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Abstract

This paper addresses the generalization of stationary Hawkes processes in order to allow for a time-
evolving second-order analysis. Motivated by the concept of locally stationary autoregressive processes,
we apply however inherently different techniques to describe the time-varying dynamics of self-exciting
point processes. In particular we derive a stationary approximation of the Laplace functional of a locally
stationary Hawkes process. This allows us to define a local mean density function and a local Bartlett
spectrum which can be used to compute approximations of first and second order moments of the process.
We complete the paper by some insightful simulation studies.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Introductory work on Hawkes processes, an important class of self-exciting point processes,
and in particular on the analysis of its spectrum, the Bartlett spectrum (i.e. the Fourier trans-
form of the autocovariance of the process) is to be found mainly in the following seminal refer-
ences: [14,18,11,7]. A. Hawkes [14] was the first to provide for the definition of a point process
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with a self-exciting behavior. Intuitively similar to a Poisson process, the conditional intensity
function of a Hawkes process is however stochastic as it depends on its own past events. Whereas
Hawkes’ model was introduced to reproduce the ripple effects generated after the occurrence of
an earthquake, applications of this model have become since then really numerous in many and
diverse fields such as seismology (see e.g., [20], for a recent review), biology ([22] on genome
analysis) or neuroscience ([21] on brain data analysis), to name but a few. Recently, this model
is also being widely used in finance where self-exciting processes led to many applications such
as microstructure dynamics [2], order arrival rate modeling and high-frequency data [6,5,1], fi-
nancial price modeling across scales [3], and many others. For a really comprehensive list of
applications of Hawkes processes (including very recent applications on limit order book mod-
eling as in [17]) we refer also to the Ph.D. thesis of A. Iuga [15].

In this paper, we contribute by generalizing existing models of stationary Hawkes processes
(i.e. with time-invariant second order structure) to model and capture their time-varying dynam-
ics. This is rather in contrast to the existing literature on trying to generalize from stationarity
of Hawkes processes which we briefly review now and which essentially can be split into two
different approaches. On the one hand, the more theoretical work of [8] and the more empirical
approaches of [13,17] generalize the baseline intensity function (i.e. the function ν in Eq. (1)),
and only this function, to become time-dependent. Note that the asymptotic approach of [8] is
inherently different from ours and will be described in more detail in our Remark 3. The work
of [4] includes these approaches in their overview paper on Hawkes processes in finance, and
also discuss a very specific approach of the fertility function to live on the boundary of explo-
sion, hence allowing still for a finite average density. On the other hand, the works by [24,25]
treat claim arrivals for ruin probabilities of risk processes modeled by Hawkes processes. These
processes are nonstationary in the sense that they are not observed in their steady state but along
trajectories converging to the stationary regime.

To give a short description of the ideas behind our approach, we first recall some basic fea-
tures of a stationary linear Hawkes process with fertility p defined on the positive half-line. The
conditional intensity function λ(t) of such a process is driven by the fertility function taken at
the time distances to previous points of the process, i.e. λ(t) is given by

λ(t) = ν +

 t−

−∞

p(t − s) N (ds) = ν +


ti <t

p(t − ti ). (1)

Here the first display is to be read as the integral of the “fertility” function p with respect to
the counting process N , which is a sum of Dirac masses at (random) points (ti )i∈Z. As will be
derived in more detail in Section 2.2, linear self-exciting processes can also be viewed as cluster
point processes. For a classical Hawkes process on the real line, each event is one of two types:
an immigrant arrival or an offspring one. The immigrants follow a Poisson process and define the
centers of so-called cluster processes. These cluster processes are aggregates of successive gen-
erations. More precisely, each center constitutes the initial (single point) generation of a cluster,
and, given all the previous generations, each point of the last generation generates independent
finite Poisson processes called the offspring processes. As immigrants and offsprings can be re-
ferred to as “main shocks” and “after shocks” respectively, an interesting interpretation arises
which is useful not only in seismology but also in high-frequency finance. We refer to [5] who
exploit that Hawkes processes capture the dynamics in financial point processes remarkably well,
and hence, their cluster property can serve as a reasonable description of the timing structure of
events on financial markets.
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In the more general case of spatial Hawkes processes with values in Rℓ, the cluster inter-
pretation remains the same but points now represent a location in space (or time-space). Hence
the immigrant process now constitutes a spatial Poisson point process as well as the conditional
offspring processes given the previous generations. Spatial Hawkes processes, considered for
example in [7,16], which also treat the Bartlett spectrum, provide natural models for e.g. a pop-
ulation of reproducing individuals or the time-space development of an epidemic.

In this paper we develop a new non-parametric model of a generalized (temporal, spatial, or
spatio-temporal) Hawkes process with a view on analysis of its Bartlett spectrum. Indeed, the
challenge and motivation for our new approach come from the fact that these days, in many of
the afore-mentioned applications such as genomics or high-frequency data analysis practitioners
have to face (potentially very) long data stretches. Hence the assumption of a stationary model
– meaning time-invariant characteristics (baseline intensity and fertility function) – is no more
realistic and needs to be given up. In terms of spectral analysis of Hawkes processes, this means
that a time–frequency analysis is required which calls for the development of a mathematical
model: this model should allow for addressing the first (and foremost) difficulty, the rigorous
definition of a generalized, i.e. time-varying, Bartlett spectrum. In this paper we adopt the point
of view of local stationarity as introduced by Dahlhaus (see, e.g., [9]) in order to accomplish this
task. The idea is that the observed Hawkes process is embedded into a doubly-indexed sequence
of processes which, as sample size T becomes larger and larger, can locally be better and better
approximated by a stationary Hawkes model. Similarities to the treatment of locally stationary
autoregressive processes exist, in particular by letting the fertility function p(t − s) in Eq. (1)
now depend explicitly on time t via rescaled time t/T and take the form p(t − s; t/T ), akin
the time-dependency of the autoregressive coefficients of a locally stationary process (see our
formal development in Section 2.4). For univariate processes with NT now depending explicitly
on sample size T , Eq. (1) would then write as

λT (t) = ν(t/T ) +

 t−

−∞

p(t − s; t/T ) NT (ds) = ν(t/T ) +


ti <t

p(t − ti ; t/T ), (2)

but note that this construction, to be developed in this paper, cannot be used for describing mul-
tivariate time-dependent Hawkes processes (hence our choice for a development via the notion
of cluster processes).

Note also that the dynamics of self-exciting point processes are different from autoregression
on the real line. Consequently the techniques employed here are inherently different. In particular
we derive a stationary approximation of the Laplace functional of the underlying non-stationary
Hawkes process by a local Laplace functional. This allows us to define a local mean density
function and a local Bartlett spectrum of the locally stationary Hawkes process. We show how
those are used to compute in particular approximations of first and second order moments of
the process, including rates of convergence. However, our derivations more generally allow for
treatment of all its moments (under suitable conditions) and, since the Laplace functional charac-
terizes the distribution of a point process uniquely, we can also derive convergence in distribution
of the non-stationary Hawkes process towards the locally approximating stationary version. We
complete the paper by providing some numerical studies where we simulate some insightful ex-
amples of Hawkes processes with time-varying Bartlett spectra. We also discuss how to estimate
these quantities from sampled data, but in order not to overload this work, we reserve the sta-
tistical part of our analysis, including a detailed asymptotic estimation theory, for a subsequent
work.
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This paper is organized as follows. Section 2 introduces some notation used throughout the
paper and the formal definitions of non-stationary and locally stationary Hawkes processes, as
well as the assumptions related to these definitions. The main results are to be found in Section 3,
namely a local approximation of the Laplace functional of a locally stationary Hawkes process
by that of a stationary one. We also explain how to derive approximations of cumulants and of
the mean density. In Section 4, we focus on the one-dimensional case and develop the notion
of a local Bartlett spectrum, for which it is necessary to use all the technical preparations of
the preceding sections. This corresponds to a time–frequency analysis for point processes with a
time-varying second order structure. Section 5 provides some numerical experiments illustrating
our approach. Finally, Section 6 contains the proofs of the main results. A postponed proof and
a useful lemma have been placed in the Appendix for convenience.

2. Main definitions and assumptions

2.1. Conventions and notation

Throughout the paper, ℓ is a positive integer and we work with point processes and measures
on the space Rℓ endowed with the Borel σ -field. For any x ∈ Rℓ, we denote by |x | the Euclidean
norm of x .

A point process is identified with a random measure with discrete support, N =


k δTk

typically, where δt is the Dirac measure at point t and {Tk} the corresponding (countable) ran-
dom set of points. We use the notation µ(g) for a measure µ and a function g to express

g dµ when convenient. In particular, for a measurable set A, µ(A) = µ(1A) and for a
point process N , N (g) =


k g(Tk). The shift operator of lag t is denoted by St . For a set

A, St (A) = {x − t, x ∈ A} and for a function g, St (g) = g(· + t), so that St (1A) = 1St (A). One
can then compose a measure µ with St , yielding for a function g, µ ◦ St (g) = µ(g(· + t)).

We introduce some notation for the functional norms which we deal with in throughout work.
The usual Lq -norm of h is denoted by |h|q for q ∈ [1, ∞]. We also use the following weighted
L1-norm to control the decay of a function h : Rℓ

→ R

|h|(β) :=
h × | · |

β

1 =


|h(s)| |s|β ds,

where β is a given positive exponent. Let now m be a positive integer and U be an open subset of
Cm . Define O (U ) be the set of holomorphic functions from U to R. We denote, for all h ∈ O (U )

and compact sets K ⊂ U ,

|h|O,K = sup
z∈K

|h(z)| .

Recall that a holomorphic function h on U is infinitely differentiable on U . We denote by Ō (U )

the set of Rℓ
× U → R functions h such that, for all t ∈ Rℓ, z → h(t, z) belongs to O (U ).

The translation operator Ss is extended to this setting by defining also Ss for any s ∈ Rℓ as the
operator

Ss(h) : (t, z) → h(t + s, z),

that is, we translate h by the lag s only through its first parameter. When h ∈ Ō (U ), for any
multi-index α = (α1, . . . , αm), we denote by ∂α

O h the function obtained by differentiating with
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respect to the second variable, that is, for all t ∈ Rℓ and z = (z1, . . . , zm) ∈ U ,

∂α
O h(t, z) =


∂

∂z1

α1

. . .


∂

∂zm

αm

h(t, z).

Notice that, for h ∈ Ō (U ), one can integrate with respect to t and obtain a holomorphic function,
providing some simple condition on the integrability of the local supremum (see the Cauchy
inequality given by Eq. (58), and Lemma 15 for a precise statement).

For any p ∈ [1, ∞], we further denote by Ō p (U ) the subset of functions h ∈ Ō (U ) such
that the function t → supz∈K h(t, z) has finite L p-norm on Rℓ for all compact sets K ⊂ U . We
denote

|h|Ō,K ,p :=

sup
z∈K

|h(·, z)|


p

.

We also denote by BŌ (r; K , p) the set of all functions g ∈ Ō p (U ) such that |g|Ō,K ,p < r .
Finally, for a given exponent β > 0 and a compact set K ⊂ U , we use the following norm for
h ∈ Ō (U ),

|h|Ō,K ,(β) =

sup
z∈K

|h(·, z)|


(β)

.

The corresponding balls are denoted, for given r > 0,

BŌ,K ,(β) (r) = {h ∈ Ō (U ) : |h|Ō,K ,(β) < r}.

2.2. Hawkes processes as cluster processes

Although intuitive, the definition of Hawkes processes through its conditional intensity as
in (1) is only adapted to time point processes. A more general approach for defining Hawkes
processes applying for points in the space Rℓ is to see them as a special case of cluster
processes. Cluster processes are point processes constructed via conditioning on the realization
of a so-called center process, usually a Poisson point process, denoted PPP in the sequel (see
[11, Section 6.3] from which we borrow notation conventions and terminology). We consider
here point processes on the space Rℓ.

Let Nc be a PPP with intensity measure µc. This is the starting point for the following
mechanism as it represents the immigrants which appear spontaneously (in fact, later on they
will represent those parents which are not generated by the iteration in the offspring generation).
At each center point tc

∈ Rℓ of Nc, a point process N (·|tc) is generated independently (we will
explain below how these descendants of t are generated). The cluster process N is defined as the
set of all the immigrants (points of the PPP Nc) and of all the descendants (realizations of the
point process N (·|tc)) generated independently at each center point tc of Nc:

N (A) = Nc

N (A|·)


, for every bounded A in B(R). (3)

Remark 1. Recall our notation: here, we have to do with an integration over center points tc

using the measure Nc. That is, denoting Nc =


k δtc
k

as a sum of Dirac point masses,

N (A) =


k

N (A|tc
k ).
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In [11, Definition 6.3.I], N (·|tc) is called the component process generated at position tc and the
process N is merely the superposition of all these components when the center points tc run over
the support points tc

k of Nc.

Hawkes processes are cluster processes for which Nc is a PPP and N (·|tc) are independent
branching processes in which each point s may generate offsprings according to a PPP with finite
intensity measure µ(·|s). We detail below the iterative scheme for generating all generations of
the component N (·|tc). For the moment, let us just say that standard Hawkes processes are made
stationary by assuming that Nc is a homogeneous PPP on the whole space Rℓ and s → µ(·|s)
is shift invariant, µ(·|s) = µ ◦ Ss , where µ is fixed (i.e. µ = µ(·|0)). In this case, the condition
µ(R) < 1 insures that the obtained process has finite intensity (density) m = µc/(1 − µ(R))

(see [11, Example 6.3(c)]). The second order properties are also derived in this case (see
[7,16] for additional insights). In the following section, we extend the Hawkes model to the
non-stationary case where Nc and s → µ(·|s) are no longer restricted to be homogeneous and
shift-invariant, respectively.

2.3. Non-stationary Hawkes processes

In this section, we consider non-stationary Hawkes processes, namely tc
→ µc(tc) and

s → µ(·|s) may not be shift invariant. The usual cluster construction still applies in this case.
Namely, each component N (·|tc) can be constructed as the superposition of point processes
defined iteratively. For each center point tc,

N (0)(·|tc) = δtc

N (n+1)(·|tc) =


m(n)(·|s) N (n)(ds|tc), for all n ≥ 0,

where {m(n)(·|s), s ∈ Rℓ, n ≥ 0} are independent PPPs with respective intensity measure µ(·|s).
The resulting component at center point tc is defined as

N (·|tc) =


n≥0

N (n)(·|tc). (4)

We observe that for any non-negative (test) function g defined on R, we have

E[N (0)(g|tc)] = g(tc)

and, for all n ≥ 0,

E


N (n+1)(g|tc)


= E

E[N (n+1)(g|tc) | N (n)(·|tc)]


= E


N (n)


µ(g|·)

tc


.

Hence, we obtain, for any n ≥ 1,

E


N (n)(g|tc)


= µ⋆n(g|tc), (5)

where µ⋆n is defined iteratively as follows: for any g, for all center point tc
∈ Rℓ,

µ⋆0(g|tc) = g(tc)

µ⋆(n+1)(g|tc) = µ⋆n

µ(g|·)

 tc

, for any n ≥ 0.

(6)



1716 F. Roueff et al. / Stochastic Processes and their Applications 126 (2016) 1710–1743

We also note that the intensity measure of a component generated at center point tc reads

M1(·|t
c) = E[N (·|tc)] =


n≥0

µ⋆n(·|tc). (7)

It is easy to see that if µ(·|s) = µ ◦ Ss , then µ⋆n(·|s) = µ⋆n
◦ Ss , where µ⋆n now denotes the

standard convolution of measures. Then (7) with tc
= 0 corresponds to the formula given for

M1(A|0) in [11, Page 184].
From (7), we deduce that, for any non-negative function g,

M1(g|tc) = g(tc) +


n≥1

µ⋆n(g|tc)

and we conclude that

M1(g) = E[N (g)] =


M1(g|tc) µc(dtc). (8)

Note however that at this point, N so defined may not have locally finite intensity measure
(E[N (g)] may be infinite for g bounded with compact support). This can be guaranteed by the
following result.

Theorem 1. Suppose that

ζ1 := sup
s∈R

µ

Rℓ
s < 1. (9)

Then, for all tc
∈ Rℓ, the component process N (·|tc) defined by (4) has finite moment measure

satisfying

M1(Rℓ
|tc) = E[N (Rℓ

|tc)] ≤
1

1 − ζ1
.

Proof. Observe that, for any non-negative function g, we have by (6) that

sup
tc∈Rℓ

µ∗0(g|tc) = sup(g),

where sup(g) denotes the sup of the function g over Rℓ. By induction, we get that

sup

µ⋆(n)(g|·)


≤ ζ n

1 sup(g),

since if this is true for n, (6) implies

sup

µ⋆(n+1)(g|·)


≤ ζ n

1 sup(µ(g|·)) ≤ ζ n+1
1 sup(g),

where the last inequality follows from the definition of ζ1 in (9). The proof is concluded by
applying (7). �

Consequently, applying (8), we conclude that under Condition (9), if µc is locally finite, then
N admits a locally finite intensity measure. Note also that Condition (9) corresponds to the usual
condition in the stationary case, see [11, Example 6.3(c)].



F. Roueff et al. / Stochastic Processes and their Applications 126 (2016) 1710–1743 1717

2.4. Density assumption

We now assume that the intensity measures µc and µ(·|s) admit densities with respect to the
Lebesgue measure on Rℓ. We denote by λc the density of µc and by d(· − s; s) the density of
µ(·|s). In this notation the fact that s → µ(·|s) is not shift invariant is apparent in the fact that
d(t − s; s) does not depend on t − s only but also on s. Note also that the function d(t − s; s)
can be equivalently rewritten as a function of t − s and t (using an obvious change of variable),
which we do by introducing the function p(·; ·) defined on Rℓ2

by setting

p(t − s; t) = d(t − s; s), for all s, t ∈ Rℓ.

When localizing the non-stationary behavior, it will turn out to be more convenient to use the
description with the density p, that we call the (non-stationary) fertility function, rather than
with d. The intuitive reason is the following: coarsely speaking, d(t − s; s) dt = p(t − s; t) dt
represents the probability that a parent located at s generates an offspring in the elementary set dt
around location t . From this view, the location t corresponds to the position where the probability
mass is located and it is more convenient that the second argument corresponds to this location
rather than the location s of the generating point.

Definition 1 (Non-Stationary Hawkes Process). We say that the so defined non stationary
Hawkes process has immigrant intensity function λc and varying fertility function p(·; ·). By
Theorem 1 and (8), if

ζ1 = sup
t∈Rℓ


p(r; t) dr < 1 and |λc|∞ < ∞, (10)

then the point process admits a density function (the density of M1) which is uniformly bounded
by |λc|∞ /(1 − ζ1).

The following argument will also be useful to simplify the proofs, since we often look at the
behavior of N around a specific position t , which amounts to consider the behavior of N ◦ S−t

around the origin.

Remark 2. Let N be a non-stationary Hawkes process with center intensity λc and fertility
function p(·; ·). For any t ∈ Rℓ, the distribution of the shifted process N ◦ S−t defined by
N ◦ S−t (g) = N (g(· − t)) for a function g, is that of a non-stationary Hawkes process with
center intensity λc(· + t) and fertility function p(·; · + t).

2.5. Locally stationary Hawkes processes

The non-stationary Hawkes processes under the density assumption, can still evolve quite
arbitrarily in the space, as the functional parameters λc and p(·; ·) can be quite general. The
stationary case corresponds to the case where λc is constant and p(·; ·) is constant over its sec-
ond argument. This can be interpreted as a particular set of parameters for λc and p(·; ·), which
we explicitly exhibit by introducing the following notation. In the stationary case, the immi-
grant intensity λc and fertility function p(·; ·) only depend on the constant λ

⟨S⟩
c and the function

p⟨S⟩
: Rℓ

→ R+ by setting

λc(t
c) =: λ⟨S⟩

c , for all tc
∈ Rℓ (11)

p(r; t) =: p⟨S⟩ (r), for all r, t ∈ Rℓ. (12)
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We now wish to define a model of point process that can be locally interpreted as a stationary
Hawkes process, in the same fashion as locally stationary autoregressive processes in time series
(see [9]). The model is a doubly indexed point process NT (A), A ∈ B(R) such that for each
T > 0, NT is a non-stationary Hawkes process defined as previously. Here T correspond to the
size of the observation window so that we only observe NT (A) for Borel sets A ⊆ T D, where
D is a fixed domain and T D = {T x, x ∈ D}. The collection (NT )T >0 of non-stationary Hawkes
processes are defined using the same µc and s → µ(·|s) but scaled differently so that, if the
observation window has the form T D, then it matches the corresponding fixed domain D for
these parameters. In this way, while the observations evolve in T D the parameter of interest is
defined independently of T on the domain D. We call this model a locally stationary Hawkes
process and denote the fixed parameters by λ

⟨LS⟩
c and p⟨LS⟩(·; ·). For ℓ = 1, as for the locally

stationary time series, one typically takes D = [0, 1].

Definition 2 (Locally Stationary Hawkes Process). A locally stationary Hawkes process with
local immigrant intensity λ

⟨LS⟩
c and local fertility function p⟨LS⟩(·; ·) is a collection (NT )T >0

of non-stationary Hawkes processes with respective immigrant intensity and fertility function
given by λcT (tc) = λ

⟨LS⟩
c (tc/T ) for all tc

∈ Rℓ and varying fertility function given by
pT (·; t) = p⟨LS⟩(·; t/T ) for all t ∈ Rℓ.

Remark 3. Let us continue the comparison of our approach with that of [8] initiated in the
introduction. We already mentioned there that the fertility function is not varying, so pT (r; t) =

g(r) for a fixed function g neither depending on t nor T . To obtain a meaningful asymptotic
theory, the non-stationary Hawkes process NT is supposed to be observed on the fixed interval
[0, 1] but the immigrant intensity is taken of the form λcT (t) = aT ν(t) with aT → ∞ as T → ∞

(T corresponds to n in [8]). This can be interpreted by saying that the number of immigrants on
the observation interval tend to infinity so that many Cluster processes are generated allowing for
a consistent identification of g and ν (which are parameterized by a finite dimensional θ in [8]).
This is to be compared with our approach where λcT (t) = ν(t/T ) and pT (r; t) = p⟨LS⟩(r, t/T )

but with NT observed on the interval [0, T ], which allows one for interpreting the behavior of
NT on a fixed interval [uT, uT + a] to be approximately that of a stationary Hawkes process
with immigrant intensity λc(u) and fertility function r → p⟨LS⟩(r, u).

For a given real location t , the scaled location t/T is typically called an absolute location in
D and denoted by u or v.

As explained in Definition 1, the following assumption, which corresponds to (10), guarantees
that, for all T > 0, the non-stationary Hawkes process NT admits a uniformly bounded intensity
function.

(LS-1) We have

ζ
⟨LS⟩

1 := sup
u∈Rℓ


p⟨LS⟩(r; u) dr < 1 and

λ⟨LS⟩
c


∞

< ∞. (13)

Under this assumption, moreover, for each absolute location u ∈ Rℓ, the function r →

p⟨LS⟩(r; u) satisfies the required condition for the fertility function of a stationary Hawkes pro-
cess. In the following, under (LS-1), for any absolute location u, we denote by N (·; u) a station-
ary Hawkes process with immigrant intensity λ

⟨LS⟩
c (u) and fertility function r → p⟨LS⟩(r; u).
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Remark 4. Using the above notation and definitions, in the case where ℓ = 1, the conditional
intensity function introduced in (2) takes the form

λT (t) = λ⟨LS⟩
c (t/T ) +

 t−

−∞

p⟨LS⟩ (t − s; t/T ) NT (ds)

= λ⟨LS⟩
c (t/T ) +


ti,T <t

p⟨LS⟩(t − ti,T ; t/T ), (14)

where (ti,T )i∈Z denote the points of NT . We will use this fact in Section 5.1 to simulate locally
stationary Hawkes processes on the real line.

2.6. A simple example

Let us provide a simple example of a locally stationary Hawkes process compatible with Def-
inition 2. Start with the widespread parametric model of a stationary Hawkes process on R with
exponential fertility function. This model corresponds to a constant immigrant intensity λc > 0
and fertility function

g(r) = ζθ e−r θ1R+
(r),

where θ > 0 and ζ ∈ (0, 1). By simply changing the constant parameters λc, ζ and θ into time
varying functions λ

⟨LS⟩
c (u), ζ ⟨LS⟩(u) and θ ⟨LS⟩(u) defined on u ∈ R with values in (0, ∞), (0, 1)

and (0, ∞) respectively, we obtain a locally stationary Hawkes process with local immigrant
intensity λ

⟨LS⟩
c and local fertility function

p⟨LS⟩(r; u) = ζ ⟨LS⟩(u)θ ⟨LS⟩(u) e−r θ ⟨LS⟩(u) 1R+
(r).

For this model, Assumption (LS-1) (which guarantees the definition of NT as locally finite point
process) simply reads as

sup
u∈R

ζ ⟨LS⟩(u) < 1 and
λ⟨LS⟩

c


∞

< ∞.

This example is extended in Section 5.2 by allowing a Gamma density shape function and a delay
in the left-hand boundary point of the support of p.

It is interesting to draw a parallel between this specific example of locally stationary Hawkes
process with the case of the TVAR(1) process which is a specific case of locally stationary time
series (see [9]). The TVAR(1) process (X t,T )t∈Z can be defined as the (L2 uniformly bounded)
solution of the recursive equation

X t+1,T = φ(t/T )X t,T + σ(t/T )ξt t ∈ Z,

where (ξt ) is a white noise and φ : R → [−ρ, ρ] for some ρ ∈ (0, 1) and σ is a positive
bounded function. The idea is indeed similar: one starts with a stationary model (φ and σ are
constants) and make it locally stationary by replacing these constants by rescaled functions.
Consequently, for any absolute time u, as T → ∞, a sample X t,T on a window of the form
t ∈ [T u − hT , T u + hT ] with hT = o(T ) can be approximated as a sample of the stationary
AR(1) process with AR coefficient φ(u) and innovation variance σ 2(u). Such an approximation
holds in a more general fashion for locally stationary time series and allows one to derive sound
statistical results for the time–frequency analysis of such processes, see [10] for a recent overview
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of this approach. In the following we intend to set the bases of such an analysis for a general class
of locally stationary Hawkes processes.

3. Main results

3.1. Local approximation of the log Laplace functional

An important tool for statistical applications is to have a local approximation of NT as
T → ∞. Let us make precise what we mean by “local” here. Let a fixed absolute location u ∈ Rℓ

be given. Then NT shifted at the real location T u, namely NT ◦ S−T u approximately follows the
distribution of a stationary Hawkes process with intensity λ⟨S⟩

:= λ
⟨LS⟩
c (u) and fertility function

p⟨S⟩
:= p⟨LS⟩(·; u). To this aim the following remark will be useful.

Remark 5. By Remark 2, the exact distribution of NT ◦ S−T u can be obtained by replacing
λ

⟨LS⟩
c (t/T ) with λ

⟨LS⟩
c ((t + T u)/T ) = λ

⟨LS⟩
c (u + t/T ) and p⟨LS⟩(r; t/T ) with p⟨LS⟩(r; (t +

T u)/T ) = p⟨LS⟩(r; u+t/T ). In other words, λ⟨LS⟩
c (v) is replaced by λ

⟨LS⟩
c (u+v) and p⟨LS⟩(s; v)

by p⟨LS⟩(s; u + v).

We examine local approximations of the distribution of the locally stationary Hawkes process
(NT )T >0 through the Laplace functional which is an efficient tool to describe the distribution of
point processes. We denote the Laplace functional of NT by

LT (g) = E

exp NT (g)


= E


exp


NT (g|tc) NcT (dtc)


,

where NcT and NT (·|tc) are the corresponding center process and component process generated
by a center at location tc, respectively. Our goal is to derive the asymptotic behavior of
LT (S−T u g) as T → ∞ for any given absolute location u and any function g. Under appropriate
condition, it should converge to the Laplace functional applied on g of a stationary Hawkes
process with immigrant constant intensity given by λ

⟨LS⟩
c (u) and with fertility function given by

p⟨LS⟩(·; u). It is in fact more interesting to investigate convergence of the log-Laplace functional
using the norm |·|O,K defined in Section 2.1 by authorizing g to depend on an auxiliary variable
z ∈ U . We will, by convenient abuse of notation, continue to write L(g) in this setting, to denote
the function z → L(g(·, z)) defined on U . Therefore using the symbol S also for functions that
depend on a second argument z, as explained in Section 2.1, we now investigate the behavior, as
T → ∞, for any given u ∈ Rℓ, of

LT (S−T u g) : z → E

exp NT (g(· − T u, z))


,

seen as a function defined on z ∈ U . An example of application is to obtain approximations of
cumulants of arbitrary orders, since they can be obtained as

Cum (N (g1), . . . , N (gm)) = ∂1m |z=0m log L(z1g1 + · · · + zm gm), (15)

where 1m and 0m denote the m-dimensional vectors filled with ones and zeros respectively. We
develop this idea in Section 3.2.

The following assumptions use some of the norms introduced in Section 2.1 and the β-Hölder
exponent of a given function g denoted by κ(β)

[g] = supu≠v
|g(v)−g(u)|

|v−u|β
.

(LS-2) We have
λ⟨LS⟩

c


∞

< ∞ and ξ
(β)
c := κ(β)

[λ
⟨LS⟩
c ] < ∞ .
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(LS-3) We have
ξ (β)


1 < ∞, where ξ (β)(r) := κ(β)

[p⟨LS⟩(r; ·)] for all r ∈ Rℓ.
(LS-4) We have

ζ
⟨LS⟩
∞ := sup

u∈R

p⟨LS⟩(.; u)


∞

< ∞, (16)

ζ
⟨LS⟩

(β) = sup
u∈R

p⟨LS⟩(·; u)


(β)

< ∞. (17)

These assumptions can be interpreted as smoothness conditions on λ
⟨LS⟩
c (LS-2) and on p⟨LS⟩(·; ·)

with respect to its second argument (LS-3) and some uniform decreasing condition on p⟨LS⟩(·; ·)

with respect to its first argument (LS-4).
We can now state the main result, where the appearing norms |·|O,K , |·|Ō,K ,q , |·|Ō,K ,(β) and

the sets BŌ (R; K , q) are all defined in Section 2.1. In this theorem, for any u ∈ Rℓ, we denote by

L(·; u) the Laplace functional of the stationary Hawkes process with constant intensity λ
⟨LS⟩
c (u)

and fertility function p⟨LS⟩(·; u).

Theorem 2. Let β ∈ (0, 1]. Assume (LS-1), (LS-2), (LS-3), (LS-4). Let g ∈ Ō1 (U )∩ Ō∞ (U )

such that for all compact set K ⊂ U,

|g|Ō,K ,1 < −
1

2C0
log ζ

⟨LS⟩

1 (18)

and

|g|Ō,K ,∞ < −
1
2

log ζ
⟨LS⟩

1 − C0 |g|Ō,K ,1 , (19)

where

C0 =
ζ

⟨LS⟩
∞

(ζ
⟨LS⟩

1 )1/2(1 − ζ
⟨LS⟩

1 )1/2
. (20)

Then for each T > 0 and each u ∈ Rℓ, z → LT (g(·, z)) and z → L(g(·, z); u) can be expressed
as

LT (g) = exp (KT (g)) and L(g; u) = exp (K(g; u)) ,

where KT (g) and K(g; u) are holomorphic functions on U. Moreover, for all T > 0, u ∈ Rℓ

and all compact sets K ⊂ U,KT (S−T u g) − K(g; u)


O,K

≤ C1


|g|Ō,K ,(β) + C2 |g|Ō,K ,1


T −β , (21)

where

C1 =

ξ (β)

1

λ⟨LS⟩
c


∞

(ζ
⟨LS⟩

1 )1/2 − ζ
⟨LS⟩

1

2 +
ξ

(β)
c

(ζ
⟨LS⟩

1 )1/2 − ζ
⟨LS⟩

1

and C2 =
ζ

⟨LS⟩

(β)

(ζ
⟨LS⟩

1 )1/2 − ζ
⟨LS⟩

1

. (22)

Proof. This result requires preliminary results to be found in Section 6.1 (about the derivation
of the log-Laplace functional for non-stationary Hawkes processes) and 6.2 (about local ap-
proximations for log-Laplace functional of the component processes NT (·|t)). The proof is then
completed in Section 6.3. �
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Remark 6. Since we assume g ∈ Ō1 (U ) in Theorem 2, we know that |g|Ō,K ,1 < ∞ on the
right-hand side of (21). However the assumptions on g do not guarantee that |g|Ō,K ,(β) < ∞.
This condition needs to be verified in order to apply (21) meaningfully, this fact should be
checked first.

This theorem shows that for T large, the Laplace functional of the non-stationary Hawkes
process NT translated at location T u can be approximated by that of the stationary Hawkes
process N (·; u). It moreover provides in (21) a rate of convergence T −β of this approximation in
an adequate norm. Since the Laplace functional characterizes the distribution of point processes,
it is not surprising that an immediate corollary of Theorem 2 is that NT translated at location
T u converges in distribution to N (·; u) as T → ∞. Recall that the set of locally finite
nonnegative Borel measures on Rℓ endowed with the usual weak convergence of locally finite
measures can be equipped with a metric to constitute a complete separable metric space, see
[11, Theorem A2.6.III].

Corollary 3. Let β ∈ (0, 1]. Assume (LS-1), (LS-2), (LS-3), (LS-4). Then, for any u ∈ Rℓ, as
T → ∞, the point process NT ◦ S−T u converges in distribution to N (·; u).

Proof. By [12, Proposition 11.1.VIII], it is sufficient to show that, for a given continuous and
compactly supported function h : Rℓ

→ R, the random variable NT (S−T uh) converges in
distribution to N (h; u). Let us define, for all (t, z) ∈ Rℓ

× C, g(t, z) = z g(t). Let U be the
open ball of C with center 0 and radius r > 0. Then for any q ∈ [1, ∞] and any compact set
K ⊂ U , we have |g|Ō,K ,q ≤ r |h|q , and similarly, |g|Ō,K ,(β) ≤ r |h|(β). Since |h|q and |h|(β)

are finite, we conclude that g satisfies (18) and (19) for r small enough and that |g|Ō,K ,(β) < ∞.

Thus Theorem 2 gives that for r > 0 small enough, we have that z → E[exp(z NT (S−T uh))]

and z → E[exp(z N (h; u))] are holomorphic on U and the former converges uniformly to the
latter. This is enough to insure the convergence in distribution of NT (S−T uh) to N (h; u). �

Observe that in Corollary 3, we do not exploit the rate of convergence T −β established in
Theorem 2. Approximations on the cumulants will be more precise in that respect.

3.2. Local approximation of the cumulants

Recall that the cumulant of any order can be obtained from the log-Laplace functional through
Eq. (15), which is valid whenever g1, . . . , gm satisfy E[|N (g j )|

m
] < ∞. Using Theorem 2, we

obtain the following result for approximating the cumulants of NT translated at location T u with
those of N (·; u).

Theorem 4. Let β ∈ (0, 1]. Assume (LS-1), (LS-2), (LS-3), (LS-4). Then, for any T and any
u ∈ Rℓ and all bounded integrable functions h : Rℓ

→ R, the random variables NT (h) and
N (h; u) admit finite exponential moments, that is, there exists a > 0 such that E[exp (a |NT (h)|)]
and E[exp (a |N (h; u)|)] are finite. Let moreover for any m ≥ 1, g1, . . . , gm be real valued
bounded integrable functions on Rℓ. Then for any T and any u ∈ Rℓ, we haveCum


NT (S−T u g1), . . . , NT (S−T u gm)


− Cum (N (g1; u), . . . , N (gm; u))


≤

2m−1C1 T −β
− log ζ

⟨LS⟩

1

m−1

 
j=1,...,m

g j

(β)

+ C2
g j

1

 
j=1,...,m

g j

∞

+ C0
g j

1

m−1

,

where C0 is defined in (20) and C1 and C2 are defined in (22).
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Proof. The proof of this result is given in Section 6.4. �

3.3. Local mean density

Applying Theorem 4 with m = 1, we obtain that the intensity measure M1T of the non-
stationary point process NT can be approximated by the intensity measure M ⟨LS⟩

1 (·; u) of the
stationary Hawkes process N (·; u), namely for any bounded and integrable function g defined
on Rℓ, we haveM1T (S−T u g) − M ⟨LS⟩

1 (g; u)

 ≤ C

|g|(β) + |g|1


T −β ,

where C is a positive constant. This result can be stated in a handier way by using the densi-
ties of M1T and M ⟨LS⟩

1 (·; u). As seen in Definition 1, for all T > 0, M1T admits a uniformly
bounded density, hereafter denoted by m1T . Since N (·; u) is a stationary Hawkes process, we
know from [11, Eq. (6.3.26) in Example 6.3(c)] that M ⟨LS⟩

1 (·; u) admits a constant mean density

m⟨LS⟩

1 (u) =
λ

⟨LS⟩
c (u)

1 −


p⟨LS⟩(·; u)
. (23)

We call m⟨LS⟩

1 (u) the local mean density at absolute location u. We have the following result.

Corollary 5. Let β ∈ (0, 1]. Assume (LS-1), (LS-2), (LS-3), (LS-4). Then, for any T , NT
admits a density function m1T satisfying

|m1T |∞ ≤

λ⟨LS⟩
c


∞

ℓ − ζ
⟨LS⟩

1

.

Moreover, we have, for all u ∈ Rℓ, T > 0 and b > 0,

ess supt :|t−T u|≤b

m1T (t) − m⟨LS⟩

1 (u)

 ≤ C1

C2 + bβ


T −β , (24)

where m⟨LS⟩

1 (u) is defined in (23), and C1 and C2 are defined in (22).

Proof. The existence and uniform boundedness of m1T is embedded in Definition 1. Let now
u ∈ Rℓ, T > 0 and b > 0. Applying Theorem 4 with m = 1, we have for all bounded and
integrable functions g defined on Rℓ, g(t − T u)m1,T (t) dt −

λc(u)

1 −


p⟨LS⟩(·; u)


g

 ≤ C1

|g|(β) + C2 |g|1


T −β .

We define the function f on Rℓ by

f (t) = m1T (t) −
λc(u)

1 −


p⟨LS⟩(·; u)
,

so that the previous display reads g(t − T u) f (t)dt

 ≤ C1

|g|(β) + C2 |g|1


T −β . (25)



1724 F. Roueff et al. / Stochastic Processes and their Applications 126 (2016) 1710–1743

Let a be any positive number strictly smaller than the left-hand side of (24), that is, a <

ess sup|t−T u|≤b| f (t)|. Then there exists a Borel set A ⊂ {t : |t − T u| ≤ b} with positive
Lebesgue measure,


1A > 0, such that | f (t)| ≥ a for all t ∈ A. Let g be the function defined so

that g(t − T u) is equal to the sign of f (t) if t ∈ A and to zero everywhere else. Then we get that

a

1A ≤


A

| f | =

 g(t − T u) f (t)dt

 .
On the other hand we have |g|1 =


1A and

|g|(β) =


|g(s)| |s|β dt ≤


A

|t − T u|
β dt ≤ bβ


1A,

where we used that A ⊂ {t : |t − T u| ≤ b}. Inserting these bounds in (25) gives that

a

1A ≤ C1


bβ


1A + C2


1A


T −β .

Simplifying by

1A > 0 and letting a tend to ess sup|t−T u|≤b| f (t)|, we get the result. �

4. Time–frequency analysis of point processes

One of the benefits of locally stationary time series is that they provide a non-parametric sta-
tistical framework for time–frequency analysis of time series, see [10] for a recent contribution.
We show here how such ideas can be applied to locally stationary processes. Throughout this
section, we take ℓ = 1 for sake of convenience and D = [0, 1]. Most of the definitions and
results easily extend to ℓ ≥ 2.

4.1. Local Bartlett spectrum

Following [11, Proposition 8.2.I], the Bartlett spectrum 0 of a second order stationary point
process N on R is defined as the (unique) non-negative measure on R such that, for any bounded
and compactly supported function f on R,

Var

N ( f )


= 0(| f̂ |

2) =

  f̂ (ω)

2 0(dω),

where f̂ denotes the Fourier transform of f ,

f̂ (ω) =


f (t) e−itω dt.

For stationary Hawkes processes with immigrant intensity λc and fertility function p, the Bartlett
spectrum admits a density given by

0(dω) =
λc

2π

1 −


p
 1 − p̂(ω)

−2 dω,

see [11, Example 8.2(e)]. Under (LS-1), applying this result to the stationary Hawkes process
N (·; u), we have, for any bounded and compactly supported function f ,

Var

N ( f ; u)


= 0⟨LS⟩


| f̂ |

2
; u


, (26)
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where

0⟨LS⟩(dω; u) =
λ

⟨LS⟩
c (u)

2π

1 −


p⟨LS⟩(·; u)

 1 − p̂⟨LS⟩(ω; u)

−2
dω, (27)

with

p̂⟨LS⟩(ω; u) =


p⟨LS⟩(t; u) e−itω dt.

We call 0⟨LS⟩(·; u) the local Bartlett spectrum at absolute location u. We have the following re-
sult, which says that, although NT is not stationary, for T large enough, its variance in the neigh-
borhood of T u can be approximated by using the local Bartlett spectrum at absolute location u.

Corollary 6. Let β ∈ (0, 1]. Assume (LS-1), (LS-2), (LS-3), (LS-4). Then, for all u ∈ R,
T > 0, and all bounded functions f supported inside [−b, b] for some b > 0, we haveVar


NT (S−T u f )


− 0⟨LS⟩(| f̂ |

2
; u)


≤

8 C1 (bβ
+ C2)

− log ζ
⟨LS⟩

1

| f |1

| f |∞ + C0 | f |1


T −β , (28)

where C0 is defined in (20), C1 and C2 are defined in (22) and 0⟨LS⟩(·; u) is defined in (27).

Proof. Let u ∈ R, T > 0 and f be a bounded and compactly supported function. Applying
Theorem 4 with g1 = g2 = f and (26), we get thatVar


NT (S−T u f )


− 0⟨LS⟩(| f̂ |

2
; u)

 ≤
8 C1 T −β

− log ζ
⟨LS⟩

1


| f |(β) + C2 | f |1

 
| f |∞ + C0 | f |1


.

To conclude the proof we observe that if f is supported inside [−b, b], then | f |(β) ≤

bβ | f |1. �

4.2. Kernel estimation of the local Bartlett spectrum

We now turn to the situation where we dispose of a realization of a locally stationary
Hawkes process NT on the interval [0, T ], that is, we observe points tk,T between 0 and T ,
k = 1, 2, . . . , NT ([0, T ]), from which we want to estimate its local Bartlett spectrum.

We start with a general description of local estimation (in time) of the moments of a locally
stationary Hawkes process NT evaluated at a general test function. To this end, let f denote the
test function and m a moment function (such as m(x) = x, m(x) = x2, . . .). Let b1 > 0 be a
given time bandwidth and u0 a fixed time in [0; 1] (namely, u0 = t0/T with t0 ∈ [0; T ]). We
build an estimator of E[m(N ( f ; u0))] based on the empirical observations of NT and defined by

E m 
NT (S−T u0 f )


; Wb1


:=

1
T


m (NT ( f (· − t − T u0))) Wb1(t/T ) dt

=
1
T


m


k

f (tk,T − t − T u0)


Wb1(t/T ) dt, (29)

where Wb1 denotes a weight function in absolute time u: u → Wb1(u) := b−1
1 W (u/b1) for some

fixed kernel function W . In practice, the test function f should be compactly supported, so that
this integral can be computed from a finite set of observations {tk,T } in [0, T ].
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The natural idea of this general construction of a moment estimator is the following. As mo-
tivated in Section 4.1 by Eq. (26), the process NT needs to be evaluated at some appropriate
test function f (later chosen to be a kernel function which localizes the spectral content in fre-
quency). Moreover, taking into account the local stationarity of the process, one needs to localize
the moment estimation over time: here, all the points t in a relatively small neighborhood around
u0T are taken into account via the localizing window of the weight function, in time, of length
proportional to b1T .

Although the moment estimators proposed by Eq. (29) are quite general, we now specify them
for our goal of kernel estimation of the local Bartlett spectrum. For this we need to look at the
first two moments, only, and proceed with the following choice of the test function f . Let K be a
real valued kernel compactly supported and its Fourier transform K̂ such that


|K̂ (ω)|2 dω = 1.

Let b2 > 0 be a given frequency bandwidth and ω0 a fixed frequency. We wish to estimate the
quantity

γb2(ω0; u0) :=


1
b2

|K̂ ((ω − ω0)/b2)|
2 0⟨LS⟩(dω; u0), (30)

which in turn, as b2 → 0, is an approximation of the density of 0⟨LS⟩(·; u0), given by Eq. (27),
at ω0: By the usual asymptotics of kernel estimation (now in frequency) we observe that as b2
tends to zero (with sample size T tending to infinity) the (scaled) kernel b−1

2 |K̂ (·/b2)|
2 in (30)

concentrates around frequency ω0.
To construct an estimator of γb2(ω0; u0), observing Eqs. (26) and (27) we now simply choose

the test function f in (29) to be f = Kb2,ω0 , i.e. a kernel function in frequency defined via the

property to have Fourier transform ω → b−1/2
2 K̂ ((ω−ω0)/b2). Consequently, by inverse Fourier

transform, we get as functional form for the kernel in time that Kb2,ω0(t) = b1/2
2 eiω0t K (b2t).

Finally, we take m(x) = |x |
2 and m(x) = x successively to define as moment estimator of

γb2(ω0; u0) the quantity

γb2,b1(ω0; u0) = E |NT (S−T u0 Kb2,ω0)|
2
; Wb1


−

E NT (S−T u0 Kb2,ω0); Wb1

2 . (31)

Observe that this quantity γb2,b1(ω0; u0) is a natural estimator of Var

NT (S−T u0 Kb2,ω0)


.

Thus, by (26), (30) and Corollary 6, γb2,b1(ω0; u0) is a sensible estimator of γb2(ω0; u0)

which is expected to share the usual properties of a nonparametric estimator constructed via
kernel-smoothing over time and frequency. As can be observed along the numerical experiments
of our next section, for sufficiently small bandwidths b1 in time and b2 in frequency this
estimator becomes well localized around (ω0; u0). Asymptotic expansions of its bias and
variance behavior, under the usual conditions of b1 → 0, b1T → ∞ and b2 → 0, b2T → ∞

as T → ∞, and under some appropriate regularity conditions (such as (LS-3), (LS-3), (LS-4)),
leading to consistency of this estimator, are left for future work.

5. Numerical experiments

5.1. Simulation of locally stationary Hawkes processes

Following Definition 2, we consider a locally stationary Hawkes process (NT )T >0 with local
immigrant intensity λ

⟨LS⟩
c and local fertility function p⟨LS⟩(·; ·). Provided that s → p⟨LS⟩(s; u)

is supported on the positive half line for all u, the conditional intensity λT of a locally stationary
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Hawkes processes NT is given by (14). It follows that, for a given T > 0, NT can be simulated
over the interval [0, T ] by using Ogata’s modified thinning algorithm (see [19]). This algorithm
is a recursive algorithm which only requires that, having simulated the process up to time t , one
is able to provide an upper bound

M(t) ≥ sup
t ′∈[t;T ]

λT (t ′).

Choosing λ
⟨LS⟩
c and p⟨LS⟩(·; ·) adequately, one can for instance use the bound

M(t) = sup
u∈R


λ⟨LS⟩

c (u)


+


ti,T <t

sup
u∈R

sup
t ′>t


p⟨LS⟩(t ′ − ti,T ; u)


.

To avoid boundary effects at the beginning of the sample, we used a burn-in period to initiate the
process in a close to steady state of the stationary Hawkes process with the parameters at absolute
time u = 0. This corresponds to having λ

⟨LS⟩
c (u) = λ

⟨LS⟩
c (0) and p⟨LS⟩(·; u) = p⟨LS⟩(·; 0) for all

u ≤ 0.

5.2. Examples

We consider a specific class of examples by taking a constant immigrant intensity λc and by
focusing on a local fertility function with the shape of a Gamma distribution. Namely, for positive
parameters δ, ζ , η ≥ 1 and θ , let us denote by pG the fertility function defined for all r ∈ R by

pG(r; δ, ζ, η, θ) = ζ(r − δ)η−1 θηe−θ(r−δ)

G(η)
1r>δ

with G(x) =


∞

0 sx−1e−s ds denoting the usual Gamma function. Note that δ is a time-shift
parameter which induces a periodic phenomenon in the self-exciting generating process: each
event may generate a new event only after a delay δ. For this specific fertility function, we can
easily compute the quantities appearing in our assumptions (e.g.


pG = ζ and pG(r; δ, ζ, η, θ)

is maximal for r =
η−1
θ

+ δ) and we can exactly compute the corresponding mean density
mG1(δ, ζ, η, θ) and Bartlett spectrum 0G(dω; δ, ζ, η, θ):

• mG1(δ, ζ, η, θ) =
λc

1−ζ
and

• 0G(dω; δ, ζ, η, θ) =
mG1(δ,ζ,η,θ)

2π |1− p̂G (ω;δ,ζ,η,θ)|2
dω, with

p̂G(ω; δ, ζ, η, θ) = ζe−iωδ


1 +

iω
θ

−η

.

Now, letting the parameters depend on the real time u provides the definition of a local fertility
function,

p⟨LS⟩(r; u) = pG(r; δ(u), ζ(u), η(u), θ(u)).

The local mean density m⟨LS⟩

1 (u) and the local Bartlett spectrum 0⟨LS⟩(·; u) can be defined ac-
cordingly from mG1 and 0G , respectively. In our examples, the shape parameter η remains con-
stant and the other parameters are Lipschitz functions of u, assumed to be constant outside the
interval (0, 1). Such a choice for the fertility function satisfies (LS-1), (LS-3) and (LS-4) with
β = 1 provided that

ζ
⟨LS⟩

1 = sup
u∈[0,1]

ζ(u) < 1, inf
u∈[0,1]

θ(u) > 0,
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and, if δ is not constant, one has moreover to assume that η ≥ 2. We focus our numerical study
on two examples:

• Example 1 [Exponential case without delay]:

λc ≡ 0.5, δ ≡ 0, η ≡ 1, ζ(u) = (cos(2πu) + 2)/4 and

θ(u) = cos(2πu) + 3/2 for u ∈ [0, 1].

• Example 2 [Gamma case with varying delay]:

λc ≡ 0.5, η ≡ 2, ζ ≡ 0.5, θ ≡ 1 and

δ(u) = (6 − 10u) × 1[0;1/2](u) + (10u − 4) × 1(1/2;1](u) for u ∈ [0, 1].

Note that Example 1 has a time varying local mean density m⟨LS⟩

1 (since ζ varies) and Example 1

has a constant local mean density m⟨LS⟩

1 . Both examples, however, exhibit time varying local
Bartlett spectra 0⟨LS⟩.

Fig. 1 displays the theoretical local mean density m⟨LS⟩

1 (as a function of the absolute time
u ∈ [0, 1]) and the theoretical local Bartlett spectrum 0⟨LS⟩ (as a function of the absolute time
u ∈ [0, 1] and the frequency ω ∈ [0, 1]) for Example 1 and Fig. 2 displays the theoretical
local Bartlett spectrum 0⟨LS⟩ (as a function of the absolute time u ∈ [0, 1] and the frequency
ω ∈ [0, 2]) for Example 2. Because in the second example, the delay δ is varying linearly between
6 and 1 for u going from 0 to 1/2 and then back to 6 for u ∈ [1/2, 1], we see the spectral content
evolving accordingly with a peak frequency evolving as the reciprocal of the delay (increasing for
u going from 0 to 1/2 and then decreasing for u ∈ [1/2, 1]). We can simulate one trajectory of NT
for each example over the interval [0; T ] by using Ogata’s algorithm as described in Section 5.1.

Figs. 3 and 4 display the associated conditional intensities λT (t) for t ∈ [0, T ] for these
two simulated point processes with T = 10 000. The fact that the mean density is varying in
Example 1 is visible in Fig. 3 as the conditional intensity sharply decreases in the middle of the
sample. On the contrary, the conditional intensity is fluctuating around the same average in Fig. 4
which matches the fact that the mean density is constant in this example.

Based on these two samples of NT , we finally compute the estimator γb2,b1(ω; u) defined by
(31), over an appropriate grid for (ω; u). We set b2 = 0.05 and b1 = 0.1 in these experiments and
we used [−1/2, 1/2]-supported triangular shapes for kernels K and W . The obtained estimates
of the local mean density and local Bartlett spectra for Example 1 and Example 2 are respectively
given in Fig. 5 and in Fig. 6.

We observe that the estimated local Bartlett spectra show the main features of the true
underlying spectra, which illustrates the approximation result derived in Corollary 6.

6. Proofs

6.1. Laplace functional of non-stationary Hawkes processes

In this section we suppose that N is a non-stationary Hawkes process as defined in Section 2.3
with immigrant intensity function λc and varying fertility function p(·; ·) satisfying (10).

We define

L(g|tc) = E

exp N (g|tc)


, (32)
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Fig. 1. Theoretical local mean density (top) and Bartlett spectrum (bottom) for Example 1.

Fig. 2. Theoretical local Bartlett spectrum for Example 2.

Fig. 3. Conditional intensity function of a simulated Hawkes process with respect to Example 1, with T = 10 000.

Fig. 4. Conditional intensity function of a simulated Hawkes process with respect to Example 2, with T = 10 000.
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Fig. 5. Estimation of the local mean density (top) and of the local Bartlett spectrum (bottom) for Example 1.

Fig. 6. Estimation of the local Bartlett spectrum for Example 2.

conditioning on Nc, and using that Nc is a PPP with intensity λc, we get that, for well chosen
functions g,

L(g) = E


exp


log L(g|tc) Nc(dtc)


= exp

 
L(g|tc) − 1


λc(t

c) dtc. (33)

By (4) and monotone convergence we have, for all non-negative functions g,

L(g|tc) = lim
n→∞

Ln(g|tc), (34)
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where

Ln(g|tc) = E


exp

n
k=0

N (k)(g|tc)


.

Moreover, by dominated convergence, Eq. (34) remains valid for complex valued functions g,
provided that L


|g|
 tc


< ∞. Let us define, for functions g and h and s ∈ Rℓ,

[Φg(h)](s) = g(s) +

 
eh(t)

− 1


p(t − s; t) dt. (35)

The integral in (35) is always defined if h is non-negative but may not be finite. If h is complex-
valued, Φg(h) is well defined whenever Φg(|h|) < ∞. We denote the nth composition of the
operator Φg by

Φn
g = Φg ◦ · · · ◦ Φg  

n terms

.

We have the following relationship between Φg(t) and Ln(g|t).

Proposition 7. We have, for all non-negative functions g and all tc
∈ Rℓ,

Ln(g|tc) = exp


Φn
g (g)


(tc)


.

The same formula holds if g is complex valued, provided that Ln

|g|
 tc


< ∞.

Proof. See Appendix. �

We now consider a function g depending on a second variable z ∈ U . We thus extend the
definition of the operator Φg to functions h defined on Rℓ

× U as

[Φg(h)](s, z) = g(s, z) +


(eh(t,z)

− 1) p(t − s; t)dt s ∈ R, z ∈ U, (36)

with some adequate conditions on p(·; ·), g and h to guarantee that the integral is well defined.
In particular, in order to obtain a control of the derivatives of L(g(·, z)|t) with respect to z, we
work within the space Ō (U ) by adding some control on adequate norms of the functions (see
Section 2.1 where the main notation is introduced). Proposition 7 and (34) immediately provide
a way to express L(g|tc).

Corollary 8. Let g ∈ Ō (U ). Suppose that there exist a compact set K ⊂ U and r∞ > 0

such that the sequence

Φn

g (|g|)


n≥1
takes its values in BŌ (r∞; K , ∞). Then, we have, for

(Lebesgue) almost every tc
∈ Rℓ and all z ∈ K ,

L(g(·, z)|tc) = lim
n→∞

exp

[Φn

g (g)](tc, z)


.

The following lemma will be useful.

Lemma 9. Let p ∈ [1, ∞]. Suppose that h, h′
∈ Ō p (U ) ∩ Ō∞ (U ). Then eh

− eh′

also belong
to Ō p (U ) and, for any compact set K , if |h|Ō,K ,∞ ∨

h′


Ō,K ,∞
≤ r∞, we haveeh

− eh′


Ō,K ,p
≤ er∞

h − h′


Ō,K ,p . (37)
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Let now β > 0 and suppose that h, h′
∈ Ō∞ (U ). Then, for any compact set K , if

|h|Ō,K ,∞ ∨
h′


Ō,K ,∞
≤ r∞ and

h − h′


Ō,K ,(β)
< ∞, we haveeh

− eh′


Ō,K ,(β)
≤ er∞

h − h′


Ō,K ,(β)
. (38)

Proof. This follows directly from the inequality |ex
− ey

| ≤ ey(y − x) valid for all y ≥ x . �

Mimicking the notation introduced in (LS-1) and (LS-4), we consider the following
assumption.

(NS-1) We have ζ1 < 1 and ζ∞ < ∞ where ζq = supt∈Rℓ |p(·; t)|q .

Recall that the first condition in (NS-1) already appeared in (10) of Definition 1. By Lemma 9,
we have that if h ∈ Ō1 (U )∩ Ō∞ (U ) then eh

− 1 ∈ Ō1 (U ). Consequently, if ζ∞ < ∞, then we
get that, for all s ∈ Rℓ and compact sets K ⊂ U ,

sup
z∈K

eh(t,z)
− 1

 p(t − s; t)dt ≤ ζ∞

eh
− 1


Ō,K ,1

< ∞,

and, applying Lemma 15 for any s with µ defined as the measure having density t → p(t − s; t),
it follows that, if g ∈ Ō (U ), then Φg(h) ∈ Ō (U ). Applying this line of reasoning, we get the
following result.

Proposition 10. Suppose that (NS-1) holds. Let g ∈ Ō1 (U ) ∩ Ō∞ (U ). Then, for all h ∈

Ō1 (U ) ∩ Ō∞ (U ), the function (t, z) → [Φg(h)](t, z) in (36) is well defined on Rℓ
× U and

belong to Ō1 (U ) ∩ Ō∞ (U ). Moreover, for all h, h′
∈ Ō1 (U ) ∩ Ō∞ (U ) and compact sets

K ⊂ U,

(a)
Φg(h)


Ō,K ,∞

≤ |g|Ō,K ,∞ + ζ∞

eh
− 1


Ō,K ,1,

(b)
Φg(h)


Ō,K ,1 ≤ |g|Ō,K ,1 + ζ1

eh
− 1


Ō,K ,1,

(c)
Φg(h) − Φg(h′)


Ō,K ,1 ≤ ζ1

eh
− eh′


Ō,K ,1

.

We now derive a stability and contraction property on the operator Φg for the norms |·|Ō,K ,1
and |·|Ō,K ,∞.

Proposition 11. Suppose that (NS-1) holds. Let

r∞ ∈ (0, − log ζ1) and r1 ∈


0, r∞e−r∞ζ−1

∞


. (39)

Then we have

R1 := r1

1 − ζ1er∞


∈ (0, r1), (40)

R∞ := r∞ − er∞ζ∞r1 ∈ (0, r∞). (41)

Let K ⊂ U be a compact set and g ∈ BŌ (R1; K , 1) ∩ BŌ (R∞; K , ∞). Then BŌ (r1; K , 1) ∩

BŌ (r∞; K , ∞) is stable for the operator Φg , which is strictly contracting on this set for the
norm |·|Ō,K ,1. More precisely, we have

sup

Φg(h) − Φg(h′)


Ō,K ,1

|h − h′|Ō,K ,1
≤ ζ1er∞ < 1,
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where the sup is taken over all h, h′ in BŌ (r1; K , 1) ∩ BŌ (r∞; K , ∞) such that
h − h′


Ō,K ,1

> 0.

Proof. Recall that (NS-1) implies ζ1 < 1. Obviously, (39) then implies 0 < ζ1er∞ < 1 and then
(40) and (41). Let now K ⊂ U be a compact set, g ∈ BŌ (R1; K , 1) ∩ BŌ (R∞; K , ∞) and
h ∈ BŌ (r1; K , 1) ∩ BŌ (r∞; K , ∞). By Proposition 10 with Lemma 9, we get thatΦg(h)


Ō,K ,1 ≤ |g|Ō,K ,1 + ζ1 er∞ |h|Ō,K ,1

≤ R1 + ζ1 er∞ r1 = r1.

And, similarly,Φg(h)


Ō,K ,∞
≤ |g|Ō,K ,∞ + ζ∞ er∞ |h|Ō,K ,1

≤ R∞ + ζ∞ er∞ r1 = r∞.

Then, Φg(h) ∈ BŌ (r1; K , 1) ∩ BŌ (r∞; K , ∞). Finally, using again Proposition 10 with
Lemma 9, for all h, h′ in BŌ (r1; K , 1) ∩ BŌ (r∞; K , ∞),Φg(h) − Φg(h

′)


Ō,K ,1 ≤ ζ1 er∞

h − h′


Ō,K ,1 ,

which concludes the proof. �

We will use the compact open topology presented in [23, Section 1.4]. The convergence under
this topology is equivalent to uniform convergence over all compact subsets of U , and, more im-
portantly, O (U ) endowed with this topology is complete. Similarly, the space Ō1 (U ) endowed
with the convergence in the norm |·|Ō,K ,1 for all compact sets K ⊂ U can be made complete
by taking equivalent classes for the equivalence relationship hRh′ if h(tc, z) = h′(tc, z) for all
z ∈ U and almost every tc

∈ Rℓ. Then, by the standard fixed point theorem, we may introduce
the following definition, which will be useful in Section 6.3.

Definition 3. Suppose that (NS-1) holds. Let g ∈ Ō1 (U ) ∩ Ō∞ (U ). Suppose that for all
compact sets K ⊂ U , there exist r1 and r∞ satisfying (39) such that g ∈ BŌ (R1; K , 1) ∩

BŌ (R∞; K , ∞), with R1, R∞ defined by (40) and (41). We denote by Φ∞
g the limit of

(Φn
g (g))n≥1 in Ō1 (U ). Moreover, on each compact set K ⊂ U , there exist r1 > |g|1 and

r∞ > |g|∞ such that the restriction of Φ∞
g to Rℓ

× K coincides with the unique fixed point
of Φg in BŌ (r1; K , 1) ∩ BŌ (r∞; K , ∞), that is, the unique solution of

φg(h) = h for h ∈ BŌ (r1; K , 1) ∩ BŌ (r∞; K , ∞) .

On the other hand, by Corollary 8, we get that L(g(·, z)|tc) can be expressed as the limit of

exp

[Φn

g (g)](tc, z)


as n → ∞. Hence we have the following corollary.

Corollary 12. Suppose that (NS-1) holds. Let g ∈ Ō1 (U ) ∩ Ō∞ (U ). The following assertions
hold.

(i) Let K ⊂ U be a compact set. If there exist r1 and r∞ satisfying (39) such that g ∈

BŌ (R1; K , 1) ∩ BŌ (R∞; K , ∞), with R1, R∞ defined by (40) and (41), then the sequence
(Φn

g (g))n≥1 takes its values in BŌ (r1; K , 1) ∩ BŌ (r∞; K , ∞).
(ii) Suppose that for all compact sets K ⊂ U, there exist r1 and r∞ satisfying (39) such that

g ∈ BŌ (R1; K , 1) ∩ BŌ (R∞; K , ∞), with R1, R∞ defined by (40) and (41). Then for
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almost every tc
∈ Rℓ, z → L(g(·, z)|tc) is holomorphic on U and, for all compact sets

K ⊂ U,

lim
n→∞


sup
z∈K

L(g(·, z)|tc) − exp

[Φn

g (g)](tc, z)
 dtc

= 0.

Note in particular that applying (33), Lemmas 9 and 15, this corollary implies that if λc is
uniformly bounded on Rℓ, then z → L(g(·, z)) is holomorphic on U .

6.2. Locally stationary approximation for component point processes

We now consider a locally stationary Hawkes process (NT )T >0 with local immigrant intensity
λ

⟨LS⟩
c and local fertility function p⟨LS⟩(·; ·), see Definition 2. Note that, for any T > 0,

Assumptions (LS-1) and (LS-4) imply (NS-1) for p(r; t) = p⟨LS⟩(r; t/T ). Hence we can apply
the results derived in Section 6.1 to the non-stationary Hawkes processes NT . Also, for any fixed
u ∈ Rℓ, the same assumptions imply (NS-1) for p(r; t) = p⟨LS⟩(r; u) (this p(r; t) does not
depend on t) and hence we can also apply the results derived in Section 6.1 to the stationary
Hawkes processes N (·; u).

Let us denote by NT (·|tc) and N (·|tc
; u) the component processes at center point tc of NT

and N (·; u) and let LT (g|tc) and L(g|tc
; u) denote their Laplace functionals, defined as in (32).

As in Section 3.1, we will in fact take g depending on two variables (tc, z) ∈ Rℓ
× U and make

the convenient abuse of notation to keep denoting NT (g|tc), N (g|tc
; u), LT (g|tc) and L(g|tc

; u)

the corresponding functions defined on U , that is, for instance, [NT (g|tc)](z) = NT (g(·, z)|tc).
And so, continuing the same example, NT (g|·) is a function defined on Rℓ

× U . The goal of this
section is to approximate, for any given u ∈ Rℓ, LT (S−T u g|tc) with L(g|tc

; u) as T → ∞.
In the locally stationary setting, we use the notation ζ

⟨LS⟩
q introduced in (LS-1) with q = 1

and (LS-4) with q = ∞ so that the conditions on r1 and r∞ in (39) read

r∞ ∈ (0, − log ζ
⟨LS⟩

1 ) and r1 ∈


0, r∞e−r∞(ζ

⟨LS⟩
∞ )−1


(42)

and the definitions R1 and R∞ in (40) and (41) are replaced by

R1 := r1


1 − ζ

⟨LS⟩

1 er∞


∈ (0, r1), (43)

R∞ := r∞ − er∞ζ
⟨LS⟩
∞ r1 ∈ (0, r∞). (44)

Based on these definitions, we say that g ∈ Ō1 (U ) ∩ Ō∞ (U ) satisfies Property (P) if the
following holds.

(P) For any compact set K ⊂ U , there exist r1(K ) and r∞(K ) satisfying (42) such that g ∈

BŌ (R1(K ); K , 1) ∩ BŌ (R∞(K ); K , ∞), with R1(K ), R∞(K ) defined as in (43) and (44).

We have the following result.

Theorem 13. Suppose that (LS-1), (LS-3) and (LS-4) hold. Let β ∈ (0, 1] and g ∈ Ō1 (U ) ∩

Ō∞ (U ) satisfying Property (P). Then for all u ∈ Rℓ and T > 0, and for almost every tc
∈ Rℓ,

z → L(g(·, z)|tc
; u) and z → LT (g(·, z)|tc) are holomorphic on U. Moreover, for all compact

sets K ⊂ U,
sup
z∈K

LT (S−T u g(·, z)|tc) − L(g(·, z)|tc
; u)

 dtc
≤ A(K ) T −β


|g|Ō,K ,(β) + B(K )


,

(45)
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where

A(K ) =

ξ (β)

1 e2 r∞(K )

1 − ζ
⟨LS⟩

1 er∞(K )
2 and B(K ) = r1(K )er∞(K )ζ

⟨LS⟩

(β) .

Moreover, we have
sup
z∈K

L(g(·, z)|tc
; u) − 1

 |tc
|
β dtc

≤
er∞(K )

1 − ζ
⟨LS⟩

1 er∞(K )


|g|Ō,K ,(β) + B(K )


. (46)

The proof of Theorem 13 requires some preliminaries. By Remark 5 and since g → L(g|tc
; u)

is translation invariant (for all s, L(Ss g|tc
; u) = L(g|tc

; u)), we can take u = 0 without
meaningful loss of generality. For convenience, we denote by p⟨S⟩ (t) the local fertility function
p⟨LS⟩(t; 0) at u = 0.

Following the definition of Φg in (36), we set, for any g ∈ Ō (U ),

[ΦT,g(h)](s, z) = g(s, z) +

 
eh(t,z)

− 1


p⟨LS⟩(t − s; t/T ) dt. (47)

[Φ⟨S⟩
g (h)](s, z) = g(s, z) +

 
eh(t,z)

− 1


p⟨S⟩ (t − s) dt. (48)

The following lemma will be useful.

Lemma 14. Let β ∈ (0, 1]. Suppose that (LS-1) and (LS-4) hold and define r1 and r∞ as
in (39). Let g ∈ BŌ (R1; K , 1) ∩ BŌ (R∞; K , ∞) with R1 and R∞ defined by (40) and
(41) respectively. Let r(β) be a constant satisfying

r(β) > (1 − er∞ζ
⟨LS⟩

1 )−1r1er∞ζ
⟨LS⟩

(β) . (49)

Then we have

R(β) := r(β)(1 − er∞ζ
⟨LS⟩

1 ) − r1er∞ζ
⟨LS⟩

(β) ∈ (0, r(β)). (50)

Moreover, for all compact sets K ⊂ U, if g ∈ BŌ (R1; K , 1) ∩ BŌ (R∞; K , ∞) ∩

BŌ,K ,(β)


R(β)


, then BŌ (r1; K , 1)∩ BŌ (r∞; K , ∞)∩ BŌ,K ,(β)


r(β)


is stable for the operator

Φ⟨S⟩
g .

Proof. Let K ⊂ U be a compact set. Suppose that g ∈ BŌ (R1; K , 1) ∩ BŌ (R∞; K , ∞) ∩

BŌ,K ,(β)


R(β)


. We already know from Proposition 10 that then BŌ (r1; K , 1)∩BŌ (r∞; K , ∞)

is stable for the operator Φg . Let now h ∈ BŌ (r1; K , 1) ∩ BŌ (r∞; K , ∞) ∩ BŌ,K ,(β)


r(β)


.

Then we haveΦ⟨S⟩
g (h)


Ō,K ,(β)

≤ |g|Ō,K ,(β) +


sup
z∈K

 
eh(s,z)

− 1


p⟨S⟩ (s − t) ds

 |t |β dt

≤ |g|Ō,K ,(β) +


sup
z∈K

eh(s,z)
− 1

  p⟨S⟩ (s − t) |t |βdt


ds.

Observe that, using that |r − s|β ≤ |r |
β

+ |s|β for β ∈ (0, 1], we have, for all s ∈ Rℓ,
p⟨S⟩ (s − t) |t |βdt =


p⟨S⟩ (r) |r − s|βdt ≤

p⟨S⟩


(β)

+

p⟨S⟩


1

|s|β .
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Inserting this bound in the previous display and using Lemma 9, we get thatΦ⟨S⟩
g (h)


Ō,K ,(β)

≤ |g|Ō,K ,(β) + er∞

p⟨S⟩


(β)

|h|Ō,K ,1 + er∞

p⟨S⟩


1

|h|Ō,K ,(β)

≤ R(β) + er∞ζ
⟨LS⟩

(β) r1 + er∞ ζ
⟨LS⟩

1 r(β) = r(β),

where the equality follows from (50). �

We can now prove Theorem 13 in the case u = 0.

Proof of Theorem 13. We deduce from the preliminaries that Proposition 11 and Corollary 12
apply for each T > 0 and each u ∈ Rd . Thus for almost every tc

∈ Rℓ, z → L(g(·, z)|tc
; u)

and z → LT (g(·, z)|tc) are holomorphic on U and it only remains to prove the bound (45) for
a given compact set K ⊂ U , again picking the case u = 0 without loss of generality, in which
case we denote L⟨S⟩ (g|tc) = L(g|tc

; 0). We suppose that

|g|Ō,K ,(β) < ∞. (51)

(Otherwise the right-hand side of (45) is infinite and there is nothing to prove.) Then by
assumption on g and Proposition 11,

B := BŌ (r1(K ); K , 1) ∩ BŌ (r∞(K ); K , ∞)

is stable both for ΦT,g and Φ⟨S⟩
g and moreover these operators are Lipschitz for the |·|Ō,K ,1-norm

with Lipschitz constant

ρ := ζ
⟨LS⟩

1 er∞ < 1.

Let us now write, for any n ≥ 1 and all h ∈ B,Φn
T,g(h) − Φ⟨S⟩ n

g (h)


Ō,K ,1

≤

n−1
k=0

Φn−k
T,g ◦ Φ⟨S⟩ k

g (h) − Φn−k−1
T,g ◦ Φ⟨S⟩ k+1

g (h)


Ō,K ,1

.

Using the Lipschitz property of ΦT,g in B, we get, for all h ∈ B,Φn
T,g(h) − Φ⟨S⟩ n

g (h)


Ō,K ,1

≤

n−1
k=0

ρn−k−1
ΦT,g ◦ Φ⟨S⟩ k

g (h) − Φ⟨S⟩ k+1
g (h)


Ō,K ,1

. (52)

Using (LS-3), we have, for all h ∈ B,ΦT,g(h) − Φ⟨S⟩
g (h)


Ō,K ,1

=


sup
z∈K

 (eh(s,z)
− 1)


p⟨LS⟩(s − t; s/T ) − p⟨LS⟩(s − t; 0)


ds

 dt

≤ T −β


sup
z∈K

 (eh(s,z)
− 1) ξ (β)(s − t)|s|β ds

 dt

≤ T −β
ξ (β)


1

eh
− 1


Ō,K ,(β)

.

Using Lemma 9 and inserting this in (52), we get, for all h ∈ B,Φn
T,g(h) − Φ⟨S⟩ n

g (h)


Ō,K ,1

≤ T −β
ξ (β)


1

er∞

n−1
k=0

ρn−k−1
Φ⟨S⟩ k

g (h)


Ō,K ,(β)

. (53)
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By Condition (51) and since ρ = ζ
⟨LS⟩

1 er∞ < 1, we have
1 − ζ

⟨LS⟩

1 er∞

−1
r1er∞ζ

⟨LS⟩

(β) ≤


1 − ζ

⟨LS⟩

1 er∞

−1 
|g|Ō,K ,(β) + r1er∞ζ

⟨LS⟩

(β)


< ∞,

and thus, for all

r(β) >


1 − ζ
⟨LS⟩

1 er∞

−1 
|g|Ō,K ,(β) + r1er∞ζ

⟨LS⟩

(β)


, (54)

the R(β) defined by (50) is such that |g|Ō,K ,(β) < R(β). Then Lemma 14 gives that the set

BŌ (r1; K , 1) ∩ BŌ (r∞; K , ∞) ∩ BŌ,K ,(β)


r(β)


is stable for the operator Φ⟨S⟩

g . We thus have,

for all h ∈ BŌ (r1; K , 1) ∩ BŌ (r∞; K , ∞) ∩ BŌ,K ,(β)


r(β)


and k ≥ 0,Φ⟨S⟩ k

g (h)


Ō,K ,(β)

≤ r(β). (55)

We thus get from (53) that, for all h ∈ BŌ (r1; K , 1) ∩ BŌ (r∞; K , ∞) ∩ BŌ,K ,(β)


r(β)


, we

have Φn
T,g(h) − Φ⟨S⟩ n

g (h)


Ō,K ,1

≤ T −β
ξ (β)


1

er∞ r(β)(1 − ρ)−1.

To conclude, we apply this to h = g since by construction g ∈ BŌ (R1; K , 1) ∩

BŌ (R∞; K , ∞) ∩ BŌ,K ,(β)


R(β)


⊂ BŌ (r1; K , 1) ∩ BŌ (r∞; K , ∞) ∩ BŌ,K ,(β)


r(β)


and

let r(β) tend to the right-hand side of (54) and obtain that, for all n ≥ 1,

Φn
T,g(g) − Φ⟨S⟩ n

g (g)


Ō,K ,1

≤ T −β

ξ (β)

1 er∞


|g|Ō,K ,(β) + r1er∞ζ

⟨LS⟩

(β)




1 − ζ
⟨LS⟩

1 er∞

2 .

With Lemma 9, it yields that, for all n ≥ 1,

exp

Φn

T,g(g)


− exp

Φ⟨S⟩ n

g (g)


Ō,K ,1
≤ T −β

ξ (β)

1 e2 r∞


|g|Ō,K ,(β) + r1er∞ζ

⟨LS⟩

(β)




1 − ζ
⟨LS⟩

1 er∞

2 .

Applying Corollary 12, we thus obtain (45) for all compact sets K ⊂ U .
The bound (46) is a by product of the above proof. Namely, observe that by Corollary 8 and

Fatou’s lemma, we have
sup
z∈K

L⟨S⟩ (g(·, z)|tc) − 1
 |tc

|
β dtc

=


sup
z∈K

lim
n→∞

exp

[Φ⟨S⟩ n

g (g)](tc, z)


− 1
 |tc

|
β dtc

≤ lim inf
n→∞

exp Φ⟨S⟩ n
g (g) − 1


Ō,K ,(β)

.

Now recall that we already used that BŌ (r1; K , 1) ∩ BŌ (r∞; K , ∞) ∩ BŌ,K ,(β)


r(β)


is stable

for the operator Φ⟨S⟩
g , so with Lemma 9 and the previous bound we get

sup
z∈K

L⟨S⟩ (g(·, z)|tc) − 1
 |tc

|
β dtc

≤ er∞ r(β).
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Letting r(β) tend to the right-hand side of (54) as above we get (46) in the case u = 0, which
concludes the proof. �

6.3. Local Laplace functional

We use the same notation as in Sections 6.1 and 6.2. Let us first explain how to use the previous
results (mainly Proposition 11 and Theorem 13) for deriving the Laplace functional LT (S−T u g)

of NT and the Laplace functional L(·; u) of the stationary Hawkes process N (·; u). We again
set u = 0 in the following without loss of meaningful generality and denote L⟨S⟩

= L(·; 0),
L⟨S⟩ (g|·) = L(g|·; 0), λ

⟨S⟩
c = λ

⟨LS⟩
c (0) and p⟨S⟩

= p⟨LS⟩(·; 0).
Note that the assumptions of Theorem 13 allow one to apply Definition 3 with Φg re-

placed successively by ΦT,g (for any given T > 0) and Φ⟨S⟩
g , yielding the functions Φ∞

T,g and

Φ⟨S⟩ ∞
g , whose restrictions to any compact set K ⊂ U , are elements of BŌ (r1(K ); K , 1) ∩

BŌ (r∞(K ); K , ∞). Note that Proposition 10 shows that exp

Φ∞

T,g


− 1 is essentially bounded

on Rℓ
× K for all compact set K ⊂ U . Hence, from Corollary 8 and applying (33), we get that

if
λ⟨LS⟩

c


∞

< ∞, for all T > 0,

LT (g) = exp
 

exp

Φ∞

T,g(t
c, ·)


− 1


λ⟨LS⟩

c (tc/T ) dtc,

and

L⟨S⟩ (g) = exp


λ⟨S⟩
c

 
exp


Φ⟨S⟩ ∞

g (tc, ·)


− 1


dtc


,

and by Lemma 15, these two functions are holomorphic on U . We thus define KT (g) and K(g; u)

by

KT (g) =

 
exp


Φ∞

T,g(t
c, ·)


− 1


λ⟨LS⟩

c (tc/T ) dtc

and

K⟨S⟩ (g) = K(g; 0) = λ⟨S⟩
c

 
exp


Φ⟨S⟩ ∞

g (tc, ·)


− 1


dtc.

Now we observe that, for any compact set K ⊂ U ,KT (g) − K⟨S⟩ (g)


O,K

≤ sup
z∈K

 
exp


Φ∞

T,g(t
c, z)


− exp


Φ⟨S⟩ ∞

g (tc, z)


λ⟨LS⟩
c (tc/T ) dtc


+ sup

z∈K

 
exp


Φ⟨S⟩ ∞

g (tc, z)


− 1
 

λ⟨LS⟩
c (tc/T ) − λc(0)


dtc
 =: (I) + (II).

We can bound (I) as

(I) ≤

λ⟨LS⟩
c


∞

exp

Φ∞

T,g


− exp


Φ⟨S⟩ ∞

g


Ō,K ,1

=

λ⟨LS⟩
c


∞


sup
z∈K

LT (g(·, z)|t) − L⟨S⟩ (g(·, z)|tc)

 dtc.
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Using (LS-2), the term (II) is easily bounded as

(II) ≤ ξ (β)
c T −β sup

z∈K

 exp

Φ⟨S⟩ ∞

g (tc, z)


− 1
 |tc

|
βdtc

= ξ (β)
c T −β sup

z∈K

 L⟨S⟩ (g(·, z)|tc) − 1
 |t |βdtc

≤ ξ (β)
c T −β


sup
z∈K

L⟨S⟩ (g(·, z)|tc) − 1
 |tc

|
βdtc.

We can now bound (I) and (II) by relying on Theorem 13, so that

(I) + (II) ≤ T −β

λ⟨LS⟩
c


∞

A(K ) + ξ (β)
c

er∞(K )

1 − ζ
⟨LS⟩

1 er∞(K )

 
|g|Ō,K ,(β) + B(K )


, (56)

provided that the assumptions of Theorem 13 hold. Hence, the proof of Theorem 2 now boils
down to the following.

Proof of Theorem 2. As explained above, we just need to prove that the assumptions of Theo-
rem 13 hold. The only non-trivial one is to prove that g satisfies Property (P). Let K ⊂ U be
compact. We set

r∞(K ) = −
1
2

log ζ
⟨LS⟩

1 ,

which by (LS-1) satisfies the left-hand side condition of (42). Then the right-hand side condition
on r1(K ) reads

0 < r1(K ) < r∞(K )(ζ
⟨LS⟩

1 )1/2(ζ
⟨LS⟩
∞ )−1, (57)

and R1(K ) and R∞(K ) defined by (43) and (44) are given by

R1(K ) = r1(K )


1 − (ζ
⟨LS⟩

1 )1/2


and R∞(K ) = r∞(K ) − (ζ
⟨LS⟩

1 )−1/2ζ
⟨LS⟩
∞ r1(K ).

Condition (18) and the choice of r∞(K ) above implies

a :=
|g|Ō,K ,1

1 − (ζ
⟨LS⟩

1 )1/2
 < r∞(K )(ζ

⟨LS⟩

1 )1/2(ζ
⟨LS⟩
∞ )−1

=: b.

Now, any r1(K ) strictly being between these two boundaries satisfies (57) and the correspond-
ing R1(K ) satisfies |g|Ō,K ,1 < R1(K ). Moreover as r1(K ) tends to the lower boundary a from
above, we have

R∞(K ) ↑ r∞(K ) − (ζ
⟨LS⟩

1 )−1/2ζ
⟨LS⟩
∞

|g|Ō,K ,1

1 − (ζ
⟨LS⟩

1 )1/2
.

From (19), we obtain that |g|Ō,K ,∞ < R∞(K ) for r1(K ) chosen close enough to a. Hence we
have shown that g satisfies Property (P) and the proof is concluded. The constants C1 and C2
in (22) correspond to the {. . .} term in (56) and B(K ) with the above definitions of r∞(K ) and
r1(K ). �
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6.4. Local cumulants

Let us denote, for r > 0, the polytorus T m
r (z) = {z′

∈ Cm
: |z′

i − zi | = r} and the polydisc
Pm

r (z) = {z′
∈ Cm

: |z′

i − zi | < r}. We have moreover from [23, Theorem 1.3.3] that the partial
derivatives satisfy the Cauchy inequality

|∂αh(z)| ≤
α!

rα
sup

z′∈T m
r (z)

h(z′)
 , (58)

where α! = α1! . . . αm ! and rα
= rα1 . . . rαm .

Proof of Theorem 4. We apply Theorem 2 first with g(t, z) = z h(t), defined on (t, z) ∈ Rℓ
×C

and then with

g(t, z) =

m
j=1

z j g j (t) (59)

defined on (t, z) ∈ Rℓ
× Cm . The fact that NT (h) and N (h; u) admit finite exponential moments

for a bounded integrable function g : Rℓ
→ R is a direct application of Theorem 2 for the first

choice of g.
We now apply the theorem with g defined as in (59). We assume such that

g j

(β)

< ∞ for all
j = 1, . . . , m (otherwise the right-hand side of the inequality is infinite and there is nothing to
prove). Take U the polydisc Pm

r (0) of Cm with center 0 and radius r > 0. In this case we have,
for any compact set K ⊂ U and any q ∈ [1, ∞],

|g|Ō,K ,q < r
m

j=1

g j

q .

Hence (18) and (19) hold for r small enough so that the two following inequalities hold.

r
m

j=1

g j

1 ≤


−

1
2

log ζ
⟨LS⟩

1


(ζ

⟨LS⟩

1 )1/2(ζ
⟨LS⟩
∞ )−1(1 − ζ

⟨LS⟩

1 )1/2,

r
m

j=1

g j

∞

≤ −
1
2

log ζ
⟨LS⟩

1 − (ζ
⟨LS⟩

1 )−1/2(ζ
⟨LS⟩
∞ )(1 − ζ

⟨LS⟩

1 )−1/2r
m

j=1

g j

1 .

The largest r satisfying these two conditions is easily found to be

r :=


− log ζ

⟨LS⟩

1 /2


m
j=1

g j

∞

+ (ζ
⟨LS⟩

1 )−1/2ζ
⟨LS⟩
∞ (1 − ζ

⟨LS⟩

1 )−1/2
m

j=1

g j

1

.

Moreover we also have

|g|Ō,K ,(β) < r
m

j=1

g j

(β)

.

Hence Theorem 2 with (15), the above bounds on |g|Ō,K ,1 and |g|Ō,K ,(β), and the Cauchy
inequality (58), imply
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

NT (S−T u g1), . . . , NT (S−T u gm)


− Cum (N (g1; u), . . . , N (gm; u))


≤ r1−m

0 C1


j=1,...,m

g j

(β)

+ C2
g j

1


T −β ,

for any r0 ∈ (0, r). Letting r0 tend to r , this bound is still valid with r1−m
0 replaced by

m
j=1

g j

∞

+ (ζ
⟨LS⟩

1 )−1/2ζ
⟨LS⟩
∞ (1 − ζ

⟨LS⟩

1 )−1/2
m

j=1

g j

1

− log ζ
⟨LS⟩

1 /2



m−1

.

This concludes the proof. �
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Appendix. A postponed proof and a useful lemma

Proof of Proposition 7. Denoting by F j the σ -algebra generated by the family (N (k))0≤k≤ j , we
have

Ln(g|tc) = E


exp

n
k=0

N (k)(g|tc)



= E


exp

n−1
k=0

N (k)(g|tc) + E

exp N (n)(g|tc) | Fn−1


.

Since conditionally on Fn−1, N (n)(·|tc) is a sum of independent PPP’s with intensities t →

p(t − s; t) with s describing all points of N (n−1)(·|tc), we have for any h : Rℓ
→ R+,

E

exp N (n)(h|tc) | Fn−1


= exp


(eh(t)

− 1)p(t − s; t) dt N (n−1)(ds|tc)


.

Applying this with the definition of Φg and iterating, we get

E


exp

n−1
k=0

N (k)(g|tc) + E

exp N (n)(h|tc) | Fn−1



= E


exp


n−2
k=0

N (k)(g|tc) + N (n−1)([Φg(h)] | tc)



= E


exp


n−3
k=0

N (k)(g|tc) + N (n−2)([Φg ◦ Φg(h)] | tc)





1742 F. Roueff et al. / Stochastic Processes and their Applications 126 (2016) 1710–1743

...

= E

exp


N (0)([Φn

g (h)] | tc)


= exp

[Φn

g (h)](tc)


.

Applying the obtained formula with h = g, we obtain the claimed result. �

The following lemma is a straightforward application of the Cauchy inequality (58).

Lemma 15. Let µ be a non-negative measure on Rℓ and h ∈ Ō (U ). Suppose that for all z ∈ U,
there exists a neighborhood V ⊂ U of z such that

µ


sup
z∈V

h(·, z)


< ∞.

Then z → µ(h(·, z)) belongs to O (U ) and for any multi-index α, we have, for all z ∈ U,

∂αµ(h(·, z)) = µ

∂α

O h(·, z)

.
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