
  ∞

x
[1 − Φ (s)] ds − g∗ (x) (1 − Φ (x))

  x

−∞

Φ (t) dt

+


−

x − g′

∗ (x)
  x

−∞

Φ (t) dt − g∗ (x)Φ (x)

 
∞

x
[1 − Φ (s)] ds

= −g∗ (x) (1 − Φ (x))

 x

−∞

Φ (t) dt − g∗ (x)Φ (x)


∞

x
[1 − Φ (s)] ds

= −g∗ (x) (1 − Φ (x)) (g∗ (x) ρ∗ (x) + xΦ (x))

− g∗ (x)Φ (x) (g∗ (x) ρ∗ (x) − x [1 − Φ (x)])
= −g2

∗(x)ρ∗(x) ≤ 0.

Therefore, A(x) ≤ 0 and B(x) ≤ 0 for all x ∈ I . �
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Theorem 12. Suppose Assumption B holds, and that on some (−∞, −R] ∪ [R, ∞) for some

constant R ≥ 0, g∗ is twice differentiable with g′′
∗(x) < 2, and

 x−g′
∗(x)

Q(x)

 is bounded as |x | → ∞.

Then the solution f = fh given by (23) of the Stein equation (17), for a given test function h
with

h′


∞
< ∞, has second derivative bounded as follows: f ′′


∞
≤ k

h′


∞
(35)

where the constant k depends on Z alone, and not on h.

Proof. Recall the functions A and B in (31) and (32). From the preceding lemma, A(x) ≤ 0 and
B(x) ≤ 0 for all x ∈ I = (−∞, −R′

] ∪ [R′, ∞) for some constant R′
≥ 0. Therefore, from

(30), and using D defined in the proof of the preceding lemma, for all x ∈ I , f ′′ (x)
 ≤

−A (x)

g3
∗ (x) ρ∗ (x)

 x

−∞

Φ (t) dt ·
h′


∞

+
−B (x)

g3
∗ (x) ρ∗ (x)


∞

x
[1 − Φ (s)] ds ·

h′


∞
+

h′ (x)


g∗ (x)

g3
∗ (x) ρ∗ (x)

 f ′′ (x)


∥h′∥∞

≤ −A(x)

 x

−∞

Φ (t) dt − B(x)

 u

x
[1 − Φ (s)] ds + g2

∗(x)ρ∗(x)

= −D(x) + g2
∗(x)ρ∗(x) = 2g2

∗(x)ρ∗(x).

Due to the continuity of g∗ and conditions of Assumption B when l = −∞ and u = ∞, there
is some m0 > 0 such that g∗(x) > m0 for all x ∈ R. Then, | f ′′(x)| ≤

2∥h′
∥∞

g∗(x)
≤

2
m0

∥h′
∥∞ =

k∥h′
∥∞ for all x ∈ I . Lastly, for x ∈ [−R′, R′

], we can glean from (30) the bound

| f ′′(x)| ≤ ∥h′
∥∞

|A(x)|
 x
−∞

Φ(t)dt + |B(x)|


∞

x [1 − Φ(s)]ds + g2
∗(x)ρ∗(x)

g3
∗(x)ρ∗(x)

.

The factor following ∥h′
∥∞ is continuous, and thus bounded on [−R′, R′

]. This finishes the
proof. �

We point out that Lemma 11 is a more general version of Lemma 7 in [8] (note that Φ
there is defined as the upper probability tail). The lemma there prescribed our conditions to
hold on (−∞, ∞), while in Lemma 11, we showed that we could weaken the conditions
involving g∗ (double differentiability, boundedness) so that these need only hold over some
union (−∞, −R] ∪ [R, ∞) (where R may be strictly positive). Lest one think the conditions
of Theorem 12 are too restrictive, a closer look will show that they are all satisfied by the g∗ of
members of the Pearson family having (−∞, ∞) as its support. Examples are the Pearson Type
IV, Normal, and Student’s T distributions (see Table 1 to check the conditions). The conditions
are also satisfied by the g∗ of Laplace distributions, which we note is twice differentiable
everywhere except at the origin. We collect these conditions in the following assumption, which
we will have need of in Section 5.

Assumption B′. Along with Assumption B, and l = −∞ and u = ∞, the following hold.

1. For some constant R ≥ 0, g∗ is twice differentiable and g′′
∗(x) < 2 for all x ∈ (−∞, −R] ∪

[R, ∞).

2. limx→±∞

 x−g′
∗(x)

Q(x)

 < ∞.



204 R. Eden, J. Vı́quez / Stochastic Processes and their Applications 125 (2015) 182–216

4. NP bound in Wiener space

From the results in Section 3.1 all solutions f = fh given by (23), of the Stein equation,
belong to a set FH = { f ∈ C 1(l, u) : ∥ f ′

∥∞ ≤ k}. While the constant k will not depend on the
specific test function h used, it may still be driven by general characteristics of the members of
H, the family of test functions used. See the beginning of Section 3.1 for different choices of k
under various families H, when Z is standard Normal.

Theorem 13 (NP Bound). Let dH be dW or dF M . Under Assumptions A and B,

dH (X, Z) ≤ kE |g∗ (X) − gX | (36)

≤ k

E g∗ (X)2


− E

g∗ (Z)2

+ |E [g∗(X)gX ] − E [g∗ (Z) gZ ]| +

E g2
X


− E


g2

Z

. (37)

Let G∗ (x) be an antiderivative of g∗ (x). Under Assumptions A′ and B, with ZG∗(Z) ∈

L1(Ω),

dH (X, Z) ≤ k

E g∗ (X)2


− E

g∗ (Z)2

+ |E [XG∗ (X)] − E [ZG∗ (Z)]| +

E g2
X


− E


g2

Z

. (38)

In both statements, k is a finite constant depending only on Z and on dH.

Proof. The first bound in (36) follows from (21) and Theorem 9. The second bound follows from
Hölder’s Inequality. Let ∆ = E


(g∗ (X) − gX )21/2

. Since (g∗ (Z) − gZ )2
= 0 a.s.,

∆2
= E


g∗ (X)2


− 2E [g∗ (X) gX ] + E


g2

X


−


E

g∗ (Z)2


− 2E [g∗ (Z) gZ ] + E


g2

Z


and (37) follows. From (15) and Assumption A′ we have E [g∗(F)gF ] = E [FG∗ (F)], which
proves (38). �

The first inequality also follows from Theorem 1 and Eq. (19) in Kusuoka and Tudor [10].
The setup in their paper involves functions b and a. The function b is any function for which u

l b (x) ρ∗ (x) dx = 0 along with a few other mild conditions: b > 0 near l, b < 0 near u, bρ∗ is
continuous and bounded on (l, u). They then defined a (x) = 2

 x
l b (y) ρ∗ (y) dy/ρ∗ (x). Then

for W a standard Brownian motion, the SDE

dYt = b (Yt ) dt +


a (Yt )dWt (39)

has a unique Markovian weak solution with invariant density ρ∗. With a and b as given above,
from Theorem 1 in [10],

dH (X, Z) ≤ kE
a (X)

2
−


DX, DL−1

{b (X) − Eb (X)}

H

+ k |Eb (X)| . (40)

If we take b (x) = −x , it follows that a (x) = 2g∗ (x). If X is centered, the right-hand side of
(40) quickly reduces to kE |g∗ (X) − gX |.

While the results in [10] appear more general, taking b (x) = −x suffices. A careful analysis
will reveal that the proofs of their main results depend only on the density ρ∗ and the choice of
b. While each choice of b arguably yields a different diffusion process Y , the invariant density
is still ρ∗. Their analytical proofs are in fact independent of the stochastic differential equation
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(39) and the diffusion process arising from it. For the present paper, we only need comparisons
with the law of the reference variable Z . To this end, knowing the density ρ∗ will suffice. The
computations using b (x) = −x and a (x) = 2g∗ (x) are much easier and this is reflected in the
simplicity of (36) compared to (40).

Furthermore, as shown in the next theorem, the bounds we get from taking b (x) = −x (see
Theorem 13) are tight. Indeed, nothing is lost by choosing b this way.

Theorem 14 (Law Characterization). Under Assumptions A′ and B, X
Law
= Z if and only if all

of the following are satisfied.

1. E

g∗ (X)2

= E

g∗ (Z)2.

2. E [XG∗ (X)] = E [ZG∗ (Z)].

3. E

g2

X


= E


g2

Z


.

Proof. If the three conditions are satisfied, Theorem 13 implies dH (X, Z) = 0.

Now suppose X
Law
= Z . They then have the same density ρ∗ so 1 and 2 immediately follow.

We next prove that gX
Law
= gZ , imitating the technique Nourdin and Viens used to prove (12)

(see Theorem 3.1 [17]). Let f be a continuous function with compact support, and F any
antiderivative of f .

E [ f (X) gX ] = E [X F (X)] =

 u

l
[xρ∗ (x)] F (x) dx

= −F (x)

 u

x
yρ∗ (y) dy

x→u

x→l
+

 u

l
f (x)

 u

x
yρ∗ (y) dy


dx

=

 u

l
f (x)

 u
x yρ∗ (y) dy

ρ∗ (x)
ρ∗ (x) dx = E


f (X)

 u
X yρ∗ (y) dy

ρ∗ (X)



so gX =
 u

X yρ∗ (y) dy/ρ∗ (X) a.s. This has the same distribution as
 u

Z yρ∗ (y) dy/ρ∗ (Z), equal
to gZ a.s., so 3 then follows. �

Remark 15. We see that E

g∗ (Z)2

= E [ZG∗ (Z)] = E

g2

Z


(by integration by parts

formula). Thus, for X to have the same law as Z , it is necessary and sufficient that E

g∗ (X)2,

E [XG∗ (X)] and E

g2

X


(which a priori need not be all the same) are all equal to E


g2

Z


. The

three conditions in Theorem 14 are stated in their current form due to the symmetry involved.

That E

g∗ (Z)2

= E [ZG∗ (Z)] = E

g2

Z


are all equal depends on the specific structure of

Z itself, and it is rooted in how g∗ (and thus G∗ as well) is defined in terms of the law of Z .
Specifically, it is because g∗ (Z) = gZ that we are able to use the integration by parts formula
(11) on g∗ (Z). If we evaluate the function g∗ at the random variable X , we cannot expect g∗ (X)

to be equal to gX because g∗ is an object that “belongs” to Z . However, if X and Z are to be
“almost” the same in law, we would expect X to “almost” satisfy the same relations/equations for
Z , e.g. E


g∗ (X)2 “ =

′′ E [XG∗ (X)]. If g∗ is a polynomial, then this amounts to checking that
the moments of X satisfy the same conditions met by the moments of Z . Granted, this method
of moments is not sufficient. Hence, the need for condition 3, E


g2

X


= E


g2

Z


, in Theorem 14.

The following versions of Theorems 14 and 13 for sequences are useful.
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Corollary 16. Under Assumptions A (or A′) and B, Xn → Z in distribution if all of the
following are satisfied.

1. E

g∗ (Xn)2

→ E

g∗ (Z)2.

2. E

g∗ (Xn) gXn


→ E [g∗ (Z) gZ ] (under Assumption A).

E [XnG∗ (Xn)] → E [ZG∗ (Z)] (under Assumption A′).

3. E

g2

Xn


→ E


g2

Z


.

Corollary 17. Under Assumptions A and B, Xn → Z in distribution if g∗ (Xn) − gXn → 0 in
L1(Ω).

Remark 18. If we normalize so that Var X = Var Z , condition 3 in Theorem 14 can be re-
placed by Var gX = Var gZ since E [gX ] = Var X . This also allows us to replace the termE g2

X


− E


g2

Z

 in Theorem 13 by |Var gX − Var gZ |. In Corollary 16, we can replace condi-
tion 3 by Var gXn → Var gZ if E


X2

n


→ E


Z2

.

If Z is Normal with variance σ 2 so g∗ (y) = σ 2, G∗ (y) = σ 2 y and gZ = σ 2. If Var X = σ 2,
then

dH (X, Z) ≤ k
σ 4 − σ 4

+ σ 2
E X2


− E


Z2
+ |Var gX − Var gZ |

= k


Var gX (41)

where k = 4 if dH = dF M and k = 1 if dH = dW . This retrieves Theorem 3.3 in [14]. If we
have a bound on Var gX , this may be used to bound the distance. A Poincaré-type inequality may
be used in this regard. See [16] (also for an explanation of the notation used below) where they
use such a bound on Var gX to get the following result:

dH (X, Z) ≤
k
√

10
2σ


E
D2 X ⊗1 D2 X

2

H⊗2

1/2 
E

∥DX∥

4
H

1/2
. (42)

This was used in [16,29] to prove CLTs for functionals of Gaussian subordinated fields
(applied to fBm and the solution of the O–U SDE driven by fBm, for all H ∈ (0, 1)).

4.1. Convergence when g∗ is a polynomial

Many of the common random variables belong to the Pearson family of distributions, all
of whose members are characterized by their g∗ being polynomials of degree at most 2, i.e.
g∗ (y) = αy2

+βy +γ in the support of Z . Some member distributions in this family are Normal
(g∗ is constant), Gamma (g∗ has degree 1), Beta (g∗ is quadratic with positive discriminant),
Student’s T -distribution (g∗ is quadratic with negative discriminant) and Inverse Gamma (g∗ is
quadratic with zero discriminant).

Refer to [6,25] for more information about Pearson distributions, and [8] for Stein’s method
applied to comparisons of probability tails with a Pearson Z . From Remark 5, if the support of
Z is unbounded and g∗ is a polynomial, then Z is necessarily Pearson. If Z has bounded support
and g∗ is a polynomial, g∗ may have degree exceeding 2 and in this case, Z is not Pearson.

Corollary 19. If g∗ is a polynomial g∗ (x) =
m

k=0 ak xk , for the convergence Xn → Z in dis-
tribution, conditions 1 and 2 in Corollary 16 can be replaced by these conditions (respectively):



R. Eden, J. Vı́quez / Stochastic Processes and their Applications 125 (2015) 182–216 207

E

X k

n


→ E


Z k


for k = 1, . . . , 2m, and E

X k

ngXn


→ E


Z k gZ


for k = 1, . . . , m. Un-

der Assumption A′ (i.e., Xn ∈ D1,m+2), the two conditions can be replaced by E

X k

n


→ E


Z k


for k = 1, . . . , max {2m, m + 2}.

Proof. g2
∗ (x) has order 2m while xG∗ (x) has order m + 2. The matching moments ensure con-

dition 1 in Corollary 16 is satisfied, and under Assumption A′ also condition 2 is fulfilled. �

Suppose g∗ (x) =
m

k=0 ak xk . Note that

E

g∗ (Z)2


= E

 m
k=0

ak Z k

2
 =

2m
k=0


k

i=0

ai ak−i


E


Z k


while

E [ZG∗ (Z)] =

m
k=0

ak

k + 1
E


Z k+2

.

We noted earlier that E

g∗ (Z)2 and E [ZG∗ (Z)] are equal. While the polynomial coeffi-

cients of the different moments of Z are different, and more moments may be involved in one
expression compared to the other, the coefficients and the moments themselves should take care
of this apparent difference to ensure equality under the expectation.

Suppose Z is Pearson with gZ = g∗ (Z) = αZ2
+ βZ + γ . We can prove the following

recursive formula for the moments of Z (see [8], end of Section 5.1): E

Zr+1


=

rβ
1−rα

E

Zr

+

rγ
1−rα

E

Zr−1


. Therefore,

E [gZ ] = E


Z2


=
γ

1 − α

2E [ZgZ ] = E


Z3


=
2βγ

(1 − α) (1 − 2α)

3E


Z2gZ


= E


Z4


=
6β2γ + (1 − 2α) 3γ 2

(1 − α) (1 − 2α) (1 − 3α)

and

E

g2

Z


=

β2γ (1 − α) + γ 2 (1 − 2α)2

(1 − α) (1 − 2α) (1 − 3α)
(43)

Var gZ = E

g2
∗ (Z)


− (E [g∗ (Z)])2

=
β2γ (1 − α)2

+ 2α2γ 2 (1 − 2α)

(1 − 2α) (1 − 3α) (1 − α)2 . (44)

Corollary 20. Suppose Z is a Pearson random variable and for the sequence {Xn} , Var Xn =

E[X2
n] = E[gXn ] →

γ
1−α

. The following are sufficient conditions so that Xn → Z in distribution.

1. When Z is Normal (α = β = 0), Var gXn → 0.
2. When Z is Gamma (α = 0), Var gXn → β2γ and

• under Assumption A, E

XngXn


→ βγ .

• under Assumption A′, 2E

XngXn


= E


X3

n


→ 2βγ .
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3. In the general case where α ≠ 0, Var gXn →
β2γ (1−α)2

+2α2γ 2(1−2α)

(1−2α)(1−3α)(1−α)2 and

• under Assumption A,

2E

XngXn


,E

X3

n


→

2βγ
(1−α)(1−2α)

, and 3E

X2

ngXn


,E

X4

n


→

6β2γ+(1−2α)3γ 2

(1−α)(1−2α)(1−3α)
.

• under Assumption A′,

2E

XngXn


= E


X3

n


→

2βγ
(1−α)(1−2α)

, and 3E

X2

ngXn


= E


X4

n


→

6β2γ+(1−2α)3γ 2

(1−α)(1−2α)(1−3α)
.

Proof. Apply Corollary 19 directly. �

The first statement is the version for sequences of Corollary 3.4 in [17]. Alternatively, we

could replace Var gXn → 0 by E

g2

Xn


→ γ 2. For the Gamma convergence, we can replace

Var gXn → β2γ by E

g2

Xn


→ β2γ + γ 2. When α ≠ 0, we can work with (43) instead of (44)

so the statement will be in terms of E

g2

Xn


→

β2γ (1−α)+γ 2(1−2α)2

(1−α)(1−2α)(1−3α)
.

The next result follows from Corollary 17.

Corollary 21. Suppose Z is a Pearson random variable. Xn → Z in distribution if gXn −αX2
n −

β Xn → γ in L1 (Ω).

4.2. Convergence in a fixed Wiener chaos

When X is inside a fixed Wiener chaos so X = Iq ( f ), we have more structure available. For

example,

DX, −DL−1 X


H

=
1
q ∥DX∥

2
H. Therefore, if Z

Law
= N


0, σ 2


and E


Iq ( f )

2
=

σ 2, (41) gives us the bound

dH (X, Z) ≤ k


Var gX ≤ k


Var


1
q

∥DX∥
2
H


.

One may then use bounds like

Var


1
q

∥DX∥
2
H


(a)
=

1

q2E


∥DX∥
2
H − qσ 2

2


(b)
≤

q − 1
3q


E


X4


− 3σ 4


(45)

to further cap the distance. Equality (a) follows from E


1
q ∥DX∥H


= E [gX ] = σ 2 and

inequality (b) from Lemma 3.5 in [14]. These are quite important and known results which
yield CLTs for functionals on a fixed Wiener chaos. For instance, if we have a sequence

{Xn} =


Iq ( fn)


where E


Iq ( fn)
2

→ σ 2, then the following conditions are equivalent:

1. Xn → Z in distribution;
2. E


X4

n


→ 3σ 4;

3. ∥ fn ⊗r fn∥H⊗(2q−2r) → 0 for all r = 1, . . . , q − 1;
4. ∥DXn∥

2
H → qσ 2 in L2 (Ω);

5.
D2 Xn ⊗1 D2 Xn

2
H⊗2 → 0 in L2 (Ω).

See [20] for (1) ⇐⇒ (2) ⇐⇒ (3), [19] for (1) ⇐⇒ (4), and [16] for (1) ⇐⇒ (5). These in
some sense highlight the tightness of inequality (38) with the help of bounds like (42) and (45).
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Corollary 22. If Xn = Iq ( fn) with q ≥ 1, then condition 3 in Corollary 16 can be replaced by
E

∥DXn∥

4
H


→ q2E


g2
∗ (Z)


.

Proof. This is a direct consequence of

DXn, −DL−1 Xn


H

=
1
q ∥DXn∥

2
H and E


g2

Z


=

E

g2
∗ (Z)


. �

From this and Corollary 21, we have the following result for the convergence in a fixed Wiener
chaos to a Pearson random variable.

Corollary 23. Let Z be Pearson with g∗ (z) = αz2
+ βz + γ in its support. Fix q ≥ 2. Suppose

Xn = Iq ( fn) and E

X2

n


→

γ
1−α

. If ∥DXn∥
2
H −qαX2

n −qβ Xn → qγ in L1 (Ω), then Xn → Z
in distribution.

Remark 24. Special cases of the above corollary are known results.

• Let Z be Normal with variance 1, i.e. g∗ (z) = 1. Suppose E

X2

n


→ 1. Then Xn → Z in

distribution if ∥DXn∥
2
H → q in L2 (Ω). See [19].

• Let Z be Gamma with g∗(z) = (2z + 2v)+, i.e. β = 2 and γ = 2v, where the parameters are
chosen for consistency with the discussion in [13]. Suppose E


X2

n


→ 2v. Then Xn → Z in

distribution if ∥DXn∥
2
H − 2q Xn → 2qv in L2 (Ω).

The result in the first item of this remark is known as the Nualart–Ortiz-Latorre criterion.
In [27], the authors used it to prove that

C
√

N ln(N )
 HN − H


−−−−→
N→∞

N (0, 1)

where HN is an estimator of the Hurst parameter H for fBm when H ∈
 1

3 , 1
2


(see [27] for

details).

5. NP bound in Wiener–Poisson space

In Wiener–Poisson space, if we repeat the process before Eq. (21) and use (9), the correct
integration by parts formula, we get

dH (X, Z) ≤ sup
f ∈FH

E  f ′ (X) (g∗ (X) − gX )


+E
 Dz X

0
f ′′(X + xu)x(Dz X − u)du, −DL−1 X


H

. (46)

Here, we remind the reader that z = (t, x) ∈ R+
× R. It becomes evident that we need

to find universal bounds on the first and second derivatives of f . Recall from Section 3.2
that we only have such bounds when l = −∞ and u = ∞. With this in mind, we have
FH = { f ∈ C 1

: f ′ is Lipschitz, ∥ f ′
∥∞ < k1, ∥ f ′′

∥∞ < k2}, where k1 and k2 depend only on
the distance dH. The following is a generalization of Theorem 2 in [29] (where Z was standard
Normal) and an extension of Theorem 13 to Wiener–Poisson space.

Theorem 25 (NP Bound). Let dH be dW or dF M . Under Assumptions A and B′,

dH (X, Z) ≤ k


E |g∗ (X) − gX | + E

x (DX)2
 , −DL−1 X


H


where k is a finite constant depending only on Z and on dH.
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Proof. This follows immediately from (46) since |⟨a, b⟩|H ≤ ⟨|a|, |b|⟩H and
 f dµ

 ≤
| f |dµ. �

This upper bound (with Z Normal) was first developed for Poisson space in [21], where it
was used to prove several CLTs for Poisson functionals. In [29] it was used to prove CLTs for
Wiener–Poisson functionals.

Corollary 26. Under Assumptions A and B′, Xn → Z in distribution if both statements are true.

1. g∗ (Xn) − gXn → 0 in L1(Ω).
2.
x (DXn)2

 , −DL−1 Xn


H
→ 0 in L1(Ω).

The following preliminary computations are needed for Theorem 28.

Proposition 27. Let Xn = Iq ( fn), with E

X2

n


= q! ∥ fn∥

2
H⊗q → 1. Assume that for r = 0, . . . ,

q − 1 and s = 0, . . . , q − r , fn ⊗
s
r fn


H⊗(2q−2r−s) 1{s=0,r≠0}∪{s≠0,r=0} → 0. Then as n → ∞,

1. E

∥DXn∥

4
H


→ q2;

2. ∥DXn∥
2
H → q in L2(Ω);

3. E


R+×R x2 (Dz Xn)4 dµ (z)


→ 0;

4. E

X4

n


→ 3.

Proof. Since Dz Xn = q Iq−1 ( fn (z, ·)), we can apply the product formula (4) to get

∥DXn∥
2
H = ⟨DXn, DXn⟩H = q2


Iq−1 ( fn (z, ·)) Iq−1 ( fn (z, ·)) dµ (z)

= q2
 q−1

r=0

q−1−r
s=0

r !s!


q − 1

r

2 q − 1 − r

s

2

× I2q−2−2r−s


fn (z, ·) ⊗
s
r fn (z, ·)


dµ (z)

= q2
q

p=1

q−p
s=0

(p − 1)!s!


q − 1
p − 1

2 q − p

s

2

×


I2q−2p−s


fn (z, ·) ⊗

s
p−1 fn (z, ·)


dµ (z)

=

q
p=1

q−p
s=0

pp!s!


q

p

2 q − p

s

2

I2q−2p−s

×


fn (z, ·) ⊗

s
p−1 fn (z, ·) dµ (z)


=

q
r=1

q−r
s=0

rr !s!
q

r

2


q − r

s

2

I2q−2r−s


fn ⊗
s
r fn


.

Also by orthogonality of chaoses,

E

∥DXn∥

4
H


=

q
r,R=1

q−r
s=0

q−R
S=0

r Rr !R!s!S!

q

r

2  q

R

2


q − r

s

2 q − R

S

2

×E


I2q−2r−s


fn ⊗
s
r fn


I2q−2R−S


fn ⊗

S
R fn





R. Eden, J. Vı́quez / Stochastic Processes and their Applications 125 (2015) 182–216 211

=

q
r,R=1
r≠R

q−r
s=0

q−R
S=0

r Rr !R!s!S!

q

r

2  q

R

2


q − r

s

2 q − R

S

2

× 1{2r+s=2R+S} (2q − 2r − s)!


fn⊗s
r fn, fn⊗S

R fn


H⊗(2q−2r−s)

+

q−1
r=1

q−r
s=0

r2 (r !)2 (s!)2
q

r

4


q − r

s

4

(2q − 2r − s)!

×
 fn⊗s

r fn
2

H⊗(2q−2r−s) + q2


q! ∥ fn∥
2
H⊗q

2
.

Since ∥g∥H ≤ ∥g∥H for nonsymmetric g (this follows by a simple application of the triangle
inequality), then

 fn⊗s
r fn


H⊗(2q−2r−s) ≤

 fn ⊗
s
r fn


H⊗(2q−2r−s) . Use this fact along with Hölder’s

inequality in the following:
fn⊗s

r fn, fn⊗S
R fn


H⊗(2q−2r−s)

≤
 fn⊗s

r fn


H⊗(2q−2r−s)

 fn⊗S
R fn


H⊗(2q−2r−s)

≤
 fn ⊗

s
r fn


H⊗(2q−2r−s)

 fn ⊗
S
R fn


H⊗(2q−2r−s)

.

E

∥DXn∥

4
H


→ q2 then follows from the assumptions on the kernels’ contractions, proving the

first point.
On the other hand,

E


∥DXn∥
2
H − q

2


= E

∥DXn∥

4
H − 2q ∥DXn∥

2
H + q2


= E


∥DXn∥

4
H


− 2q · qE


X2

n


+ q2

→ 0

so ∥DXn∥
2
H → q in L2 (Ω) proving the second point.

For the third point we have,

(Dz Xn)2
= q2

q−1
r=0

q−1−r
s=0

r !s!


q − 1

r

2 q − 1 − r

s

2

× I2q−2−2r−s


fn (z, ·) ⊗
s
r fn (z, ·)


(Dz Xn)4

= q4
q−1
r=0

q−1
R=0

q−1−r
s=0

q−1−R
S=0

r !R!s!S!


q − 1

r

2 q − 1
R

2

×


q − 1 − r

s

2 q − 1 − R

S

2

× I2q−2−2r−s


fn (z, ·) ⊗
s
r fn (z, ·)


I2q−2−2R−S


fn (z, ·) ⊗

S
R fn (z, ·)


E


x2 (Dz Xn)4 dµ (z)


= q4

q−1
r=0

q−1
R=0

q−1−r
s=0

q−1−R
S=0

r !R!s!S!


q − 1

r

2

×


q − 1

R

2 q − 1 − r

s

2

×


q − 1 − R

S

2



212 R. Eden, J. Vı́quez / Stochastic Processes and their Applications 125 (2015) 182–216

×


E

I2q−2−2r−s


x fn (z, ·) ⊗

s
r fn (z, ·)


× I2q−2−2R−S


x fn (z, ·) ⊗

S
R fn (z, ·)


dµ (z) .

The expectation, when 2r + s = 2R + S, is bounded by

(2q − 2r − s − 2)!

x fn (z, ·)⊗s
r fn (z, ·) , x fn (z, ·)⊗S

R fn (z, ·)

H⊗(2q−2R−S−2)


≤ (2q − 2r − s − 2)!

x fn (z, ·)⊗s
r fn (z, ·)


H⊗(2q−2r−s−2)

×

x fn (z, ·)⊗S
R fn (z, ·)


H⊗(2q−2R−S−2)

.

Modulo the constant factor (2q − 2r − s − 2)!, the integral of the expectation is bounded by x fn (z, ·)⊗s
r fn (z, ·)


H⊗(2q−2r−s−2)

x fn (z, ·)⊗S
R fn (z, ·)


H⊗(2q−2R−S−2)

dµ (z)

=

x fn (z, ·)⊗s
r fn (z, ·)


H⊗(2q−2r−s−2) ,

x fn (z, ·)⊗S
R fn (z, ·)


H⊗(2q−2R−S−2)


H

≤
x fn (z, ·) ⊗

s
r fn


H⊗(2q−2r−s−2)


H

×

 ∥x fn (z, ·) ⊗
S
R fn (z, ·) ∥H⊗(2q−2R−S−2)


H

.

We will work out the first factor: x fn (z, ·) ⊗
s
r fn (z, ·)


H⊗(2q−2r−s−2)

2
H

=

 x fn (z, ·) ⊗
s
r fn (z, ·)

2
H⊗(2q−2r−s−2) dµ (z)

=

  fn ⊗
s+1
r fn


(z, ·)

2

H⊗(2q−2r−s−2)
dµ (z)

=

 fn ⊗
s+1
r fn

2

H⊗(2q−2r−s−1)
.

Finally,

E


x2 (Dz Xn)4 dµ (z)


≤ q4

q−1
r,R=0

q−1−r
s=0

q−1−R
S=0

r !R!s!S!


q − 1

r

2

×


q − 1

R

2 q − 1 − r

s

2

×


q − 1 − R

S

2

1{2r+s=2R+S} (2q − 2r − s − 2)!

×

 fn ⊗
s+1
r fn

2

H⊗(2q−2r−s−1)

 fn ⊗
S+1
R fn

2

H⊗(2q−2R−S−1)

= q4
q−1

r,R=0

q−r
t=1

q−R
T =1

r !R! (t − 1)! (T − 1)!

×


q − 1

r

2 q − 1
R

2

×


q − 1 − r

t − 1

2 q − 1 − R

T − 1

2
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× 1{2r+t=2R+T } (2q − 2r − t − 1)!

×
 fn ⊗

t
r fn

2
H⊗(2q−2r−t) ×

 fn ⊗
T
R fn

2

H⊗(2q−2R−T )
.

The third point then follows.

Finally, for the fourth point, we use the integration by parts formula for functionals in a fixed
Wiener–Poisson chaos explained in Remark 2,

E


X4
n


=

3
q
E


X2
n ∥DXn∥

2
H


+

3
q
E


x (DXn)3 , Xn + θz x DXn


H


=

3
q

Un +
3
q

(Vn + Wn)

where

Vn = E


x (DXn)3 , Xn


H


= E


x (DXn)2 , Xn (DXn)


H


Wn = E


x (DXn)3 , θz x DXn


H


= E


θz x2 (Dz Xn)4 dµ (z)


and Un = E


X2

n ∥DXn∥
2
H


. It is sufficient to prove that Un → q, Vn → 0 and Wn → 0 as

n → ∞.

To compute Un , note that X2
n =

q
r=0

q−r
s=0 r !s!

 q
r

2  q−r
s

2
I2q−2r−s


fn ⊗

s
r fn


. Using our

expression for ∥DXn∥
2
H above,

Un =

q
r=0

q
R=1

q−r
s=0

q−R
S=0

Rr !R!s!S!

q

r

2  q

R

2


q − r

s

2 q − R

S

2

×E


I2q−2r−s


fn ⊗
s
r fn


I2q−2R−S


fn ⊗

S
R fn


=

q
r=0

q
R=1

q−r
s=0

q−R
S=0

Rr !R!s!S!

q

r

2  q

R

2


q − r

s

2 q − R

S

2

× 1{2r+s=2R+S} (2q − 2r − s)!


fn⊗s
r fn, fn⊗S

R fn


H⊗(2q−2r−s)

=

q
r=0,R=1

r≠R

q−r
s=0

q−R
S=0

Rr !R!s!S!

q

r

2  q

R

2


q − r

s

2 q − R

S

2

× 1{2r+s=2R+S} (2q − 2r − s)!


fn⊗s
r fn, fn⊗S

R fn


H⊗(2q−2r−s)

+

q−1
r=1

q−r
s=0

r (r !)2 (s!)2
q

r

4


q − r

s

4

(2q − 2r − s)!
 fn⊗s

r fn
2

H⊗(2q−2r−s)

+ q


q! ∥ fn∥
2
H⊗q

2
.

We can again apply Hölder’s inequality on the inner product, and conclude that all the terms go
to 0 except the last term which goes to q . Therefore, Un → q as n → ∞.
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Observe that

|Vn| ≤ E
x (DXn)2


H

∥Xn (DXn)∥H


≤


E
x (DXn)2

2
H


E

∥Xn (DXn)∥2

H


=


E


x2 (Dz Xn)4 dµ (z)


E

∥Xn (DXn)∥2

H


.

Note that

E

∥Xn (DXn)∥2

H


= E


X2

n ∥DXn∥
2
H


= Un → q.

From the third point, E


R+×R x2 (Dz Xn)4 dµ (z)


→ 0 so Vn → 0 as n → ∞.
Finally for Wn ,

|Wn| = E


θz x2 (Dz Xn)4 dµ (z)


≤ E


x2 (Dz Xn)4 dµ (z)


−→ 0.

Putting them together we get the fourth point: E[X4
n] → 3 as n → ∞. �

In Wiener space, convergence in a fixed Wiener chaos to a standard normal distribution is
characterized by the convergence of the fourth moments to 3 or of the convergence of the norm
of certain contractions to 0 (see the list preceding Corollary 22). We would then like to see if the
same situation holds in Wiener–Poisson space. At this point, this appears to be an open question.
We then finish with the following theorem which shows convergence in distribution and of the
fourth moments to 3 if certain contractions converge to 0.

Theorem 28. Suppose Assumptions A and B′ hold. Let Xn = Iq ( fn), with E

X2

n


=

q! ∥ fn∥
2
H⊗q → 1. Assume that for r = 0, . . . , q − 1 and s = 0, . . . , q −

r,
 fn ⊗

s
r fn


H⊗(2q−2r−s) 1{s=0,r≠0}∪{s≠0,r=0} → 0. Then as n → ∞,

• E[X4
n] → 3.

• Xn → N (0, 1) in distribution.

Proof. The first assertion is the fourth point in Proposition 27. For the second point, we refer
to Corollary 26 to see that it suffices to prove g∗ (Xn) − gXn → 0 in L2 (Ω) and


|x | (DXn)2 ,

|DXn|

H

→ 0 in L1(Ω) as n → ∞. These are immediate when we note that

g∗(Xn) − gXn = 1 −
1
q

∥DXn∥
2
H → 0 in L2(Ω) (by point 2 of Proposition 27)

and

E


|x | (DXn)2 , |DXn|


H


≤ E

x (DXn)2


H
∥DXn∥H


≤


E
x (DXn)2

2
H


E

∥DXn∥

2
H


=


E


x2 (DXn)4 dµ


qE


X2

n


→ 0

(by point 3 of Proposition 27). �
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