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Abstract

In this paper we introduce three Markovian couplings of Brownian motions on smooth Riemannian
manifolds without boundary which sit at the crossroad of two concepts. The first concept is the one of shy
coupling put forward in Benjamini et al. (2007) and the second concept is the lower bound on the Ricci
curvature and the connection with couplings made in von Renesse and Sturm (2005).

The first construction is the shy coupling, the second one is a fixed-distance coupling and the third is a
coupling in which the distance between the processes is a deterministic exponential function of time.

The result proved here is that an arbitrary Riemannian manifold satisfying some technical conditions
supports shy couplings. If in addition, the Ricci curvature is non-negative, there exist fixed-distance
couplings. Furthermore, if the Ricci curvature is bounded below by a positive constant, then there exists
a coupling of Brownian motions for which the distance between the processes is a decreasing exponential
function of time. The constructions use the intrinsic geometry, and relies on an extension of the notion of
frames which plays an important role for even dimensional manifolds.

In fact, we provide a wider class of couplings in which the distance function is deterministic in
Theorem 5 and Corollary 9.

As an application of the fixed-distance coupling we derive a maximum principle for the gradient of
harmonic functions on manifolds with non-negative Ricci curvature.
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As far as we are aware of, these constructions are new, though the existence of shy couplings on
manifolds is suggested by Kendall in Kendall (2009).
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

A first motivation of the present work is the following (stochastic) modification of the classical
Lion and Man problem of Rado [22] on manifolds. Consider a Brownian Lion X t and a Brownian
Man Yt running on a d-dimensional Riemannian manifold M (for instance the unit sphere in R3).

We describe two versions of the classical Lion and Man problem.

Problem 1 (Fast/Finite Time Coupling). Can the Lion capture the Man?
More precisely, given two distinct starting points x, y ∈ M and a Brownian motion Yt

on M starting at y, can one find a Brownian motion X t on M starting at x such that τ =

inf {t ≥ 0 : X t = Yt } is almost surely finite (or almost surely bounded)? A weaker version of
this problem is whether for a given ϵ > 0 and a given Brownian motion Yt on M starting at y one
can find a Brownian motion X t on M starting at x such that τ = inf {t ≥ 0 : d(X t , Yt ) = ϵ} is
almost surely finite (or almost surely bounded). Here d(x, y) stands for the Riemannian distance
on M .

One example of coupling which is known in the literature as the mirror coupling, and it
was introduced by Lindvall and Rogers [21] for processes defined on Euclidean spaces, and
by Cranston in [8] and Kendall [16] in the case of processes defined on manifolds, the so-
called Cranston–Kendall mirror coupling. It turns out that this coupling is a very useful and
versatile construction when it comes to various geometric and analytic properties on manifolds.
For instance, it was shown in [16], for the case of manifolds with non-negative Ricci curvature,
that the Man and the Lion must meet in finite time under this mirror coupling.

Geometrically, the mirror coupling makes the motions X t , Yt move toward each other in the
geodesic direction. Closely related coupling is the synchronous coupling in which the Brownian
motions X t , Yt move parallel to each other in the geodesic direction and was used for example
in [2]. On a different note, continuous versions of couplings of Brownian motions are constructed
in [1] and [27, Theorem 10.37].

Though couplings under which the particles meet in finite time have received a lot of attention
in the literature, as for instance the recent maximality properties analyzed in [15,18] or [19] it is
not our interest in this paper.

If the couplings in Problem 1 are trying to meet as fast as possible, there is also the scenario
of couplings which prevents the particles from meeting. We formulate this as follows.

Problem 2 (Strong Shy Coupling). Can the Man avoid being eaten by the Lion indefinitely?
More precisely, given two distinct starting points x, y ∈ M and a Brownian motion X t on

M starting at x , can one find a Brownian motion Yt on M starting at y such that almost surely
X t ≠ Yt for all t ≥ 0? A stronger version of the question is whether the Brownian motion Yt can
be chosen in such a way that there exists an ϵ > 0 such that almost surely d (X t , Yt ) ≥ ε for all
t ≥ 0.
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The notion of shy coupling of Brownian motions was introduced in [3] and subsequently
studied in [5,17] and is a coupling for which, with positive probability, the distance between
the two processes stays positive for all times. A stronger version of shyness (ϵ-shyness, ϵ > 0)
asserts that with positive probability the distance between the processes is greater than ϵ. In this
paper we use this latter version of shyness, in the stronger sense where the distance between the
processes is greater than ϵ with probability 1.

To set up the terminology, we mention that all couplings in the present paper are Markovian
couplings in the sense of [3] and introduced in Section 2.

In a different direction, a synthetic notion of a lower bound on the Ricci curvature was settled
in [23,28,29] and is a very useful tool in analysis on measure metric spaces which is a very active
area of research nowadays. On the other hand, the notion of couplings and lower bound on Ricci
curvature was pioneered in [16]. Related to this, a notion of Ricci curvature in discrete spaces
appears in [24] and see also [4,7,12,20].

In this spirit, a second motivation of our work comes from [30, Corollary 1.4] which states
the following.

Corollary 3. On a complete Riemannian manifold M the Ricci tensor satisfies Ric ≥ k if
and only if there exists a conservative Markov process (Ω , A, Pz, Z t )z∈M×M,t≥0 with values
in M × M such that the coordinate processes (X t )t≥0 and (Yt )t≥0 are Brownian motions on M
and such that for all z = (x, y) and all t ≥ 0,

d(X t , Yt ) ≤ e−kt/2d(x, y), Pz-a.s. (1.1)

The coupling that is used in [30] under the hypothesis that Ric ≥ k is the synchronous
coupling alluded above.

A natural question, which fits our interests in the present paper, is to see if one can find
couplings of Brownian motions X t , Yt such that (1.1) is saturated. For instance, if k = 0 this
amounts to finding a fixed-distance coupling which is in fact a strong version of a shy coupling.

Here is an outline of the paper. Section 2 is about notations and basic results and notions.
In Section 3 we have the main result. This states that on a complete d-dimensional Riemannian
manifold M with positive injectivity radius, the Ricci curvature uniformly bounded from below
and the sectional curvature uniformly bounded from above we can construct shy couplings. This
existence result of shy coupling on manifolds is also stated in Kendall [17, Section 4] without
proof but with a hint on how to do it. Our approach is different. Moreover, if the Ricci curvature
is in addition non-negative, we can also construct fixed-distance couplings. Finally, we show that
if the Ricci curvature is actually bounded from below by a positive constant, then we can find fast
approaching couplings, for which the distance between processes decays exponentially fast to 0.
In fact our main result follows as a consequence of a much more general finding which shows
that under some technical conditions on a function F defined on an interval of the positive line,
there exists a coupling of Brownian motions X t , Yt such that ρt = d(X t , Yt ) satisfies

dρt

dt
= −

1
2

F(ρt )

for small times t . Under the assumption that the Ricci curvature is non-negative, this can be
extended for all values of t ≥ 0. This is the content of Theorem 5 and it shows that there is much
wider classes of couplings with deterministic distance.

Moreover, for a given function ρ : [0, ∞) → [0, ∞), Corollary 9 gives conditions on ρ such
that this is realized as the distance function between two co-adapted Brownian motions.
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We want to point a few details about the techniques. In the first place we treat separately the
cases when d is odd, respectively even. In the case of odd dimensional manifolds we can carry out
the proof based on the orthonormal frame bundle. For even dimensional manifolds we introduce
the notion of N -frames at a point x ∈ M which is an embedding of the tangent space Tx M into
RN . As it turns out, it suffices to use this construction for the particular case N = d +1, however,
for the general N this may be of independent interest by itself. This is somewhat reminiscent of
works on stochastic flows given for example in [10,11].

Here is a brief exposition of the idea. Suppose we have X t a Brownian motions and want to
exhibit another one Yt which is driven in some sense by X t . From a loose point of view what we
do first is to split the orthogonal to the tangent space at X t into orthogonal planes. This splitting
is possible only if the dimension d is odd. If this is the case, using the parallel transport along
the geodesic, we can transport these planes at X t into orthogonal planes at Yt . Next we want
the components of driving Euclidean Brownian motion at X t in these planes to be transported
at Yt using parallel transport along the geodesic joining X t and Yt and then rotated by the same
angle (chosen appropriately) in each of the transported planes at Yt . This is how we construct
all three couplings first locally and then by patching them together to a global one. In the even
dimensional case using the d + 1-frames we essentially add one more dimension to the tangent
space and carry out the same program.

In Section 4 we discuss some geometric aspects related to the main result in the previous
section (Theorem 4), and we present a localized version of the shy coupling, which is used in
Section 5 to come back to the motivations of the paper, namely the Lion and the Man and also
the connection with the lower bound on the Ricci curvature.

2. Preliminaries

By M we denote a Riemannian manifold. In this paper all Riemannian manifolds are assumed
to be complete. For a given d-dimensional Riemannian manifold M , we use the standard
notations from [13] or [27] to denote by O(M) the orthonormal frame bundle. For a given
orthonormal frame U at a point x ∈ M and ξ ∈ Rd , Hξ (U ) is the horizontal lift of Uξ ∈ Tx M at
the point U ∈ O(M). We will use the simpler notation of Hi for Hei , with {ei }i=1,...,n denoting
the standard basis of Rd .

We collect here some notions from differential geometry which will be used in the sequel.
The reader is referred to [9] or [6] for basic notions and results. The curvature tensor Rx at x
is Rx (X, Y ) = ∇X∇Y − ∇Y ∇X − ∇[X,Y ] and the Ricci tensor is the contraction Ricx (X, Y ) =d

i=1⟨Rx (X, Ei )Ei , Y ⟩, where {Ei }i=1,...,d is any orthonormal basis at x and X, Y ∈ Tx M .
This definition of the Ricci tensor does not depend on the choice of orthonormal basis, and in
the particular case of surfaces it simplifies to Ricx (X, Y ) = Kx ⟨X, Y ⟩, where K is the Gauss
curvature.

We denote by d(x, y) the Riemannian distance between x and y.
A geodesic on M is a smooth curve γ : [a, b] → M such that γ̈ (s) = 0 for each s ∈ [a, b],

where the dot represents the covariant derivative along γ . Throughout the paper we assume that
the geodesics are running at unit speed. For a point x ∈ M , we define Cx to be the cutlocus of
x , that is the set of points y ∈ M for which the extension (beyond x or y) of the minimizing
geodesic between x and y ceases to be minimizing. We will also use the notation Cut ⊂ M × M ,
defined as the set of all points (x, y) which are at each other’s cut-locus. For points x, y ∈ M
which are not at each other’s cut-locus, we define γx,y to be the unique unit speed minimizing
curve joining x and y.
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The injectivity radius is the smallest number i(M) such that any point x ∈ M , the exponential
map at x is a diffeomorphism on the ball of radius i(M) in the tangent space Tx M .

Given a geodesic γ , a Jacobi field along γ is a vector field J (s) such that

J̈ (s) + Rγ (s)(J (s), γ̇ (s))γ̇ (s) = 0, (2.1)

where the dot represents the derivative along γ .
Given a vector field V along a geodesic γ defined on [a, b], the index form I associated to it

is defined as

I(V, V ) =

 b

a
(|V̇ (s)|2 − ⟨Rγ (s)(V (s), γ̇ (s))γ̇ (s), V (s)⟩)ds, (2.2)

and using polarization I can be extended to a bilinear form on the space of vector fields along
the geodesic γ . In the particular case when J is a Jacobi field, an integration by parts formula
shows that

I(J, J ) = ⟨ J̇ (b), J (b)⟩ − ⟨ J̇ (a), J (a)⟩ (2.3)

where [a, b] is the definition interval of γ .
A manifold has constant curvature r if the sectional curvature is r for all choices of the two

dimensional plane, that is ⟨Rx (X, Y )Y, X⟩ = r for any x ∈ M and any orthogonal unit vectors
X, Y ∈ Tx M . In this case the Ricci curvature simplifies as well as the Jacobi field equation
(2.1). We record here the calculation, as it will be used later on. Assume that γx,y is the minimal
geodesic between the points x, y ∈ M which are not at each other’s cut-locus, ρ = d(x, y) and
let ξ ∈ Tx M and η ∈ Ty M be two unit vectors. Consider ξ(s) the extension of ξ by parallel
transport along γ from x to y, and similarly let η(s) be the extension of η by parallel transport
from y to x . The Jacobi field Jξ,η whose value at x is ξ and η at y with ξ and η orthogonal to γ ,
can be computed as follows

Jξ,η(s) = w1(s)ξ(s) + w2(s)η(s) (2.4)

where w1, w2 solve the boundary value problemsẅ1 + rw1 = 0
w1(0) = 1
w1(ρ) = 0

and

ẅ2 + rw2 = 0
w2(0) = 0
w2(ρ) = 1,

whose solutions are

w1(s) =


sin(

√
r(ρ − s))

sin(
√

rρ)
, r ≠ 0

ρ − s

ρ
, r = 0

and w2(s) =


sin(

√
rs)

sin(
√

rρ)
, r ≠ 0

s

ρ
, r = 0.

(2.5)

Next, we introduce the main notions regarding couplings. Recall that in general by a coupling
we understand a pair of processes (X t , Yt ) defined on the same probability space, which are
separately Markov, that is

P ( Xs+t ∈ A| Xs = z, Xu : 0 ≤ u ≤ s) = P z (X t ∈ A)

P (Ys+t ∈ A| Ys = z, Yu : 0 ≤ u ≤ s) = P z (Yt ∈ A)

for any measurable set A in the state space of the processes.
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The notion of Markovian coupling as used in [3] requires that in addition to the above, the
joint process (X t , Yt ) is Markov and

P ( Xs+t ∈ A| Xs = z, Xu, Yu : 0 ≤ u ≤ s) = P z (X t ∈ A)

P (Ys+t ∈ A| Ys = z, Xu, Yu : 0 ≤ u ≤ s) = P z (Yt ∈ A)
(2.6)

for any measurable set A in the state space of the processes.
The notion of co-adapted coupling (introduced by Kendall, [17]) is the same as the above but

without the Markov property of (X t , Yt ).
The Markovian couplings are easily obtained for instance in the case when the process

(X t , Yt ) is actually a diffusion on the manifold. This would be the ideal case, but we still get
a Markovian coupling if we patch together diffusion processes in a nice way. For example this
will be the case of the main construction on manifolds, where we start the coupling following a
diffusion up to a certain stopping time, then, from the point it stopped we run it independently
according to another diffusion and then stop this at another stopping time and so on. We do this
quietly without further details.

3. Shy and fixed-distance couplings on Riemannian manifolds

In this section we prove a general result about the existence of shy coupling on Riemannian
manifolds. Before we launch into various technical details, we state the main result of this
section.

Theorem 4. Let M be a complete d-dimensional Riemannian manifold, d ≥ 2, with positive
injectivity radius and such that for some real number k:

k ≤ Ricx for all x ∈ M and sup
x∈M

Kx < ∞, (3.1)

where Ric is the Ricci tensor and Kx stands for the maximum of the sectional curvatures at
x ∈ M.

(1) For k < 0, there exist ϵ, δ > 0 such that for any points x0, y0 ∈ M with d(x0, y0) < ϵ

we can find a Markovian coupling of Brownian motions X t , Yt starting at x0, y0 such that
d(X t , Yt ) ≥ d(x0, y0) for all t ≥ 0 and d(X t , Yt ) = e−kt/2d(x0, y0) for 0 ≤ t ≤ δ.

(2) If k ≥ 0, there exists ϵ > 0 such that for any x0, y0 ∈ M with d(x0, y0) < ϵ, there exists a
Markovian coupling of Brownian motions X t , Yt starting at x0, y0 such that

d(X t , Yt ) = e−kt/2d(x0, y0) for all t ≥ 0.

We will deduce this theorem as a particular case of the following more general result.

Theorem 5. Assume the same geometric conditions as in Theorem 4, namely, d ≥ 2, positive
injectivity radius and (3.1). Let 0 < b ≤ ∞ and F : (0, b) → R be a smooth function such that
for some 0 ≤ a < d − 1,

−
2a

ρ
≤ F(ρ) ≤ kρ. (3.2)

(1) There exist positive constants ϵ, δ > 0 such that for any points x0, y0 ∈ M, with d(x0, y0) ≤

ϵ, we can find a Markovian coupling of Brownian motions X t , Yt such that X0 = x0, Y0 = y0
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and ρt = d(X t , Yt ) satisfies

dρt

dt
= −

1
2

F(ρt ) with ρ0 = d(x0, y0) (3.3)

for t ∈ [0, δ).
(2) Moreover, for k < 0, we can actually take ϵ and δ to be small enough and extend this

coupling for all t ≥ 0 such that d(X t , Yt ) ≥ ρ0.
(3) In the case k ≥ 0, if in addition we have 0 ≤ F(ρ), then we can find a small ϵ > 0 such that

for any points x0, y0 with d(x0, y0) ≤ ϵ, there is a Markovian coupling of Brownian motions
X t , Yt with X0 = x0 and Y0 = y0 such that ρt = d(X t , Yt ) satisfies (3.3) for all t ≥ 0.

What this theorem says is that we can obtain couplings where the distance function ρt =

d(X t , Yt ) satisfies a prescribed differential equation in the form of (3.3) (at least for short time).
For instance, Theorem 4 is obtained simply for the case of F(ρ) = kρ.

We point out that given F as in the theorem, for ρ0 small enough, there is a solution to (3.3)
for small time t0. In fact, one can actually estimate the time t0 from the fact that F(ρ) ≥ −

2a
ρ

, we

obtain that ρ2
t ≤ ρ2

0 + 2at . Therefore as long as ρ0 is small enough and t0 is also small enough,
ρt < b and thus the solution does not exit the domain of definition of F . On the other hand,
F(ρ) ≤ kρ, gives that ρt ≥ ρ0e−kt/2 for as long as the solution is defined, therefore, the solution
ρt does not hit 0. Therefore as long as the initial condition is small enough, say ρ0 < b/4 and
t < b2/(8(a + 1)), the solution is well defined and it is also unique.

The plan of the proof is as follows. First we set up an extension of the orthonormal frame
bundle (which will be used in the case of even dimensional manifolds). Then we define the
equation of the coupling at the level of this frame bundle and we seek a local solution. Once we
show the local existence of the coupling, we use patching in order to prove the global existence
of the coupling.

We split the proof into several subsections.

3.1. N-frames and the associated bundle

One of the constructions of the Brownian motion on a d-dimensional Riemannian manifold
uses the notion of orthonormal frame bundle. We first extend this notion by introducing the
following.

Definition 6. Let N ≥ d be an integer number. An N -frame U in Tx M is a map U : RN
→ Tx M

such that UU ′
= I d. Alternatively, U is an N -frame at Tx M if the map U ′ is an isometric

embedding of Tx M into RN .

In this small subsection, to avoid confusion, we will use the notation of ⟨·, ·⟩Tx M to denote the
inner product in Tx M , while ⟨·, ·⟩RN will denote the inner product in RN .

Abusing the language we often say that U is an N -frame at x rather than in Tx M . Another
way of describing U is via the vectors X i = Uei , i = 1 . . . N , where ei are the standard basis
vectors in RN . The condition that U is an N -frame is actually equivalent to the condition that

N
i=1

⟨ξ, X i ⟩Tx M X i = ξ for all ξ ∈ Tx M. (3.4)
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Indeed, if X i = Uei , then for any ξ ∈ Tx M ,
N

i=1⟨ξ, X i ⟩Tx M X i = U
N

i=1⟨U
′ξ, ei ⟩RN ei =

UU ′ξ = ξ . Conversely, condition (3.4) determines an N -frame U : RN
→ Tx M by prescribing

Uη =

N
i=1

⟨η, ei ⟩RN X i ,

noting that U ′ξ =
N

i=1⟨ξ, X i ⟩Tx M ei , which under (3.4) gives UU ′
= I d, as needed.

Hence we have different characterizations of an N -frame, as a projection, as an isometric
embedding and as a set of vectors Uei .

Given two points x, y ∈ M , an N -frame {X i }
N
i=1 at x , and an isometry A : Tx M → Ty M .

Then {AX i }
N
i=1 is certainly an N -frame at y because

N
i=1⟨ξ, AX i ⟩AX i = A

N
i=1⟨A′ξ, X i ⟩X i

= AA′ξ = ξ .
Also, it is easy to see that if O is an orthogonal transformation of RN and U is an N -frame,

then U O is also an N -frame. As in the standard case of the orthonormal bundle, it is clear that
O(M) is a smooth bundle over M and π : O(M) → M which assigns to each N -frame U in
Tx M its base point x (i.e. πU = x) is a smooth map. In the terminology of differential geometry,

O(M) is actually a fiber bundle with the fiber being the Stiefel manifold Vd,N constructed from
the trivial principal bundle M × O(N ) over M .

For each fixed N -frame U at x ∈ M , the tangent space TU O(M) splits into the horizontal
part T H

U O(M) obtained by lifting tangent vectors from Tx M and the vertical part T V
U O(M)

which contains a special class of tangent vectors obtained by differentiating curves which are
determined by the action of O(N ) in the fiber. For references the reader can consult [13] or [27]
(the discussion there is intended for the orthonormal frame bundle, but nevertheless most of it
extends naturally to this context).

Now, we define the fundamental vector fields Hi on O(M) by the prescription that at each
U , (Hi )U is the lift of the vector Uei from TπU M . The main property here is that the associated
Bochner Laplacian

∆B =

N
i=1

H2
i

projects down onto M as the Laplace operator. The proof is as in [27, Section 8.1.3], and for
simplicity we just point out the main difference. For a vector ξ ∈ RN , let (Hξ )U be the horizontal
lift of Uξ at U . Then with the same proof as [27, Equation 8.30], for any smooth function f on
M we have

(Hξ )U ◦ Hη( f ◦ π) = ⟨(Hess f )πU Uξ, Uη⟩,

where Hess f is the Hessian of f on M . Once this is established, we can continue with

N
i=1

(Hi )U Hi ( f ◦ π) =

N
i=1

⟨(Hess f )πU Uei , Uei ⟩ =

N
i=1

⟨U ′(Hess f )πU Uei , ei ⟩

= tr(U ′(Hess f )πU U ) = tr((Hess f )πU U U ′) = tr((Hess f )πU )

= (∆M f )(πU ),

where we used that the Laplacian on M is simply the trace of the Hessian. Thus

π∗∆B = ∆M . (3.5)
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Under the assumptions in (3.1), the Ricci curvature is bounded from below and from this we
learn that the Brownian motion on M does not explode. Thus the Brownian motion constructed
on O(M) (more appropriately the solution to the martingale problem for ∆B) projects down into
the Brownian motion on M and exists for all times.

3.2. The coupling SDE

Now we want to couple Brownian motions on M , and for this matter we consider couplings
of the form described below. Namely, for given points x0, y0 ∈ M and N -frames U0 at x0 and V0
at y0, consider the system

dUt =

N
i=1

Hi (Ut ) ◦ dW i
t

dVt =

N
i=1

Hi (Vt ) ◦ d Bi
t

d Bt = OUt ,Vt dWt
X t = πUt
Yt = πVt .

(3.6)

Here Wt is an N -dimensional Brownian motion and OU,V is an orthogonal N × N matrix which
depends smoothly on U, V , at least on a subset of O(M) × O(M) which will be specified later
on. This insures that Bt is also an N -dimensional Brownian motion. We do not impose additional
conditions on the matrix OUt ,Vt yet.

The same arguments as in [13, Section 6.5] show that the generator of the diffusion (Ut , Vt )

is given by

∆c
= ∆B,1 + ∆B,2 + 2

N
i=1

He∗
i ,2 Hi,1

where the subscript 1 or 2 represents the action with respect to the first or the second variable,
and e∗

i = OU,V ei .
Let ρt = d(X t , Yt ) be the distance between the processes X t and Yt . Also let d(U, V ) =

d(πU, πV ) be the lift of the distance function from M into O(M). Using Itô’s formula we have
that

dρt =


(Hi,1 + He∗

i ,2)d (Ut , Vt )dWt +
1
2


∆cd (Ut , Vt )dt, (3.7)

which is certainly valid in the region where πUt and πVt are not at each other’s cut-locus. Thus
in order to have the distance function ρt satisfy

dρt = −
1
2

F(ρt )dt

we need to cancel the martingale part, which is

(Hi,1 + He∗

i ,2)d (Ut , Vt )dWt and also force

the bounded variation part to be equal to F(ρt )dt .
For the martingale part, notice that the first variation formula gives

(Hi,1 + He∗
i ,2)d(U, V ) = ⟨V OU,V ei , γ̇X,Y ⟩πV − ⟨Uei , γ̇X,Y ⟩πU ,
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where X = πU , Y = πV , and γX,Y is the minimizing geodesic joining X to Y , run at unit speed.
The bounded variation part comes from the second variation formula and produces

(∆cd)(U, V ) =

N
i=1

I(Ji , Ji ), (3.8)

where Ji is the Jacobi field along the geodesic joining πU to πV , with values Uei , V OU,V ei at
the endpoints.

In order to cancel the martingale part from (3.7), we need to impose the condition

⟨Uei , γ̇X,Y ⟩πV − ⟨V OU,V ei , γ̇X,Y ⟩πU = 0,

and for the bounded variation part, we need to have

N
i=1

I(Ji , Ji ) = −F(ρ̃).

3.3. Local construction

This part of the proof consists in showing that there exists η > 0 sufficiently small such
that for any x, y ∈ M with d(x, y) < η there is a smooth choice of OU,V on Nη(x, y) =

π−1(B(x, η)) × π−1(B(y, η)) for which

⟨Uei , γ̇πU,πV ⟩πU − ⟨V OU,V ei , γ̇πU,πV ⟩πV = 0 for (U, V ) ∈ Nη(x, y) (3.9)

and

N
i=1

I(Ji , Ji ) = −F(d(x, y)), for (U, V ) ∈ Nη(x, y), (3.10)

where Ji are the Jacobi fields with boundary values Uei and V OU,V ei at the endpoints of
the minimizing geodesic joining πU and πV . Note here that for small η, there is a unique
minimizing geodesic joining πU and πV , so everything is well defined in this case.

Take η < i(M)/3, where i(M) is the injectivity radius of M . In fact we are going to choose
possibly smaller values of η later in the construction, but for now assume that it is smaller than
i(M)/3.

Now, assume that x0, y0 ∈ M are two fixed starting points with distance d(x0, y0) < η. We
will construct the coupling (Ut , Vt ) in Nη(x0, y0).

We can choose an orthonormal basis E1, E2, . . . , Ed at x such that E1 = γ̇x,y(0) and such that
each E j depends smoothly on (x, y) ∈ B(x0, η)× B(y0, η). We can extend this basis E1, . . . , Ed
along γx,y and continue to call it E1, . . . , Ed . Now, condition (3.9) becomes

U ′γ̇x,y = O ′

U,V V ′γ̇x,y . (3.11)

Next, let us denote J1, j the Jacobi field along the minimizing geodesic joining πU to πV such
that it equals E j at πU and 0 at πV . Similarly let J2, j be the Jacobi field which is 0 at πU and
E j at πV . Then, since

Ji =

d
j=1

⟨Uei , E j ⟩J1, j +

d
j=1

⟨V OU,V ei , E j ⟩J2, j
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it follows that
N

i=1

I(Ji , Ji ) =

d
j=2

I(J1, j , J1, j ) +

d
j=2

I(J2, j , J2, j )

+ 2
d

j,k=2

⟨O ′

U,V V ′E j , U ′Ek⟩I(J1, j , J2,k). (3.12)

The expression given by the last sum can be simplified as follows. Let τx,y stand for the parallel
transport map from Tx M to Ty M along the minimizing geodesic γx,y . Consider the bilinear map
Λx,y : Tx M × Tx M → R defined by

Λx,y(ξ, η) = I(J1,ξ , J2,η),

where J1,ξ is the Jacobi field along γx,y which is ξ at x and 0 at y, and J2,η is 0 at x and τx,yη

at y. Another way of looking at this is as a linear map from Tx M into itself, map which we still
call Λx,y . We can see this map also as a linear transformation preserving the orthogonal to γ̇x,y
at x and we will denote this restriction also by Λx,y . In fact, the actions of Λx,y and its transpose
on γ̇x,y are zero.

With this notation, it is not hard to see that for N -frames U and V at x , respectively at y, we
have

d
j,k=2

⟨O ′

U,V V ′E j , U ′Ek⟩I(J1, j , J2,k) = tr(U O ′

U,V V ′τx,yΛx,y). (3.13)

For the first part of the theorem we want to find a map OU,V such that (3.9) is satisfied which
is equivalent to

U ′γ̇x,y = O ′

U,V V ′γ̇x,y . (3.14)

In addition we want to fulfill (3.10) which is the same as asking that quantity in (3.12) equals
−F(d(x, y)). Therefore Eq. (3.10) becomes in this reformulation

tr(U O ′

U,V V ′τx,yΛx,y) = −
1
2


d

j=2

I(J1, j , J1, j ) +

d
j=2

I(J2, j , J2, j ) + F(ρ)


(3.15)

where for simplicity of notations, we are going to denote d(x, y) = ρ.
To carry this task through, we are going to use the following standard comparison result,

whose proof can be found for instance in [9, pp. 216–217].

Lemma 7. Assume that M and M are two manifolds and γ , γ are two normalized geodesics
defined on [0, ρ] such that γ does not have conjugate points. Assume that Jt and Jt are two
Jacobi vector fields along γ , respectively γ , such that J0 = J0 = 0, |Jρ | = |Jρ |, ⟨ J̇0, γ̇ (0)⟩ =

⟨
˙̃J 0, ˙̃γ (0)⟩ and

K +(γ (t)) ≤ K −(γ (t)),

where K +(x) is the maximum of the sectional curvature at x and K −(x) is the minimum of the
sectional curvature atx. Then we have

I(J , J ) ≤ I(J, J ). (3.16)
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Since the sectional curvature is bounded from above, Kx ≤ 1/ω2 for all x ∈ M for a small
enough ω > 0. With this choice, for points x, y ∈ M at distance ρ = d(x, y) < πω/4,
comparing the index form of the manifold M with the index form of a sphere of radius r , for
geodesics of length ρ < πω/4, we obtain

I(J , J ) ≤ I(J, J ),

where J, J are as in Lemma 7. On the other hand, for the d-dimensional sphere Sd we haveJ (s) = w2(s)E(s), where w2 is given by (2.4) and E is the parallel transport of E0 ∈ Tγ (0)Sd

along γ . From (2.3) and (2.5) (notice that the r there is the curvature bound which in our case at
hand is 1/ω2) we conclude that

I(J , J ) = ẇ2(ρ) =
cot(ρ/ω)

ω

and consequently, we obtain

0 <
cot(ρ/ω)

ω
= I(J , J ) ≤ I(J, J ). (3.17)

We now choose η sufficiently small, for instance smaller than ω above and also less than a
third of the injectivity radius of M .

Recall that we want to choose OU,V so that (3.14) and (3.15) are satisfied.
To show this, we recall another standard result in Riemannian geometry as for instance appears

in [26, Corollary 8.10].

Lemma 8. Assume γ is a normalized geodesic on [0, ρ] without conjugate points on it. If J and
V are two vector fields with the same boundary values, and J is also a Jacobi field, then

I(J, J ) ≤ I(V, V ). (3.18)

Next we have the obvious equality

d
j=2

I(J1, j , J1, j ) +

d
j=2

I(J2, j , J2, j ) + 2
d

j=2

I(J1, j , J2, j )

=

d
j=2

I(J1, j + J2, j , J1, j + J2, j ).

On the other hand, using the above comparison theorem with the vectors E j in place of V and
J1, j + J2, j as the Jacobi field J , we obtain

d
j=2

I(J1, j + J2, j , J1, j + J2, j ) ≤

d
j=2

I(E j , E j )

=

d
j=2

 ρ

0


|Ė j (s)|

2
− ⟨R(γ̇ (s), E j (s))E j (s), γ̇ (s)⟩


ds

= −

 ρ

0
Ricγ (s)(γ̇ (s), γ̇ (s))ds ≤ −kρ (3.19)
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where ρ = d(x, y), and therefore

2
d

j=2

I(J1, j , J2, j ) ≤ −


d

j=2

I(J1, j , J1, j ) +

d
j=2

I(J2, j , J2, j ) + kρ


. (3.20)

In the basis E1 = γ̇x,y, E2, . . . , Ed we can take

f j = U ′E j and h j = V ′E j , j = 1, . . . , d. (3.21)

To choose the matrix OU,V as in (3.15) we treat separately the cases of odd and even dimen-
sional manifolds, as follows.

Case I: d is odd. In this case we take N = d , so we are back to the classical situation of the
orthonormal frame bundle. Let AU and AV be the (unique) orthogonal matrices which send e j
into f j , respectively e j into h j , j = 1, . . . , d. We set

∆x,y = A′

V V ′τx,yΛx,yU AU . (3.22)

We will choose the matrix OU,V such that, in addition to (3.15) we also have

A′

U O ′

U,V AV e1 = e1.

This is done as follows. We will construct an orthogonal matrix Bx,y such that

Bx,ye1 = e1

and tr(Bx,y∆x,y) = −
1
2


d

j=2

I(J1, j , J1, j ) +

d
j=2

I(J2, j , J2, j ) + F(ρ)


. (3.23)

Once this is done, we can take

OU,V = AV B ′
x,y A′

U ,

which then shows that (3.15) and consequently (3.10) are satisfied.

To get to terms with Bx,y , we choose it to be given in matrix form by

Bx,y =



1 0 0 0 0 0 0 0
0 cos α sin α 0 0 0 0 0
0 − sin α cos α 0 0 0 0 0
0 0 0 cos α sin α 0 0 0
0 0 0 − sin α cos α 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 0 cos α sin α

0 0 0 0 0 0 − sin α cos α


. (3.24)

This is where we actually use the fact that the dimension d is odd: in the above representation we
use on the diagonal (d − 1)/2 blocks of 2 × 2 unitary matrices. With this choice, we clearly have
Bx,ye1 = e1 and also ∆x,ye1 = 0. Furthermore, because Bx,ye2i = cos(α)e2i − sin(α)e2i+1 and
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Bx,ye2i+1 = cos(α)e2i+1 + sin(α)e2i , we get that

tr(Bx,y∆x,y) =

(d−1)/2
i=1

(⟨∆x,y Bx,ye2i , e2i ⟩ + ⟨∆x,y Bx,ye2i+1, e2i+1⟩)

= cos(α)tr

∆x,y


+ sin(α)Fx,y

with Fx,y =
(d−1)/2

i=1


⟨∆x,ye2i+1, e2i ⟩ − ⟨∆x,ye2i , e2i+1⟩


. Hence, (3.23) becomes equivalent

to finding α ∈ [0, 2π ] such that

2 cos(α)tr

∆x,y


+ 2 sin(α)Fx,y = −

 d
j=2

I(J1, j , J1, j ) +

d
j=2

I(J2, j , J2, j ) + F(ρ)


.

(3.25)

The key point now is that (3.20) is nothing but the statement that

2tr

∆x,y


≤ −

 d
j=2

I(J1, j , J1, j ) +

d
j=2

I(J2, j , J2, j ) + kρ


.

In addition to this, since F(ρ) ≥ −2a/ρ for small ρ with a < d − 1, combined with inequality
(3.17) gives that,

−

 d
j=2

I(J1, j , J1, j ) +

d
j=2

I(J2, j , J2, j ) + F(ρ)


< −2(d − 1)

cot(ρ/ω)

ω
− F(ρ)

≤ −2(d − 1)
cot(ρ/ω)

ω
+ 2a/ρ < 0

for small enough ρ (in fact, it suffices to take small ρ/ω).

On the other hand, since F(ρ) ≤ kρ for small ρ, we have that

2tr

∆x,y


≤ −

 d
j=2

I(J1, j , J1, j ) +

d
j=2

I(J2, j , J2, j ) + kρ



≤ −

 d
j=2

I(J1, j , J1, j ) +

d
j=2

I(J2, j , J2, j ) + F(ρ)


.

We have now come to the key point of the construction of OU,V , namely solving Eq. (3.15).
After all these preliminaries, (3.15) is in fact equivalent to showing that there exists an angle α

such that (3.25) is satisfied. Finally, simple trigonometry shows that for any a < c < 0 and any
b, the equation

cos(α)a + sin(α)b = c

has one solution as

sin(α) =
bc − a

√
a2 − c2 + b2

a2 + b2 and cos(α) =
ac + b

√
a2 − c2 + b2

a2 + b2 .
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Taking now a = 2tr(∆x,y), b = 2Fx,y and c = −

d
j=2 I(J1, j , J1, j ) +

d
j=2 I(J2, j , J2, j ) +

F(ρ)


shows that (3.25) has a solution, in conclusion (3.15) does too. In particular, the matrix

Bx,y depends smoothly on U and V , hence OU,V also depends smoothly on U and V .
Case II: d is even. In this case we use N = d+1. Recall that we use e1, e2, . . . , ed+1 to denote

the standard basis of Rd+1 and the vectors f j , respectively h j are defined in (3.21). Furthermore,
we have a set of d orthogonal vectors, f1, f2, . . . , fd in a d + 1 dimensional space. We then
define

fd+1 = f1 ∧ f2 ∧ · · · ∧ fd

to be the exterior product of the previous d vectors. With this addition, the vectors f1, f2,

. . . , fd+1 form an orthonormal basis in Rd+1. We do the similar thing to the vectors
h1, h2, . . . , hd by defining hd+1 to be the exterior product of h1, h2, . . . , hd .

The difference from the previous case is that this time we consider the matrix AU which sends
e j into f j , j = 1, . . . , d, and the vector ed+1 into fd+1. Clearly with this choice, AU is actually
an orthogonal matrix in Rd+1. Similarly we define the matrix AV to be the matrix sending ei into
hi for i = 1, 2, . . . , d and ed+1 into hd+1. Again, AV is an orthogonal matrix.

The rest of the argument is now the same argument as in the case when d is odd, with the
choice of Bx,y as a (d + 1) × (d + 1) matrix such as the one in (3.24) and ∆x , y as in (3.22).
Notice the catch here, namely the dimension of the matrix is d + 1, an odd number! The rest of
the argument runs exactly in the same way as above with the obvious adjustments. For instance,
Eq. (3.25) is the same, only that this time

Fx,y =

d/2
i=1


⟨∆x,ye2i+1, e2i ⟩ − ⟨∆x,ye2i , e2i+1⟩


and the rest of the proof follows the same steps.

Let us wrap up the main findings of this subsection. We showed that there exists (again, for
small η) a matrix OU,V which depends smoothly on (U, V ) ∈ Nη(x0, y0) such that (3.9) and
(3.10) are satisfied. In fact we proved that for small enough η > 0, as long as the distance
between x0 and y0 is less than η/2 and the process (X t , Yt ) stays inside B(x0, η) × B(y0, η), the
distance function satisfies ρt = νt (the solution to (3.3)).

3.4. The construction of the coupling

Consider first two independent N -dimensional Brownian motions Wt and Wt . For a given
stopping time τ , we denote Wt,τ = Wt − Wτ .

We have proved that for a small enough η > 0 and any x, y with d(x, y) < η there exists a
smooth choice OU,V on Nη(x, y). We will now use this to give a construction of the coupling as
indicated in the statement of the theorem.

For any η > 0 we define the η-neighborhood of the diagonal in M × M by

Dη = {(x, y) : d(x, y) ≤ η},

and let us also set

Dη = {(U, V ) ∈ O(M) × O(M) : (πU, πV ) ∈ Dη}.
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For a fixed pair of points (x0, y0) ∈ Dη/4 and frames U0, V0 at x0, respectively at y0, we
consider an orthonormal basis E1, . . . , Ed at x0 with E1 = γ̇x0,y0(0) and extend this to a local
orthonormal basis on B(x0, 2η) and then by parallel transport also to B(y0, 2η). Using the local
recipe outlined above we can construct a coupling with ρt = νt up to the first time t when the
base process (X t , Yt ) hits the boundary of the set B(x0, η)×B(y0, η). Let us call this exit time τ1.
At (x1, y1) = (Xτ1 , Yτ1) we have the orthogonal basis E1, . . . , Ed used in the local construction,
which at x1 satisfies E1 = γ̇x1,y1 , and U1 := Uτ1 and V1 := Vτ1 are the frames obtained from
(3.6).

The next step is to extend the construction of the coupling beyond time τ1. There are two
cases to be considered here.

If the point (x1, y1) lies inside Dη/2, we can use the starting point (x1, y1) and continue
to run (Ut , Vt ) following (3.6) using now the Brownian motion Wt,τ1 with the time range
t ≥ τ1. As above we let τ2 be the first time the process (X t+τ1 , Yt+τ1) hits the boundary
of B(x1, η) × B(y1, η), and we set (x2, y2) = (Xτ1+τ2 , Yτ1+τ2) and also U2 = Uτ1+τ2 and
V2 = Vτ1+τ2 .

On the other hand, if the point (x1, y1) lands outside Dη/2, then we run the motions Ut and Vt
for t ≥ τ1 with the system

dUt =

N
i=1

Hi (Ut ) ◦ dW i
t,τ1

dVt =

N
i=1

Hi (Vt ) ◦ d W i
t,τ1

X t = πUt
Yt = πVt .

In other words, Ut , Vt run as independent Brownian motions on O(M)×O(M), and X t , Yt run
as independent Brownian motions on the base manifold M . We continue with this construction
for time t in the interval [τ1, τ1 + τ2], where the terminal time τ1 + τ2 is the first time the process
(X t , Yt ) lands in Dη/4, and we denote (x2, y2) = (Xτ1+τ2 , Yτ1+τ2).

In both cases above we constructed the processes Ut , Vt defined up to the time τ1 + τ2, and
(x2, y2) is either in Dη/2 or outside it. Inductively, we can now repeat the construction above, to
show that we can extend the construction of the processes for another τ3 units of time, and so on.
If for a certain n, τn = +∞, then we certainly take all other stopping times τm = 0 for m > n.

One of the main problems is to show that the construction can be extended for all times t ≥ 0,
in other words that

n≥1

τn = +∞.

We are going to do this separately for the first part of the theorem, and argue differently for the
second and third parts.

For the case k < 0, the idea is that as long as the process (X t , Yt ) stays inside Dη/2, we know
that the distance process ρt satisfies

dρt

dt
= −

1
2

F(ρt ),

thus ρ′
t ≥ −kρt/2 which implies that ρt is actually increasing as a function of t . This means that

if η is small enough, then in finite (deterministic) time, the process (X t , Yt ) exits Dη/2. Once the
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process (X t , Yt ) exits the set Dη/2, X t and Yt run independently until they hit the set Dη/4, and
then they stay in Dη/2 for at most a finite (deterministic) amount of time, after which they exit
again Dη/2. In particular we see that the processes X t , Yt have to run independently infinitely
many times, and it is this fact that allows us to show that


n≥1 τn = +∞. This is done using the

Borel–Cantelli’s lemma.
For the moment, assume that we have two independent Brownian motions X t , Yt starting at

x0, y0 with d(x0, y0) = η/2. If τ is the first time when X t , Yt are within distance η/4 to each
other, we want to get an estimate on P(τ > δ) for some δ > 0. To do this, we use the following
inclusion

{ζX,η/16 > δ} ∩ {ζY,η/16 > δ} ⊂ {τ > δ}

where ζX,η/16 is the first exit time of X t from the ball B(x0, η/16) and similarly ζY,η/16 is the
first time Yt exits the ball B(y0, η/16). This inclusion can be stated in words as follows. If X t and
Yt stay inside B(x0, η/16), respectively B(y0, η/16), up to time δ, and since x0, y0 are distance
η/2 apart, it follows that X t and Yt are not within η/4 of each other in the time interval [0, δ].
The conclusion we draw from this is that

P(τ > δ) ≥ P(ζX,η/16 > δ)P(ζY,η/16 > δ).

Finally, since the Ricci curvature is bounded below, we can invoke now the estimate on the exit
times from balls, for instance [13, Theorem 3.6.1], to obtain that for any point x on M we have

Px (ζη/16 ≤ δ) ≤ e−Cr2/δ,

where the constant C > 0 depends only on the lower bound on the Ricci curvature and the
dimension of the manifold. Thus for a fixed η > 0 we obtain that

Px (ζη/16 > δ) > 1 − e−Cη2/δ
:= C2 > 0, (3.26)

for a certain constant C > 0, and therefore

P(τ > δ) ≥ C2
2 .

With this at hand we get that
n≥1

P(τn > δ) = +∞,

and using Borel–Cantelli’s lemma we conclude that


n≥1 τn = +∞, which shows that the
construction of the coupling extends for all times t ≥ 0.

For the other case of k ≥ 0 and F(ρ) ≥ 0, clearly νt is going to be non-increasing and the
bulk of the argument is complementary to the previous one. More precisely, in the above proof
it was the independent motions which played the main role, while here the main role is played
by the coupling. To get to terms, note that if we start the coupling with points x0, y0 such that
d(x0, y0) < η/4, then, since the distance between the processes does not increase, the process
(X t , Yt ) stays in Dη/2 up to the time


n≥1 τn . The issue is to show that this sum is always

infinite. What we want to do is to find a lower bound on P(τ1 > δ). Using the same notation as
above, we have

{ζX,η/16 > δ} ⊂ {τ1 > δ}. (3.27)
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To see this, we follow the construction until either X or Y hit the ball of radius η centered
at x0, respectively y0. Now, if X stays inside B(x0, η/16) on the time interval [0, δ], since
d(x0, y0) < η/4 and the processes remain at fixed or non-increasing distance, an application
of the triangle inequality shows that Y remains inside B(y0, 9η/16) on the time interval [0, δ],
which in turn implies (3.27). Using again (3.26) we get that

P(τ1 > δ) ≥ C3 > 0

for a constant C3 which is independent of the starting points. Since this is applicable to all
stopping times τn , we learn again from Borel–Cantelli’s lemma that


n≥1 τn = +∞.

3.5. Finishing off

In the previous section we constructed the coupling and we proved that it is defined for all
times. We now want to show that the construction actually does what the theorem asks for. This
is already spelled out in the previous subsection in a certain form.

For the first part (k < 0), on each of the regions where the coupling is inside Dη/2, the distance
is non-decreasing, and therefore it is larger than the starting distance which is at most η/4. On
the other hand, if the coupling exits Dη/2, then it runs as independent Brownian motions until it
hits again Dη/4, and consequently the distance is at least η/4 apart. In both regimes the distance
does not get smaller than the starting distance and this concludes the proof of the second part of
Theorem 5.

For the last part of the theorem, the coupling never leaves Dη/2 and for all times the distance
functions ρt equal the solution of Eq. (3.3).

Though we are done proving the theorem, we put here an interesting consequence of the
proof. There is a more general statement which guarantees the existence of a coupling which is
not necessarily Markovian but co-adapted and its proof is based on a very simple modification
of the proof which will leave to the reader.

Corollary 9. Assume the same geometric assumptions as in Theorem 4 (d ≥ 2, positive injectiv-
ity radius and (3.1)).

Let T > 0 and ρ : [0, T ) → [0, ∞) be a function such that for some 0 ≤ a < d −1, we have

−
ρ(t)

2
≤ ρ′(t) ≤

a

ρ(t)
with ρ(0) = ρ0. (3.28)

(1) There exist positive constants ϵ, δ > 0 such that for any points x0, y0 ∈ M, with d(x0, y0) ≤

ϵ, we can find a co-adapted coupling of Brownian motions X t , Yt such that X0 = x0, Y0 = y0
and d(X t , Yt ) = ρ(t) for t ∈ [0, δ).

(2) Moreover, for k < 0, we can actually take ϵ and δ to be small enough and extend this cou-
pling for all t ≥ 0 such that d(X t , Yt ) ≥ ρ0.

(3) In the case k ≥ 0, we can find a small ϵ > 0 such that for any points x0, y0 with
d(x0, y0) ≤ ϵ, there is a co-adapted coupling of Brownian motions X t , Yt with X0 = x0
and Y0 = y0 such that d(X t , Yt ) = ρ(t) for all t ∈ [0, T ).

Essentially, one has to follow the same argument as in the proof of the theorem, the only
difference being that we need to replace d(x, y), U , V and the existence of the map OU,V



646 M.N. Pascu, I. Popescu / Stochastic Processes and their Applications 126 (2016) 628–650

satisfying (3.9) and (3.10) with ρt , Ut , Vt and one of a map Ot such that

⟨Ut ei , γ̇πUt ,πVt ⟩πUt − ⟨Vt Ot ei , γ̇πUt ,πVt ⟩πVt = 0
N

i=1

I(Ji , Ji ) = −ρ(t).

We would like to point out that this is in agreement with our results obtained in [25] the case of
Euclidean spaces and spheres where we actually get a complete characterization of all coupling
for which the distance function is deterministic.

4. Refinements and comments

The proof of Theorem 4 spreads on several pages, and some comments on it are in order. The
first observation is that the conditions imposed are essential for the construction. For example
the positivity of the injectivity radius is needed for the local construction. The Ricci curvature
bounded from below insures the non-explosion of the Brownian motion on one hand, and on the
other hand it is important in the estimate of the exit times employed in the proof of the global
existence of the coupling and also for the estimates involving the index form from (3.19).

That the sectional curvature is bounded from above does not seem to be optimal even though it
is an important piece in the proof of the existence of the coupling via the index form comparison
on M with the index form of a sphere. Geometrically, we certainly need to make sure that the
Brownian motions we try to couple do not get trapped in regions of extremely high sectional
curvature where the Brownian motions tend to get close to one another. It seems though that the
optimal condition would be that the injectivity radius of the manifold is positive. However this
certainly requires a different argument from the one provided here.

Another aspect is that the global existence of the choice of the map OU,V is tied to the
existence of a smooth choice of an orthonormal frame on M . On an arbitrary Riemannian
manifold this can be done only locally and this is why we had to go one more step, from the
local existence of the coupling to its global existence. There are though a few cases when the
existence can be proved globally, one of which is the case of surfaces. In this case, for any two
points x, y not at each other cut-locus, there is a single perpendicular direction to the geodesic
joining x and y. Using this we can show that there is a global choice of OU,V as long as πU, πV
are not at each other cut-locus.

Another case in which we can construct a global version of OU,V is the one in which M
is parallelizable, namely the tangent bundle is trivializable, or otherwise put, there exist vector
fields X1, X2, . . . , Xd which are independent at each point. This amounts to the existence of a
global section of the orthonormal frame bundle. It is for instance the case of S3 and S7 and also
of any Lie group with the left or right invariant metric.

The couplings we constructed in Theorem 4 are defined for all times t ≥ 0, and the conditions
in (3.1) were necessary in the proof. There is however a case when the injectivity and upper
bound on the sectional condition can be dispensed of if one only needs the coupling to be defined
up to the first exit time of the coupling from a relatively compact set. For completeness, we
record the result here and use it in the next section. The proof is the same as the one given above
adjusted with a stopping time.

Theorem 10. Let M be a complete d-dimensional Riemannian manifold and D ⊂ M a relatively
compact open set of M with a smooth boundary. Then, there exists ϵ > 0 such that for any
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x, y ∈ D with d(x, y) < ϵ, there exist a shy coupling of two Brownian motions on M starting at
x and y, defined up to the first exit time of either of the processes from D.

If in addition Ric ≥ 0, there also exists a fixed-distance coupling Brownian motions on M
starting at x and y, defined up to the first exit time of either of the processes from D.

The suggestion given by Kendall in [17, Section 4] for the construction of the shy coupling is
to use a form of perverse coupling (in the terminology of [17]). However, this is not sufficient to
get the fixed distance coupling. Particularly this is very clearly illustrated in the case of surfaces.
Indeed, since the dimension is 2, we have just one dimension left in the orthogonal to the geodesic
joining X t and Yt and then there are essentially only two choices of an orthogonal map from Tx
to Ty (for x, y not at each other cut-locus) which preserves the geodesic direction. One choice is
the one in which in the perpendicular direction to the geodesic, the particles move in the same
direction which gives the mirror coupling or in the opposite directions which gives the perverse
couplings. None of these give the fixed distance coupling.

Another point is that one can get a shy coupling using stochastic flows. In short, the idea is to
impose conditions such that the flow stays a Brownian motion and this can be done if the direction
in the Cameron–Martin space satisfies a certain ordinary differential equation. If the initial value
of this direction is non-zero everywhere then we obtain a weak form of shy coupling. See for
details [13,14].

Though we have dealt with a coupling of two Brownian motions, we can actually construct
a family of Brownian motions indexed by some set. For instance, given x, y to points in M , the
construction in [27, Theorem 10.37], gives a family of Brownian motions X s

t for s running in
[0, d(x, y)] such that d

ds X s
t ≤ e−kt/2d(x, y).

What we can do is the following. Take ϵ > 0 small enough and then we can construct a family
X x

t and Y y
t where x, y ∈ M with distance d(x, y) < ϵ such that at least for small time t ∈ [0, δ]

we get that d(X x
t , Y y

t ) = e−kt/2d(x, y). In the case k ≥ 0 we obtain in fact that the coupling is
defined for all t ≥ 0. The whole idea is that in our local construction of Theorem 5, the choice
of the orthogonal matrix boils down to choosing the angle α for the matrix Bx,y in (3.24).

5. Applications

5.1. The Brownian Lion and the Man

We started this paper with the Lion and the Man and we close it with a simple interpretation of
the results in this language. Assume we have a Riemannian manifold M satisfying the conditions
of Theorem 4. Then, given a Brownian Lion running on M , Theorem 4 assures that there is a
strategy for the Brownian Man which keeps him at a safe positive distance from the Lion for all
times.

In addition, if the Ricci is non-negative, then the Brownian Man can choose a strategy which
keeps him at fixed distance from the Brownian Lion. This must be particularly frustrating for the
Lion especially if they start relatively close to each other.

Theorem 4 also shows that if the Ricci curvature is bounded below by a positive constant, then
given a Brownian Man, the Brownian Lion has a strategy which will bring him arbitrarily close
to its meal.
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5.2. Lower bounds on Ricci curvature

As we pointed out in the introduction, [30, Corollary 1.4] shows that one can characterize the
condition Ric ≥ k in terms of couplings. We now have an optimal version of it which is formally
put here.

Corollary 11. Assume M is a complete Riemannian manifold. Then the following two statements
are equivalent.

(1) Ricx ≥ k for all x ∈ M.
(2) For any point z ∈ M, there exist rz, δz > 0 such that for any x, y ∈ B(z, rz) we can find a

Markovian coupling of Brownian motions X t , Yt starting at x, y with the property that

d(X t , Yt ) = e−kt/2d(x, y) for 0 ≤ t ≤ δz ∧ ζz

where ζz is the first time either X t or Yt exit the ball B(z, rz).

As a clarification, X t , Yt need to be defined up to the exit time from the ball B(z, rz) or up to
δz , whichever comes up first.

Proof. The implication (1) =⇒ (2) follows from Theorem 10. For the reverse implication we
follow the same lines as in [30], particularly the implication (x)=⇒(i) and we will sketch only
the main differences.

Instead of considering the heat kernel of the Laplacian on the manifold we consider the heat
kernel pt (x, y) of half the Laplacian on B(z, rz) with the Dirichlet boundary conditions and
its corresponding action (pt f )(x) =


B(z,rz)

pt (x, y) f (y)dy. Using this we can prove that
condition (2) implies for any points x, y ∈ B(z, rz) and any compactly supported function f
on B(z, rz),

pt f (x) − pt f (y) = E[ f (X t∧ζz ) − f (Yt∧ζz )] ≤ |∇ f |B(z,rz)d(x, y)E[e−k(t∧ζz)/2
]

from which one immediately gets by letting y approach x that

|∇ pt f (x)| ≤ |∇ f |B(z,rz)E[e−k(t∧ζz)/2
].

Now, with very little changes in the argument of the implication (v)=⇒(i) from [30], if
Ricz(v, v) < k at some point z for some v we arrive at the following conclusion

kE


1 −
t ∧ ζz

t


≥ ϵ + o(1)

for some ϵ > 0. This certainly leads to a contradiction as we let t → 0. �
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