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Abstract 

In this paper we will be studying the interface in a one-dimensional Ising spin system with 
a ferromagnetic Kac potential yJ(ylrl). Below the critical temperature, when y tends to 0, two 
distinct thermodynamic phases with different magnetizations appear. We will see that the local 
magnetization converges to one of these two values. On intervals of length ymk the local 
magnetization will stay almost constant, but on longer intervals interfaces take place between 
different phases. We prove first a large deviation principle and apply Friedlin and Wentzell 
theory to estimate the position where the first interface appears. 

Keywords: Gibbs fields; Interfaces; Large deviations 

1. Introduction 

Kac et al. (1963) introduces a family of potentials which are the functions 
7 exp( - y 1 r I) depending on the scaling parameter y. Lebowitz and Penrose (1966) have 
used an extension of the Kac potentials to treat the liquid-vapor transition. In their 
paper, the Kac potentials model, as the parameter y tends to 0, the long-range 
attractive part of the intermolecular forces. 

Following the approach of Cassandro et al. (1993) we study the phenomenon of 
metastability in a one-dimensional Ising spin system with a ferromagnetic Kac 
potential. However, we use here different methods of proof and we generalize their 
results to more general single spin distributions. 

One of the problems in the study of thermodynamical systems is to understand 
thoroughly the phenomenon of metastability. Many attempts have been made in this 
direction with dynamical systems in Rd driven by a vector field b(x) = - Vu(x) where 
a is a double-well potential (see Galves et al., 1987; Mathieu, 1994). We get the same 
kind of results but our model does not allow us to use the well known methods of the 
stochastic differential equations (see Day, 1983). In particular we had to prove a large 
deviation principle and to get some decorrelation properties. In Cassandro et al. 
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(1984) the reader will also find two examples of stochastic processes showing meta- 
stable behavior: the Curie-Weiss model and the contact process of Harris. 

For their study Cassandro et al. (1993) used different spatial scales. To simplify, we 
have only kept the scaling parameter y and we use weak neighborhoods at the 
macroscopic scale. We consider the one-dimensional interacting spin system at the 
limit as y goes to 0. The interaction between any two given spins becomes smaller but 
the range increases to infinity. Instead of studying the discrete system, we map the 
discrete configurations to obtain block spins. Former works with block spins by 
Eisele and Ellis (1983) and by Comets (1987) in dynamics were done on finite 
regions, whereas in this paper, we are interested in infinite regions. Working with an 
infinite volume is one of the major problems because we know only the conditional 
probabilities of the Gibbs measure on bounded intervals and we do not have an 
accurate expression of the Gibbs measure as in the case of the torus. However, as in 
the mean field model the local magnetization tends to equilibrium values, below the 
critical temperature. These values, denoted + mP, are completely insensitive to the 
details of J if we assume that J satisfies a normalization condition. Some other 
phenomena appear with the infinite volume; in particular we get a metastability 
property. 

First we establish a large deviation principle when y tends to 0. We change the 
proof of Cassandro et al. (1993) and use heavily some of the properties of the 
one-dimensional Gibbs measure. Some geometrical remarks make our method tech- 
nically simpler and allow us to work on block spins without considering the discrete 
system. As a direct consequence of the large deviation estimates, we prove that the 
profiles are rigid on intervals of length y-k as the temperature decreases. The 
trajectories, however, are no longer constant when observed on much longer spatial 
intervals. 

In the second part we are interested in studying the average distance where the local 
magnetization changes from one equilibrium value to the other. To get an intuitive 
picture of what happens we can see the local magnetization as a continuous process 
which oscillates about an equilibrium value denoted as mp. After an exponential 
distance the process will perform an abrupt transition to the other equilibrium. The 
smaller the value of y, the further is the position where the first transition occurs. By 
replacing time with space, we make an analogy with dynamical systems. The metasta- 
bility property could be interpreted in terms of exit time from a neighborhood of 
a stable equilibrium position (see Freidlin and Wentzell, 1983). The action functional 
found in the first part will play the role of the double-well potential introduced by 
Galves et al. (1987). In this article the minima of the rate functional are the symmetric 
thermodynamic magnetizations km0 which have already been calculated by Eisele 
and Ellis (1983). The Markov property of the Gibbs measure, which is peculiar to one 
dimension, enables us to adapt the FriedlinWentzell proof. This specific property 
linked to the one-dimensional case does not allow us to generalize to higher dimen- 
sions. 

In Section 2 we describe the model and state some general results which will be used 
in subsequent sections. In Section 3 we prove a large deviation principle and in 
Section 4 we study the position where the first interface appears. 
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2. The model 

In this section we introduce some notation and recall well known definitions in 
equilibrium statistical mechanics. 

2.1. Description of the system 

We study a one-dimensional spin system with values in [ - 1, 11. Let Si be the value 
of the spin at i. A spin configuration is a sequence S = { Si; i E Z } which belongs to the 
phase space called Q = [ - 1, 11”. We are interested only in average values like the 
local magnetization, so we are led to define a continuous version of the system with 
block spins in order to use a weak topology which naturally introduces local averages. 

Definition 2.1. We denote by E the space of magnetic profiles. The set E is a subset of 
Y *I (dr, R’), the set of the bounded measurable functions. 

Definition 2.2. We consider the _?I& weak topology r on E which satisfies 

m, -tr m Q b’L E R, lim mn([-L,Ll weakly in Z2(dr, [-I,, L]). 
n-0 

Definition 2.3. Let K be the function from 52 to E which maps the configuration S to 
the piecewise constant function cri. in E defined by 

for all x in R, rag, = SIX,j’I. (2.1) 

2.2. The interactions 

Let J be a continuous function on R and we assume that J satisfies the following 
properties: 

J(r) = J(-r), (2.2) 

for r in [ - 1, l]‘, J(r) = 0, (2.3) 

for jr\ < 1, J(r) > 0, (2.4) 

s J(r)dr = 1 

Definition 2.4. A family of Kac potentials is a family of functions J, depending on the 
scaling parameter y. These functions are defined in terms of J by the rule: 

for all r in R, J?(r) = yJ(yr). (2.6) 
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Furthermore, we assume for the sake of simplicity that the parameter y takes values 
in the set {2-“/n E IV}; by slight modification of the proof this condition can be 
dropped. 

When y is fixed, the particles are in interaction under the potential J,. If d is a finite 
subset of Z, the energy of the configuration Sd = {&; i E A} given the external 
condition 5 = {(ii i E A”) is 

H;(SAlt) = -5 ,z, Jy(i -j)SiSj - C J,(i -j)Si(j. (2.7) 
IfJ isA 

i, jcA jeA, 

According to physical considerations we know that the most likely configurations 
are the ones with the lowest energy. The conditions imposed on J imply that the 
interaction is symmetric (2.2), has a finite range (2.3) and is ferromagnetic (2.4). Being 
ferromagnetic means that on the average the spins are oriented in the same direction 
in order to minimize the energy of the configuration. We note that the neigborhood 
interacts with the configuration SA = {Si; i E A} only on the frontier 

6A = {i E A")3j ??A, J,(i -j) > O}. 

Let p be a symmetric measure on [w with bounded support, which we take to be 
[ - 1, l] for simplicity. We will impose additional hypotheses on p later. For each y we 
define at the temperature l/j3 a Gibbs measure on Q. 

Definition 2.5. For each finite subset A in Z we introduce a probability measure on 
C-1,11” 

ii;,y@Alt) = 
exP(-BH~(SAlg))nieAp(dSi) 

G,(5) ’ 

where Z~,,(~) is the normalization factor 

(2.8) 

The measure $,,(S,liJ) is called the Gibbs distribution in A with boundary 
condition 5 = (<il i E A’}. In our case, there is a unique measure jis,? on Q which is 
defined by the conditional probabilities above. 

Eq. (2.8) above are called the Dobrushin-Landford-Ruelle equations denoted by 
DLR (see Georgii, 1988). We insist on dimension one and on finite range interactions, 
so that there would be a unique solution ,&, y to the DLR equations for all positive y. 
Furthermore, the Gibbs measure has the Markov property that we will use later. Let 
us define ,u~,? as the image of ,i& under the mapping rc. 

The inverse temperature /3 modifies the strength of the interactions. The larger the 
value of p, the more the spins interact with their neighborhoods. As /I passes above the 
critical value denoted by PC, two distinct thermodynamical phases appear and the 
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local magnetization is close to two distincts values f mS. Before going on to the large 
deviation principle, we will describe the additional conditions needed on p and we will 
compute fit and mp. 

2.3. Hypotheses on the measure p 

We recall that p is a symmetric measure on R! with support [ - 1, 13. We assume that 
the log of the Laplace transform of p 

is finite and strictly convex on R. We assume in addition that 

for all t 2 0, the third derivative A”‘(t) d 0. (2.9) 

This condition is connected to some usual properties of physical systems and is 
satisfied for any distribution p in the GHS class. We refer the reader to Ellis for 
a precise definition (1985) and discussion (1976). The Bernoulli measure 
p =&(S, + CL,) which d e fi nes the case of spins taking values { - 1, l} belongs to 
GHS. We generalize the paper of Cassendro et al. (1993) which deals only with the 
Bernoulli measure. 

We assume (2.9) in order that the system has only two stable equilibria, though the 
interface problem is reduced to transition from one to another with a symmetry 
property. Without (2.9) it may happen that more stable equilibria exist, and the 
characteristics of the interface will depend on those equilibria which are apart. Eisele 
and Ellis (1988) have prove more general conditions to get only one second-order 
phase transition and no other phase transition. 

The Legendre-Fenchel transform of A is denoted A*. The function L defined by 

for all x in I&!, f(x) = A*(X) - { x2, (2.10) 

plays an important role in the qualitative behavior of the system, 

Lemma 2.1. The critical value of the system is 

A= l Sx2pW) 
More precisely, f has a unique minimum x = 0 for p smaller than PC and for each 

/3 above PC, the function f admits two symmetric minima denoted f m,. Furthermore, we 
have 

3c > 0, Vm E R, If(m) -f(ms)l > c(lml - mfl)‘. (2.11) 

The inequality (2.11) will be relevant in Section 4 to prove the large deviation 
inequality for open sets. 
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Proof. By condition (2.9) we see that A’ is concave on [w +. This implies that the inverse 
function ,4*’ is convex on the interval [0, 1 [. 

So for all p > .4*“(O) = l/Sx’p(dx) there is only one positive solution mp of the 
equation f’(m) = 0. Using the convexity of A*‘, we get also 

f”(mp) > 0. 

This completes the proof of the lemma. 0 

In this paper we are only interested in the case of p above PC. 

3. A large deviation principle: preliminary results 

The purpose of this section is to prove a large deviation principle for independent 
identically distributed (i.i.d.) variables, as well as regularity properties of some rate 
function which will be used in the next section to obtain large deviation estimates on 
the measures P~,~. 

3.1. The i.i.d. case 

Let I be a bounded interval of R. We use the weak topology on AC2(dr, I) and 
denote by ( . , . ) the duality brackets. 

Definition 3.1. Let El be the set of measurable functions with values in [ - 1, 11, that is 

EI = {al&s E E}. 

We give EI the restriction of the weak topology on Y2(dr, I). 

(3.1) 

Let p: be the image on EI of the product probability measure @,P under the 
mapping (Si)isz + gY( .) II, with CJ? defined in (2.1). 

Theorem 3.1. The measure pi obeys a large deviation principle on EI with rate function 

E,+CO,+4 

o -+ A*(o(r))dr. 
s I 

Proof. We suppose without loss of generality that I is the interval [ - ~1, n], where n is 
any integer. This statement derives from a more general theorem which requires some 
hypotheses that we are going to check. First we prove a result which describes the 
asymptotics of the Laplace transform of p:. 
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Lemma 3.1. Fur all f in _Y’(dr, I), we have 

Proof. Let (Xi)isN be an i.i.d. sequence with law p, we see that 

since (Xi) are independent, we have 

We define the function f, by 

[n/,1 - 1 
Js = C lti;s,ci+rr,tt (i+1)7f(s)ds. 

i = ~- [n;y] i s iy 

We know that f, converges strongly in _Y’(dr, I) to f as y tends to 0. As ,4 is 
Lipschitz continuous, we get for all fin _S?‘(dr, I) 

The lemma follows. fJ 

The compactness of E, ensures the tightness of the family { pt}. Furthermore, we 
check that f- j, n*(f) d s is the Legendre transform of f-Sin(j). Due to the 
assumption that A* is strictly convex, we see that f-+ jI n*(j’(s)) ds is a strictly convex 
functional. Since the previous hypotheses hold, by applying Theorem 1.1 of Baldi 
(1988), we obtain the large deviation principle claimed above. ??

3.2. Study of the action functional 

From now on we fix b > PC. 
We define on E the functional 

~(4 = s CfbW) -.f(qdl dr + z j j J(r - r’)(a(r) - o(r’))’ dr dr’. (3.2) 
w R R 

We note that B is the generalization to the infinite model of the rate functional 
found by Eisele and Ellis (1983) in the case of the torus. To simplify the calculation we 
define PA, when A is a bounded interval containing 0, by 

Sd (0) = 
s 

B 

‘?l 
A*(o) - 2 (J * ol,, 01,). 

Let old @ 5 be the extension of the profile cr by the profile 5 outside A. 

(3.3) 
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Lemma 3.2. For any pair 1” = (A’, A-) in { - 1, l}‘, we introduce the function 

xa = ;l+mplR+ + /2-mplR-* 

Since c is any projile in E, we get 

F(“lA 0 xn) = %+a, (4~ 0 x2) - %+6d(mp). 

This proof is a straightforward computation and is left to the reader. 

Theorem 3.2. 9 is a lower semicontinuous function on E. 

Proof. Let Z be a bounded interval. We denote by 61 + I the set 

{xElR)3yEZ~X-yyldl}. 

We introduce another functional 

9,(a)=~IA*(~)+~~,dr~ICdr’nz(r)J(r-r’) 

- y (J * alr,olr) -B(.Z * alI, all.) - j f(m8)dr, 
I 

which satisfies 

r R/- f 

(3.4) 

(3.5) 

(3.6) 

9(o) = 2JI(o) + 
J 
IF [f(o(r)) -f (ms)] dr + : JIG J J(r - r’)(a(r) - o(r’))’ dr dr’. 

IC 

By the equation 9(o) = supr(59r(a)), we see that the lower semicontinuity of 
P could be deduced from the one of Ce,. Hence, the proof will be complete once we 
show the lower semicontinuity of all the terms which compose Yr. The support of ~9~ is 
included in _Y*(dr, Z + 61) so we just have to prove the result for the weak topology of 
P*(dr, Z + 61). 

Let h be the function defined by 

for all ~7 in E, h(o) = (J * olr, al,). 

We will prove the continuity of h for the weak topology of P’*(dr, I + 61). 
We note that .yi”, = {J * al,(a E E} is a subset in %?(I + 8Z), bounded for the norm 

(1. I( m. Then, as Z is compact, J is continuous and each o in E is uniformly bounded, we 
check that ~‘8~ is uniformly equicontinuous. From this and from the Ascoli theorem, 
there exists, for each E positive, a finite set of continuous functions {gi}i~N which 
satisfy the condition 

6 C iyN {flVx E z + 6z2 If(x) -gi(x)l < E}. 
. 

Let hL be a sequence of profiles converging to 0 in _Y*(dr, Z + 61). Because 

lN~n)-4d d l(J*d,(~, -411>l + I(J*o~~,(s -4b)l, 
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we have 

Therefore, 

lim sup [II - h(a)1 d s. 
n-r= 

So h is continuous for the topology r. An analogous argument can be used to show 
that the function (r + (J * crl,, all%) is also continuous. 

We define the function & by 

for r~ in E, h(o) = dr 
s s 

drJ(r - r’)r~(r)~. 
I IF 

The function h is convex, continuous for the strong topology of P(dr, I + 61). This 
implies the lower semicontinuity for the weak topology of _Y2(dr, I + 61). Finally, 
noticing that (T + jI n*(o(r)) dr is the Legendre-Fenchel transform off- Jr A(j(r)) dr, 
we check the lower semicontinuity of 9,. 0 

Using the previous notation we introduce the sets $ 

Definition 3.2. For each E positive and for each bounded interval I, we define the set 
9; by 

Yi = i lI!Yi}i<N (3.7) 

4. A large deviation principle for pB,? 

In this section we shall use the previous results to obtain large deviation estimates 

for PP,~. 

4.1. Notation 

Definition 4.1. Let V, be the weak neighborhood of 0 in E defined by 

fE K o VCI E qcl,r,> I(%f>l < s> 

with $,,, rI as in the Definition 3.2. 

Definition 4.2. We denote by T the translation operator on E 

for L in R, for (T in E, TL(o) = c(. --L). 

(4.1) 

(4.2) 



10 T. BodineaulStochastic Processes and their Applications 61 (1996) l-23 

Definition 4.3. We introduce the closed set D”“- A+,lm(~) which contains the profiles close 
to Airng around the location 1+ and close to A-ml, around the location -I- 

V@‘, A-) E { - 1, l}“, V(I+, 1-) E N2, 

D:++‘,%) = V’c,+,E + XA)~(T,P+I,E + xn)n(T-r~& + XA) 

M-r--2$ + Xi.), 

where VE is the closure of V, and x2 is defined in (3.4). 

4.2. Large deviation inequality for closed sets 

Let us state the large deviation inequality for closed sets. 

Theorem 4.1. Let F be a set in E closed for the topology z. We get 

lirns~pyln~~,~(F) d -infF(c). 
y-0 F 

(4.3) 

Proof. We divide this proof into 5 steps. 
Step 1: We assume that F is a closed cylinder set with basis I = [-a, a], i.e. 

oeF o V’~‘EE,~(~@~‘EF. 

We fix R’, A- and l’, l- (with 1’ > a and l- > a) and E positive. Let D, be the 
shorthand of Dy+T,‘i-(~) and d = C-l-, I’]. 0 ur first goal will be to prove the 
inequality 

lim sup y In pa, ?(F n D,) 
y-0 

d - inf 9(o) + 
[ 

limsup yln pOJD,) + inf F(oIA 0 xl) + O(E). (4.4) 
FnD, y-0 E 1 

We notice that with a small error we can write a continuous version of the energy 
H;1 introduced in (2.7) 

1 
#(a) = - - (J * al,, 

2Y 
014 + 201,c) + ; (A 120(y), (4.5) 

where the error O(y) is a function which tends to 0 as y goes to 0. Because of the 
definition of V, (4.1), we get 

Vm E D,, V/~E E, I(J*gl,, 2(m - xJ~~~)I d O(E), 

where O(E) tends to 0 as E goes to 0. 
Using the continuous version of the energy (4.5) we have 

~,r,y(FnR) 

(4.6) 

= s dPc,,,(dlDj; (&exp($(<J*OIA,.lA +2m18,) +“‘y(‘)))). 



T. BodineaujStochastic Processes and their Applications 61 (1996) l-23 11 

Therefore, by applying (4.6) we modify the external conditions with a slight error 
and we see that 

Combining Theorem 3.1 and Varadhan’s theorem, we obtain 

lim sup y ln(pp, j,(F n DE)) 
y-0 

d limsup y ln(~B,,(D,)) + (J * ol,, al, + 2x21,,) - 
y-0 

- sup 
( 

f (J * ol,, Old + 2&.1an) - 
s ) 

/l*(a) + O(E). 
E A 

As a consequence of the equation below 

; (J * ol,, (71/j + 2x11&$) - jn.(oj 

we get 

11;s:~ Y ln(~0,,(FnD,)) 

G lim SUP y Wo,y(&)) - inf(~A+d4n 0 1~) - 6+dq)) 
Y-*0 F 

By applying Lemma 3.2, we see that 

d limsup 5’ lnh,(D,)) - i;fF(ul, 0 xA) + SUP 9(0(, 0 xi) + o(+ 
y-0 E 

Since o is in F, then 01, @ Xj. is in F n D, and we have 

The inequality (4.4) now follows immediately. 



12 T BodineaulStochastic Processes and their Applications 61 (1996) 1-23 

Step 2: In the previous step, we have reduced the proof to the computation of 
pug, ?(DE). Two cases remain: 

Case I: A+ = A-. Noticing that for any pair (A-, 2’) such that /2- = 1+, we have 

inf S(ald 0 x2) d F(mp) = 0, 
E 

and using the inequality (4.4), we check that 

lim sup y In pp. ,(D,) < 0, 
Y+O 

limsup y In pLp,,(FnD,) d - inf P(fr) + O(s). 
v-0 FnD, 

(4.7) 

Case 2: A+ = -A-. We must now handle the case in which pbJDE) is the prob- 
ability of leaping from one equilibrium value to another between the positions l- and 
1’. One of the main problem due to the infinite volume is that we had to compute 
directly the probability pp,JDE). We cannot iterate the conditioning argument. To 
deal with this difficulty we have used a symmetry property of the Gibbs measure. Our 
argument is completely different than that of Cassandro et al. (1993). 

Lemma 4.1. 

limsup y In pLa,,(DJ 6 - inf P(a) + O(E). (4.8) 
y-0 D, 

Proof. We deal with the case A+ = --A- = 1. The other case is obtained by symmetry. 
Let D be q-+312DE. As ,uLp,? is shift invariant, we note that D and D, have the same 

probability. We define s, a symmetry mapping on E, by 

for 0 in E, for all r in IF?, s(a)(r) = c(-r). (4.9) 

We notice that this symmetry leaves the conditional probabilities invariant: 

&?,y(~l&I,nl~)(~) = ~cs,,(s(o)l~Br-n,nlc)(S(W)). (4.10) 

By the uniqueness of the one-dimensional Gibbs measure we check that 

SO&,Y = PS,Y. (4.11) 

We are thus led to introduce a symmetrical set H, deduced from D, in order to apply 
(4.7): 

H = s(D)n D. (4.12) 

Let L = l+ + l- -t- 3. We partition H into 3 sets belonging respectively to the 
o-fields %j2,L+ 112lY % lj2, ljzlj %L- 112, - 1/2l 

& = 10 E El3o’ E H> ~l~1,2,~+1,2, = 0’1, (4.13) 

C = {a~ E13a’~ H, aJ~_l,2,1,21 = d}, (4.14) 

F2 = (c.~ E El30 E H, oJ~_~_~,~,-~,~~ = 0’). (4.15) 
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The probability pp. y r1’zSk1 (FI 1 CJ, 0’) with boundary conditions r~ on ] - 00, 1/2[ and cr’ 
on ] k, co[ was introduced in Definition 2.5. When (r is in C the following approxima- 
tion holds ~~,~-a.s. 

‘dk>L++f, p,. y’:vkl (Fl(O, a’) = pp.;, r1’2vk1 (Fl[ -mfl, a’) exp(O(E)/y), (4.16) 

where 0(c) does not depend on y, L, CT’. We insist on the fact that the equation above is 
a formal notation, it makes sense only with continuous versions of H, (4.5). 

We introduce the formal notation 

where 0’ is any block spins in E. 
So, for each profile D in C, by applying (4.16) we get 

pLs,j, - as., ~~g.~(F~l~~-1,2,1,21)(~) = exp 
( ) 

y &?,;.(& I -ms). (4.17) 

After these preliminaries we turn to the computation of /Q,,(H) 

P~,#) = ~~,y(C~LB,g(FlnF21.~[-1/2,1,21)). 

A one-dimensional Gibbs field with finite range interactions is a Markov chain, so 
the conditional law depends only on the values of c-(r_ ljz, 1,2l. The sets FI and F2 are 
independent conditionally to gr_ 1,2, 1,2I; it follows 

L+?.,(H) = P&y(lC P/Ll.(& Ia;r- 1/2,1/2l)PfLy(~2I’~(- l/Z. liZI)). (4.18) 

Then noticing that 

~us.,(~2I~~-l,2,1,2l)(~) = ~Lp.,(S(F~)I~~-1/2.1,21)(~), 

and using (4.10), we get 

(4.19) 

P/J.y(~21& 1,2,1/2])(4 = Cla,,(h w- 1/2,li2l)W)). (4.20) 

Combining the preceding with Eq. (4.18) this implies 

P/L&H) = ~a,~[I~,I*p,y(~~1~~-1,2.1,21)(~)~LB.*(~~l~~-1/2,1/21)(~(~))1. (4.21) 

If Vz is properly chosen we note that when D is in E then S(CJ) will also belong to this 
set. Therefore, by Eq. (4.17) we see that 

PL.#) = ~~a,~(f&~,,(~~l -mp)2exp(C%)ly), 

we have 

m,W) 2 P~,~(~cP~.,(~I I -mp)J2 exp(WlyL 

and finally 
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By again applying the Markov property, we get 

PA,(J~ 3 PP,ACI;~ )” exp(O(s)ly). (4.22) 

We use now for the set H the large deviation estimate obtained in (4.7) and by (4.22) 
we see that 

lim sup 2y In P~,~(CIF~) 6 - inf 9(a) + O(E). 
y-0 H 

From Definition (4.12) of H in terms of D, it is clear that 

2 inf S(0) 6 O(E) + inf P(0). 
D H 

This completes the lemma. 0 

By Lemma 4.1 to inequality (4.4), we see that 

limsup y In ,r+(DEnP) < - inf 9(a) + O(s). (4.23) 
?+a D,nF 

Step 3: We shall now estimate the probability of the subset of F which contains the 
profiles which are not close to an equilibrium value. We define 

for L > 0, W, = a <ii< L A;_ D:++,i%) 1 ‘. 
\ \ 

a<I_ <L 

In this step, we will prove the existence of two constants Ci and C2 

l~n~sfpyIn~~,~(W~)< -LC1 + C2. 

(4.24) 

(4.25) 

Lemma 4.2. 

3c > 0 such thatfor all 0 in W,, 9(o) 3 c(L - a). (4.26) 

Proof. By the lower semicontinuity of ‘Sr (3.6) we get 

VIE C-L, -a]u[a, L], inf 9[l,lf 11(e) > c > 0, 
at(T,V= f nrg)C 

so, by iterating the procedure with different 1, we prove the lemma. 0 

We denote A = C-L, L] and with an error proportional to exp(a/y) we fix arbitra- 
rily the external conditions outside A equal to ms. We get 

By Eq. (4.2.5), we see that 

lim sup y In pfl. ?( WL n F) d a’p - inf F(m). 
y-0 WL 
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The statement (4.25) will derive from Lemma 4.2 applied to the equation above. 
Step 4: We now collect all the previous bounds to compute pLs, ,(F). We fix L and E. 

Because, 

lim sup 7 In pD,&F) < lim sup 1’ In 2 max&.JWI,), pb,,(W~n F)), 
.,’ - 0 7-0 

and therefore, 

limsupyln~s,,i(F) < max 
( 

C 1 -LC2,1imsupyIn~Lg,,(FnW,) 
y + 0 y+O ) 

(4.27) 

Noticing that, 

and using the inequalities (4.7) and (4.23) of the second step, we can check, as L goes to 
infinity, that 

lim sup y In ps,(F) d - inf F(cr) + O(E). (4.28) 
y-0 F 

As F tends to 0, we arrive at the required result. 
Step 5: We must now remove the restriction on the sets and prove Theorem 4.1 for 

any closed set F. Let 

FR = jrr(3 CJ’ E F, cr([_RJ] = O’I,_,,R]). 

The set I$ is a closed cylinder, so we can use the large deviation estimate (4.28). 
Noticing that F is included in FR, we see that 

lim sup y In PO,,(F) < - sup 
c 1 

inf P(a) . 
',' * 0 R FK 

We assume that supR infFR I = x < m; otherwise, the statement is obvious. Let 
rrn be a profile chosen in F, in order that the sequence {a,] satisfies 

lim F(cJ~) = (x. 
n+X 

By compactness of E, we can extract a subsequence converging for the topology T to 
a profile CJ in F. Using the lower semicontinuity of 8 (Theorem 3.2) we get 

The statement (4.3) follows. ??
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4.3. Large deviation inequality for open sets 

In this section, we shall exploit the same methods as the ones developed in 
Section 4.2. We will prove a large deviation inequality for open sets. 

Theorem 4.2. Let 0 be an open set for the topology z. We get 

lim inf y In pu,, ,(O) > -inf F(a). (4.29) 
y-0 0 

Proof 
Step 1: Let c be any profile in E. We recall that xi was introduced in (3.4). First we 

assume that 0 is a neighborhood of the profile (~1 _ I R,Rl Q xn, where R is positive and 
A is in { - 1, i}‘. We denote by CR the profile ~1 _ [ R,RI @ XL. We can suppose without 
any restriction that 0 is a cylinder set of basis A = C-R, R]. We fix E positive and we 
denote, in analogy with Definition 4.3, by D the interior of D$m(~). We will prove 

lim inf 7 ln pp, y(O) > -g(oR) 

y-0 

+ liminf y In pp.,@) + inf F(o’ 0 XL) + O(c). 
y-0 1 

We have 

&?, Y(0) 2 8% y ( ( $ (J * fYld, a’l, + 2rnla4) 

so by changing the external conditions, we get 

+ lA12W) + O(E) 
Y )))I. 

This will allow us to apply Theorem 3.1 

lip tf y In pp.(O) > lim inf y In pa,,@) - inf P(a’l, @ x,J 
y-0 LT’EO 

+ inf g(a’(, 0 xn) + O(r). 
U’EE 

(4.31) 

Then noticing that dR is in 0 and using (4.31), we obtain finally (4.30). 
Step 2: To check 

lim inf 7 ln &, ,(O) > -p(gR), 
y-0 

(4.32) 

we need to estimate ,u~.~(B)) for the different values of (A+, A-}. 
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Case 1: A’ = A-. The profile mg (respectively -ms) belongs to 6 so by The- 

orem 4.1 we get 

lim po,Jh) 3 b. 
y-0 

When combined with equality (4.30) we see that 

liminf ;’ lnps,JO) 3 -$(0s) + O(E). (4.33) 
;’ - 0 

By taking the limit as E tends to 0, we prove the statement (4.32). 
Case 2: A+ = --A-. The derivation of (4.32) differs in no way from the proof given 

in Section 4.2 (Step 2), thus we will not repeat the same argument here. 
Step 3: Hence the proof will be complete once we show (4.29) for any open set 0 in 

E. Let 0 be an open set and cr be a profile in 0. We suppose that F(o) is finite. Thus, 
by condition (2.1 I), we can choose A such that (T - xi belongs to di”‘(dr, R). Therefore, 
we check that 

lim F(a,) = P(6). 
R-O 

Since R is sufficiently large, (Ts belongs to 0. So we can apply the previous results for 
0, a neighborhood of CR included in 0 and we get as R goes to infinity 

for 0 in 0, liminf y lnj+y(0) > --F-((T). 
;’ + 0 

(4.34) 

Theorem 4.2 follows. 0 

Before going on to the study of the profiles we will state an immediate consequence 
of the large deviation principle. 

4.4. The average shape of the p&es on small regions 

Proposition 4.1. Let V be a neighborhood of 0 suficiently small and any sequence (a,) 
with 

y In a., + 0, 

We introduce the open sets 

A= +1, A; = n (TV + Imp), 
--a <I<n., 

‘1EL 

and we get 

1 = * 1, lim PLp,JA$) = f. 
Y-r0 

(4.35) 
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This proposition shows that on intervals of length uY a profile has a strong 
probability to stay close to one of the equilibrium states. The reader should take note 
that this result tells us nothing about the profiles behavior on regions larger than a7. 

Proof. We denote (A: u Ai l)’ by B,. As the system is symmetric, it suffices to prove 

lim pD,.JB,) = 0. (4.36) 
y-0 

We distinguish two subsets of B, 

B:={~131E~,II(<a,,crlT~1/‘_+ms) 

B,2={~13~,31~~,)II<a,,a~~I/+im,ando~~~+~,V-/Zm~}. 

Noticing that 

and 

&?.yc~;) G 2wLp,,((Jf + q?YnW - q)“), 

using Lemma 4.2 we have 

3 c > 0, 3 y,, > 0 such that V y < yO, ,uu,, ,(Bi) d 2a, exp( -c/l)) 

Each element 0 in B: satisfies 

3 1, (11 < uy, 3r E [l, 1+ l] such that a#T’I f ma, 

so an analogous argument will imply 

3 c > 0, 3 y0 > 0 such that ‘v’ y < yO, pLa, ,(Bt) < 2a, exp( -c/y). 

Collecting all the previous bounds we get (4.36) from which the proposition follows. 

5. Study of the profiles 

In the previous section (Proposition 4.1) we proved that the more likely configura- 
tions are locally close to an equilibrium state. We shall use the large deviation 
principle to obtain more information on the shape of the profiles and to prove 
a metastability property due to the infinite volume. We generalize the local study of 
Eisele and Ellis and we prove that a profile will keep a local magnetization close to the 
value +mD on a distance of the order of exp(@/y) before jumping to the opposite 
stable value. We make an analogy with dynamical systems and exploit Friedlin- 
Wentzell theory to estimate the position where the first interface appears. 

5.1. Notation 

Let I/ be a weak neighborhood of 0 which is a cylinder with basis [0, 11. We are led 
to introduce _YF, the function from E into yZ = {nyl n E B} which associates to each 
profile of E the position of the first interface after 0. More explicitly 9: is defined by 
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Definition 5.1. 

-Y;(a) = inf{l E yZ ( 3 1’ E yZ, 1’ > 0, 1 > l’, 3 3,, G E (T,,V + i.ms)n(T,V - E,mp)j. 

At position 1’ the profile enters for the first time in a neighborhood of the state I.m/, 
and Y;(C) is the first position after I’ where the profile hits a neighborhood of -Am,,. 

Definition 5.2. Let A be 

(a(r) - mlr)’ dr < co, 
s 

iw_ (a(r) + nzg)2dr < CC (5.1) 

and define SD to be 

@ = inf 9(o). (5.2) 
A 

We insist on the fact that the profiles in A leap at least one time. The constant 
@ could be interpreted as the cost of a leap. 

5.2. Evaluation of 6”; 

Before going on to estimate 9: we need to prove an extension of the large deviation 
principle. 

Theorem 5.1. Let 0 be un open cylinder with compact basis in (w+. We suppose in 
addition that 0 is symmetric, i.e. 

0 = (-ajoE 0). (5.3) 

We get for all E positive 

3 R > 0, 3 y. > 0 such that V y < yo, 

(5.4) 

It is interesting to note that the assumption (5.3) on 0 is relevant; in fact, a mixing 
property for general sets will never hold on finite distance. 

Proof. We fix c positive. Let w and w’ be two block spins, so the probability pO,) 
conditional on o or w’ makes sense. Since o’ is in the set o + T_ 1 V, (with V, as in 
Definition 4.1), by using the same kind of argument as in (4.16), we check for any 
cylinder set H of basis included in Rf 

for all y < ‘Jo, &J,#fl%~)(~‘) = &,Y(HI%-~)(~) exP(o(E)l& (5.5) 
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For any profile o in E, we define G, by o + q_ r,K. We note that E = UweE G,. 
Thus, by the compactness of E, one has the existence of a finite family (Gw,)i G ,,, which 
covers E. We denote G,, by Gi. Furthermore, the sets Gi are regular, i.e. they satisfy the 
property 

infP = inf9 
ci G, 

where Ci is the closure of Gi. 
Let Gi be given, we will prove that 

(5.6) 

(5.7) 

where the constant R will be fixed later, 
Noticing that 

by Eq. (5.5), we have ~p,~-a.s. for o in Gi 

as Gi is regular (5.6), by applying the large deviation property we get from (5.8) 

liminfy In If:, CP~,,GW~%-)(~~ 3 - inf F(a) + inf P(0) + O(E). (5.9) 
y-0 GjnT.qO G, 

IQ.,-a.s. 

One iS led t0 prove that for a suitable Constant R, infc,nT,O 9 iS almOSt equal t0 
infe, 9 + infTRO g 

Let pi be an element of Gi which satisfies the propery 

ai = im, for r > d, 

where d is a constant and /z is an element in { - 1, 1) depending on di. 
For any ,I the symmetry of 0 enables us to find IJ in 0 which has the following 

property: 

P(a) < inf 9 + 42, 
0 

o(r) = Am8 for r < -d. 

Let R be 2d + 1, then the profile bi @ mp @ T,a belongs to GinTRO and we get 

infF- inf 92 -F(o)-:> -infR-SE. 
c, Gin T.qO 0 
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This implies (5.7) for any set Gi. Therefore, noticing that the family (Gi)i G N covers 
E and using (5.7) for all i, it can be checked that the statement (5.4) holds for suitable 
constants y. and R. IJ 

We have made all the preparation necessary to estimate 9;. 

Theorem 5.2. Let V be a sufJiciently small symmetric neighborhood of 0, for each 
positive .z we get 

where @ was introduced in Definition 5.2. 

Proof. 

Step 1: First, we will prove 

(5.10) 

(5.11) 

We fix a positive E. Due to the definition of @ (5.2), there exists an integer N and 
a profile c in E which satisfy the following properties: 

a(r)= -mg forrdl, (5.12) 

o(r) = mS for r > N. 

We introduce 0 = O(o) u 0(-c), where O(U) is a neighborhood of cr defined by 

O(0) = (V - o)n(T,V + G) 

Hence, by the symmetry of 0 and Theorem 5.1, we get for a suitable integer R 

37, such that V y < yo, 

/+,y-a.s., PL~,~(ORI%-)(~) 3 exp ( info F_(C) + ~/4 
- 

Y ) 
(5.13) 

where OR = TRO. Without any restriction, we can assume that 0 is a cylinder of basis 
[0, N + l] and we set R’ = R + N + 1. Before getting into the details, it may be 
helpful to make a couple of remarks. Eq. (5.13) tells us that the probability of leaping 
from an equilibrium value to another on the interval [0, R’] is always greater than 
a constant cy. So if we iterate (5.13) on the intervals ([iR’, (i + l)R’])i G n, we see that 
the probability of leaping on [0, nR’] will increase more than nc, One is led to predict 
that 9: ought to be of the order of l/c,. 
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We note that 

(5.14) 

where l* is the integer part of (l/R’)exp((@ + E)/Y). 
Because of the Markov property of the Gibbs measure, we have 

Combining the shift invariance of pP,? and Eq. (5.13) proves 

PS, ,-a.s., ~~,Y(TR'I*ORI~I-~.R,I*J)(W) 3 exp 
(-Ty), 

and therefore, 

So we can iterate the procedure to get 

and more precisely 

By taking the limit as y goes to 0, we then derive (5.11). 
Step 2: Theorem 5.2 will be complete once we show that 

,p,,,(L?;>exp(~))= 1. (5.15) 

We introduce the length A?$ defined by 

Z;(o) = sup{l E yZlZ”E: > 1 b 0, 31, o E (T,V + hp)n(Ty;V - has)). 

We denote by A$ the set (9: = 0, 9: < co}. 
Let g be any profile in the closure of A+?“. If 0 is in A!‘“, we see that F(o) > @. If 

P’;(a) is infinite then 0 is not in a neighborhood of an equilibrium value, this implies 

So we get for the closure of A?” that 

infF = @. 
.Y” 
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Noticing that 

and applying the large deviation principle for the closure of .HV, we have 

As ;I goes to 0, the statement (5.15) follows. 0 
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