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PII: S0304-4149(18)30300-4
DOI: https://doi.org/10.1016/j.spa.2018.06.009
Reference: SPA 3335

To appear in: Stochastic Processes and their Applications

Received date : 8 June 2017
Revised date : 17 March 2018
Accepted date : 29 June 2018
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Abstract
We introduce a new random graph model motivated by biological questions
relating to speciation. This random graph is defined as the stationary distri-
bution of a Markov chain on the space of graphs on {1, . . . , n}. The dynamics
of this Markov chain is governed by two types of events: vertex duplication,
where at constant rate a pair of vertices is sampled uniformly and one of
these vertices loses its incident edges and is rewired to the other vertex and
its neighbors; and edge removal, where each edge disappears at constant rate.
Besides the number of vertices n, the model has a single parameter rn.

Using a coalescent approach, we obtain explicit formulas for the first
moments of several graph invariants such as the number of edges or the
number of complete subgraphs of order k. These are then used to identify
five non-trivial regimes depending on the asymptotics of the parameter rn.
We derive an explicit expression for the degree distribution, and show that
under appropriate rescaling it converges to classical distributions when the
number of vertices goes to infinity. Finally, we give asymptotic bounds for
the number of connected components, and show that in the sparse regime
the number of edges is Poissonian.
Keywords: dynamical network, duplication-divergence, vertex duplication,
genetic drift, species problem, coalescent
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1. Introduction

In this paper, we introduce a random graph derived from a minimalistic2

model of speciation. This random graph bears superficial resemblance to
classic models of protein interaction networks [1, 2, 3, 4] in that the events4

shaping the graph are the duplication of vertices and the loss of edges. How-
ever, our model is obtained as the steady state of a Markov process (rather6

than by repeatedly adding vertices), and has the crucial feature that the du-
plication of vertices is independent from the loss of edges. These differences8

result in a very different behavior of the model.
Before describing the model formally in Section 1.2, let us briefly explain10

the motivation behind its introduction.

1.1. Biological context12

Although it is often presented as central to biology, there is no consensus
about how the concept of species should be defined. A widely held view is14

that it should be based on the capacity of individuals to interbreed. This is
the so-called “biological species concept”, wherein a species is defined as a16

group of potentially interbreeding populations that cannot interbreed with
populations outside the group.18

This view, whose origins can be traced back to the beginning of the 20th
century [5], was most famously promoted by Ernst Mayr [6] and has been20

most influential in biology [7]. However, it remains quite imprecise: indeed,
groups of populations such that (1) all pairs of populations can interbreed22

and (2) no population can interbreed with a population outside the group
are probably not common in nature – and, at any rate, do not correspond to24

what is considered a species in practice. Therefore, some leniency is required
when applying conditions (1) and (2). But once we allow for this, there26

are several ways to formalize the biological species concept, as illustrated in
Figure 1. Thus, it seems arbitrary to favor one over the others in the absence28

of a mechanism to explain why some kind of groups should be more relevant
(e.g., arise more frequently) than others.30

Figure 1: The vertices of the graph represent populations and its edges de-
note interbreeding potential (that is, individuals from two linked populations
could interbreed, if given the chance). Even with such perfect information,
it is not obvious how to delineate “groups of potentially interbreeding popu-
lations that cannot interbreed with populations outside the group”: should
these correspond to connected components (on the left, in green), maximal
complete subgraphs (on the right, in red), or be based on some other clus-
tering method (middle, in blue)?

3
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Our aim is to build a minimal model of speciation that would make pre-
dictions about the structure and dynamics of the interbreeding network and32

allow one to recover species as an emergent property. To do so, we model spe-
ciation at the level of populations. Thus, we consider a set of n populations34

and we track the interbreeding ability for every pair of populations. All this
information is encoded in a graph whose vertices correspond to populations36

and whose edges indicate potential interbreeding, i.e., two vertices are linked
if and only if the corresponding populations can interbreed.38

Speciation will result from the interplay between two mechanisms. First,
populations can sometimes “split” into two initially identical populations40

which then behave as independent entities; this could happen as a result
of the fragmentation of the habitat or of the colonization of a new patch.42

Second, because they behave as independent units, two initially identical
populations will diverge (e.g., as a result of genetic drift) until they can no44

longer interbreed.

1.2. Formal description of the model46

Start from any graph with vertex set V = {1, . . . , n}, and let it evolve
according to the following rules48

1. Vertex duplication: each vertex “duplicates” at rate 1; when a vertex
duplicates, it chooses another vertex uniformly at random among the50

other vertices and replaces it with a copy of itself. The replacement of
j by a copy of i means that j loses its incident edges and is then linked52

to i and to all of its neighbors, as depicted in Figure 2.

Figure 2: An illustration of vertex duplication. Here, i duplicates and
replaces j. After the duplication, j is linked to i and to each of its
neighbors.

2. Edge removal: each edge disappears at constant rate ρ.54

This procedure defines a continuous-time Markov chain (Gn(t))t>0 on the
finite state space of all graphs whose vertices are the integers 1, . . . , n. It56

is easy to see that this Markov chain is irreducible. Indeed, to go from
any graph G(1) to any graph G(2), one can consider the following sequence58

of events: first, a vertex is duplicated repeatedly in order to obtain the
complete graph of order n (e.g., ∀k ∈ {2, . . . , n}, vertex k is replaced by a60

copy of vertex 1); then, all the edges that are not in G(2) are removed.
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Because the Markov chain (Gn(t))t>0 is irreducible, it has a unique sta-62

tionary probability distribution µn,ρ. This probability distribution on the set
of graphs of order n defines a random graph that is the object of study of64

this paper.

1.3. Notation66

To study the asymptotic behavior of our model as n → +∞, we can let
ρ, the ratio of the edge removal rate to the vertex duplication rate, be a68

function of n. As will become evident, it is more convenient to parametrize
the model by70

rn := n−1
2 ρn .

Thus, we write Gn,rn to refer to a random graph whose law is µn, 2rn
n−1

.72

Although some of our results hold for any (n, r), in many cases we will be
interested in asymptotic properties that are going to depend on the asymp-74

totics of rn. To quantify these, we will use the Bachmann–Landau notation,
which for positive sequences rn and f(n) can be summarized as:76

• rn ∼ f(n) when rn/f(n)→ 1.

• rn = o(f(n)) when rn/f(n)→ 0.78

• rn = Θ(f(n)) when there exists positive constants α and β such that,
asymptotically, αf(n) 6 rn 6 βf(n).80

• rn = ω(f(n)) when rn/f(n)→ +∞.

These notations also have stochastic counterparts, whose meaning will be82

recalled when we use them.
Finally, we occasionally use the expression asymptotically almost surely84

(abbreviated as a.a.s.) to that a property holds with probability that goes
to 1 as n tends to infinity:86

Qn a.a.s. ⇐⇒ P(Qn) −−−−−→
n→+∞

1 .

1.4. Statement of results88

Table 1 lists the first moments of several graph invariants obtained in
Section 3.1. These are then used to identify different regimes, depending on90

the asymptotic behavior of the parameter rn, as stated in Theorem 3.10.

Theorem 3.10. Let Dn be the degree of a fixed vertex of Gn,rn. In the92

limit as n→ +∞, depending on the asymptotics of rn we have the following
behaviors for Gn,rn94

(i) Complete graph: when rn = o(1/n), P(Gn,rn is complete) goes to 1,
while when rn = ω(1/n) it goes to 0; when rn = Θ(1/n), this probability96

is bounded away from 0 and from 1.

5



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

(ii) Dense regime: when rn = o(1), P(Dn = n− 1)→ 1.98

(iii) Sparse regime: when rn = ω(n), P(Dn = 0)→ 1.

(iv) Empty graph: when rn = o(n2), P(Gn,rn is empty) goes to 0 while when100

rn = ω(n2) it goes to 1; when rn = Θ(n2), this probability is bounded
away from 0 and from 1.102

Variable Expectation Variance Covariance
1{i↔j}

1
1+r

r
(1+r)2

r
(1+r)2(3+2r) if vertex in common,

2 r
(1+r)2(3+r)(3+2r) otherwise.

D(i)
n

n−1
1+r

r(n−1)(1+2r+n)
(1+r)2 (3+2r)

r
(1+r)2

(
1 + 3(n−2)

3+2r + 2(n−2)(n−3)
(3+r)(3+2r)

)

|En| n(n−1)
2(1+r)

rn(n−1)(n2+2r2+2nr+n+5r+3)
2 (1+r)2(3+r) (3+2r) —

Xn,k

(
n
k

)(
1

1+r

)k−1
unknown —

Table 1: First and second moments of several graph invariants of Gn,r: 1{i↔j} is the
variable indicating that {ij} is an edge, D(i)

n the degree of vertex i, |En| the number of
edges and Xn,k the number of complete subgraphs of order k. The covariance of the
indicator variables of two edges depends on whether these edges share a common end,
hence the two expressions. All expressions hold for every value of n and r.

In Section 4, we derive an explicit expression for the degree distribution,
which holds for every value of n and rn. We then show that, under appro-104

priate rescaling, this degree converges to classical distributions.

Theorem 4.1. Let Dn be the degree of a fixed vertex of Gn,rn. Then, for106

each k ∈ {0, . . . , n− 1},

P(Dn = k) = 2 rn (2 rn + 1)
(n+ 2 rn)(n− 1 + 2 rn) (k + 1)

k∏

i=1

n− i
n− i+ 2 rn − 1 ,108

where the empty product is 1.

Theorem 4.2.110

(i) If rn → r > 0, then Dn

n
converges in distribution to a Beta(2, 2 r) random

variable.112

(ii) If rn is both ω(1) and o(n), then Dn

n/rn
converges in distribution to a

size-biased exponential variable with parameter 2.114

(iii) If 2 rn/n→ ρ > 0, then Dn+1 converges in distribution to a size-biased
geometric variable with parameter ρ/(1 + ρ).116
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Asymptotic bounds for the number of connected components are obtained
in Section 5, where the following theorem is proved.118

Theorem 5.1. Let #CCn be the number of connected components of Gn,rn.
If rn is both ω(1) and o(n), then120

rn
2 + op(rn) 6 #CCn 6 2 rn log n+ op(rn log n)

where, for a positive sequence (un), op(un) denotes a given sequence of ran-122

dom variables (Xn) such that Xn/un → 0 in probability.

Because the method used to obtain the upper bound in Theorem 5.1 is124

rather crude, we formulate the following conjecture, which is well supported
by simulations.126

Conjecture 5.4.

∃α, β > 0 s.t. P(αrn 6 #CCn 6 βrn) −−−−→
n→∞ 1.

Finally, in Section 6 we use the Stein–Chen method to show that the128

number of edges is Poissonian in the sparse regime, as shown by Theorem 6.1.

Theorem 6.1. Let |En| be the number of edges of Gn,rn. If rn = ω(n) then130

dTV
(
|En|,Poisson(λn)

)
−−−−−→
n→+∞

0 ,

where dTV stands for the total variation distance and λn = E(|En|) ∼ n2

2rn
. If132

in addition rn = o(n2), then λn → +∞ and as a result

|En| − λn√
λn

D−−−−−→
n→+∞

N (0, 1) ,134

where N (0, 1) denotes the standard normal distribution.

These results are summarized in Figure 3.136

Figure 3: A graphical summary of the main results established in the paper; Dn is the degree of a fixed
vertex, |En| the number of edges, #CCn the number of connected components, and κn the clique number.
All equalities and inequalities are to be understood “asymptotically almost surely” (i.e. hold with probability
that goes to 1 as n tends to infinity).
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2. Coalescent constructions of Gn,rn

In this section, we detail coalescent constructions of Gn,rn that will be138

used throughout the rest of the paper. Let us start by recalling some results
about the Moran model.140

2.1. The standard Moran process
The Moran model [8] is a classic model of population genetics. It consists142

in a set of n particles governed by the following dynamics: after an exponen-
tial waiting time with parameter

(
n
2

)
, a pair of particles is sampled uniformly144

at random. One of these particles is then removed (death) and replaced by
a copy of the other (birth), and we iterate the procedure.146

In this document, we will use the Poissonian representation of the Moran
process detailed in the next definition.148

Definition 2.1. The driving measure of a standard Moran process on V is
a collection M = (M(ij))(ij)∈V 2 of i.i.d. Poisson point processes with rate 1/2150

on R.
We think of the elements of V as sites, each occupied by a single particle.152

In forward time, each atom t ∈M(ij) indicates the replacement, at time t, of
the particle in i by a copy of the particle in j.154

For any given time α ∈ R, M defines a genealogy of V on ]−∞, α]. Taking
α = 0 and working in backward time, i.e. writing t > 0 to refer to the absolute156

time −t, this genealogy is described by a collection of ancestor functions at,
t ∈ [0,+∞[, at : V → V , defined as follows: (at)t>0 is the piecewise constant158

process such that

(i) a0 is the identity on V .160

(ii) If t ∈M(ij) then

• For all k such that at−(k) = i, at(k) = j.162

• For all k such that at−(k) 6= i, at(k) = at−(k).

(iii) If for all (ij) ∈ V 2, M(ij) ∩ [s, t] = O6 , then at = as.164

We refer to at(i) as the ancestor of i at time t before the present – or,
more simply, as the ancestor of i at time t.166

The standard Moran process is closely related to the Kingman coales-
cent [9]. Indeed, let Rt denote the equivalence relation on V defined by168

iRt j ⇐⇒ at(i) = at(j) ,

and let Kt = V/Rt be the partition of V induced by Rt. Then, (Kt)t>0 is170

a Kingman coalescent on V . In particular, we will frequently use the next
lemma.172

8
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Lemma 2.2. Let (at)t>0 be the ancestor functions of a standard Moran pro-
cess on V . For any i 6= j, let174

T{ij} = inf{t > 0 : at(i) = at(j)}

be the coalescence time of i and j and, for any S ⊂ V , let176

TS = inf{T{ij} : i, j ∈ S, i 6= j} .

Then, for all t > 0, conditional on {TS > t}, (TS − t) is an exponential178

variable with parameter
(
|S|
2

)
.

For a more general introduction to Kingman’s coalescent and Moran’s180

model, one can refer to e.g. [10] or [11].

2.2. Backward construction182

We now turn to the description of the coalescent framework on which
our study relies. The crucial observation is that, for t large enough, every184

edge of Gn(t) can ultimately be traced back to an initial edge that was
inserted between a duplicating vertex and its copy. To find out whether186

two vertices i and j are linked in Gn(t) , we can trace back the ancestry of
the potential link between them and see whether the corresponding initial188

edge and its subsequent copies survived up to time t. The first part of this
procedure depends only on the vertex duplication process and, conditional190

on the sequence of ancestors of {ij}, the second one depends only on the edge
removal process, making the whole procedure tractable. The next proposition192

formalizes these ideas.

Proposition 2.3. Let V = {1, . . . , n} and let V (2) be the set of unordered194

pairs of elements of V . Let M be the driving measure of a standard Moran
process on V , and (at)t>0 the associated ancestor functions (that is, for each196

i in V , at(i) is the ancestor of i at time t). Let P = (P{ij}){ij}∈V (2) be a
collection of i.i.d. Poisson point processes with rate rn on [0,+∞[ such that198

M and P are independent. For every pair {ij} ∈ V (2), define

P ?
{ij} =

{
t > 0 : t ∈ P{at(i)at(j)}

}
,200

with the convention that, ∀k ∈ V , P{k} = O6 . Finally, let G = (V,E) be the
graph defined by202

E =
{
{ij} ∈ V (2) : P ?

{ij} = O6
}
.

Then, G ∼ Gn,rn.204

Throughout the rest of this document, we will write Gn,rn for the graph
obtained by the procedure of Proposition 2.3.206
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Proof of Proposition 2.3. First, consider the two-sided extension of (Gn(t))t>0,
i.e. the corresponding stationary process on R (see, e.g., Section 7.1 of [12]),208

which by a slight abuse of notation we note (Gn(t))t∈R. Next, let (Ḡn(t))t∈R
be the time-rescaled process defined by210

Ḡn(t) = Gn(t(n− 1)/2) .

This time-rescaled process has the same stationary distribution as (Gn(t))t∈R212

and so, in particular, Ḡn(0) ∼ Gn,rn .
In the time-rescaled process, each vertex duplicates at rate (n − 1)/2214

and each edge disappears at rate rn = (n − 1)ρn/2. All these events being
independent, we see that the vertex duplications correspond to the atoms of216

a standard Moran process on V = {1, . . . , n}, and the edge removals to the
atoms of

(
n
2

)
i.i.d. Poisson point processes with rate rn on R, that are also218

independent of the Moran process. Thus, there exists (M̄ , P̄ ) with the same
law as (M , P ) from the proposition and such that, for t > 0,220

• If t ∈ M̄(ij), then j duplicates and replaces i in Ḡn(−t).

• If t ∈ P̄{ij}, then if there is an edge between i and j in Ḡn(−t), it is222

removed.

Since (M̄ , P̄ ) has the same law as (M , P ), if we show that224

{ij} ∈ Ḡn(0) ⇐⇒ P̄ ?
{ij} = O6 ,

where P̄ ?
{ij} =

{
t > 0 : t ∈ P̄{āt(i)āt(j)}

}
is the same deterministic function of226

(M̄ , P̄ ) as P ?
{ij} of (M , P ), then we will have proved that Ḡn(0) has the same

law as the graph G from the proposition.228

Now to see why the edges of Ḡn(0) are exactly the pairs {ij} such that
P̄{ij} is empty, note that, in the absence of edge-removal events, Ḡn(0) is the230

complete graph and the ancestor the edge {ij} at time t is {at(i) at(j)}. Con-
versely, deleting the edge {k`} from Ḡn(−t) will remove all of its subsequent232

copies from Ḡn(0), i.e. all edges {ij} such that {at(i) at(j)} = {k`}. Thus,
the edges of Ḡn(0) are exactly the edges that have no edge-removal events234

on their ancestral lineage – i.e, such that P̄ ?
{ij} = O6 .

Proposition 2.3 shows that Gn,rn can be obtained as a deterministic func-236

tion of the genealogy (at)t>0 of a Moran process and of independent Poisson
point processes. Our next result shows that, in this construction, (at)t>0 can238

be replaced by a more coarse-grained process – namely, a Kingman coales-
cent (note that the Kingman coalescent contains less information because it240

only keeps track of blocks, not of which ancestor corresponds to which block
at a given time t). This will be useful to give a forward construction of Gn,rn242

in Section 2.3. The proof of this result is straightforward and can be found
in Section A of the Appendix.244
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Proposition 2.4. Let (Kt)t>0 be a Kingman coalescent on V = {1, . . . , n},
and let πt(i) denote the block containing i in the corresponding partition at246

time t. Let the associated genealogy of pairs be the set

G =
{(
t, {πt(i)πt(j)}

)
: {ij} ∈ V (2), t ∈

[
0, T{ij}

[}
,248

where T{ij} = inf{t > 0 : πt(i) = πt(j)}. Denote by

L{ij} =
{(
t, {πt(i) πt(j)}

)
: t ∈

[
0, T{ij}

[}
250

the lineage of {ij} in this genealogy. Finally, let P • be a Poisson point process
with constant intensity rn on G and let G = (V,E), where252

E =
{
{ij} ∈ V (2) : P • ∩ L{ij} = O6

}
.

Then, G ∼ Gn,rn.254

We finish this section with a technical lemma that will be useful in the
calculations of Section 3.1. Again, the proof of this result has no interest in256

itself and can be found in Section A of the Appendix.

Lemma 2.5. Let S be a subset of V (2). Conditional on the measure M , for258

any interval I ⊂ [0,+∞[ such that

(i) For all {ij} ∈ S, ∀t ∈ I, at(i) 6= at(j).260

(ii) For all {k`} 6= {ij} in S, ∀t ∈ I, {at(i) at(j)} 6= {at(k) at(`)},

P ?
{ij}∩I, {ij} ∈ S, are independent Poisson point processes with rate rn on I.262

Moreover, for any disjoint intervals I and J , (P ?
{ij} ∩ I){ij}∈S is indepen-

dent of (P ?
{ij} ∩ J){ij}∈S.264

Before closing this section, let us sum up our results in words: if we think
of {at(i) at(j)} as being the ancestor of {ij} at time t, then the genealogy of266

vertices induces a genealogy of pairs of vertices, as illustrated by Figure 4.
Edge-removal events occur at constant rate rn along the branches of this268

genealogy and the events affecting disjoint sections of branches are indepen-
dent, so that we can think of P ?

{ij}, {ij} ∈ V (2), as a single Poisson point270

process P ? on the lineages of pairs of vertices. A pair of vertices is an edge
of Gn,rn if and only if there is no atom of P ? on its lineage.272
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Figure 4: On the left, a genealogy on {i, j, k, `} and on the right
the corresponding genealogy of the pairs. Edge removal events
occur at constant rate along the lineages of pairs of vertices,
and a pair of vertices is an edge of Gn,rn if and only if there is
no atom on its lineage.

2.3. Forward construction
We now give a forward version of the coalescent construction presented274

in the previous section. Here, unlike in the previous section, the graph Gn,r

is built by adding vertices one at a time. This construction will be useful in276

proofs and provides a computationally efficient way to sample Gn,r.
Consider the Markov process (G†r(t))t>0 defined by278

(i) G†r(0) = ({1, 2}, {{1, 2}}) is the complete graph of order 2.

(ii) Conditional on Vt = {1, . . . , n}, where Vt is the set of vertices of G†r(t):280

at rate
(
n
2

)
, a vertex is sampled uniformly in Vt and duplicated with-

out replacement – that is, we copy the vertex and all incident edges,282

and label the new vertex n + 1, resulting in a graph with vertex set
{1, . . . , n+ 1}.284

(iii) During the whole process, each edge disappears at constant rate r.

Next, for every integer n > 2, let G?
r(n) = G†r(tn−), where286

tn = sup
{
t > 0 : G†r(t) has n vertices

}
.

Finally, let Φn(G?
r(n)) denote the graph obtained by shuffling the labels of288

the vertices of G?
r(n) uniformly at random, i.e. let Φn be picked uniformly at

random among all the permutations of {1, . . . , n} and, by a slight abuse of290

notation, let

Φn(G?
r(n)) =

(
{1, . . . , n},

{
{Φn(i) Φn(j)} : {ij} ∈ G?

r(n)
})

292

Proposition 2.6. For any r > 0, for any integer n > 2,

Φn(G?
r(n)) ∼ Gn,r .294
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Going from a backward construction such as Proposition 2.4 to a forward
construction such as Proposition 2.6 is common in coalescent theory. The296

proofs, though straightforward, are somewhat tedious. They can be found in
Section A of the Appendix, and we save the rest of this section to comment298

on the forward construction.
Proposition 2.6 shows that, for any given sequence (rn), for any n > 2,300

Φn(G?
rn

(n)) ∼ Gn,rn . Note however that this is not a compatible construc-
tion of a sequence (Gn,rn)n>2. In particular, all elements of a sequence302

(Φn(G?
r(n)))n>2 are associated to the same value of r, while each term of

a sequence (Gn,rn)n>2 corresponds to a different value of rn.304

Finally, it is necessary to relabel the vertices of G?
r(n) in Proposition 2.6,

as failing to do so would condition on {k, k − 1} being the (n− k + 1)-th306

pair of vertices to coalesce in the genealogy of Gn,r (in particular, the edges
of G?

r(n) are not exchangeable: “old” edges such as {1, 2} are least likely to308

be present than more recent ones such as {n− 1, n}). However, since G?
r(n)

and Φn(G?
r(n)) are isomorphic, when studying properties that are invariant310

under graph isomorphism (such as the number of connected components in
Section 5 or the positive association of the edges in Section 6), we can work312

directly on G?
r(n).

3. First and second moment methods314

In this section, we apply Proposition 2.3 and Lemma 2.5 to obtain the
expressions presented in Table 1. These are then used to identify different316

regimes for Gn,rn , depending on the asymptotic behavior of the parameter rn.
In order to be able to use Lemma 2.5, we will always reason conditionally318

on the genealogy of the vertices (i.e. on the vertex duplication process M )
and then integrate against its law.320

3.1. First moments of graph invariants
3.1.1. Degree and number of edges322

Proposition 3.1. For any fixed vertices i and j, i 6= j, the probability that
i and j are linked in Gn,rn is324

P(i↔ j) = 1
1 + rn

.

Corollary 3.2. Let Dn be the degree of a fixed vertex of Gn,rn, and |En| be326

the number of edges of Gn,rn. Then,

E(Dn) = n− 1
1 + rn

and E(|En|) =
(
n

2

)
1

1 + rn
.328

Proof. By Proposition 2.3,

{i↔ j} ⇐⇒ P ?
{ij} ∩ [0, T{ij}[ = O6 .330
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Reasoning conditionally on T{ij} and applying Lemma 2.5 to S = {{ij}} and
I = [0, T{ij}[, we see that P ?

{ij} is a Poisson point process with rate rn on I.332

Since T{ij} ∼ Exp(1),

P(i↔ j) = P
(
e1 > T{ij}

)
,334

where e1 = inf P ?
{ij} is an exponential variable with rate rn that is indepen-

dent of T{ij}.336

The corollary follows directly from the fact that the degree of a vertex v
can be written as338

D(v)
n =

∑

i 6=v
1{i↔v}

and that the number of edges of Gn,rn is340

|En| =
∑

{ij}∈V (2)

1{i↔j} .

Proposition 3.3. Let i, j and k be three distinct vertices of Gn,rn. We have342

Cov
(
1{i↔j},1{i↔k}

)
= rn

(3 + 2rn)(1 + rn)2

Corollary 3.4. Let Dn be the degree of a fixed vertex of Gn,rn. We have344

Var(Dn) = rn(n− 1)(1 + 2 rn + n)
(1 + rn)2 (3 + 2 rn)

Proof. For all t > 0, let St = {at(i), at(j), at(k)}. Let τ1 = inf{t > 0 : |St| = 2}346

and τ2 = inf{t > τ1 : |St| = 1}. Recall from Lemma 2.2 that τ1 and τ2 − τ1
are independent exponential variables with parameter 3 and 1, respectively.348

Finally, let {u, v} = Sτ1 .
By Proposition 2.3, {ij} and {ik} are edges of Gn,rn if and only if P ?

{ij} ∩350

[0, T{ij}[ and P ?
{ik} ∩ [0, T{ik}[ are empty, which can also be written

(
P ?
{ij} ∩ [0, τ1[

)
∪
(
P ?
{ik} ∩ [0, τ1[

)
∪
(
P ?
{uv} ∩ [τ1, τ2[

)
= O6352

Conditionally on τ1 and τ2, by Lemma 2.5, (P ?
{ij} ∩ [0, τ1[)∪ (P ?

{ik} ∩ [0, τ1[) is
independent of P ?

{uv} ∩ [τ1, τ2[, P ?
{ij} and P ?

{ik} are independent Poisson point354

processes with rate rn on [0, τ1[, and P ?
{uv} is a Poisson point process with

rate rn on [τ1, τ2[. Therefore,356

P(i↔ j, i↔ k) = P(e1 > τ1)P(e2 > τ2 − τ1) ,

where e1 = inf(P ?
{ij} ∪ P ?

{ik}) ∼ Exp(2 rn) is independent of τ1 and e2 =358

inf(P ?
{uv} ∩ [τ1,+∞[) ∼ Exp(rn) is independent of τ2 − τ1. As a result,

P(i↔ j, i↔ k) = 3
3 + 2 rn

× 1
1 + rn

.360
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A short calculation shows that

Cov
(
1{i↔j},1{i↔k}

)
= rn

(3 + 2rn)(1 + rn)2 ,362

proving the proposition.
As before, the corollary follows from writing the degree of v as D(v)

n =364 ∑
i 6=v 1{i↔v}, which gives

Var
(
D(v)
n

)
= (n− 1) Var

(
1{i↔v}

)
+ (n− 1)(n− 2) Cov

(
1{i↔v},1{j↔v}

)
.366

Substituting Var
(
1{i↔v}

)
= rn/(1 + rn)2 and Cov

(
1{i↔v},1{j↔v}

)
yields the

desired expression.368

Proposition 3.5. Let i, j, k and ` be four distinct vertices of Gn,rn. We
have370

Cov
(
1{i↔j},1{k↔`}

)
= 2 rn

(1 + rn)2(3 + rn)(3 + 2 rn)

Corollary 3.6. Let D(i)
n and D(j)

n be the respective degrees of two fixed ver-372

tices i and j, and let |En| be the number of edges of Gn,rn. We have

Cov
(
D(i)
n , D

(j)
n

)
= rn

(1 + rn)2

(
1 + 3(n− 2)

3 + 2 rn
+ 2(n− 2)(n− 3)

(3 + rn)(3 + 2 rn)

)
374

and
Var(|En|) = rn n (n− 1)(n2 + 2 r2

n + 2n rn + n+ 5 rn + 3)
2 (1 + rn)2 (3 + rn) (3 + 2 rn)376

The proof of Proposition 3.5 and its corollary are conceptually identical
to the proofs of Propositions 3.1 and 3.3 and their corollaries, but the calcu-378

lations are more tedious and so they have been relegated to Section B of the
Appendix.380

3.1.2. Complete subgraphs
From a biological perspective, complete subgraphs are interesting because382

they are related to how fine the partition of the set of populations into species
can be. Indeed, the vertices of a complete subgraph – and especially of a large384

one – should be considered as part of the same species. A complementary
point of view will be brought by connected components in Section 5.386

In this section we establish the following results.

Proposition 3.7. Let Xn,k be the number of complete subgraphs of order k388

in Gn,rn. Then,

E(Xn,k) =
(
n

k

)( 1
1 + rn

)k−1
.390
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Corollary 3.8. Let κn be the clique number of Gn,rn, i.e. the maximal number
of vertices in a complete subgraph of Gn,rn. If (kn) is such that392

(
n

kn

)( 1
1 + rn

)kn−1
−−−−→
n→∞ 0 ,

then kn is asymptotically almost surely an upper bound on κn, i.e. P(κn 6 kn)→ 1394

as n→ +∞. In particular, when rn → +∞,

(i) If rn = o(n), then κn 6 log(rn)n/rn a.a.s.396

(ii) If rn = O(n/ log(n)), κn = Op(n/rn), i.e.

∀ε > 0, ∃M > 0, ∃N s.t. ∀n > N, P(κn > Mn/rn) < ε .398

Proof of Proposition 3.7. The number of complete subgraphs of order k of
Gn,rn is400

Xn,k =
∑

S∈V (k)

1{Gn,rn [S] is complete}

where the elements of V (k) are the k-subsets of V = {1, . . . , n}, and Gn,rn [S]402

is the subgraph of Gn,rn induced by S. By exchangeability,

E(Xn,k) =
(
n

k

)
P
(
Gn,rn [S] is complete

)
,404

where S is any fixed set of k vertices. Using the notation of Proposition 2.3,

Gn,rn [S] is complete ⇐⇒ ∀{ij} ∈ S, P ?
{ij} = O6 .406

For all t > 0, let At = {at(i) : i ∈ S} be the set of ancestors of S at t. Let
τ0 = 0 and for each ` = 1, . . . , k− 1 let τ` be the time of the `-th coalescence408

between two lineages of S, i.e.

τ` = inf
{
t > τ`−1 : |At| = |Aτ`−1| − 1

}
410

Finally, let Ã` = Aτ`
and I` = [τ`, τ`+1[. With this notation,

{
∀{ij} ∈ S, P ?

{ij} = O6
}

=
k−2⋂

`=0
B` ,412

where
B` =

⋂

{ij}∈Ã(2)
`

{P ?
{ij} ∩ I` = O6 }414

and Ã(2)
` denotes the (unordered) pairs of Ã`. Since for ` 6= m, I` ∩ Im = O6 ,

Lemma 2.5 shows that conditionally on I0, . . . , Ik−1, the events B0, . . . , Bk−2416

are independent. By construction, for all {ij} 6= {uv} in Ã(2)
` ,

∀t ∈ I`, {at(i), at(j)} 6= {at(u), at(v)} 6= O6418
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and so it follows from Lemma 2.5 that, conditional on I`, (P ?
{ij}∩I`), {ij} ∈ Ã

(2)
` ,

are i.i.d. Poisson point processes with rate rn on I`. Therefore,420

P(B`) = P
(
min

{
e

(`)
{ij} : {ij} ∈ Ã(2)

`

}
> |I`|

)
,

where e(`)
{ij}, {ij} ∈ Ã

(2)
` , are

(
k−`

2

)
i.i.d. exponential variables with parameter422

rn that are also independent of |I`|. Since |I`| ∼ Exp
((

k−`
2

))
,

P(B`) = 1
1 + rn

424

and Proposition 3.7 follows.

Proof of Corollary 3.8. The first part of the corollary is a direct consequence426

of Proposition 3.7. First, note that

Xn,kn = 0 ⇐⇒ κn < kn428

that a complete subgraph of order k contains complete subgraphs of order `
for all ` < k. As a result, any kn such that P(Xn,kn = 0) → 1 is asymptoti-430

cally almost surely an upper bound on the clique number κn. Now, observe
that since Xn,kn is a non-negative integer, Xn,kn > 1{Xn,kn 6=0} and therefore432

E(Xn,kn) > P(Xn,kn 6= 0) .

Finally,Xn,k being integer-valued, P(Xn,kn 6= 0)→ 0 implies P(Xn,kn = 0)→ 1.434

To prove the second part of the corollary, using Stirling’s formula we find
that whenever rn and kn are o(n) and go to +∞ as n→ +∞,436

(
n

kn

)( 1
1 + rn

)kn−1
∼ C√

kn

nn

kkn
n (n− kn)n−kn

( 1
1 + rn

)kn−1
,

where C =
√

2π. The right-hand side goes to zero if and only if its logarithm438

goes to −∞, i.e. if and only if

An := kn log
(

n− kn
kn(1 + rn)

)
− n log

(
1− kn

n

)
+ log

(
1 + rn√
kn

)
440

goes to −∞. Now let kn = ngn/rn, where gn → +∞ and is o(rn), so that
kn = o(n). Then,442

kn log
(

n− kn
kn(1 + rn)

)
∼ −kn log(gn)

and444

−n log
(

1− kn
n

)
∼ kn .
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Moreover, as long as it does not go to zero,446

log
(

1 + rn√
kn

)
∼ 3

2 log(rn)− 1
2 log(ngn) .

Putting the pieces together, we find that An is asymptotically equivalent to448

−ngn
rn

log(gn) + 3
2 log(rn)− 1

2 log(ngn) .

Taking gn = log(rn), this expression goes to −∞ as n→ +∞, yielding (i). If450

rn = O(n/ log(n)), then it goes to −∞ for any gn → +∞, which proves (ii).
Indeed, if there exists ε > 0 such that452

∀M > 0, ∀N, ∃n > N s.t. P(κn > Mn/rn) > ε ,

then considering successively M = 1, 2, . . ., we can find n1 < n2 < · · · such454

that
∀k ∈ N, P(κnk

> knk/rnk
) > ε .456

Defining (gn) by
∀n ∈ {nk, . . . , nk+1 − 1}, gn = k ,458

we obtain a sequence (gn) that goes to infinity and yet is such that for all N
there exists n := min{nk : nk > N} such that P(κn > gnn/rn) > ε.460

A natural pendant to Proposition 3.7 and Corollary 3.8 would be to use
the variance of Xn,k to find a lower bound on the clique number. Indeed, it462

follows from Chebychev’s inequality that

P(Xn,k = 0) 6 Var(Xn,k)
E(Xn,k)2 .464

However, computing Var(Xn,k) requires being able to compute the probabil-
ity that two subsets of k vertices S and S ′ both induce a complete subgraph,466

which we have not managed to do. Using the probability that Gn,rn [S] is
complete as an upper bound for this quantity, we have the very crude in-468

equality

Var(Xn,k) 6
(
n

k

)2

p (1− p) ,470

where p = 1/(1 + rn)k−1. This shows that when rn → 0 and kn = o(1/rn),
P(Xn,kn = 0) tends to zero, proving that κn is at least Θ(1/rn).472

Finally, because we expect our model to form dense connected compo-
nents, whose number we conjecture to be on the order of rn in the interme-474

diate regime (see Theorem 5.1 and Conjecture 5.4), and since the degree of
a typical vertex is approximately n/rn in that regime, it seems reasonable to476

conjecture
Conjecture 3.9. In the intermediate regime, i.e. when rn → +∞ and rn =478

o(n),
∃α, β > 0 s.t. P(αn/rn 6 κn 6 βn/rn) −−−−−→

n→+∞
1.480
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3.2. Identification of different regimes
We now use the results of the previous section to identify different regimes482

for the behavior of Gn,rn . The proof of our next theorem relies in part on
results proved later in the paper (namely, Theorems 4.1 and 6.1), but no484

subsequent result depends on it, avoiding cyclic dependencies. While this
section could have been placed at the end of the paper, it makes more sense486

to present it here because it relies mostly on Section 3.1 and because it helps
structure the rest of the paper.488

Theorem 3.10. Let Dn be the degree of a fixed vertex of Gn,rn. In the
limit as n→ +∞, depending on the asymptotics of rn we have the following490

behaviors for Gn,rn

(i) Transition for the complete graph: when rn = o(1/n), P(Gn,rn is complete)492

goes to 1, while when rn = ω(1/n) it goes to 0; when rn = Θ(1/n), this
probability is bounded away from 0 and from 1.494

(ii) Dense regime: when rn = o(1), P(Dn = n− 1)→ 1.

(iii) Sparse regime: when rn = ω(n), P(Dn = 0)→ 1.496

(iv) Transition for the empty graph: when rn = o(n2), P(Gn,rn is empty)
goes to 0 while when rn = ω(n2) it goes to 1; when rn = Θ(n2), this498

probability is bounded away from 0 and from 1.

Proof. (i) is a direct consequence of Proposition 3.7 which, applied to k = n,500

yields
P(Gn,rn is complete) =

( 1
1 + rn

)n−1
.502

(ii) is intuitive since E(Dn) = (n− 1)/(1 + rn); but because it takes rn =
o(1/n2) for Var(Dn) to go to zero, a second moment method is not sufficient504

to prove it. However, using Theorem 4.1, we see that P(Dn = n− 1) can be
written as506

P(Dn = n− 1) = Γ(2 + 2 rn)Γ(n+ 1)
Γ(n+ 1 + 2 rn) ,

where Γ is the gamma function. The results follows by letting rn go to zero508

and using the continuity of Γ.
(iii) follows from the same argument as in the proof of Corollary 3.8, by510

which, Dn being a non-negative integer, P(Dn 6= 0) 6 E(Dn) = n−1
1+rn

.
In (iv), the fact that Gn,rn is empty when rn = ω(n2) is yet another512

application of this argument, but this time using the expected number of
edges, E(|En|) = n(n−1)

2(1+rn) , in conjunction with the fact that Gn,rn is empty if514

and only if |En| = 0; to see why the graph cannot be empty when rn = o(n2),
consider the edge that was created between the duplicated vertex and its copy516

in the most recent duplication. Clearly, if this edge has not disappeared
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yet then Gn,rn cannot be empty. But the probability that this edge has518

disappeared is just
rn(

n
2

)
+ rn

,520

which goes to zero when rn = o(n2). Finally, the fact that P(Gn,rn is empty)
is bounded away from 0 and from 1 when rn = Θ(n2) is a consequence522

of Theorem 6.1, which shows that the number of edges is Poissonian when
rn = ω(n). As a result, P(|En| = 0) ∼ e−E(|En|).524

Remark 3.11. Note that when rn = o(1), Var(Dn) ∼ rnn
2/3 can go to infinity

even though Dn = n − 1 with probability that goes to 1. Similarly, when526

rn = o(1/n), Var(|En|) ∼ rnn
4/18 and |En| =

(
n
2

)
a.a.s. Notably, Dn =

(n− 1)−Dn converges to 0 in probability while Var
(
Dn

)
goes to infinity.528

4. The degree distribution

The degree distribution is one of the most widely studied graph invariants530

in network science. Our model makes it possible to obtain an exact expression
for its probability distribution:532

Theorem 4.1 (degree distribution). Let Dn be the degree of a fixed vertex
of Gn,rn. Then, for each k ∈ {0, . . . , n− 1},534

P(Dn = k) = 2 rn (2 rn + 1)
(n+ 2 rn)(n− 1 + 2 rn) (k + 1)

k∏

i=1

n− i
n− i+ 2 rn − 1 ,

where the empty product is 1.536

The expression above holds for any positive sequence (rn) and any n; but
as n → +∞ it becomes much simpler and, under appropriate rescaling, the538

degree converges to classical distributions:

Theorem 4.2 (convergence of the rescaled degree).540

(i) If rn → r > 0, then Dn

n
converges in distribution to a Beta(2, 2 r) random

variable.542

(ii) If rn is both ω(1) and o(n), then Dn

n/rn
converges in distribution to a

size-biased exponential variable with parameter 2.544

(iii) If 2 rn/n→ ρ > 0, then Dn+1 converges in distribution to a size-biased
geometric variable with parameter ρ/(1 + ρ).546

In this section we prove Theorem 4.1 by coupling the degree to the num-
ber of individuals descended from a founder in a branching process with548

immigration. Theorem 4.2 is then easily deduced by a standard study that
has been relegated to Section C of the Appendix.550
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4.1. Ideas of the proof of Theorem 4.1
Before jumping to the formal proof of Theorem 4.1, we give a verbal552

account of the main ideas of the proof.
In order to find the degree of a fixed vertex v, we have to consider all554

pairs {iv} and look at their ancestry to assess the absence/presence of atoms
in the corresponding Poisson point processes. To do so, we can restrict our556

attention to the genealogy of the vertices, and consider that edge-removal
events occur along the lineages of this genealogy: a point that falls on the558

lineage of vertex i at time t means that t ∈ P ?
{iv}. In this setting, edge-

removal events occur at constant rate rn on every lineage different from that560

of v.
Next, the closed neighborhood of v (i.e. the set of vertices that are linked562

to v, plus v itself) can be obtained through the following procedure: we trace
the genealogy of vertices, backwards in time; if we encounter an edge-removal564

event on lineage i at time t, then we mark all vertices that descend from this
lineage, i.e. all vertices whose ancestor at time t is i; only the lineages of566

unmarked vertices are considered after t. We stop when there is only one
lineage left in the genealogy. The unmarked vertices are then exactly the568

neighbors of v (plus v itself). The procedure is illustrated in Figure 5.

Figure 5: Illustration of the procedure used to find the neighborhood of v. On the left, the
genealogy of the vertices. The dashed blue line represents the lineage of the focal vertex v,
and a dot on lineage k corresponds to a point in P{kat(v)}. In the middle, we uncover the
genealogy and edge-removal events in backward time, as described in the main text. On
the right, the forest that we get when the procedure is complete. The non-colored (black)
branches are exactly the neighbors of v.

This vertex marking process is not convenient to describe in backward570

time because we typically mark several vertices simultaneously. By contrast,
the forest that results from the completed process seems much easier to de-572

scribe in forward time. Indeed, the arrival of a new lineage corresponds either
to the addition of a new unmarked vertex or to the addition of a marked one,574

depending on whether the new lineage belongs to the same tree as v or not.
Moreover, in forward time, the process is reminiscent of a branching576

process with immigration: new lineages are either grafted to existing ones
(branching) or sprout spontaneously (immigration). Let us try to find what578

the branching and immigration rates should be. In backward time, when
there are k + 1 lineages then a coalescence occurs at rate

(
k+1

2

)
, while an580

edge-removal event occurs at rate k rn. Reversing time, these events occur
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at the same rates. As a result, when going from k to k + 1 lineages, the582

probability that the next event is a branching is (k + 1)/(k + 1 + 2 rn).
Next, we have to find the probability that each lineage has to branch,584

given that the next event is a branching. Here, a spinal decomposition [13, 14]
suggests that every lineage branches at rate 1, except for the lineage of v,586

which branches at rate 2. To see why, observe that this is coherent with the
fact that, in backward time, when going from k+ 1 to k lineages there are k588

pairs out of
(
k+1

2

)
that involve the lineage of v, so that the probability that

the lineage of v is involved in the next coalescence is 2/(k + 1).590

If this heuristic is correct, then in forward time it is easy to track the
number of branches of the tree of v versus the number of branches of other592

trees: when there are p branches in the tree of v and q branches in the other
trees, the probability that the next branch is added to the tree of v is just594

(p + 1)/(p + 1 + q + 2 rn). Moreover, when the total number of branches
reaches n, the number of branches in the tree of v is also the number of596

unmarked vertices at the end of the vertex marking procedure, which is itself
D(v)
n + 1, the degree of v plus one.598

4.2. Formal proof of Theorem 4.1
The ideas and outline of the proof parallels the account given in the600

previous section: first, given a realization of the vertex-duplication process
M and of the edge-removal process P , we describe a deterministic procedure602

that gives the closed neighborhood of any vertex v,

NG[v] =
{
i ∈ V : {iv} ∈ E

}
∪
{
v
}
,604

where G = (V,E) is the graph associated to M and P ; then, we identify the
law of the process (Ft)t>0 corresponding to this procedure, and recognize it606

as the law of a branching process with immigration.

Definition 4.3. A rooted forest with marked vertices is a triple F = (V ◦, V •, ~E)608

such that

(i) V ◦ ∩ V • = O6 .610

(ii) Letting V = V ◦∪V •, (V, ~E) is an acyclic digraph with the property that
∀i ∈ V , deg+(i) ∈ {0, 1}, where deg+(i) is the out-degree of vertex i.612

The marked vertices are the elements of V •; the roots of F are the vertices
with out-degree 0 (that is, edges are oriented towards the root), whose set we614

denote by R(F ); finally, the trees of F are its connected components (in the
weak sense, i.e. considering the underlying undirected graph), and we write616

TF (i) for the tree containing i in F .
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4.2.1. The vertex-marking process618

We now define the backward-time process (Ft)t>0 that corresponds to the
procedure described informally in Section 4.1. Recall the notation of Propo-620

sition 2.3. For a given realization of M and P , and for any fixed vertex v, let
(Ft)t>0 be the piecewise constant process defined deterministically by622

• F0 = (V,O6 ,O6 ).

• If t ∈M(ij), then ∀k, ` ∈ R(Ft−)∩V ◦t− such that (at−(k), at−(`)) = (i, j),624

~Et = ~Et− ∪
{

(k, `)
}
.

• If t ∈ P{iat(v)}, then letting dt(i) = {j ∈ V : at(j) = i} be the set of626

descendants of i born after time t,
{
V ◦t = V ◦t− \ dt(i)
V •t = V •t− ∪ dt(i) .

628

What makes (Ft)t>0 interesting is that

NG[v] = V ◦∞ .630

Indeed, by construction,

i ∈ V ◦t ⇐⇒
⋃

s∈[0,t]


 ⋃

j:i∈ds(j)
P{jas(v)}


 = O6 ,632

and since for every s the unique j such that i ∈ ds(j) is as(i), we have

V ◦t =
{
i ∈ V : P ?

{iv} ∩ [0, t] = O6
}
.634

The Poissonian construction given above shows that (Ft, at)t>0 is a Markov
process. Now, observe that conditional on at636

(i) M(ij)∩ ]t,+∞[ ∼ M(at(i)at(j))∩ ]t,+∞[ and is independent of (Fs, as)s6t

(ii) P{iat(v)}∩]t,+∞[ ∼ P{at(i)at(v)}∩]t,+∞[ and is independent of (Fs, as)s6t638

(iii) j ∈ dt(i) ⇐⇒ i ∈ R(Ft) and j ∈ TFt(i)

As a consequence, (Ft)t>0 is also a Markov process, whose law is character-640

ized by

• F0 = (V,O6 ,O6 ).642

• Ft goes from (V ◦t , V •t , ~Et) to

–
(
V ◦t , V

•
t , ~Et ∪ {(i, j)}

)
at rate 1/2, for all i, j in R(Ft)644

–
(
V ◦t \ TFt(i), V •t ∪ TFt(i), ~Et

)
at rate rn, for all i in R(Ft).
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Let (F̃k)k∈{1,...,n} be the chain embedded in (Ft)t>0, i.e. defined by646

F̃k = Ftk , where tk = inf
{
t > 0 : |R(Ft)| = n− k + 1

}
.

The rooted forests with marked vertices that correspond to realizations of648

F̃n are exactly the fn = (V ◦, V •, ~E) that have n vertices and are such that
V ◦ = Tfn(v). Moreover, for each of these there exists a unique trajectory650

(f1, . . . , fn) of (F̃1, . . . , F̃n) such that F̃n = fn and it follows from the transi-
tion rates of (Ft)t>0 that652

P
(
F̃n = fn

)
= (1/2)n−|R(fn)| r|R(fn)|−1

n
n∏
k=2

(k(k − 1)/2 + (k − 1)rn)

= 1
(n− 1)! ×

(2 rn)|R(fn)|−1

n∏
k=2

(k + 2 rn)
(1)654

Finally, note that Ṽ ◦n = V ◦∞ is the closed neighborhood of v in our graph.656

4.2.2. The branching process
The process with which we will couple the vertex-marking process de-658

scribed in the previous section is a simple random function of the trajectories
of a branching process with immigration (Zt)t>0. In this branching process,660

immigration occurs at rate 2 rn and each particle gives birth to a new particle
at rate 1 – except for one particle, which carries a special item that enables662

it to give birth at rate 2; when this lineage reproduces, it keeps the item with
probability 1/2, and passes it to its offspring with probability 1/2.664

Formally, we consider the Markov process on the set of rooted forests with
marked vertices (augmented with an indication of the carrier of the item),666

defined by Z0 = ({1},O6 ,O6 , 1) and by the following transition rates:
(Zt)t>0 goes from (W ◦, W •, ~E, c) to668

•
(
W ◦ ∪ {N}, W •, ~E ∪ {(N, i)}, c

)
at rate 1, for all i ∈ W ◦

•
(
W ◦, W • ∪ {N}, ~E ∪ {(N, i)}, c

)
at rate 1, for all i ∈ W •670

•
(
W ◦ ∪ {N}, W •, ~E ∪ {(N, c)}, N

)
at rate 1

•
(
W ◦, W • ∪ {N}, ~E, c

)
at rate 2 rn672

where N = |W ◦ ∪W •| + 1 is the label of the new particle. The fourth
coordinate of (Zt)t>0 tracks the carrier of the item.674

As previously, the Markov chain (Z̃k)k∈N∗ embedded in (Zt)t>0 is defined
by676

Z̃k = Ztk , where tk = inf
{
t > 0 : |W ◦

t ∪W •
t | = k

}
.

24



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

The realizations of Z̃n are exactly the (W ◦
n ,W

•
n , ~En, cn) such that fn =678

(W ◦
n ,W

•
n ,
~En) is a rooted forest with marked vertices on {1, . . . , n} andW ◦

n =
Tfn(1) = Tfn(cn). For these, it follows from the transition rates of (Zt)t>0680

that
P
(
Z̃n = (W ◦

n ,W
•
n , ~En, cn)

)
= (2 rn)|R(fn)|−1

n−1∏
k=1

(k + 1 + 2 rn)
. (2)682

Finally, note that (Xk)k∈N∗ =
(
|W̃ ◦

k |, |W̃ •
k |
)
k∈N∗

, which counts the num-
ber of descendants of the first particle and the number of descendants of684

immigrants, is a Markov chain whose law is characterized by X1 = (1, 0) and
Xk goes from (p, q) to686

• (p+ 1, q) with probability p+1
p+1+q+2rn

• (p, q + 1) with probability q+2r
p+1+q+2rn

.688

4.2.3. Relabeling and end of proof
The last step before finishing the proof of Theorem 4.1 is to shuffle the690

vertices of the forest associated to Z̃n appropriately. For any fixed n, v and
c in {1, . . . , n}, let Φ(c,v) be uniformly and independently of anything else692

picked among the permutations of {1, . . . , n} that map c to v; define Φv(Z̃n)
by694

Φv

(
W̃ ◦
n , W̃

•
n , Ẽn, c̃n

)
=
(
Φ(c̃n,v)(W̃ ◦

n), Φ(c̃n,v)(W̃ •
n), Φ(c̃n,v)(Ẽn)

)

where Φ(c̃n,v)(Ẽn) is to be understood as
{(

Φ(c̃n,v)(i),Φ(c̃n,v)(j)
)

: (i, j) ∈ Ẽn
}
.696

With all these elements, the proof of Theorem 4.1 goes as follows. First,
from equations (1) and (2) and the definition of Φv, we see that for all rooted698

forest with marked vertices fn,

P
(
F̃n = fn

)
= P

(
Φv(Z̃n) = fn

)
.700

In particular, Ṽ ◦n , the set of unmarked vertices in the vertex-marking process,
and Φ(c̃n,v)(W̃ ◦

n), the relabeled set of descendants of the first particle in the702

branching process, have the same law. Now, on the one hand we have
∣∣∣Ṽ ◦n

∣∣∣ =
∣∣∣NG[v]

∣∣∣ = D(v)
n + 1 ,704

and on the other hand we have
∣∣∣Φ(c̃n,v)(W̃ ◦

n)
∣∣∣ =

∣∣∣W̃ ◦
n

∣∣∣ .706

Since
∣∣∣W̃ ◦

n

∣∣∣ is the first coordinate of the Markov chain (Xk)k∈N∗ introduced
in the previous section, it follows directly from the transition probabilities of708

(Xk)k∈N∗ that

P
(
Xn = (k + 1, n− k − 1)

)
=
(
n− 1
k

)
k∏
p=1

(p+ 1)
n−k−2∏
q=0

(q + 2 rn)
n−1∏

(p+q)=1

(
(p+q) + 1 + 2 rn

) ,710
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from which the expression of Theorem 4.1 can be deduced through elementary
calculations.712

5. Connected components in the intermediate regime

From a biological perspective, connected components are good candidates714

to define species, and have frequently been used to that end. Moreover,
among the possible definitions of species, they play a special role because716

they indicate how coarse the partition of the set of populations into species
can be; indeed, it would not make sense biologically for distinct connected718

components to be part of the same species. As a result, connected compo-
nents are in a sense the “loosest” possible definition of species. This comple-720

ments the perspective brought by complete subgraphs, which inform us on
how fine the species partition can be (see Section 3.1.2). For a discussion of722

the definition of species in a context where traits and ancestral relationships
between individuals are known, see [15].724

The aim of this section is to prove the following theorem.

Theorem 5.1. Let #CCn be the number of connected components of Gn,rn.726

If rn is both ω(1) and o(n), then
rn
2 + op(rn) 6 #CCn 6 2 rn log n+ op(rn log n)728

where, for a positive sequence (un), op(un) denotes a given sequence of ran-
dom variables (Xn) such that Xn/un → 0 in probability.730

5.1. Lower bound on the number of connected components
The proof of the lower bound on the number of connected components732

uses the forward construction introduced in Section 2.2 and the associated
notation. It relies on the simple observation that, letting #CC(G) denote734

the number of connected components of a graph G, #CC(G?
rn

(k)) is a nonde-
creasing function of k. Indeed, in the sequence of events defining (G?

rn
(k))k>2,736

vertex duplications do not change the number of connected components – be-
cause a new vertex is always linked to an existing vertex (its ‘mother’) and her738

neighbors – and edge removals can only increase it. Thus, if mn 6 n and `n
are such that P

(
#CC(G?

rn
(mn) > `n

)
→ 1 as n → ∞, then `n is asymptot-740

ically almost surely a lower bound on the number of connected components
of G?

rn
(n) — and therefore of Gn,rn .742

To find such a pair (mn, `n), note that, for every graph G of order m,

#CC(G) > m−#edges(G) .744

Moreover, since for any fixed n, G?
rn

(mn) has the same law as Gmn,rn , the
exact expressions for the expectation and the variance of |E?

mn
|, the number746
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of edges of G?
rn

(mn), are given in Table 1. We see that, if rn and mn are both
ω(1) and o(n),748

E
(
|E?

mn
|
)
∼ m2

n

2 rn
and Var

(
|E?

mn
|
)
∼ m2

n

4 r3
n

(
m2
n + 2 r2

n

)
.

By Chebychev’s inequality,750

P

( ∣∣∣|E?
mn
| − E

(
|E?

mn
|
)∣∣∣ > m1−ε

n

)
6

Var
(
|E?

mn
|
)

m2−2ε
n

.

When mn = Θ(rn), since rn = ω(1) the right-hand side of this inequality752

goes to 0 as n→ +∞, for all ε < 1/2. It follows that

|E?
mn
| = E

(
|E?

mn
|
)

+ op(rn) .754

Taking mn := bα rnc, we find that

#CC(G?
rn

(mn)) > mn − |E?
mn
| = α

(
1− α

2
)
rn + op(rn) .756

The right-hand side is maximal for α = 1 and is then rn/2 + op(rn).

5.2. Upper bound on the number of connected components758

Our strategy to get an upper bound on the number of connected com-
ponents is to find a spanning subgraph whose number of connected compo-760

nents we can estimate. A natural idea is to look for a spanning forest, because
forests have the property that their number of connected components is their762

number of vertices minus their number of edges.

Definition 5.2. A pair of vertices {ij} is said to be a founder if it has no764

ancestor other than itself, i.e., letting T{ij} = sup{t > 0 : at(i) 6= at(j)} be
the coalescence time of i and j, {ij} is a founder if and only if ∀t < T{ij},766

{at(i) at(j)} = {ij}.
Let F be the set of founders of Gn,rn = (V,E), and let Tn = (V,F ). Note768

that #F = n − 1 and that Tn is a tree. Therefore, letting Fn = (V,F ∩ E)
be the spanning forest of Gn,rn induced by Tn, we have770

#CCn 6 n−#edges(Fn) .

Let us estimate the number of edges of Fn. Recall Proposition 2.3. By772

construction, ∀{ij} ∈ F , P ?
{ij} = P{ij} ∩ [0, T{ij}]. It follows that

#edges(Fn) =
∑

{ij}∈F

1{P{ij}∩[0,T{ij}]=O6 }774

and, as a consequence,

#CCn 6 1 +
∑

{ij}∈F

1{P{ij}∩[0,T{ij}]6=O6 } .776
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Now, 1{P{ij}∩[0,T{ij}] 6=O6 } 6 #(P{ij} ∩ [0, T{ij}]), and since (P{ij}){ij}∈F are
i.i.d. Poisson point processes with intensity rn that are also independent778

of (T{ij}){ij}∈F ,
∑

{ij}∈F

#(P{ij} ∩ [0, T{ij}]) 6 #(P ∩ [0, Ln]) ,780

where P is a Poisson point process on ]0,+∞] with intensity rn and Ln =
TMRCA +∑

{ij}∈F T{ij} is the total branch length of the genealogy of the ver-782

tices. Putting the pieces together,

#CCn 6 1 + #(P ∩ [0, Ln]) .784

Conditional on Ln, #(P∩[0, Ln]) is a Poisson random variable with parameter
rnLn. Moreover, it is known [16] that786

E(Ln) = 2
n−1∑

i=1

1
i

and Var(Ln) = 4
n−1∑

i=1

1
i2

As a result,788

E(#(P ∩ [0, Ln])) = rnE(Ln) ∼ 2 rn log n
and790

Var(#(P ∩ [0, Ln])) = rnE(Ln) + Var(rnLn) ∼ 2 rn log n+ α r2
n ,

with α = 2π2/3. Using Chebychev’s inequality, we find that for all ε > 0,792

P
(
|#(P ∩ [0, Ln])− 2 rn log n| > ε rn log n

)
= O

(
2

ε2 rn log(n) + α

ε2 log(n)2

)
.

The right-hand side goes to 0 as n→ +∞, which shows that #(P ∩ [0, Ln])−794

2 rn log n = op(rn log n) and finishes the proof.
Remark 5.3. Using #(P∩[0, Ln]) as an upper bound for∑{ij}∈F 1{P{ij}∩[0,T{ij}]6=O6 }796

turns out not to be a great source of imprecision, because most of the total
branch length of a Kingman coalescent comes from very short branches. As798

a result, when rn = o(n), only a negligible proportion of the P{ij}∩ [0, T{ij}]’s,
{ij} ∈ F , have more than one point.800

By contrast, using n−#edges(Fn) as an upper bound on #CCn is very
crude. This leads us to formulate the following conjecture:802

Conjecture 5.4.

∃α, β > 0 s.t. P(αrn 6 #CCn 6 βrn) −−−−→
n→∞ 1.
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6. Number of edges in the sparse regime804

From the expressions obtained in section 3.1.1 and recapitulated in Ta-
ble 1, we see that when rn = ω(n),806

E(|En|) ∼ Var(|En|) ∼
n2

2 rn
.

This suggests that the number of edges is Poissonian in the sparse regime,808

and this is what the next theorem states.

Theorem 6.1. Let |En| be the number of edges of Gn,rn. If rn = ω(n) then810

dTV
(
|En|,Poisson(λn)

)
−−−−−→
n→+∞

0 ,

where dTV stands for the total variation distance and λn = E(|En|) ∼ n2

2rn
. If812

in addition rn = o(n2), then λn → +∞ and as a result

|En| − λn√
λn

D−−−−−→
n→+∞

N (0, 1) ,814

where N (0, 1) denotes the standard normal distribution.

The proof of Theorem 6.1 is a standard application of the Stein–Chen816

method [17, 18]. A reference on the topic is [19], and another excellent
survey is given in [20]. Let us state briefly the results that we will need.818

Definition A. The Bernoulli variables X1, . . . , XN are said to be positively
related if for each i = 1, . . . , N there exists (X(i)

1 , . . . , X
(i)
N ), built on the same820

space as (X1, . . . , XN), such that

(i)
(
X

(i)
1 , . . . , X

(i)
N

)
∼ (X1, . . . , XN) | Xi = 1.822

(ii) For all j = 1, . . . N , X(i)
j > Xj.

Note that there are other equivalent definitions of positive relation (see824

e.g. Lemma 4.27 in [20]). Finally, we will need the following classic theorem,
which appears, e.g., as Theorem 4.20 in [20].826

Theorem A. Let X1, . . . , XN be positively related Bernoulli variables with
P(Xi = 1) = pi. Let W = ∑N

i=1Xi and λ = E(W ). Then,828

dTV(W,Poisson(λ)) 6 min{1, λ−1}
(

Var(W )− λ+ 2
N∑

i=1
p2
i

)
.

6.1. Proof of the positive relation between the edges830

It is intuitive that the variables indicating the presence of edges in our
graph are positively related, because the only way through which these vari-832

ables depend on each other is through the fact that the edges share ancestors.
Our proof is nevertheless technical.834
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6.1.1. Preliminary lemmas
In this section we isolate the proof of two useful results that are not tied836

to the particular setting of our model.
Lemma 6.2. Let X = (X1, . . . , XN) be a vector of Bernoulli variables. The838

distribution of X is uniquely characterized by the quantities

E

(∏

i∈I
Xi

)
, I ⊂ {1, . . . , N}, I 6= O6840

Proof. For all I ⊂ {1, . . . , N}, I 6= O6 , let

pI = E

(∏

i∈I
Xi

)
and qI = E


∏

i∈I
Xi

∏

j∈Ic
(1−Xj)


842

where the empty product is understood to be 1.
Clearly, the distribution of X is fully specified by (qI). Now observe that,844

by the inclusion-exclusion principle,

qI =
∑

J⊃I
(−1)|J |−|I| pJ ,846

which terminates the proof.
Lemma 6.3. Let X1, . . . , XN be independent random nondecreasing func-848

tions from [0,+∞[ to {0, 1} such that

∀i ∈ {1, . . . , N}, inf{t > 0 : Xi(t) = 1} < +∞ almost surely.850

Let T be a non-negative random variable that is independent of (X1, . . . , XN).
Then, X1(T ), . . . , XN(T ) are positively related.852

Proof. Pick i ∈ {1, . . . , N}. Now, let τi = inf{t > 0 : Xi(t) = 1}. Assume
without loss of generality that Xi is left-continuous, so that {Xi(T ) = 1} =854

{T > τi}. Next, note that,

∀x, t > 0, P(T > x, T > t) > P(T > x)P(T > t) .856

Integrating in t against the law of τi, we find that

∀x > 0, P(T > x | T > τi) > P(T > x) .858

This shows that T is stochastically dominated by T (i), where T (i) has the
law of T conditioned on {T > τi}. As a result, there exists S, built on the860

same space as X1, . . . , XN and independent of (Xj)j 6=i, such that S ∼ T (i)

and S > T . For all j 6= i, let X(i)
j = Xj(S). Since Xj is nondecreasing,862

X
(i)
j > Xj(T ), and since (Xj)j 6=i ⊥⊥ (T, τi), (X(i)

j )j 6=i ∼ ((Xj(T ))j 6=i | Xi(T ) = 1).
This shows that X1(T ), . . . , XN(T ) are positively related.864

Remark 6.4. Lemma 6.3 and its proof are easily adapted to the case where
X1, . . . , XN are nonincreasing and such that inf{t > 0 : Xi(t) = 0} < +∞866

almost surely.
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6.1.2. Stein–Chen coupling868

Proposition 6.5. For any n > 2 and r > 0, the random variables 1{i↔j}
for {ij} ∈ V (2), which indicate the presence of edges in Gn,r, are positively870

related.

Proof. We use the forward construction described in Section 2.3 and proceed872

by induction. To keep the notation light, throughout the rest of the proof
we index the pairs of vertices of G?

r(n) = ({1, . . . , n}, E?
n) by the integers874

from 1 to N =
(
n
2

)
and, for i ∈ {1, . . . , N}, we let Xi = 1{i∈E?

n}. We also
make consistent use of bold letters to denote vectors, i.e., given any family876

of random variables Z1, . . . , Zp, we write Z for (Z1, . . . , Zp).
For n = 2, the family Xi for i ∈ {1, . . . , n} consists of a single variable878

X1, so it is trivially positively related.
Now assume that X1, . . . , XN are positively related in G?

r(n), i.e.880

∀i 6 N, ∃Y(i) =
(
Y

(i)
1 , . . . , Y

(i)
N

)
such that

(i) Y(i) ∼ (X | Xi = 1) (3)882

(ii) ∀k 6 N, Y
(i)
k > Xk884

Remember that G?
r(n+1) is obtained by (1) adding a vertex to G?

r(n) (which,
without loss of generality, we label n+1) and linking it to a uniformly chosen886

vertex un of G?
r(n) as well as to the neighbors of un; and (2) waiting for an

exponential time T with parameter
(
n
2

)
while removing each edge at constant888

rate r.
Formally, ∀k 6 N +n, define the “mother” of k, Mk ∈ {1, . . . , N}∪ {O6 },890

by

• If k 6 N (i.e., if k is the label of {u, v}, with 1 6 u < v 6 n), then892

Mk = k.

• If k > N is the label of {v, n+ 1}, with 1 6 v 6 n, then Mk = `, where894

` is the label of {un, v}.

• If k > N is the label of {un, n+ 1}, then Mk = O6 .896

Letting X ′k = 1{k∈E?
n+1}, we then have

X ′k =



Ak if Mk = O6
XMk

Ak otherwise
898

with Ak = 1{ek>T}, where we recall that T ∼ Exp(N) and, e1, . . . , eN+n are
i.i.d. exponential variables with parameter r that are also independent of900

everything else.
Note that the random functions Ãk : t 7→ 1{ek>t}, k ∈ {1, . . . N + n} are902

nonincreasing and such that inf{t > 0 : Ãk(t) = 0} < +∞ almost surely. By
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Lemma 6.3 (see also Remark 6.4), it follows that A1, . . . , AN+n are positively904

related.
We now pick any i 6

(
n+1

2

)
= N +n and build a vector Y′(i) that has the906

same law as (X′ | Xi = 1) and satisfies Y′(i) > X′.
Assume that Mi 6= O6 . In that case,908

1. By the induction hypothesis, there exists Y(Mi) that satisfies (3).

2. Since by A1, . . . , AN+n are positively related, ∃B(i) ∼ (A | Ai = 1)910

such that B(i) > A.

Note that A, B(i), X and Y(Mi) are all built on the same space. Therefore,912

omitting the (Mi) and (i) superscripts to keep the notation light, we can set
Y ′i = 1 and, for k 6= i,914

Y ′k =



Bk if Mk = O6
YMk

Bk otherwise.

With this definition, ∀J ⊂ {1, . . . , N + n},916

E


∏

j∈J
Y ′j


 = E



∏

j∈J̃
Yj


E


∏

j∈J
Bj


 ,

where J̃ = {Mj : j ∈ J,Mj 6= O6 }. By hypothesis,918

E



∏

j∈J̃
Yj


 = E



∏

j∈J̃
Xj

∣∣∣∣∣∣∣
XMi

= 1


 = E

(
XMi

∏

j∈J̃
Xj

)/
E
(
XMi

)

Similarly,920

E


∏

j∈J
Bj


 = E


Ai

∏

j∈J
Aj



/
E
(
Ai
)
.

As a result,922

E


∏

j∈J
Y ′j


 =

E
(
XMi

∏
j∈J̃ Xj

)
E
(
Ai
∏
j∈J Aj

)

E(XMi
)E(Ai)

=
E
(
XMi

Ai
∏
j∈J X

′
j

)

E(XMi
Ai)

924

= E


∏

j∈J
X ′j

∣∣∣∣∣∣
X ′i = 1




926

By Lemma 6.2, this shows that Y′ ∼ (X′ | X ′i = 1).
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If Mi = O6 , we can no longer choose Y(Mi). However, in that case, X ′i928

depends only on Ai. Therefore, we set Y ′i = 1 and, for k 6= i,

Y ′k = XMk
Bk930

Remembering that X ′i = Ai, we then check that

E


∏

j∈J
Y ′j


 =

E
(∏

j∈J̃ Xj

)
E
(
Ai
∏
j∈J Aj

)

E(Ai)
= E


∏

j∈J
X ′j

∣∣∣∣∣∣
X ′i = 1


 .932

Finally, it is clear that, with both constructions of Y(i), Y′(i)k > X′k.

6.2. Proof of Theorem 6.1934

Applying Theorem A to |En| =
∑
{ij} 1{i↔j} and using the expressions in

Table 1, we get936

dTV

(
|En|,Poisson(λn)

)
6 min

{
1, λ−1

n

}
Cn ,

with λn = n(n−1)
2(rn+1) and938

Cn = n(n− 1)(n2rn + 2nr2
n + nrn − 2r2

n + 3rn + 9)
2 (2 rn + 3)(rn + 3)(rn + 1)2 .

When rn = ω(n),940

Cn = Θ
(
n4

r3
n

+ n3

r2
n

)
.

Now, if rn > n(n−1)
2 −1, so that min{1, λ−1

n } = 1, we see that Cn = Θ(n3/r2
n).942

If by contrast rn 6 n(n−1)
2 − 1 then λ−1

n Cn = Θ(n/rn). In both cases,
min{1, λ−1

n }Cn goes to zero as n → +∞, proving the first part of Theo-944

rem 6.1.
The convergence of |En|−λn√

λn
to the standard normal distribution is a classic946

consequence of the conjunction of dTV(|En|,Poisson(λn)) → 0 with λn →
+∞. See, e.g., [19], page 17, where this is recovered as a consequence of948

inequality (1.39).
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A. Proofs of Propositions 2.4 and 2.6 and of Lemma 2.51002

A.1. Proof of Propositions 2.4 and 2.6
Proposition 2.4. Let (Kt)t>0 be a Kingman coalescent on V = {1, . . . , n},1004

and let πt(i) denote the block containing i in the corresponding partition at
time t. Let the associated genealogy of pairs be the set1006

G =
{(
t, {πt(i)πt(j)}

)
: {ij} ∈ V (2), t ∈

[
0, T{ij}

[}
,

where T{ij} = inf{t > 0 : πt(i) = πt(j)}. Denote by1008

L{ij} =
{(
t, {πt(i) πt(j)}

)
: t ∈

[
0, T{ij}

[}

the lineage of {ij} in this genealogy. Finally, let P • be a Poisson point process1010

with constant intensity rn on G and let G = (V,E), where

E =
{
{ij} ∈ V (2) : P • ∩ L{ij} = O6

}
.1012

Then, G ∼ Gn,rn.
Proof. Let (at)t>0 and P ? be as in Proposition 2.3, and let1014

G? =
{(
t, {at(i) at(j)}

)
: {ij} ∈ V (2), t ∈

[
0, T ?{ij}

[}
,

where T ?{ij} = inf{t > 0 : at(i) = at(j)}. Being essentially a finite union of1016

intervals, G? can be endowed with the Lebesgue measure.
As already suggested, conditional on (at)t>0, P ? can be seen as a Poisson1018

point process P ? with constant intensity rn on G?. More specifically,

P ? =
{(
t, {at(i) at(j)}

)
: {ij} ∈ V (2), t ∈ P ?

{ij}

}
.1020

With this formalism, writing

L?{ij} =
{(
t, {at(i) at(j)}

)
: t ∈

[
0, T ?{ij}

[}
1022

for the lineage of {ij} in this genealogy, we see that P ?
{ij} is isomorphic to

P ? ∩ L?{ij}. In particular,1024

P ?
{ij} = O6 ⇐⇒ P ? ∩ L?{ij} = O6

Now let (π̄t)t>0 be defined by1026

∀i ∈ V, π̄t(i) = {j ∈ V : at(j) = at(i)} .
Then, ψ : (t, {at(i) at(j)}) 7→ (t, {π̄t(i) π̄t(j)}) is a measure-preserving bijec-1028

tion from G? to ψ(G?). Therefore, ψ(P ?) is a Poisson point process with
constant intensity rn on ψ(G?). Since (π̄t)t>0 has the same law as (πt)t>01030

from the proposition, we conclude that
(
ψ(G?), ψ(P ?)

)
∼ (G, P •)1032

which terminates the proof.
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Proposition 2.6. For any r > 0, for any integer n > 2,1034

Φn(G?
r(n)) ∼ Gn,r .

Proof. First, let us give a Poissonian construction of (G†r(t))t>0. The edge-1036

removal events can be recovered from a collection P † =
(
P †{ij}

)
{ij}∈V (2) of i.i.d.

Poisson point processes with rate r on R such that, if t ∈ P{ij} and there is1038

an edge between i and j in G†r(t−), it is removed at time t. The duplication
events induce a genealogy on the vertices of G?

r(n) that is independent of1040

P †. Using a backward-time notation, let a†t(i) denote the ancestor of i at
time (tn − t), i.e. t time-units before we reach G?

r(n). Observe that, by1042

construction of G?
r(n),

{ij} ∈ G?
r(n) ⇐⇒

{
t > 0 : t ∈ P †{a†t (i) a†t (j)}

}
= O6 .1044

Taking the relabeling of vertices into account, the genealogy on the ver-
tices of G?

r(n) translates into a genealogy on the vertices of Φn(G?
r(n)), where1046

the ancestor āt function is given by āt = Φn ◦ a†t ◦ Φ−1
n . To keep only the

relevant information about this genealogy, define1048

π̄t(i) = {j ∈ V : āt(j) = āt(i)}

and let1050

Ḡ =
{(
t, {π̄t(i) π̄t(j)}

)
: {ij} ∈ V (2), t ∈

[
0, T{ij}

[}
,

where T{ij} = inf{t > 0 : π̄t(i) = π̄t(j)}. As before, let us denote by1052

L̄{ij} =
{(
t, {π̄t(i) π̄t(j)}

)
: t ∈

[
0, T{ij}

[}

the lineage of {ij} in this genealogy. Finally, define1054

P̄ =
{(
t, {π̄t(i) π̄t(j)}

)
: {ij} ∈ V (2), t ∈ P †{a†t (Φ−1

n (i)) a†t (Φ−1
n (j))}

}
.

Then, conditional on Ḡ, P̄ is a Poisson point process with constant intensity1056

rn on Ḡ. Moreover,

{ij} ∈ Φn(G?
r(n)) ⇐⇒ {Φ−1

n (i) Φ−1
n (j)} ∈ G?

r(n)1058

⇐⇒
{
t > 0 : t ∈ P †{a†t (Φ−1

n (i)) a†t (Φ−1
n (j))}

}
= O6

⇐⇒ P̄ ∩ L̄{ij} = O6 .1060

Therefore, by Proposition 2.4, to conclude the proof it is sufficient to show1062

that (π̄t)t>0 has the same law as the corresponding process for a Kingman
coalescent. By construction, the time to go from k to k − 1 blocks in (π̄t)t>01064

is an exponential variable with parameter
(
k
2

)
and thus it only remains to
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prove that the tree encoded by (π̄t)t>0 has the same topology as the Kingman1066

coalescent tree. This follows directly from the standard fact that the shape of
a Yule tree with n tips labeled uniformly at random with the integers from1068

1 to n is the same as that of the shape of a Kingman n-coalescent tree –
namely, the uniform law on the set of ranked tree shapes with n tips labeled1070

by {1, . . . , n} (see e.g. [21]).
Alternatively, we can finish the proof as follows: working in backward1072

time, for i = 1, . . . , n− 1, consider the i-th coalescence and let Ui denote the
mother in the corresponding duplication in the construction of G?

r(n). Note1074

that Ui ∼ Uniform({1, . . . , n− i}), and that the coalescing blocks are then
the block that contains Φn(Ui) and the block that contains Φn(n − i + 1).1076

Let us record the information about the i first coalescences in the variable
Λi defined by Λ0 = O6 and, for i > 1,1078

Λi =
(
Φn(n− k + 1), Φn(Uk)

)
k=1,...,i

.

Thus, we have to show that, conditional on Λi−1, the block containing Φn(n−1080

i+ 1) and the block containing Φn(Ui) are uniformly chosen. We proceed by
induction. For i = 1, this is trivial. Now, for i > 1, observe that, conditional1082

on Λi−1, the restriction of Φn to

Ii = {1, . . . , n} \ {Φn(n), . . . ,Φn(n− i)}1084

is a uniform permutation on Ii. As a result, {Φn(n − i + 1), Φn(Ui)} is a
uniformly chosen pair of elements of Ii (note that the fact that Ui is uniformly1086

distributed on {1, . . . , n− i} is not necessary for this, but is needed to ensure
that the restriction of Φn to Ii+1 remains uniform when conditioning on Λi1088

in the next step of the induction). Since each block contains exactly one
element of Ii, this terminates the proof.1090

A.2. Proof of Lemma 2.5
Lemma 2.5. Let S be a subset of V (2). Conditional on the measure M , for1092

any interval I ⊂ [0,+∞[ such that

(i) For all {ij} ∈ S, ∀t ∈ I, at(i) 6= at(j).1094

(ii) For all {k`} 6= {ij} in S, ∀t ∈ I, {at(i), at(j)} 6= {at(k), at(`)},
P ?
{ij}∩I, {ij} ∈ S, are independent Poisson point processes with rate rn on I.1096

Moreover, for any disjoint intervals I and J , (P ?
{ij} ∩ I){ij}∈S is indepen-

dent of (P ?
{ij} ∩ J){ij}∈S.1098

Proof. For all t > 0, define St by

St = {{at(i), at(j)} : {ij} ∈ S} .1100

Set t0 = inf I and let t1, . . . , tm−1 be the jump times of (St)t>0 on I, i.e.

tp = inf
{
t > tp−1 : St 6= Stp−1

}
, p = 1, . . . ,m− 1.1102
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Finally, set tm = sup I and, for p = 0, . . . ,m − 1, let Ip = [tp, tp+1[ and
ãp = atp , so that (ãp)p∈{0,...,m} is the embedded chain of (at)t∈I . With this1104

notation, for all {ij} ∈ S,

P ?
{ij} ∩ I =

m−1⋃

p=0

(
P{ãp(i), ãp(j)} ∩ Ip

)
,1106

where for p 6= q, Ip ∩ Iq = O6 , and P{uv}, {uv} ∈ V (2), are i.i.d. Pois-
son point processes on [0,+∞[ with rate rn. By assumption, for all p =1108

0, . . . ,m − 1, for all {ij} 6= {k`} in S, ãp(i) 6= ãp(j), ãp(k) 6= ãp(`) and
{ãp(i), ãp(j)} 6= {ãp(k), ãp(`)}. This shows that (P{ãp(i),ãp(j)} ∩ Ip), {ij} ∈ S1110

and p = 0, . . . ,m − 1, are i.i.d. Poisson point processes with rate rn on the
corresponding intervals, proving the first part of the lemma.1112

The second assertion is proved similarly. Adapting the previous notation
to work with two disjoint intervals I and J , i.e. letting (ãIp)p∈{0,...,mI} be the1114

embedded chain of (at)t∈I and (ãJp )p∈{0,...,mJ} that of (at)t∈J , for all {ij} ∈ S
we write1116

P ?
{ij} ∩ I =

mI−1⋃

p=0

(
P{ãI

p(i), ãI
p(j)} ∩ Ip

)
,

and1118

P ?
{ij} ∩ J =

mJ−1⋃

p=0

(
P{ãJ

p (i), ãJ
p (j)} ∩ Jp

)
.

We conclude the proof by noting that the families1120

(
P{ãI

p(i), ãI
p(j)} ∩ Ip

)
{ij}∈S, p∈{0,...,mI}

and1122 (
P{ãJ

p (i), ãJ
p (j)} ∩ Jp

)
{ij}∈S, p∈{0,...,mJ}

are independent, because the elements of these families are either determin-1124

istic (if, e.g, ãIp(i) = ãIp(j), in which case P{ãI
p(i), ãI

p(j)} = O6 ) or Poisson point
processes on intervals that are disjoint from each of the intervals involved in1126

the definition of the other family.
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B. Proofs of Proposition 3.5 and Corollary 3.61128

Proposition 3.5. Let i, j, k and ` be four distinct vertices of Gn,rn. We
have1130

Cov
(
1{i↔j},1{k↔`}

)
= 2 rn

(1 + rn)2(3 + rn)(3 + 2 rn)

Corollary 3.6. Let D(i)
n and D(j)

n be the respective degrees of two fixed ver-1132

tices i and j, and let |En| be the number of edges of Gn,rn. We have

Cov
(
D(i)
n , D

(j)
n

)
= rn

(1 + rn)2

(
1 + 3(n− 2)

3 + 2 rn
+ 2(n− 2)(n− 3)

(3 + rn)(3 + 2 rn)

)
1134

and
Var(|En|) = rn n (n− 1)(n2 + 2 r2

n + 2n rn + n+ 5 rn + 3)
2 (1 + rn)2 (3 + rn) (3 + 2 rn)1136

B.1. Proof of Proposition 3.5
The proof of Proposition 3.5 parallels that of Proposition 3.3, but this1138

time the topology of the genealogy of the pairs of vertices has to be taken
into account. Indeed, define1140

St = {at(i), at(j), at(k), at(`)}

and let τ1 < τ2 < τ3 be the times of coalescence in the genealogy of {i, j, k, `},1142

i.e.
τp = inf{t > 0 : |St| = 4− p}, p = 1, 2, 3 .1144

Write I1 = [0, τ1[, I2 = [τ1, τ2[ and I3 = [τ2, τ3[. Finally, for m = 1, 2, let

A
(m)
{uv} = {aτm−(u) 6= aτm−(v)} ∩ {aτm(u) = aτm(v)}1146

be the event that the m-th coalescence in the genealogy of {i, j, k, `} involved
the lineages of u and v (note that the third coalescence is uniquely determined1148

by the first and the second, so we do not need A(3)
{uv}).

On A(1)
{ij} ∩ A

(2)
{k`}, {i↔ j, k ↔ `} is equivalent to1150

(P ?
{ij} ∩ I1) ∪ (P ?

{k`} ∩ I1) ∪ (P ?
{k`} ∩ I2) = O6

so that, conditionally on I1 and I2, by Lemma 2.5,1152

P
(
i↔ j, k ↔ `

∣∣∣ A(1)
{ij} ∩ A

(2)
{k`}

)
= P

(
(P ?
{ij} ∪ P ?

{k`}) ∩ I1 = O6
)
× P

(
P ?
{k`} ∩ I2 = O6

)

= 6
6 + 2 rn

× 3
3 + rn

.1154

By contrast, on A(1)
{ij} ∩ A

(2)
{ik}, {i↔ j, k ↔ `} is1156

(P ?
{ij} ∩ I1) ∪ (P ?

{k`} ∩ I1) ∪ (P ?
{k`} ∩ I2) ∪ (P ?

{k`} ∩ I3) = O6
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and thus1158

P
(
i↔ j, k ↔ `

∣∣∣ A(1)
{ij} ∩ A

(2)
{ik}

)
= 6

6 + 2 rn
× 3

3 + rn
× 1

1 + rn
.

Given a realization of the topology of the genealogy of the form A
(1)
{u1v1}∩1160

A
(2)
{u2v2}, we can always express {i↔ j, k ↔ `} as a union of intersections of

P ?
{ij} and P ?

{k`} with I1, I2 and I3. In total, there are
(

4
2

)
×
(

3
2

)
= 18 possible1162

events A(1)
{u1v1} ∩ A

(2)
{u2v2}, each having probability 1/18. This enables us to

compute P(i↔ j, k ↔ `), but in fact the calculations can be simplified by1164

exploiting symmetries, such as the fact that {ij} and {k`} are interchange-
able. In the end, it suffices to consider four cases, as depicted in Figure B.6.1166

Figure B.6: The four cases that we consider to compute P(i↔ j, k ↔ `). Top, the “aggre-
gated” genealogies of vertices and their probability. Each of these correspond to sev-
eral genealogies on {i, j, k, `}, which are obtained by labeling symbols in such a way
that a pair of matching symbols has to correspond to either {ij} or {k`}. For in-
stance, C = (A(1)

{ij} ∩ A
(2)
{k`}) ∪ (A(1)

{k`} ∩ A
(2)
{ij}) and therefore P(C) = 2/18. Similarly,

A = (A(1)
{ij} ∩A

(2)
{ik})∪ (A(1)

{ij} ∩A
(2)
{i`})∪ (A(1)

{k`} ∩A
(2)
{ik})∪ (A(1)

{k`} ∩A
(2)
{jk}) and P(A) = 4/18,

etc. Bottom, the associated genealogy of the pairs and the corresponding conditional
probability of {i↔ j, k ↔ `} ⇔ {�↔ �,•↔ •}.
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Putting the pieces together, we find that

P(i↔ k, j ↔ `) = 6
9 ×

1
1 + rn

× 3
3 + 2r ×

6
6 + 2 rn

1168

+ 2
9 ×

1
1 + rn

× 3
3 + rn

× 6
6 + 2 rn

+ 1
9 ×

3
3 + rn

× 6
6 + 2 rn

1170

= 9 + 2 rn
(1 + rn)(3 + rn)(3 + 2 rn) .1172

and Proposition 3.5 follows, since

P(i↔ j)P(k ↔ `) =
( 1

1 + rn

)2
.1174

B.2. Proof of Corollary 3.6
Corollary 3.6 is proved by standard calculations. First,1176

Cov
(
D(i)
n , D

(j)
n

)
= Cov


∑

k 6=i
1{i↔k},

∑

`6=j
1{j↔`}




= Var
(
1{i↔j}

)
1178

+ 3(n− 2) Cov
(
1{i↔k},1{j↔k}

)

+ (n− 2)(n− 3) Cov
(
1{i↔k},1{j↔`}

)
1180

Remembering from Proposition 3.1 that Var(1{i↔j}) = rn/(1+rn)2 and from1182

Proposition 3.3 that Cov(1{i↔k},1{j↔k}) = rn

(1+rn)2(3+2 rn
, and using Proposi-

tion 3.5, we find that1184

Cov
(
D(i)
n , D

(j)
n

)
= rn

(1 + rn)2

(
1 + 3(n− 2)

3 + 2 rn
+ 2(n− 2)(n− 3)

(3 + rn)(3 + 2 rn)

)
.

Finally, to compute Var(|En|), we could do a similar calculation. However,1186

it is easier to note that
|En| =

1
2

n∑

i=1
D(i)
n .1188

As a result,

Var(|En|) = 1
4
(
nVar

(
D(i)
n

)
+ n(n− 1) Cov

(
D(i)
n , D

(j)
n

))
1190

= rn n (n− 1)(n2 + 2 r2
n + 2n rn + n+ 5 rn + 3)

2(1 + rn)2(3 + rn)(3 + 2 rn) .
1192
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C. Proof of Theorem 4.2

In this section, we prove Theorem 4.2.1194

Theorem 4.2 (convergence of the rescaled degree).

(i) If rn → r > 0, then Dn

n
converges in distribution to a Beta(2, 2 r) random1196

variable.

(ii) If rn is both ω(1) and o(n), then Dn

n/rn
converges in distribution to a1198

size-biased exponential variable with parameter 2.

(iii) If 2 rn/n→ ρ > 0, then Dn+1 converges in distribution to a size-biased1200

geometric variable with parameter ρ/(1 + ρ).

The proof of (iii) is immediate: indeed, by Theorem 4.1,1202

P(Dn + 1 = k) = 2 rn (2 rn + 1)
(n+ 2 rn)(n− 1 + 2 rn) k

k−1∏

i=1

n− i
n− i+ 2 rn − 1 .

If 2 rn/n→ ρ, then for any fixed k this goes to k
(

ρ
1+ρ

)2( 1
1+ρ

)k−1
as n→ +∞.1204

C.1. Outline of the proof
To prove (i) and (ii), we show the pointwise convergence of the cumulative1206

distribution function Fn of the rescaled degree. To do so, in both cases,

1. We show that, for any ε > 0, for n large enough,1208

∀y > 0,
∫ y

0
fn(x) dx 6 Fn(y) 6

∫ y+ε

0
fn(x) dx

for some function fn to be introduced later.1210

2. We identify the limit of fn as a classical probability density f , and use
dominated convergence to conclude that1212

∀y > 0,
∫ y

0
fn(x) dx→

∫ y

0
f(x) dx .

In order to factorize as much of the reasoning as possible, we introduce1214

the rescaling factor Nn:

• When rn → r, i.e. when we want to prove (i), Nn = n.1216

• When rn is both ω(1) and o(n), i.e. when we want to prove (ii), Nn =
n/rn.1218

Thus, in both cases the rescaled degree is Dn/Nn and its cumulative distri-
bution function is1220

Fn(y) =
bNnyc∑

k=0
P(Dn = k) .
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C.2. Step 11222

For all x > 0, let

fn(x) = NnP(Dn = bNnxc),1224

so that
∀k ∈ N, P(Dn = k) =

∫ (k+1)/Nn

k/Nn

fn(x) dx .1226

If follows that
Fn(y) =

∫ (bNnyc+1)/Nn

0
fn(x) dx .1228

Finally, since y 6 bNnyc+1
Nn

6 y + 1
Nn

and fn is non-negative, for any ε > 0,
for n large enough,1230

∀y > 0,
∫ y

0
fn(x) dx 6 Fn(y) 6

∫ y+ε

0
fn(x) dx ,

and the rank after which these inequalities hold is uniform in y, because the1232

convergence of (bNnyc+ 1)/Nn to y is.

C.3. Step 21234

To identify the limit of fn, we reexpress it in terms of the gamma function.
Using that Γ(z) = zΓ(z), by induction,1236

k∏

i=1
(n− i) = Γ(n)

Γ(n− k) and
k∏

i=1
(n− i+ 2 rn − 1) = Γ(n+ 2 rn − 1)

Γ(n− k + 2 rn − 1) .

Therefore, fn(x) can also be written1238

fn(x) = Nn 2 rn (2 rn + 1)
(n+ 2 rn)(n− 1 + 2 rn)

(
bNnxc+ 1

)
× Pn(x) , (C.1)

where1240

Pn(x) = Γ(n) Γ(n− bNnxc+ 2 rn − 1)
Γ(n− bNnxc) Γ(n+ 2 rn − 1) . (C.2)

We now turn to the specificities of the proofs of (i) and (ii).1242
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C.3.1. Proof of (i)
In this subsection, rn → r > 0 and Nn = n.1244

Limit of fn. Recall that

∀α ∈ R, Γ(n+ α)
Γ(n) ∼ nα .1246

Using this in (C.2), we see that, for all x ∈ [0, 1[,

Pn(x)→ (1− x)2r−1 .1248

Therefore, for all x ∈ [0, 1[,

fn(x)→ 2r(2r + 1)x (1− x)2r−1 .1250

Noting that 2r(2r+ 1) = 1/B(2, 2r), where B denotes the beta function, we
can write f = limn fn as1252

f : x 7→ x(1− x)2r−1

B(2, 2r) 1[0,1[(x)

and we recognize the probability density function of the Beta(2, 2r) distribu-1254

tion.

Domination of (fn). First note that, for all x ∈ [0, 1[,1256

1
n− 1 + 2 rn

bnxc∏

i=1

n− i
n− i+ 2 rn − 1 = 1

n− bnxc+ 2 rn − 1

bnxc∏

i=1

n− i
n− i+ 2 rn

,

where the empty product is understood to be 1. Since 2 rn > 0, this enables1258

us to write that, for all x ∈ [0, 1[,

fn(x) = n 2r (2r + 1)
n+ 2r︸ ︷︷ ︸
6(2r+1)2

× bnxc+ 1
n− 1 + 2r ×

1
n− bnxc+ 2r − 1
︸ ︷︷ ︸

6 1
2r

×
bnxc∏

i=1

n− i
n− i+ 2r

︸ ︷︷ ︸
61

.1260

where, to avoid cluttering the expression, the n index of rn has been dropped.
Since1262

bnxc+ 1
n− 1 + 2 rn

6 (n− 1)x+ x+ 1
n− 1 6 x+ 2

n− 1
uniformly−−−−−−→
n→+∞

x ,

there exists c such that, for all x ∈ [0, 1[ and n large enough,1264

fn(x) 6 c x

Since fn is zero outside of [0, 1[, this shows that (fn) is dominated by g : x 7→1266

c x1[0,1[(x).
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C.3.2. Proof of (ii)1268

In this subsection, rn is both ω(1) and o(n), and Nn = n/rn. For brevity,
we will write kn for bnx/rnc. It should be noted that1270

• kn is both ω(1) and o(n).

• knrn/n→ x uniformly in x on [0,+∞[.1272

Limit of fn. In this paragraph, we will need Stirling’s formula for the asymp-
totics of Γ:1274

Γ(t+ 1) ∼
√

2πt t
t

et
.

Using this in Equation (C.2),1276

Pn(x) = Γ(n) Γ(n− bNnxc+ 2 rn − 1)
Γ(n− bNnxc) Γ(n+ 2 rn − 1)

∼
√√√√(n− 1)(n− 2− kn + 2 rn)

(n− 1− kn)(n− 2 + 2 rn)
︸ ︷︷ ︸

∼1

× e
n−1−kn en−2+2rn

en−1 en−2−kn+2rn︸ ︷︷ ︸
=1

×Qn1278

where1280

Qn = (n− 1)n−1 (n− 2− kn + 2 rn)n−2−kn+2rn

(n− 1− kn)n−1−kn (n− 2 + 2 rn)n−2+2rn
.

Let us show that Qn → e−2x:1282

logQn = (n− 1) log(n− 1)
+ (n− a+ b) log(n− a+ b)1284

− (n− a) log(n− a)
− (n− 1 + b) log(n− 1 + b)1286

where, to avoid cluttering the text, we have written a for kn + 1 and b for1288

2 rn − 1. Factorizing, we get

logQn = n log
(

(n− 1)(n− a+ b)
(n− a)(n− 1 + b)

)
−a log

(
n− a+ b

n− a

)
+b log

(
n− a+ b

n− 1 + b

)
−log

(
n− 1

n− 1 + b

)
.1290

Now,
(n− 1)(n− a+ b)
(n− a)(n− 1 + b) = 1 + (a− 1)b

n2 − n+ nb− na+ a− ab︸ ︷︷ ︸
∼ 2knrn

n2 = o(1)

1292

so that
n log

(
(n− 1)(n− a+ b)
(n− a)(n− 1 + b)

)
∼ 2knrn

n
→ 2x1294
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Similarly,

−a log
(
n− a+ b

n− a

)
= −a log

(
1 + b

n− a

)
∼ −ab

n
→ −2x1296

b log
(
n− a+ b

n− 1 + b

)
= b log

(
1 + 1− a

n− 1 + b

)
∼ −ab

n
→ −2x1298

1300

and, finally, − log
(

n−1
n−1+b

)
→ 0. Putting the pieces together,1302

logQn → −2x .

Having done that, we note that1304

2n(2 rn + 1)
(n+ 2 rn)(n− 1 + 2 rn)(kn + 1) → 4x .

Plugging these results in Equation (C.1), we see that1306

∀x ∈ R, fn(x) → 4x e−2x 1[0,+∞[(x)

and we recognize the probability density function of a size-biased exponential1308

distribution with parameter 2.

Domination of (fn). Recall that, since Nn = n/rn, for all x ∈ [0, 1[,1310

fn(x) = 2n (2 rn + 1)
(n+ 2 rn)(n− 1 + 2 rn) (kn + 1)

kn∏

i=1

n− i
n− i+ 2 rn − 1 .

Next, note that, for all i,1312

n− i
n− i+ 2 rn − 1 = 1− 2 rn − 1

n− i+ 2 rn − 1 6 exp
(
− 2 rn − 1
n− i+ 2 rn − 1

)

so that1314
kn∏

i=1

n− i
n− i+ 2 rn − 1 6 exp


−

kn∑

i=1

2 rn − 1
n− i+ 2 rn − 1


 ,

with1316
kn∑

i=1

2 rn − 1
n− i+ 2 rn − 1 > kn

2 rn − 1
n− 1 + 2 rn − 1 .

Because rn = ω(1), for all ε > 0, 2 rn − 1 > (1 − ε)2 rn for n large enough.1318

Similarly, since rn = o(n), 1
n+2 rn

> 1
(1+ε)n . As a result, there exists c > 0

such that1320

kn
2 rn − 1

n− 1 + 2 rn − 1 > c kn
2 rn
n

uniformly−−−−−−→ 2cx .
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We conclude that1322

∀x > 0,
kn∏

i=1

n− i
n− i+ 2 rn − 1 6 exp(−2cx)

for n large enough. Finally,1324

2× n

n+ 2 rn︸ ︷︷ ︸
61

× (2 rn + 1)(kn + 1)
(n− 1 + 2 rn)

︸ ︷︷ ︸
→2x, uniformly

6 4cx

and so (fn) is dominated by g : x 7→ 4c x e−2cx 1[0,+∞[(x).1326
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