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Abstract

In this paper, we are concerned with sample path properties of isotropic spherical Gaussian fields on S2.
In particular, we establish the property of strong local nondeterminism of an isotropic spherical Gaussian
field based on the high-frequency behaviour of its angular power spectrum; we then exploit this result to
establish an exact uniform modulus of continuity for its sample paths. We also discuss the range of values
of the spectral index for which the sample functions exhibit fractal or smooth behaviour.
c⃝ 2017 Elsevier B.V. All rights reserved.
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1. Introduction and overview 1

1.1. Motivations 2

The analysis of sample path properties of random fields has been considered by many authors, 3

see, for instance, [4,7,14,15,21,22,25,26,30,31] and their combined references. These papers 4

have covered a wide variety of circumstances, including scalar and vector valued random fields, 5
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isotropic and anisotropic behaviour, analytic and geometric properties. The parameter space of1

the random fields in these references, however, has been typically considered to be Euclidean,2

i.e., Rk, for k ≥ 1.3

From the point of view of applications, however, there is of course a lot of interest in4

investigating sample path properties of random fields defined on manifolds. In particular, we shall5

focus here on isotropic random fields defined on the unit sphere S2
; these fields have considerable6

mathematical interest by themselves, and arise very naturally in a number of scientific areas,7

i.e., geophysics, astrophysics and cosmology, atmospheric sciences, image analysis, to name only8

a few, see [17] for a systematic account. To the best of our knowledge, very little is currently9

known on the sample path properties of these fields, even under Gaussianity and Isotropy10

assumptions; the only currently available references seem to be [11,13], which investigate11

differentiability and Hölder continuity properties of the sample functions in terms of the so-called12

spectral index, to be defined below.13

Our aim in this paper is to pursue this line of investigation further and to provide two main14

results. The first of these results is to establish a property of strong local nondeterminism for a15

large class of isotropic spherical Gaussian fields. In the Euclidean setting, the notion of strong16

local nondeterminism has played a pivotal role to establish a number of characterizations for17

sample trajectories, see again [22,25,26,30–32] for more discussions and review of recent papers;18

we thus believe that our result will open a way for similar developments in the area of spherical19

Gaussian fields. In particular, by exploiting this property, we are able to establish our second20

main result, i.e. the exact uniform modulus of continuity for isotropic spherical Gaussian fields.21

The exact form of the scaling depends in a very explicit way on the behaviour of the angular22

power spectrum (to be recalled below) of the field, and we can hence identify the class of models23

that lead to fractal properties. In order to state more precisely these results, we need to introduce24

however some more notation and background material, which we do in the following subsection.25

1.2. Background and notation26

We start by recalling some background from [17] on second order spherical random fields, by27

which we mean as usual measurable applications T : Ω × S2
→ R, where {Ω ,ℑ,P} is some28

probability space, such that for all x ∈ S2,29

E
(
T 2(x, ω)

)
=

∫
Ω

T 2(x, ω)dP(ω) < ∞.30

Without loss of generality, in the sequel we shall always assume the field to have zero-mean,31

E
(
T (x, ω)

)
= 0. Also, as usual, by (strong) isotropy we mean that the random fields T =32

{T (x), x ∈ S2
} and T g

= {T (gx), x ∈ S2
} have the same law, for all rotations g ∈ SO(3). T is33

called 2-weakly isotropic if E
(
T (x)T (y)

)
= E

(
T (gx)T (gy)

)
for all g ∈ SO(3).34

Given a 2-weakly isotropic random field T = {T (x), x ∈ S2
}, the following spectral35

representation is well known to hold (cf. [17, Theorem 5.13]):36

T (x;ω) =

∞∑
ℓ=0

ℓ∑
m=−ℓ

aℓm(ω)Yℓm(x), (1)37

where {Yℓm, ℓ ≥ 0; m = 0,±1, . . . ,±ℓ} are the spherical harmonic functions on S2 and aℓm =38 ∫
S2 T (x)Yℓm(x) dx; we are adopting here the so-called Condon–Shortley phase convention,39

entailing that for m > 040

Yℓm(x) = (−1)mYℓ,−m(x) and consequently aℓm(ω) = (−1)maℓ,−m(ω).41
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The equality in (1) holds both in L2(Ω ) at every fixed x, and in L2(Ω × S2), i.e. 1

lim
L→∞

E
[

T (x) −

L∑
ℓ

∑
m

aℓm(ω)Yℓm(x)
]2

= 0, 2

and 3

lim
L→∞

E
[∫

S2

(
T (x;ω) −

L∑
ℓ

∑
m

aℓm(ω)Yℓm(x)
)2

dx
]

= 0. 4

We recall that the finite-variance condition E
(
T 2(x)

)
< ∞ under isotropy automatically 5

entails the mean-square continuity; the spectral representation hence follows without further 6

assumptions, see [17,18]. 7

If T = {T (x), x ∈ S2
} is a Gaussian random field, then its strong isotropy and 2-weak isotropy 8

are equivalent. The distribution of an isotropic zero-mean Gaussian field T = {T (x), x ∈ S2
} is 9

fully characterized by the covariance function E
(
T (x)T (y)

)
. By a theorem of Schoenberg [24], 10

the latter can be expanded as follows: 11

E
(
T (x)T (y)

)
=

∞∑
ℓ=0

2ℓ+ 1
4π

CℓPℓ(⟨x, y⟩); (2) 12

here, ⟨·, ·⟩ represents the standard inner product in R3, whereas P0 ≡ 1 and Pℓ : [−1, 1] → R, 13

for ℓ = 1, 2, . . . , denote the Legendre polynomials, which satisfy the normalization condition 14

Pℓ(1) = 1 and can be recovered by Rodrigues’ formula as 15

Pℓ(t) =
1

2ℓℓ!
dℓ

dtℓ
(t2

− 1)ℓ, ℓ = 1, 2, . . . . 16

On the other hand, the sequence {Cℓ, ℓ = 0, 1, . . .} of nonnegative weights represents the so- 17

called angular power spectrum of the field, and the ℓ’s are referred to as frequencies (also labelled 18

multipoles). In terms of the spectral representation, we have the identification 19

E
(
aℓmaℓ′m′

)
= Cℓδ

ℓ′

ℓ δ
m′

m , (3) 20

so that the angular power spectrum provides the variance of the (uncorrelated) Gaussian random 21

coefficients {aℓm, ℓ = 0, 1, 2, . . . ; m = −ℓ, . . . , ℓ} . By standard Fourier arguments, the small 22

scale behaviour of the covariance is determined by the behaviour of the angular power spectrum 23

at high frequencies; namely, the behaviour of Cℓ for as ℓ → ∞. 24

It is known that for ℓ = 0, Y00(x) in (1) is a constant function on S2, which does not affect 25

the sample path regularity of T (x). Hence, for simplicity of notation, we will remove the term 26

for ℓ = m = 0 from (1) and (2) (i.e., we consider T (x) − a00Y00(x)) throughout the rest of 27

this paper. Furthermore, we shall impose the following condition on the behaviour of the angular 28

power spectrum, which we consider in every respect as minimal. 29

Condition (A): The random field T = {T (x) , x ∈ S2
} is zero-mean, Gaussian and isotropic, 30

with angular power spectrum such that: 31

Cℓ = G (ℓ) ℓ−α > 0, ∀ ℓ = 1, 2, ..., (4) 32

where α > 2 is a constant and, moreover, there exists a finite constant c0 ≥ 1, such that 33

c−1
0 ≤ G (ℓ) ≤ c0. 34

The assumption α > 2 is necessary to ensure that the field has finite variance (recall the 35

identity E
(
T 2(x)

)
=
∑

ℓ
2ℓ+1

4π Cℓ). On the other hand, we stress that we are imposing no regularity 36
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condition on the function G(ℓ), on the contrary of much of the literature on spherical random1

fields, which typically requires limℓ→∞G(ℓ) = const. or other forms of additional regularity2

conditions (see i.e., [3,12,19,20]). We believe that Condition (A) covers the vast majority of3

models which seems of interest from a theoretical or applied point of view; for instance, it fits4

very well with the theoretical and observational evidence on Cosmic Microwave Background5

radiation data (see [5,6,23]), which has been one of the main motivating areas for the analysis6

of spherical fields over the last decade. Most of our results to follow will depend in a simple7

analytic way from the value of the parameter α, which we refer to as the spectral index of T .8

1.3. Statement of the main results9

To introduce our first main result (on strong local nondeterminism), we need first to introduce10

some more notation. In particular, for α > 2, let ρα : [0, π] → R+ be the continuous function11

defined by12

ρα (t) :=

⎧⎨⎩
t (α−2)/2, if 2 < α < 4,
t
√

|ln t |, if α = 4,
t, if α > 4

(5)13

and ρα(0) = 0 for all values of α. As we shall show later, up to a constant factor the functions ρα14

can be related to the canonical (Dudley) metric for the Gaussian processes to be investigated; it15

is important to note the explicit dependence on the spectral index α. As usual, we take16

dS2 (x, y) = arccos(⟨x, y⟩)17

as the standard spherical (or geodesic) distance on S2. The following result establishes the18

property of strong local nondeterminism for spherical Gaussian fields satisfying Condition (A)19

with 2 < α < 4.20

Theorem 1. Let T = {T (x), x ∈ S2
} be an isotropic Gaussian field that satisfies Condition (A)21

with 2 < α < 4. There exist positive and finite constants c2 and ε0 such that for all integers22

n ≥ 1 and all x0, x1, . . . , xn ∈ S2 with min1≤k≤ndS2
(
x0, xk

)
≤ ε0 we have23

Var (T (x0) |T (x1) , . . . , T (xn)) ≥ c2 min
1≤k≤n

ρα
(
dS2 (x0, xk)

)2
. (6)24

The proof of Theorem 1 is presented in Section 3. The argument does not seem to work for25

the critical case of α = 4, we expect that (6) still holds, but a new method may be needed.26

In the following we show how the strong local nondeterminism property can be exploited27

to develop a number of important characterizations for the sample path behaviour of spherical28

random fields. Among these characterizations, in this paper we shall focus on the asymptotic29

behaviour of the uniform modulus of continuity. Lang and Schwab [13, Theorem 4.5] have30

studied this problem for a class of isotropic Gaussian field on S2 and obtained an upper bound31

for uniform modulus of continuity. Under Condition (A), Theorem 4.5 of Lang and Schwab [13]32

implies that for every γ < (α − 2)/2, there exists a finite constant c such that a.s.33

|T (x) − T (y)| ≤ c dS2 (x, y)γ for all x, y ∈ S2. (7)34

Our theorem below significantly improves the theorem of Lang and Schwab [13] by providing35

the exact uniform modulus of continuity for T = {T (x), x ∈ S2
}.36
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Theorem 2. Let T = {T (x), x ∈ S2
} be an isotropic Gaussian field that satisfies Condition (A). 1

2

(i). If 2 < α < 4, then there exists a positive and finite constant K1 such that, with probability 3

one 4

lim
ε→0

sup
x,y∈S2

dS2 (x,y)≤ε

|T (x) − T (y)|

ρα
(
dS2 (x, y)

)√⏐⏐ ln dS2 (x, y)
⏐⏐ = K1. (8) 5

6

(ii). If α = 4, then there exists a positive and finite constant K2 such that, with probability one 7

lim
ε→0

sup
x,y∈S2

dS2 (x,y)≤ε

|T (x) − T (y)|
dS2 (x, y)

⏐⏐ ln dS2 (x, y)
⏐⏐ ≤ K2. (9) 8

The proof of Theorem 2 will be given in Section 4. In the following, we provide some remarks. 9

• It is important to note the fractal behaviour that occurs for 2 < α < 4, when the modulus 10

of continuity decays slower than linearly with respect to the angular distance (hence the 11

sample function T (x) is nondifferentiable). We note that this range of values of α is typical 12

for many applied fields, for instance for Cosmic Microwave Background data α is known to 13

be very close to 2, from theoretical arguments and from experimental data (see e.g., [23]). 14

• For the case of α = 4, (9) implies that the sample function T (x) is almost Lipschitz. We 15

believe that the equality in (9) actually holds and the sample function presents subtle fractal 16

properties. However, we have not been able to prove these results, due to the unsolved case 17

in Theorem 1. 18

Next we consider the case of α > 4. Let k ≥ 1 be the unique integer such that 2 + 2k < 19

α < 4 + 2k. It follows from Lang and Schwab [13, Theorem 4.6] that T = {T (x), x ∈ S2
} 20

has a modification, still denoted by T , such that its sample function is almost surely k- 21

times continuously differentiable. Moreover, the k th (partial) derivatives of T (x) are Hölder 22

continuous on S2 with exponent γ < α−2
2 − k. 23

In the following, we adapt the approach of Lang and Schwab [13] (see also [11]) to study the 24

regularity properties of higher-order derivatives of T based on pseudo-differential operators, as 25

described in the classical monograph [27]. In particular, for a real k ∈ R, introduce (1 − ∆S2 )k/2
26

as the pseudo-differential operator whose action on functions f (·) :=
∑

fℓm ∈ L2(S2) is defined 27

by 28

(1 − ∆S2 )k/2 f :=

∑
ℓm

fℓm(1 + ℓ(ℓ+ 1))k/2Yℓm, (10) 29

provided the right-hand side converges in L2(S2). In the above, ∆S2 is the spherical Laplacian, 30

also called Laplace–Beltrami operator which, in spherical coordinates (ϑ, ϕ) ∈ [0, π] × [0, 2π ), 31

is defined by 32

∆S2 =
1

sinϑ
∂

∂ϑ

{
sinϑ

∂

∂ϑ

}
+

1
sin2ϑ

∂2

∂ϕ2 . (11) 33

Recall that, for every x ∈ S2, it can be written as x = (sinϑ cosϕ, sinϑ sinϕ, cosϑ) . In this 34

paper, with slight abuse of notation, we always identify the Cartesian and angular coordinates of 35

the point x ∈ S2. 36
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It is shown in [27, Chapter XI] that the Sobolev space Wk,2(S2) of functions with square-1

integrable k th derivatives can be viewed as the image of L2(S2) under the operator (1−∆S2 )−k/2;2

this and related property are exploited by Lang and Schwab [13] to prove their Theorem 4.63

on regularity of higher-order derivatives. More precisely, consider the Gaussian random field4

T (k)
= {T (k)(x), x ∈ S2

} defined by5

T (k)
:= (1 − ∆S2 )k/2T =

∑
ℓm

aℓm(1 + ℓ(ℓ+ 1))k/2Yℓm .6

Lang and Schwab [13, Theorem 4.6] have proved the almost-sure Hö lder continuity of T (k).7

Namely and analogue of (7) holds for T (k) and γ < (α − 2)/2 − k. We are able to improve8

their results by establishing the exact modulus of continuity for T (k), for which we provide the9

following result.10

Theorem 3. If in Condition (A), 2 + 2k < α ≤ 4 + 2k for some integer k ≥ 1, then11

T (k)
= {T (k)(x), x ∈ S2

} satisfies the following exact uniform modulus of continuity:12

13

(i). If 2 + 2k < α < 4 + 2k, then there exists a positive and finite constant K3 such that14

lim
ε→0

sup
x,y∈S2

dS2 (x,y)≤ε

|T (k)(x) − T (k)(y)|

ρα−2k
(
dS2 (x, y)

)√⏐⏐ ln dS2 (x, y)
⏐⏐ = K3, a.s.15

16

(ii). If α = 4 + 2k, then there exists a positive and finite constant K4 such that17

lim
ε→0

sup
x,y∈S2

dS2 (x,y)<ε

|T (k)(x) − T (k)(y)|
dS2 (x, y)

⏐⏐ ln dS2 (x, y)
⏐⏐ ≤ K4, a.s.18

Throughout this paper, we shall restrict our setting to the unit sphere in R3. There are no19

theoretical reasons why our results should not be generalizable to higher-dimensions under20

conditions more general than Condition (A) (e.g., Cℓ does not have to be regularly varying);21

however, some analytic computations will become significantly more involved, so we leave these22

extensions for further research.23

1.4. Plan of the paper24

The plan of the paper is as follows. In Section 2 we introduce some auxiliary tools that will be25

instrumental for our proofs to follow; in particular, a careful analysis of the variogram/covariance26

function on very small scales, and the construction of the so-called spherical bump function, i.e. a27

compactly supported function on the sphere satisfying some required smoothness conditions. The28

latter construction builds upon ideas discussed by Geller and Mayeli [8,9] in the framework of29

spherical wavelets. In Section 3, we exploit these results to establish the property of strong local30

nondeterminism for a large class of isotropic spherical Gaussian fields. In Section 4, by applying31

Gaussian techniques and strong local nondeterminism we prove Theorem 2 on the exact uniform32

modulus of continuity; while an extension to higher-order derivatives is discussed in Section 5.33

Some auxiliary results are collected in the Appendix.34
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2. Technical tools 1

2.1. The variogram 2

It is well-known that, for the investigation of sample properties of a Gaussian field T = 3

{T (x), x ∈ S2
}, it is important to introduce the canonical metric 4

dT (x, y) =

√
E
(
|T (x)− T (y)|2

)
, 5

see for instance [1,16] or any other monograph on the modern theory of Gaussian processes. The 6

square of the canonical metric is also known as the variogram of T . Our first technical result 7

is a careful investigation on the behaviour of this metric for pairs of points that are close in the 8

spherical distance dS2 (·, ·); more precisely, we have the following upper and lower bounds, in 9

terms of the function ρα which was introduced in (5). 10

Lemma 4. Under Condition (A), there exist constants 1 ≤ c1 < ∞ and 0 < ε < 1, such that 11

for all x, y ∈ S2 with dS2 (x, y) ≤ ε, we have 12

c−1
1 ρ2

α

(
dS2 (x, y)

)
≤ d2

T (x, y) ≤ c1ρ
2
α

(
dS2 (x, y)

)
, (12) 13

where ρα (·) : [0, π] → R+ is defined in (5). 14

Proof. Recalling Eq. (2), it is readily seen that 15

d2
T (x, y) = E

(
|T (x)− T (y)|2

)
=

∞∑
ℓ=1

Cℓ

2ℓ+ 1
2π

(
1 − Pℓ (cosϑ)

)
, (13) 16

where we write for notational convenience ϑ = ϑxy := dS2 (x, y). Let 17

Qα (ϑ) :=

∞∑
ℓ=1

ℓ−(α−1) (1 − Pℓ (cosϑ)
)
. 18

The Cauchy–Schwarz inequality gives |Pℓ (cosϑ)| ≤ Pℓ (1) = 1, hence it follows from (13) and 19

Condition (A) that 20

c−1
0

π
Qα (ϑ) ≤ d2

T (x, y) ≤
c0

π
Qα (ϑ) . (14) 21

By applying Lemma 10 with s = α − 1 in the Appendix, we have 22

Qα (ϑ) = Kρ2
α (ϑ)+ o

(
ρ2
α (ϑ)

)
as ϑ → 0, (15) 23

where K is a positive constant depending only on α and o
(
ρ2
α(ϑ)

)
denotes a higher order 24

infinitesimal than ρ2
α(ϑ). Therefore, statement (12) follows from (14) and (15). ■ 25

Remark 5. Anticipating some results to follow, it is important to stress the phase transition 26

that occurs in the behaviour of the canonical metric as a function of α. For α > 4, the ratio 27

between the canonical metric and the standard geodesic distance is bounded above and below; 28

for 2 < α < 4, on the contrary, the ratio between geodesic and canonical distance diverges on 29

small scales and fractal behaviour occurs. The case of α = 4 is, in some sense, critical and an 30

extra logarithmic factor appears in the bounds for the variogram in Lemma 4. 31



SPA: 3163

Please cite this article in press as: X. Lan, et al., Strong local nondeterminism and exact modulus of continuity for spherical Gaussian fields, Stochastic
Processes and their Applications (2017), http://dx.doi.org/10.1016/j.spa.2017.07.008.

8 X. Lan et al. / Stochastic Processes and their Applications xx (xxxx) xxx–xxx

2.2. The construction of the spherical bump function1

In this section, we work with spherical coordinates (ϑ, ϕ), 0 ≤ ϑ ≤ π, 0 ≤ ϕ < 2π, and we2

review the construction of a family of zonal functions δε : S2
→ R, ε > 0, which shall vanish3

outside a spherical cap around the North Pole ϑ = ϕ = 0 (we recall that a zonal function satisfies4

by definition the identity δε(ϑ, ϕ) = δε(ϑ, ϕ′) for all ϕ, ϕ′
∈ [0, 2π )). The construction follows a5

proposal by Geller and Mayeli ([8], Lemma 4.1, pages 16–17), see also [9]; we introduce some6

minimal modifications, to ensure a suitable rate of decay in the spherical harmonic coefficients.7

More precisely, we shall show that for all ε > 0, there exists a zonal function8

δε(ϑ, ϕ) :=

∞∑
ℓ=1

bℓ(ε)
2ℓ+ 1

4π
Pℓ(cosϑ) =

∞∑
ℓ=1

ℓ∑
m=−ℓ

κℓm(ε)Yℓm(ϑ, ϕ) (16)9

such that for some positive and finite constants c and c′, we have10

ε2δε(ϑ, ϕ) ≤ c for all 0 ≤ ϑ ≤ π, 0 ≤ ϕ < 2π;

δε(ϑ, ϕ) = 0 for all ϑ > ε
(17)11

and12

δε(0, 0) ∼ c′ε−2 as ε → 0. (18)13

Moreover, the coefficients {bℓ(ε), κℓm(ε)} in (16) can be taken such that they satisfy14

|bℓ(ε)| ≤ c′′, κℓm(ε) = 0 for m ̸= 0, and
|κℓ0(ε)| ≤ c′′′

√
2ℓ+ 1

(19)15

for all integers ℓ ≥ 1, where c′′ and c′′′ are positive and finite constants.16

It is natural to label δε(·, ·) a spherical bump function, in analogy with the analogous17

constructions on the Euclidean domains. On the other hand, up to a different normalization factor18

the function δε(·, ·) is just a special case of the so-called Mexican needlet frame by [8], in the19

special case where the latter has bounded support in the real domain. We hence follow as much20

as possible the notation by these authors.21

In particular, we choose a function Ĝ(·) : R → R such that it satisfies the following22

conditions:23

(i). supp Ĝ(·) ⊆ (−1, 1),24

(ii). It is piecewise continuously differentiable up to order M , where M is large enough, and25

(iii). Its inverse Fourier transform G is non-negative and satisfies 0 <
∫

∞

0 G(u)udu < ∞.26

For example, we can take27

Ĝ(·) = p ⋆ p(·) :=

∫
∞

−∞

p(s)p(· − s) ds,28

where p(s) = max{0, 1 − 2|s|}. Then Ĝ(·) is piecewise smooth and its inverse Fourier transform29

is G(u) = ( 2
π

)2(1 − cos(u/2))2u−4. Functions G(u) with faster decay rate as u → ∞ can be30

constructed by convoluting more times.31

As in Geller and Mayeli [8], we consider the operator G(ε
√

−∆S2 ) : L2(S2) → L2(S2)32

defined by33

G(ε
√

−∆S2 ) :=

∫
∞

−∞

Ĝ(s) exp(−isε
√

−∆S2 ) ds;34



SPA: 3163

Please cite this article in press as: X. Lan, et al., Strong local nondeterminism and exact modulus of continuity for spherical Gaussian fields, Stochastic
Processes and their Applications (2017), http://dx.doi.org/10.1016/j.spa.2017.07.008.

X. Lan et al. / Stochastic Processes and their Applications xx (xxxx) xxx–xxx 9

recall that ∆S2 is the spherical Laplacian in (11), and the operator G(ε
√

−∆S2 ) converges in 1

weak operator topology. More precisely, the action of this operator can be described as usual by 2

means of the corresponding kernel; i.e., for any f ∈ L2(S2) we have 3

G(ε
√

−∆S2 ) f (·) :=

∫
S2

Kε(x, ·) f (x)dx, 4

where 5

Kε(x, y) :=

∞∑
ℓ=1

G
(
ε
√

−λℓ
)2ℓ+ 1

4π
Pℓ(⟨x, y⟩)

=

∞∑
ℓ=1

{∫
∞

−∞

Ĝ(s) exp(−isε
√

−λℓ)ds
}

2ℓ+ 1
4π

Pℓ(⟨x, y⟩).

(20) 6

In the above, {λℓ, ℓ = 1, 2, . . .} are the eigenvalues of ∆S2 , i.e., λℓ = −ℓ(ℓ+ 1), 7

∆S2 Yℓm = λℓYℓm 8

for ℓ = 1, 2, . . . and m = −ℓ, . . . , ℓ; see i.e, [17] , Chapter 3. More explicitly, note that, for 9

f =
∑

ℓmaℓmYℓm, the action of the operator can be equivalently defined as 10

G(ε
√

−∆S2 ) f (·) =

∑
ℓm

G(ε
√

−λℓ)aℓmYℓm (·) , 11

which is clearly in L2(S2) , because 12G(ε
√

−∆S2 ) f (·)
2

L2(S2)
=

∑
ℓm

|G(ε
√

−λℓ)aℓm |
2
, 13

and |G(ε
√

−λℓ)| is uniformly bounded, while {aℓm}ℓ,m is square summable because f (·) ∈ 14

L2(S2) . 15

Now take x = N = (0, 0) (the “North Pole”), y = (ϑ, ϕ) an arbitrary point on the sphere, and 16

define 17

δε(ϑ, ϕ) := Kε(N , y). 18

Then the first inequality in (17) follows from an application of Lemma 4.1 in [8] to the case of 19

M = S2 (hence n = 2, d(x, y) = dS2 (N , y) = ϑ), t = ε and j, k, N = 0. The second statement 20

in (17), namely, supp δε ⊆ {(ϑ, ϕ) : ϑ ≤ ε} follows from Huygens’ principle as in the proof of 21

Lemma 4.1 in [8, page 911]. 22

To verify (18), we use the definition of Kε in (20) to verify that as ε → 0, 23

δε(0, 0) =

∞∑
ℓ=1

G(ε
√
ℓ(ℓ+ 1))

2ℓ+ 1
√

4π
∼

1
ε2

√
π

∫
∞

0
G(u)udu = c′ε−2

24

with c′
= π−1/2

∫
∞

0 G(u)udu which is positive and finite, and ∼ denotes convergence to unity 25

of the ratio between the left- and right-hand sides. 26

Now we define 27

bℓ(ε) :=

∫
∞

−∞

Ĝ(s) exp(−isε
√

−λℓ)ds, 28

29

κℓm(ε) =

⎧⎪⎨⎪⎩
√

2ℓ+ 1
4π

bℓ(ε), if m = 0,

0, otherwise.
30
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Then |bℓ(ε)| ≤ c for some constant c, and {κℓm(ε)} satisfies the properties in (19). Moreover, by1

appealing to the standard identities2

2ℓ+ 1
4π

Pℓ(⟨x, y)⟩ =

ℓ∑
m=ℓ

Y ℓm(x)Yℓm(y),3

4

Yℓm(0, 0) =

⎧⎪⎨⎪⎩
√

2ℓ+ 1
4π

, for m = 0,

0, otherwise,
5

we see that δε(ϑ, ϕ) can be written as6

δε(ϑ, ϕ) =

∞∑
ℓ=1

bℓ(ε)
2ℓ+ 1

4π
Pℓ(cosϑ) =

∞∑
ℓ=1

ℓ∑
m=−ℓ

κℓm(ε)Yℓm(ϑ, ϕ),7

which gives the desired representation in (16).8

We end this section with some further properties of the spherical bump function δε(ϑ, ϕ) and9

its coefficients which will be used in the proof of Theorem 1 in Section 3.10

To get information on the decay rate of |bℓ(ε)| as ℓ increases, we use integration by parts r11

times (r ≤ M) to get12

bℓ(ε) =

∫
∞

−∞

Ĝ(s) exp(−isε
√

−λℓ)ds =

∫
∞

−∞

Ĝ(r )(s)
exp(−isε

√
−λℓ){

iε
√

−λℓ
}r ds.13

Hence for any r ≤ M ,14 ⏐⏐bℓ(ε)⏐⏐ ≤
Kr

εrℓr
, (21)15

where16

Kr := sup
−1≤s≤1

⏐⏐Ĝ(r )(s)
⏐⏐ < ∞.17

Note that, by (18), there exists a constant ε0 > 0 such that18

∞∑
ℓ=1

bℓ(ε)
2ℓ+ 1

4π
=

∞∑
ℓ=1

ℓ∑
m=−ℓ

κℓm(ε)

√
2ℓ+ 1

4π
= δε(0, 0) ≥

c′

2
ε−2 (22)19

for all ε ∈ (0, ε0]. Moreover, by (17), we see that for all ϑ > ε,20

∞∑
ℓ=1

bℓ(ε)
2ℓ+ 1

4π
Pℓ(cosϑ) =

∑
ℓm

κℓm(ε)

√
2ℓ+ 1

4π
Yℓm(ϑ, ϕ)

= δε(ϑ, ϕ) = 0.
(23)21

3. Strong local nondeterminism: Proof of Theorem 122

We are now in the position to prove Theorem 1. Recall that T = {T (x), x ∈ S2
} is an isotropic23

Gaussian random field with mean zero and angular power spectrum {Cℓ} .We prove the following24

more general theorem which implies Theorem 1 when 2 < α < 4. For α ≥ 4, the lower bound25

given by (24) is strictly smaller than ρ2
α(ε). Lemma 4 indicates that (24) can be improved if26

n = 1. However, it is not known if one can strengthen (24) for all n ≥ 2.27
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Theorem 6. Under Condition (A), there exist positive and finite constants ε0 and c2 such that 1

for all ε ∈ (0, ε0], all integers n ≥ 1 and all x0, x1, . . . , xn ∈ S2, satisfying dS2 (x0, xk) ≥ ε, we 2

have 3

Var (T (x0) |T (x1) , . . . , T (xn)) ≥ c2ε
α−2. (24) 4

Proof. As before, we work in spherical coordinates (ϑ, ϕ) and we take without loss of generality 5

x0 = (0, 0) to be the North Pole, and xk = (ϑk, ϕk) so that dS2 (x0, xk) = ϑk . Recall that, since T 6

is a Gaussian random field, we have 7

Var (T (0) |T (x1) , . . . , T (xn))

= inf
{
E
[(

T (0) −

n∑
j=1

γ j T (x j )
)2]

: γ1, . . . , γn ∈ R
}
.

8

Hence, in order to establish (24), it is sufficient to prove that there exists a positive constant c2 9

such that for all choices of real numbers γ1, . . . , γn , we have 10

E
{(

T (0) −

n∑
j=1

γ j T (x j )
)2}

≥ c2 ε
α−2. (25) 11

It follows from (1), (2) or (3) that 12

E
{(

T (0) −

n∑
j=1

γ j T (x j )
)2}

= E
{(∑

ℓm

aℓmYℓm(0) −

n∑
j=1

γ j

∑
ℓm

aℓmYℓm(x j )
)2}

=

∑
ℓm

E(|aℓm |
2)
⏐⏐⏐⏐Yℓm(0) −

n∑
j=1

γ j Yℓm(x j )
⏐⏐⏐⏐2

=

∑
ℓ

∑
m

Cℓ

⏐⏐⏐⏐Yℓm(0) −

n∑
j=1

γ j Yℓm(x j )
⏐⏐⏐⏐2.

13

Hence, (25) is a consequence of Proposition 7. ■ 14

Proposition 7. Assume Condition (A) holds. For all ε ∈ (0, ε0], there exists a constant c2 > 0 15

such that for all choices of n ∈ N, all (ϑ j , ϕ j ) : ϑ j > ε, and γ j ∈ R, j = 1, 2, . . . , n, we have 16

∑
ℓ

∑
m

Cℓ

[
Yℓm(0, 0) −

n∑
j=1

γ j Yℓm(ϑ j , ϕ j )
]2

≥ c2ε
α−2. (26) 17

Proof. For any fixed ε > 0, let δε(·, ·) be defined as in (16), with the corresponding coefficients 18{
bℓm(ε)

}
and

{
κℓm(ε)

}
such that conditions (17)–(19), (21)–(23) hold. Now we consider 19

I =

∑
ℓ

∑
m

(
κℓm(ε)
√

Cℓ

)⎧⎨⎩√Cℓ

[
Yℓm(0, 0) −

n∑
j=1

γ j Yℓm(ϑ j , ϕ j )
]⎫⎬⎭ . 20
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On one hand, by the Cauchy–Schwartz inequality1

I 2
≤

{∑
ℓm

κ2
ℓm(ε)
Cℓ

}{∑
ℓ

∑
m

Cℓ

[
Yℓm(0, 0) −

n∑
j=1

γ j Yℓm(ϑ j , ϕ j )
]2}

≤

{∑
ℓ

(2ℓ+ 1)
4π

b2
ℓ(ε)
Cℓ

}{∑
ℓ

Cℓ

∑
m

[
Yℓm(0, 0) −

n∑
j=1

γ j Yℓm(ϑ j , ϕ j )
]2}

.

2

This inequality can be rewritten as3 ∑
ℓ

Cℓ

∑
m

[
Yℓm(0, 0) −

n∑
j=1

γ j Yℓm(ϑ j , ϕ j )
]2

≥
I 2∑

ℓ
(2ℓ+1)

4π
b2
ℓ

(ε)
Cℓ

. (27)4

On the other hand, we can compute I 2 directly. It follows from (22) and (23) that5 ∑
ℓ

∑
m

κℓm(ε)Yℓm(0, 0) =

∑
ℓ

2ℓ+ 1
4π

bℓ(ε) = δε(0, 0) ≥
c′

2ε2 ,6

and7 ∑
ℓ

∑
m

κℓm(ε)
{ n∑

j=1

γ j Yℓm(ϑ j , ϕ j )
}

=

n∑
j=1

γ j

∑
ℓ

∑
m

κℓm(ε)Yℓm(ϑ j , ϕ j )

=

n∑
j=1

γ j

{∑
ℓ

2ℓ+ 1
4π

bℓ(ε)Pℓ(cos(N , x j ))
}

=

n∑
j=1

γ jδε(ϑ j , ϕ j ) = 0,

8

because ϑ j > ε by assumption. The above two equations imply that I ≥
c′

2 ε
−2 and hence (26)9

will follow from (27) if we can show that10 ∑
ℓ

(2ℓ+ 1)
4π

b2
ℓ(ε)
Cℓ

= O(ε−(α+2)). (28)11

Now we verify (28). It follows from (21) that for r large enough there exists a constant cr > 012

such that13

b2
ℓ(ε) ≤

cr

(ℓε)r
.14

Hence, by choosing an integer L = L(ε) = ⌊ε⌋−1, we obtain15

∞∑
ℓ=1

(2ℓ+ 1)
4π

b2
ℓ(ε)
Cℓ

=

∞∑
ℓ=L

(2ℓ+ 1)
4π

b2
ℓ(ε)
Cℓ

+

L∑
ℓ=1

(2ℓ+ 1)
4π

b2
ℓ(ε)
Cℓ

≤
c0cr

εα+2

∞∑
ℓ=L

(ℓε)
1

(ℓε)r
(εℓ)αε +

L∑
ℓ=1

(2ℓ+ 1)
4π

b2
ℓ(ε)
Cℓ

.

(29)16

Now17

c0cr

εα+2

∞∑
ℓ=L

(ℓε)
1

(ℓε)r
(εℓ)αε ≤

c′
r

εα+2

∫
∞

1
xα−r+1dx ≤

c′′
r

εα+2 ,18
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for r > α + 2, whereas by Condition (A) we can bound the second term in (29) from above by 1

L∑
ℓ=1

(2ℓ+ 1)
4π

b2
ℓ(ε)
Cℓ

≤ c
L∑
ℓ=1

(2ℓ+ 1)
4π

ℓα ≤ c Lα+2
∼ cε−(α+2), 2

where c denotes a generic constant which needs not be the same from step to step. Combining 3

(29) with the above verifies (28), which finishes the proof of (26). ■ 4

Remark 8. At this stage we can draw an analogy between the isotropic spherical random 5

fields satisfying Condition (A) with 2 < α < 4 and a fractional Brownian field with self- 6

similarity parameter H. The analogy can be made clearer by setting the parameter values so that 7

2H + 2 = α, and Lemma 4 shows that the variogram of T = {T (x), x ∈ S2
} is of the order 8

dS2 (x, y)2H
= dS2 (x, y)α−2. This indicates that T shares many analytic and fractal properties 9

with a fractional Brownian field with parameter H. Indeed, by applying Lemma 4 and Theorem 1, 10

we can prove that, for any u ∈ R, the Hausdorff dimension of the level set T −1(u) is given by 11

dimHT −1(u) = 2 −
α − 2

2
, a.s., 12

which shows that, for 2 < α < 4, T −1(u) is a fractal curve on S2 of Hausdorff dimension 13

∈ (1, 2). 14

Notice that, dimHT −1(u) = 1 when α ≥ 4, but the nature of the level curve is different for 15

α > 4 and α = 4, respectively. For α > 4, the sample function T (x) is differentiable, and thus 16

its level curve T −1(u) is regular. On the other hand, for α = 4 we believe that the level curve 17

is not differentiable and possesses subtle fractal properties. Investigation of the topological and 18

geometric properties of T −1(u) and more general excursion sets in more details is left for future 19

research. 20

4. Modulus of continuity: Proof of Theorem 2 21

We start by state 0–1 laws regarding the uniform moduli of continuity for an isotropic 22

spherical Gaussian field T = {T (x), x ∈ S2
}. It is a consequence of the representation (1) 23

and Kolmogorov’s 0–1 law. We first rewrite Lemma 7.1.1 in Marcus and Rosen [16] as follows. 24

Lemma 9. Let {T (x), x ∈ S2
} be a centred Gaussian random field on S2. Let ϕ : R+ → R+ be 25

a function with ϕ(0+) = 0. Then 26

lim
ε→0

sup
x,y∈S2

dS2 (x,y)≤ε

|T (x) − T (y)|
ϕ(dS2 (x, y))

≤ K , a.s. for some constant K < ∞ 27

implies that 28

lim
ε→0

sup
x,y∈S2

dS2 (x,y)≤ε

|T (x) − T (y)|
ϕ(dS2 (x, y))

= K ′, a.s. for some constant K ′ < ∞. 29

We remark that Lemma 9 does not exclude the possibility of K ′
= 0. One of the main 30

difficulties in establishing an exact uniform modulus of continuity is to find conditions under 31

which K ′ > 0. 32
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Proof of Theorem 2. Because of Lemma 9, we see that (8) in Theorem 2 will be proved after we1

establish upper and lower bounds of the following form: If 2 < α < 4, then there exist positive2

and finite constants K5 and K6 such that3

lim
ε→0

sup
x,y∈S2

dS2 (x,y)≤ε

|T (x) − T (y)|

dS2 (x, y)(α−2)/2
√⏐⏐ ln dS2 (x, y)

⏐⏐ ≤ K5, a.s. (30)4

and5

lim
ε→0

sup
x,y∈S2

dS2 (x,y)≤ε

|T (x) − T (y)|

dS2 (x, y)(α−2)/2
√⏐⏐ ln dS2 (x, y)

⏐⏐ ≥ K6, a.s. (31)6

These and Lemma 9 with ϕ(r ) = r (α−2)/2√
|ln r | imply (8) with K1 ∈ [K6, K5].7

We divide the rest of the proof of Theorem 2 into three parts.8

Step 1: Proof of (30). We introduce an auxiliary Gaussian field:9

Y = {Y (x, y), x, y ∈ S2, dS2 (x, y) ≤ ε}10

defined by Y (x, y) = T (x) − T (y), where ε > 0 is small so that (12) in Lemma 4 holds. By the11

triangle inequality, we see that the canonical metric dY on Γ := {(x, y) ∈ S2
×S2

: dS2 (x, y) ≤ ε}12

associated with Y satisfies the following inequality:13

dY ((x, y), (x ′, y′)) ≤ min{dT (x, x ′) + dT (y, y′), dT (x, y) + dT (x ′, y′)}. (32)14

Denote the diameter of Γ in the metric dY by D. Then, by (32) and Lemma 4, we have15

D ≤ sup
(x,y)∈Γ

(dT (x, y) + dT (x ′, y′)) ≤ 2
√

c1 ε
(α−2)/2.16

For any η > 0, let NY (Γ , η) be the smallest number of open dY -balls of radius η needed to cover17

Γ . It follows from (32) and Lemma 4 that for 2 < α < 4,18

NY (Γ , η) ≤ K7η
−

4
α−2 ,19

for some positive and finite constant K7, and one can verify that20 ∫ D

0

√
ln NY (T, η) dη ≤ K ε(α−2)/2

√
ln(1 + ε−1).21

Hence, by Theorem 1.3.5 in [1], we have22

lim sup
ε→0

sup
x,y∈S2

dS2 (x,y)≤ε

|T (x) − T (y)|
ε(α−2)/2

√
|ln ε|

≤ K , a.s.23

for some finite constant K . From here, it is standard to verify (cf. Lemma 7.1.6 in [16]) that this24

implies (30).25

Step 2: Proof of (31). For any n ≥ ⌊|log2ε0|⌋ + 1, where ε0 is as in Theorem 6, we chose a26

sequence of 2n points {xn,i , 1 ≤ i ≤ 2n
} on S2 that are equally separated in the following sense:27

For every 2 ≤ k ≤ 2n , we have28

min
1≤i≤k−1

dS2 (xn,k, xn,i ) = dS2 (xn,k, xn,k−1) = 2−n. (33)29

There are many ways to choose such a sequence on S2. Notice that30

lim
ε→0

sup
x,y∈S2,

d
S2 (x,y)≤ε

|T (x) − T (y)|

dS2 (x, y)(α−2)/2
√

|ln dS2 (x, y)|
31
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≥ lim inf
n→∞

max
2≤k≤2n

|T (xn,k) − T (xn,k−1)|
2−n(α−2)/2

√
n

. (34) 1

It is sufficient to prove that, almost surely, the last limit in (34) is bounded below by a positive 2

constant. This is done by applying the property of strong local nondeterminism in Theorem 6 3

and a standard Borel–Cantelli argument. 4

Let η > 0 be a constant whose value will be chosen later. We consider the events 5

Am =

{
max

2≤k≤m

⏐⏐T (xn,k) − T (xn,k−1)
⏐⏐ ≤ η2−n(α−2)/2√n

}
6

for m = 2, 3, . . . , 2n . By conditioning on A2n−1 first, we can write 7

P
(

A2n
)

= P
(

A2n−1
)

×P
{
|T (xn,2n ) − T (xn,2n−1)| ≤ η2−n(α−2)/2√n|A2n−1

}
.

(35) 8

Recall that, given the random variables in A2n−1, the conditional distribution of the Gaussian 9

random variable T (xn,2n )−T (xn,2n−1) is still Gaussian, with the corresponding conditional mean 10

and variance as its mean and variance. By Theorem 6, the aforementioned conditional variance 11

satisfies 12

Var
(
T (xn,2n ) − T (xn,2n−1)

⏐⏐A2n−1
)

≥ c2 2−(α−2)n. 13

This and Anderson’s inequality (see [2]) imply 14

P
{
|T (xn,2n ) − T (xn,2n−1)| ≤ η2−n(α−2)/2√n| A2n−1

}
≤ P

{
N (0, 1) ≤ c η

√
n
}

≤ 1 −
1

cη
√

n
exp

(
−

c2η2n
2

)
≤ exp

(
−

1
cη

√
n

exp
(
−

c2η2n
2

))
.

. (36) 15

In deriving the last two inequalities, we have applied Mill’s ratio and the elementary inequality 16

1 − x ≤ e−x for x > 0. Iterating this procedure in (35) and (36) for 2n
− 1 more times, we obtain 17

P
(

A2n
)

≤ exp
(

−
1

cη
√

n
2n exp

(
−

c2η2n
2

))
. (37) 18

By taking η > 0 small enough such that c2η2log2e < 2, we have
∑

∞

n=1P
(

A2n
)
< ∞. Hence 19

the Borel–Cantelli lemma implies that almost surely, 20

max
2≤k≤2n

⏐⏐T (xn,k) − T (xn,k−1)
⏐⏐ ≥ η2−n(α−2)/2√n 21

for all n large enough. This implies that the right-hand side of (34) is bounded from below almost 22

surely by η > 0. 23

Step 3: Proof of (9) for α = 4. This is similar to the proof in Step 1, except that the 24

diameter D of Γ in the metric dY is now comparable to K ε
√

|ln ε| and the covering number 25

NY (Γ , η) ≤ Kη−2
|ln η|. Hence, in this case, 26∫ D

0

√
ln NY (T, η) dη ≤ K ε|ln ε|. 27
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Applying again Theorem 1.3.5 in [1] yields that for α = 4,1

lim sup
ε→0

sup
x,y∈S2

d
S2 (x,y)≤ε

|T (x) − T (y)|
ε|ln ε|

≤ K , a.s.2

Hence (9) follows from this and Lemma 7.1.6 in [16]. This finishes the proof of Theorem 2.3

5. Higher-order derivatives: Proof of Theorem 34

Now we consider the case of α > 4. Let k ≥ 1 be the integer such that 2 + 2k < α ≤ 4 + 2k,5

and let T (k)
= {T (k)(x), x ∈ S2

} be the Gaussian random field defined by T (k)
= (1 − ∆S2 )k/2T .6

It follows from (10) that T (k) is again isotropic and its angular power spectrum is given by7

C̃ℓ = E
(
|aℓm |

2)(1 + ℓ(ℓ+ 1))k
= Cℓ(1 + ℓ(ℓ+ 1))k, ℓ = 1, 2, . . . .8

Under Condition (A), we have C̃ℓ = G̃ (ℓ) ℓ2k−α for all ℓ = 1, 2, . . ., where9

c−1
6 ≤ G̃ (ℓ) ≤ c610

for some finite constant c6 ≥ 1. It follows from Theorem 1 that, for all n ≥ 1 and all11

x0, x1, . . . , xn ∈ S2 such that min1≤i≤ndS2 (x0, xi ) ≤ ε0, we have12

Var
(
T (k) (x0) |T (k) (x1) , . . . , T (k) (xn)

)
≥ c2 min

1≤i≤n
dS2 (x0, xi )(α−2−2k).13

Hence the conclusions of Theorem 3 follow from Theorem 2.14
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Appendix21

In this Appendix we collect a number of technical results which are mainly instrumental to22

investigate the behaviour of the canonical Gaussian metric at small angular distances, in terms23

of the spectral index α.24

Let us first recall the Mehler-Dirichlet representation for the Legendre polynomials (see [17,25

eq. (13.9)] or [28, Section 5.3, eq. (2)]),26

Pℓ (cosϑ) =

√
2
π

∫ ϑ

0

cos
((
ℓ+

1
2

)
ψ
)

(cosψ − cosϑ)1/2
dψ, (38)27

where the integral on the right hand side for ϑ = 0 is understood as the limit as ϑ ↓ 0.28

In order to study the asymptotic behaviour of
∑

∞

ℓ=1ℓ
−s Pℓ (cosϑ) as ϑ → 0, we will make29

use of the following identity: For any s > 1,30

∞∑
ℓ=1

ℓ−s cos
((
ℓ+

1
2

)
ψ

)
= Re

[ ∞∑
ℓ=1

ℓ−sei
(
ℓ+ 1

2

)
ψ

]
= Re

[
e

i
2ψ Lis

(
eiψ)] , (39)31
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where Lis (z) , z ∈ C denotes the polylogarithm function defined as 1

Lis (z) :=

∞∑
k=1

zk

ks
2

for |z| < 1, and then extended holomorphically to |z| ≥ 1. 3

For |z| ≤ 1, the polylogarithm function can also be viewed as a special example of the Lerch 4

function Φ (z, s, v) at v = 1 and Res > 1, which is defined as 5

Φ (z, s, v) =

∞∑
k=0

zk

(k + v)s
, |z| < 1, v ̸= 0,−1, . . . 6

and can be extended to |z| ≤ 1, z ̸= 1, if Res > 0 or z = 1, if Res > 1 (see [10, eq. (9.550) and 7

(9.556)]). By exploiting the properties of the Lerch function Φ (z, s, v) , we have that for s > 1 8

and s = n ∈ N, the following series expansion of Lin (z) holds (see [29, eq. (9.5)] or [10, eq. 9

(9.554)]) 10

Lin (z) =
(ln z)n−1

(n − 1) !

[
Hn−1 − ln

(
ln z−1)]

+

∞∑
k=0,k ̸=n−1

ζ (n − k)
k!

(ln z)k, (40) 11

where |ln z| < 2π , Hn denotes the n th harmonic number: 12

Hn =

n∑
j=1

1
j
, H0 = 0, 13

and ζ (m) is the so called Riemann zeta function, which is well-defined and holomorphic on the 14

whole complex plane everywhere except for m = 1. 15

For s ̸∈ N, by exploiting Eq. (9.556) in [10], Wood ([29, eq. (9.4)]) proved that for z ∈ C 16

satisfying |ln z| < 2π , 17

Lis (z) = Γ (1 − s)
(
ln z−1)s−1

+

∞∑
k=0

ζ (s − k)
k!

(ln z)k . (41) 18

The following lemma has been used in Section 2 to characterize the small scale behaviours 19

of the canonical metric of T and the function Qα(ϑ). The notation g(ϑ) = O ( f (ϑ)) means 20

|g(ϑ)/ f (ϑ)| ≤ c for all ϑ ∈ [0, π] and g(ϑ) = o ( f (ϑ)) means g(ϑ)/ f (ϑ) → 0 as ϑ → 0. 21

Lemma 10. For any constant s > 1, as ϑ → 0+, we have 22

∞∑
ℓ=1

ℓ−s Pℓ (cosϑ) =

⎧⎨⎩
ζ (s) − K7sins−1ϑ + o

(
sins−1ϑ

)
, if 1 < s < 3,

ζ (s) − K8sin2ϑ |ln (sinϑ)| + O
(
sin2ϑ

)
, if s = 3,

ζ (s) − K9sin2ϑ + O
(
sin3ϑ

)
, if s > 3,

23

where ζ (s) is the Riemann zeta function, K7, K8, K9 are positive constants depending only on 24

s. 25

Proof. We consider the two cases s ∈ N and s ̸∈ N, respectively. 26

Case 1. For s ̸∈ N, it follows from the representation (41) that for ϑ > 0 small enough, and 27

all ψ ∈ (0, ϑ), 28

Re
[
e

i
2ψ Lis

(
eiψ)]

= cos
(ψ

2

) [
A1ψ

s−1
+ ζ (s)−

1
2
ζ (s − 2) ψ2

]
+ sin

(ψ
2

)[
B1ψ

s−1
− ζ (s − 1) ψ + O

(
ψ3)], 29
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where1

A1 = Γ (1 − s) cos
(π

2
(s − 1)

)
and B1 = Γ (1 − s) sin

(π
2
(s − 1)

)
2

and we have incorporated O
(
ψ4
)

into O
(
sin(ψ2 )ψ3

)
. Then, by (38), (39) and (41) above, we3

have4

∞∑
ℓ=1

ℓ−s Pℓ (cosϑ)

=

√
2
π

∫ ϑ

0

cos ψ2
(cosψ − cosϑ)1/2

[
A1ψ

s−1
+ ζ (s)−

1
2
ζ (s − 2) ψ2

]
dψ

+

√
2
π

∫ ϑ

0

sin ψ

2

(cosψ − cosϑ)1/2
[
B1ψ

s−1
− ζ (s − 1) ψ + O(ψ3)

]
dψ

=: J1 + J2.

(42)5

Recall that6

cosψ − cosϑ = 2sin2ϑ

2
− 2sin2ψ

2
.7

A change of variable x = sin(ψ2 )/ sin(ϑ2 ) shows that for γ > 0,8 ∫ ϑ

0

sinγ−1 ψ
2 cos ψ2

(cosψ − cosϑ)1/2
dψ =

√
2sinγ−1ϑ

2

∫ 1

0

xγ−1

√
1 − x2

dx

=

√
2

2
B
(γ

2
,

1
2

)
sinγ−1ϑ

2

(43)9

and10 ∫ ϑ

0

sinγ−1 ψ
2

(cosψ − cosϑ)1/2
dψ =

√
2

2
sinγ−1ϑ

2

×

[
B
(γ

2
,

1
2

)
+

1
6

B
(γ

2
+ 1,

1
2

)
sin2ϑ

2
+ O

(
sin4ϑ

2

)]
,

(44)11

where B(·, ·) is the standard Beta function. By applying the following asymptotic expansion12

ψβ

sinβψ
= 1 + β

sin2ψ

6
+ O

(
sin4ψ

)
, if β > 0,13

we can use (43) and (44) to derive14

J1 = A2sins−1ϑ

2
+

1
π
ζ (s) B

(1
2
,

1
2

)
−

2
π
ζ (s − 2) B

(3
2
,

1
2

)
sin2ϑ

2
+ O

(
sins+1ϑ

2

)
,

(45)15

where A2 is an explicit positive constant depending on s only. Likewise, we have16

J2 = B2sins ϑ

2
−

2
π
ζ (s − 1) B

(3
2
,

1
2

)
sin2ϑ

2
+ O

(
sins+2ϑ

2

)
, (46)17
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where B2 is an explicit positive constant depending on s only. By combining (42), (45) and (46), 1

we derive that for s > 1 and s ̸∈ N, 2

∞∑
ℓ=1

ℓ−s Pℓ (cosϑ) = ζ (s) − C1sins−1ϑ

2
− C2sin2ϑ

2
+ C3sins ϑ

2

+ O
(

sin(s+1)∧4ϑ

2

)
,

3

where C1, C2 and C3 are positive constants depending only on s, and a ∧ b = min{a, b}. 4

Consequently, 5

∞∑
ℓ=1

ℓ−s Pℓ (cosϑ) = ζ (s) − C1sins−1ϑ

2
+ O

(
sins∧2ϑ

2

)
(47) 6

for 1 < s < 3, s ̸= 2, and 7

∞∑
ℓ=1

ℓ−s Pℓ (cosϑ) = ζ (s) − C2sin2ϑ

2
+ O

(
sins∧4ϑ

2

)
, (48) 8

for s > 3, s ̸∈ N. 9

Case 2. For s > 1 and s = n ∈ N, by making use of the series expansion (40), it follows that 10

Re
[
e

i
2ψ Lin

(
eiψ)]

= Re
[

e
i
2ψ

in−1ψn−1

(n − 1) !

(
Hn−1 − lnψ +

π

2
i
)]

+ Re
[ n+1∑

k=0,k ̸=n−1

ζ (n − k)
k!

i kψk
]

+ O
(
ψn+2) . 11

If n is an odd integer, then 12

Re
[
e

i
2ψ Lin

(
eiψ)]

= (−1)(n−1)/2 ψn−1

(n − 1) !

[(
Hn−1 − lnψ

)
cos

ψ

2
−
π

2
sin

ψ

2

]

+

(n+1)/2∑
k=0,k ̸=(n−1)/2

ζ (n − 2k)
k!

(−1)kψ2k
+ O

(
ψn+3) . 13

Thus, one can see that 14

∞∑
ℓ=1

ℓ−n Pℓ (cosϑ) =

√
2
π

(−1)(n−1)/2

(n − 1) !

×

∫ ϑ

0

ψn−1

(cosψ − cosϑ)1/2

[(
Hn−1 − lnψ

)
cos

ψ

2
−
π

2
sin

ψ

2

]
dψ

+

√
2
π

(n+1)/2∑
k=0,k ̸=(n−1)/2

ζ (n − 2k)
k!

(−1)k
∫ ϑ

0

ψ2k

(cosψ − cosϑ)1/2
dψ

+ O
(∫ ϑ

0

ψn+3

(cosψ − cosϑ)1/2
dψ
)
.

(49) 15
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Observe that, in (49), the term corresponding to k = 0 goes to ζ (n) as ϑ → 0+, and the1

leading integral is2

J3 =

∫ ϑ

0

ψn−1 lnψ

(cosψ − cosϑ)1/2
cos
(
ψ

2

)
dψ.3

By a change of variable y = sin2 ψ
2 /sin2 ϑ

2 , we can write J3 as4

J3 =
2n−1

√
2

sinn−1ϑ

2

∫ 1

0

y
n
2 −1 (1 + sin2ϑ n−1

6 y + O
(
sin4ϑy2

))
(1 − y)1/2

×

(
ln y + 2 (ln sinϑ + ln 2)+

sin2ϑ

6
y + O

(
sin4ϑy2)) dy.

5

For n ≥ 3, we derive6

J3 =
2n−1

√
2

(1 + 2 ln 2)Bln

(
n
2
,

1
2

)
sinn−1ϑ

+
2n

√
2

B
(

n
2
,

1
2

)
sinn−1ϑ ·

(
ln sin

ϑ

2

)
+ O

(
sin4ϑ

)
,

(50)7

where8

Bln (a, b) =

∫ 1

0

xa−1 ln x

(1 − x)1−b dx = −

∫ 1

0
B (y; a, b)

1
y

dy,9

and B (y; a, b) is the incomplete Beta function, defined as10

B (y; a, b) =

∫ y

0

xa−1

(1 − x)1−b dx .11

By combining (49) and (50) we see that, if s = n > 1 is an odd integer, then12

∞∑
ℓ=1

ℓ−n Pℓ (cosϑ) = ζ (n) − D1sin2ϑ

2
+ δ3

n D2sin2ϑ

2
·

(
ln sin

ϑ

2

)
+ O

(
sin3ϑ

2

)
,

(51)13

where δ j
i = 1 if i = j and 0 otherwise, D1 and D2 are positive constants depending on n only.14

Consequently, if n > 1 is an odd integer, then15

∞∑
ℓ=1

ℓ−n Pℓ (cosϑ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ζ (n) + D2sin2ϑ

2

(
ln sin

ϑ

2

)
+ O

(
sin2ϑ

2

)
, if n = 3,

ζ (n) − D1sin2ϑ

2
+ O

(
sin3ϑ

2

)
, if n ≥ 5.

(52)16

Finally, we consider the case when s = n > 1 is an even integer. It follows from (40) that17

Re
[
e

i
2ψ Lin

(
eiψ)]

= (−1)n/2
ψn−1

(n − 1) !

[(
Hn−1 − lnψ

)
sin

ψ

2
+
π

2
cos

ψ

2

]
+

n/2+1∑
k=0

ζ (n − 2k)
k!

(−1)kψ2k
+ O

(
ψn+4) ,18
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which leads to 1

∞∑
ℓ=1

ℓ−n Pℓ (cosϑ) =

√
2
π

(−1)n/2

(n − 1) !

×

∫ ϑ

0

ψn−1

(cosψ − cosϑ)1/2

[(
Hn−1 − lnψ

)
sin

ψ

2
−
π

2
cosψ

]
dψ

+

√
2
π

n/2+1∑
k=0

ζ (n − 2k)
k!

(−1)k
∫ ϑ

0

ψ2k

(cosψ − cosϑ)1/2
dψ

+ O
(∫ ϑ

0

ψn+4

(cosψ − cosϑ)1/2
dψ
)
.

2

Similarly to the case when s is odd, we can derive that for s = n even, 3

∞∑
ℓ=1

ℓ−n Pℓ (cosϑ) = ζ (n) − δ2
n

{
B
(

1,
1
2

)
sin

ϑ

2
− D3sin2ϑ

2
·

(
ln sin

ϑ

2

)}
− D4sin2ϑ

2
+ O

(
sin3ϑ

2

)
,

(53) 4

where D3 and D4 are positive constants depending on s only. That is, for even integer s > 1, we 5

have 6

∞∑
ℓ=1

ℓ−s Pℓ (cosϑ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ζ (s) − 2 sin

ϑ

2
+ o

(
sin

ϑ

2

)
, if s = 2,

ζ (s) + D2sin2ϑ

2
+ O

(
sin3ϑ

2

)
, if s ≥ 4.

(54) 7

This completes the proof of Lemma 10 in view of (47), (48), (52) and (54). ■ 8
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