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Abstract

Recently, N. Kéno gave a limit theorem for occupation times of fractional Brownian motion,
which result generalizes the well-known Kallianpur-Robbins law for two-dimensional
Brownian motion. This paper studies a functional limit theorem for K6no’s result. It is proved
that, under a suitable normalization, the limiting process is the inverse of an extremal process.
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1. Introduction

Let {B®(t)},50 be a standard Brownian motion on the plane and let f be
a bounded integrable function on R? The following theorem due to Kallianpur-
Robbins (1953) is well known.

Theorem A. If [ = [ f(x) dx # 0, then

2n [*
i ) =1_e"*
,linjl P I:flogt Lf(B (w)) du <x:| =1—-e7% x>0.

An “invariance principle” for Theorem A was given by Kasahara—Kotani (1979).
To explain the limiting process we first define the canonical extremal process Y =
{Y(8)}: o, which is defined to be a nondecreasing process such that Y (0) = 0 with the
finite-dimensional marginal distributions

PLY (1) < Xps oo, Y(t) < %] = G Gxz) 70 L. Glx,) "0
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for0<t; € - <t,, 0<%, < -+ €x,, where G(x) = e~ /*. One of the method of
constructing Y is as follows. Let p be a Poisson point process on (0, o0) x (R\{0}) with
intensity dx/x? (i.e., the mean measure of the counting process N,(dt, dx) is given by
dtr dx/x?). It is easy to see that the maximal process of p is a canonical extremal
process. Since such a point process p appears in the theory of Brownian excursions,
Y may also be expressed using one-dimensional Brownian motion B!(t) as follows.
Let M = {M(1)} and ¢ = {/(1)} be the maximal process and the local time at 0 of
BW(t), respectively, i.e.,

L
M(t)= max BY(s), /()= hlr(r)l = J Ii— . (BY(s)) ds.
el0 4g

0<s<t 0
Then

(Y@} Z{M( @)}

We refer to the textbook of Ikeda and Watanabe (1981) for the notation and
fundamental results on point processes and Brownian excursions.

A functional limit theorem for Theorem A was given by Kasahara and Kotani
(1979).

Theorem B. Let ¢(x) = xe2*. Then,

@ (A1) f
i f(B®(w)) du L%, - Z(t) as A—w,

0
where Z(t) = £/(M ~ (1)) is the inverse process of a canonical extremal process Y (1).
Here, “":%” denotes the weak convergence of all finite-dimensional distributions.

See Remark 1.1 below for the reason why we use the above normalization due to
D. Stroock (private communication) instead of

L (" ppoua
Tog L S u)) du.

We also remark that the assertion of Theorem B does not hold with respect to
Skorohod’s J;-topology. If it does hold, then the limiting processes Z should necessa-
rily be continuous, which is clearly a contradiction. In fact, we can claim the
M {-convergence, but we shall not go into details here. For an extension of Theorem B
from the view point of Markov processes, see Kasahara (1982).

Recently, N. Kono extended Theorem A for fractional Brownian motions: Let X7 be
a fractional Brownian motion with index y(0 < y < 1). That is, X7 is a real-valued
centered Gaussian process such that

EX"(X (] =3 {7 + 52 — |t = 5|}, 5120,
or, equivalently,

X7(0)=0 and E[(X7(t) — X"(s)?] =t —s|**, 1,5 0.
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If y = 4, then X" is the usual Brownian motion. A d-dimensional fractional Brownian
motion is defined to be an R%-valued Gaussian process

X = (X0, X3(0), ..., X3()),

where X](t), X}, ... are independent copies of X*. We shall consider only the
recurrent case, i.e., 0 < yd < 1. If 0 < ypd < 1, then the existence of jointly continuous
local time Z, 4(t, x) is known and, therefore, it is easy to obtain a limit theorem for the
occupation times: Let f be a bounded summable function on R? and let f= | f(x) dx
as before. We easily see by the self-similarity of the fractional Brownian motion that

1 o v s
FERRT. J f(X7(s) ds £ 47 J S(A7x)L 5 q(t, x) dx
v [s) Rd

L7¢,4(0) as i—x

over the function space C([0, «0)). (See Kasahara and Matsumoto (1996) for some
remarks on the law of 7, 4(¢, 0).) Therefore, the remaining case (i.e., yd = 1) is the only
interesting case and Koéno (1996) proved the following theorem, which extends
Theorem A.

Theorem C. Let d = 2. Suppose yd =1 and let f(x) 20 be a bounded integrable
function on R? such that = | f(x) dx # 0. Then,

1 1
i 7d S = 1 - —x’ s
,llnolc P[C log L f(X74s)) du xj| € x>0
where
f 1
€= o " 2y j LA -

The aim of the present paper is to obtain a functional limit theorem for
Theorem C to extend Theorem B. Our main result is the following.
Theorem 1. Under the assumptions of Theorem C, it holds

A1) :=% J: f(X7w)du 24 CZ(t) as i — o,

where C is as in (1.1) and Z is the inverse of a canonical extremal process as in Theorem B.

The assertion of Theorem 1 may be rewritten as follows:

. 1 1
}Lfri Pl:E Aty = xq, - aEAA(tn) = xn:|
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For Markov processes it is proved by Kasahara (1982) that, in such cases where the
occupation times converge in law to an exponential distribution under a suitable
normalization, we have a limit theorem similar to Theorem 1 with the same limiting
process Z as above. So the reader may think that Theorem 1 is natural, but in fact, it is
amazing in some sense to the authors because in other cases (i.e., 0 <yd < 1) it is
known that, as for the occupation time problems, fractional Brownian motions and
Markov processes have distinct limiting distributions.

Remark 1.1. The reason why we consider the normalization of Theorem B is as
follows. Let Z*(t) be any limiting process of

1
log 2

At
J [(B®(w) du.
0
Then Z*(t) is degenerate in the sense that it does not depend on ¢ (i.e., Z*(t) = Z*(0+),

t > 0): Since E[f; f(B®u)]du is asymptotically equal to Clogt as t— oo, we
obtain

e[ ] o] o]

. C \
= }LH; Tog i {log(ir) — log A} = 0.

Since [} f(B®(u)) du is monotone in ¢ if f(x) > 0, this implies Z*(t) = Z*(0+), t > 0.

Remark 1.2. The assumption that f is nonnegative is not essential and can be
removed. It is, however, crucial that C # 0. Otherwise, the limiting process degener-
ates and we need another normalization.

Remark 1.3. The condition that yd = 1 can be weakened: The assertion of Theorem
1 is still valid for d-dimensional fractional Brownian motion with each independent
component has scaling parameter 0 < y; < 1 satisfying 7, + -+ +y,=1.

2. Proof of Theorem 1

For the proof of Theorem 1 we adopt the moment method of Darling—Kac
(1957), Bingham (1971) and Kasahara (1982). We first introduce a linear transforma-
tion on C,[0, co) the space of all real-valued bounded continuous functions defined
on [0, o0).

Definition 2.1. For every s > 0 and for every p € C,[0, o0) we define U;p € C,[0, o0)
as follows:

0

Usp(t) = f e p(&) dé + e~ p(t), t=0. (2.1

t
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Let us consider some examples. Let 1 denote the function which is identically equal
to 1. (Le., 1(t) = 1.) Then,

1
UL =_e " +e

1 t 1
U, U, 1(0) = { n N }e(mm.
) s2(s1 +82) sty (51 +5,)°

As a special case, we have

1 1 1
U, 1(0) = —> U, U, 1(0) = :
5 1(0) 51 010 $2(84 +52)+(51 + 5)°

(2.2)

Without loss of generality we may and do assume that C = 1. The following is the key
lemma.

Lemma 2.1. Let ¢(x) =e* — 1 and for every s, s, ...,s, > 0 define
(,[)(M 31, ey ,,)

:J[ e ISt E [1‘[ /tj)))(/)()t):|dl‘1 -+ dt,,. (2.3)
JO< <<y, =

T hen,
lim ¢M (s, ..., s,) = U, U, ... U, 1(0).

Lo

The reason why we set ¢(x) as above is that this function is asymptotically equal to
e* and satisfies ¢(0) = 0, which condition is technically convenient. But in fact ¢(x)
may be any other smooth function such that ¢ ~!(x) is asymptotically equal to log x
(e.g. p(x) = e, xe*, etc; cf. Theorem B). We postpone the proof of Lemma 2.1 until the
next section and we shall prove Theorem 1. The idea is due to Bingham (1971).
Lemma 2.1 implies that

lim J“ Jl e_ZsmE[ ﬁ f(X)'.d((p(ltj)))(p/().tj):l de, -~ dt,
¢ 0

AL ) j=1

= ¢n(51, e ,Sn), (2'4)

where

¢"(31’ "J - Z nu;(]bm I (]snm)l (0)

Here, n runs over all permutations of {1, ... ,n! and, for example, by (2.2)

1 2
P =— Dy(51,8) =—+ ———-
1(s1) 5 2(81, 82) 515 + (51 + 55)°

Integrating by parts, (2.4) may be rewritten as

lim s, sf f eTISUE[AN() ... AX()]dty e dty = Bolsty o.e i)
0 0

A oc
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where
@(A1)

AX() FOX(w) du

=7

Notice that A%(t) and A4,(¢) have the same limiting process. In order to find the
relationship between the right-hand side @, and the process Z, we use the idea of
‘invariance principle” Let us consider the special case of two-dimensional Brownian
motion, in which case we have, by Theorem B, 4,4 Z. Therefore, by a routine
argument we see that the limiting function @,(s,,...,s,) is in fact the Laplace
transform of E[Z(t;) ... Z(t,)]; for every s; > 0 and n > 1,

(D(Sl,...,s,,)zsl...s,,f j e_zsjtJE[Z(tl)Z(tn)]dtldtn

0 0

So (2.4) can be rewritten as

llm Sl ...SnJ J e_zsjtiE[AA(tl)...Al(t")J dtl dtn

Ao 0 0
=51 ... Sy f: f e ZNE[Z(ty) ... Z(t)] dt, - dt,
which implies
lim E[4;(t)) ... A(t)] = E[Z(t1) ... Z(t,)]

for every ty, ...,t, = 0 (n = 1). Here it should be noticed that the right-hand side is
continuous in (ty, ...,t,). Now keeping in mind that repetition of {t;} is allowed
(e.g., E[A4,(1)*] may be rewritten as E[A4,(t)4,(¢)]), this implies

lim ELA,(e)™ .. Ay(t)™] = ELZ@0)™ ... Z(6)"]

for every t; 2 0, m; > 1 and n = 1. This proves the assertion of Theorem 1 since it is
easy to see that the limiting law is characterized by moments. [J

The proof of Lemma 2.1 will be given in Section 3 and in the rest of this section we
shall explain the idea.

Definition 2.2. Throughout the paper we set t, =0 and let 0 <ty < -+ <t,. We
denote by C,(tq, ... ,t,) the covariance matrix of

(X7(t1) — X7(t0)s - » X7(t0) — X7 (tu—1))s
and for every 4 > 0 we define
Cr,}(tl’ atn) = Cn((P(;ttl), 7@0(;‘1"1))'

So CXty, ... ,t,) is the covariance matrix of

X 7(@(At1)) — X7 (@(4to)), ..., X (@(Atn)) — X7 (@(Aly— 1)),
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and the diagonal elements are

Calty, .o 1) = (A@(A)?, j=1,..,n
where

Ap(dt) = (At) — o(At;—y), j=1,...,n

Now writing down the Gaussian kernel it is not difficult to see that the right-hand
side of (2.3) is asymptotically equal to

—xsr, P4 - @' (A)
f J0<r. < . ¢ (det Ci(tl, ,tn))d/z di; ... dt, (2.5)

since \/2n ¢ [f(x) dx = 1 by assumption. The difficulty in proving Lemma 2.1 comes
not only from the complicated det C(¢,, ... ,t,) but also from the fact that

. Cssr @ (Aty) ... @ (Aty)
1 Ls;t; dr, ... d[,,
;;Lrlgv J‘ JO<:1<...<z"e (det C;}(th ""tﬂ))d/z I

Cxsy, (A1) . @'(4t,)
J L<h< . bwe @et CHE o )7 dey ... dt,. (2.6)

However, in the Markovian case (i.e., y = 3, CA(ty, ....t,) is diagonal and so

det Ch(t, =[] (Ap(At)) 2.7)

j=1
and hence

—gsy, Q) @ (AL)
i P
f JO\r, < © (det C"}(tl’ e t,,))d/z t dt

5o, @A) ... @' (At,)
— |- ALY dey ... dt,, 28
f L<,l< “ Ao(it,) ... ho(at,) 1 (2.8)

since yd = 1. Therefore, the assertion of Lemma 2.1 may be reduced to

. Cser O(At)) ... @' (AL,)
Iim |--- g ISl dey ... de,
A= J‘ fo<1, <<ty A(p(ltl) AQ)(/“,,) '

= U, U, ... U, 1(0). (2.9)
If we define
w920
Usp(t) = Jt e *{p(;@ — qo(/lt)p(é) dé, (2.10)

then (2.9) can be rewritten as

lim UZ ... UA(0) = U, U,, ... U, 1(0).

A

Thus, for the proof of Lemma 2.1 it suffices to show that

lim Usp(t) = Up(t),  p e Co([0, o). (211)



168 Y. Kasahara, N. Kosugi [ Stochastic Processes and their Applications 67 (1997) 161-175

This idea is already given in Kasahara (1982), but in the present case the difficulty is
that we have to treat non-Markovian cases, where (2.7) does not hold. Nevertheless,
we shall show that, thanks to a special situation coming from the crucial condition
yd = 1, an analogue of (2.8) does hold and the problem may be reduced to (2.9) as in
the Markovian case and hence the problem can be reduced to (2.11). We emphasize
here that an analogue does not hold unless yd = 1.

Of course, in the above we only explained the idea and did not mention about
technical conditions. For example, precisely speaking, (2.5) and (2.10) diverge. So the
domain of integration in (2.5) should be restricted to the set {(t, ..., t,): Ap(4t)) > 1
(j=1,...,n)} and also (2.10) should be modified a little (see Definition 3.1 in
Section 3):

Uip(t) = r oo B H{p(48) — @(41) = 1)p(&) d&. (2.12)

‘ p(A8) — @(A1)

3. Proof of Lemma 2.1

We first define an operator U>™ which generalize the operator UZ we defined in
(2.12). (U} = U1, As we shall see later, U™ converges in some sense to U, which we
defined in Definition 2.1.

Definition 3.1. For every s>0, M =1 and for every pe C,[0, c0) we define
UXMp e C,[0, o0) by

U Mp(o)
- [ "o T 000 - ot > My dz 20 G.)
‘ P(48) — @(At)
Notice that (3.1) may be rewritten as follows:
© 0
U900 = | o0 £ Tt 0 ()
where

1 1 .
Ti& 1) = H log(@(48) — @(4t)) = i log(e*s — &%)
and

Eo = Eol4, t; M) =~ log(e* + M). (3.3)

S| =

We shall also use the convention that T,(&; t) = 0 when & < &,. We remark that

1
0< 1 logM =T, ) ST G D<E Leléo, o) (3.4)
lim &, =, (3.5)

Ao
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and
lim Ty&=¢ &>t (3.6)

Furthermore, it holds that

supj e S THE ) —E|dE—- 0 as A — o (3.7)
t=20 Jt

Indeed, the convergence for each fixed ¢ follows from (3.6) combined with (3.4), and by
the monotonicity in t of f:’o e ST,(&; t) d&, we see that the convergence is uniform for
t = 0. The following lemma is what we mentioned in (2.11).

Lemma 3.1. For every M 2 1, s > 0 and p € C,[0, ),

) 1Upll. <A/s)Ipll

o0

(i) [USMp@l < lpllos J e™¢d¢ (120,4>0)

(i) [USMpl, <(/s)Iple (2> 0)
(iv) lim, | USYp(1) — Upp() .. = 0.

Proof. (1)

[UpD] < 1ipllw (J e st dE + elstt>
t

© e 1
<|P||x,><f e dd <~ llpll.
0 S

(i) Integrating by parts, we see from (3.2) that
[UEMp)] < Il USM1(0)

X

= [pl <e_S§T/l(é; lg=e + SJ e ST, 1) dé)

0

o€

<0+ lpl xs | eede

t
Here we have used T,( t) < & (see (3.4)) and &y > 1.
(ii1) is an easy consequence of (ii).
(iv) In view of (ii), it is a routine work to see that it suffices to show the assertion
only for p having compact support, and furthermore, by (i) and (iii), it suffices to
prove assuming that p is a smooth function with compact support. Let &, be as in
(3.3). Then,

A

ULMp(t) = e = p(O) Tal& 1) 1&g, — J (€™*p(&) T:(& 1) dE

o

1 €x
=— e*5‘5°p(éo)z log M — j (e *p) Tx(& 1) dg
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(with the convention that T,(¢; t) = 0 when ¢ < &) and

Usp(t) = — J e p(e)) & de.

t

Therefore,

|US¥p(1) — Usp(t)]

1
<e”*|p(&o)l jlog M +

J €™ =p)(Tu(& ) — 9 df’

o0

1
<Ipllo 7 log M +(slipfle + IIP'!IOO)J e | Tu(& 1) — €l de,

t

which converges uniformly to 0 as A —» o0 by 3.7). I

Lemma 3.2. For every M = 1, 8., 5,, ...,5, > 0 and p € C,[0, 0),
D) JUSMUSY . USMpllo < (15152 o s Pllee

(1) }im UMMULM | UPMp(t) = U,, U, ... Ugp(t), t=0.
Proof. The assertion is an easy consequence of Lemma 3.1. [

The reader will probably find the following arguments tedious. But the authors
would like to stress that the difficulty comes from (2.6), which is due to the singularity
of the integration around the boundary.

Definition 3.2. Let At; =¢; —t;_; and t, = 0 as before. For every n=1,2, ... and
M=>=1 a>1, we define

(1) Gn; M) ={(ty, ....t)eR% At; =2 M, j=1, ...,n}.

(2) Hp(m; M, a) = {(ty, ..., t.) € G(n; M); 1/a < At;/ Aty < a}.

(3) G(n; M, a) = G(n; M\J;j .« Hu(n; M, a).

(@) GHm M) = {(t1, .. 1) € R (0(A), .., 9(it,)) € G, M)},

(5) Hi(m; M, a) = {(t;, ... ,tn) € R (@(At1), ..., @(At,)) € Hy(m; M, a)}.
(6) G*(m M, a) = {(t1, ..., ta) € R (@(Aty), ..., (A1) € G(n; M, a)}.

Lemma 3.3. For every M = 1,

. v, @'(Aty) ... ©'(AL,)
Iim e st (p( 1
A= .[G*(n;M) Ap(Aty) ... Ap(At,)

dt, ...dt, = U U, ... U 1(00). (3.8)

Proof. Since the left-hand side may be expressed as lim,_, UX™ ... U¥M1(0), the
assertion follows immediately from Lemma 3.2(ii) by setting t =0. [
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Lemma 34. Let 1 <j,k <n,j#k. Then, for every M > 1 and a > 1,
(1)

. v @'(Aty) ... @'(3,)
lim JJ e~toy Ol dt; ... dt, = 0.
A= 4 M, a) Ap(ity) ... Ap(it,) '

(i1)

. - "(Aty) ... @'(At,)
1 ST de, ...dt, =0.
/ll_’nolc J J‘ ;k(n M. a) ¢ (det Ci(tla ceey tn))d/2 !

Proof. Let j < k. By Lemma 3.1(iii),

Cyse @A) ... @'(AtL,)
e Tsjtj @ ( 1 di. dtn
J Lr;ik(n;M,a) Ap(Aty) ... Ap(dt,)

Sy P4 . @/(Al)
= |- e~ Tast ¢ 4ty UbM UML) dt, ...
f f 406 M, ) Ap(dty) ... Ap(dg) ™ e dn

oLy Q) - 9
o ty...dt
J f,k(kM a) Ap(dty) ... Ap(At) k

sk+1

) 2t) . @ (Re-y) 2
<———— e Lisk-18it ¢'( U de L dt -loga
S snf L;(k oy Ap(it,) Aq)(xtm) 1o Gl 7108

Sk
<

2
5 msniloga—»O (A — ),

which proves (i). From Lemma 3.3 of Csorgé et al. (1995) (see also Goldman, 1984) we
have

detC,(ty, ty, ., 1) = 27" {Aty ... AL} (3.9
and, hence,

detChty, ..., 1) = 27" {Ap(ity) ... Ap(it,)}?".
Since yd = 1, (ii) follows from (i). J

The following lemma is essentially due to Kéno (1996) but for the convenience of
the reader we shall give the proof.

Lemma 3.5. For every M > 1,

. det C,(tq, t2, -..,t,)
lim sup

—1]=0.
7% Gm M,a) (Atl Atn)ly

Proof. For 0 <t; < - <t, let C,(ty, 15, ... ,t,) denote the correlation matrix of
{X7(t) — X7(t;- )} =1, e, Coty, ts, ... ,t,) is the n x n matrix with elements
Mt = P = e T = G — (s =
v 2(t —ti- 1) (t _"tJ 1)
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Notice that

. det Cyltys ta, ..., 1)
det C,(ty, t5, ..., t,) = {At 1 Zt }zy
[ "

(3.10)

As is pointed out by Kono (1996) we easily have
o At; N ALY oy
Tl S\apvag) T

(Here we used the fact that 0 < y < 4 which follows from d > 2 and yd = 1). Combin-
ing this with the definition of G(n; M, a) we have

lim sup |r;| =0, i#j

G20 G(m; M, a)

Since ryq =1y, = --- = 1, this implies

lim sup |det C,(ty, 12, ... ,t.) — 1| = 0. (3.11)

a7 0 Gn; M, a)

The assertion of the lemma follows from (3.10) and (3.11). [

Lemma 3.6. For everyn>=1and M = 1,

lim |--- e-Ist @' (Aty) ... @'(AL,)
i GHm M) (det C(ty, ..., 1))

= U, U, ... U, 1(0). (3.12)

dty ... dt,

Proof. By Lemma 3.4(ii), it holds that for every a > 1,

) e "(Aty) ... @ (Aty)
1 Lsjty ¢ (4 dt, ... ds,
A J L«mm ¢ @t G, Ly

. vy QA1) ... @' (AtLy)
=1 e Lsjt; d (/L i

}'l_’ngo J- JGl(n;M.a) (det Ci(tl 3 ey tn))d/z
provided that the right-hand side exists. Combining this with Lemmas 3.3 and 3.5 we
easily have the assertion. [J

de; ... dt,

Lemma 3.7. Let G(n; M) and C,(t, t,, ... ,t,) be as before. Then,

lim sup sup (C,(ty, t2, -...t) 1x,x)=0.
M= GmM) xe R (x| <1
Proof. Let C,(t1, 15, ... ,t,) be as in the proof of Lemma 3.5. By (3.9) it holds for
O0<t, < - <t, that
detC,(ty,t5, ...,t,) _ 1

es s - 2——.
det Gt s oste) = — Ly 2

Now let 0 < p; < -+ < p, be cigenvalues of C,(ty, to, ...,t,). Since

pr < trace Colty, by, ... t)=n, k=1, .. ,n
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we see that the minimal eigenvalue is uniformly positive,

detC,(ty, ta, ..., tn) 1 1
b= = n = non—1
P2 e Pn 20y ...p, 2'n

Therefore, for (t, ...,1,) € G(n; M), letting y = (x, (A1), ..., x,/(At,)") we have
(Caltys 2y o t) 1, %) = (Colt s £y oo tn) P90 Y)

n xl% 2nnn—1 .
——|x]|%,

which proves the assertion. [

Lemma 3.8. For every s, 83, ... ,S, > 0 and M = 1 define

AP(sy, ooy S M) = JJ o eI E[ I1 f(X>’~“((p(itj)))<p’(2tj):| dey ... dt,
G*(m; M) j=1
Then,

(i) lim sup;o . @V (sq, oov v Sp; M) S Uy Uy, ... U (0L, M > 1,
(ii) limpy oo im sup;o .| (1, oo 50 M) — Uy, U, ... Ug1(0)} = 0.

Proof. Let g*(ty, ... .t x) (x € R") denote the density function of

(X7(@(At)) = X (@(to)), ..., X (@(Atn) — X7 ({41, 1))

_ 1
g/'(t - "'7tn;x): exp’ 4
‘ Qn? Jdet City, oty

By Lemma 3.7 we have

(City, oo tn) Tx. X)L

. My, oty X

- 1
M=% G M) g/'(tl, PR 0)

Il

0, (3.13)

the convergence being uniform for xe R" on every compact set. The density
function of

(X4 p(ity)) — X (@(Ato))s -, X" (p(At,) — XU @(2ly-1))

is given by
gity, ot xt xY =[] gMt ot XY (T x) e (R

Therefore, by (3.13)

X Ay, ooty X X0
lim  sup ga(t, n )

A .
M=o Giany | ga(tys o stn; 0, ...,0)

—1|=0, (3.14)
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the convergence being uniform for (x!, ..., x%) e (R")? on every compact set, and it
holds

¢()')(sla cer 3 8ns M)=JJ e—zsjtjdtl dtn
G M)

XJ‘J\(R) gd(tls na xly 7xd)(P/()'tl) (p,(itn)

xf e} fOey +x3) ... fxy + o+ x,) dxy ... dx,,

where x; = (x}, ..., x{) i=1,...,n) when x' = (x{, ...,x}) (=1, ...,d). Now by
(3.14) it suffices to show the assertion (ii) of the lemma replacmg qS“’

BP(s1s e 5 M) = JJ o eTIuude, . dt,
G*(m M)

xj...ﬁy gilty, . 13 0, .., 0)g'(Aty) ... 9 (2t,)

x R4

XfOe) flxr +x2) oo flxg + o +x,) dxq .. dx,

=C" |- _xsyy @A) . @' (A1) ;
‘ '[ L(nwe (det City ... t))7? de; ... dg,

where C is as before (see (1.1)) and recall that we assumed that C = 1. Therefore, the
assertion (ii) follows from Lemma 3.6. In a similar way, we can show (i) using the
obvious inequality

G515 e85 M) < BP(s1, o ,5 M),

Lemma 3.9. For every M = 1,
lm 190 (s1, 0,50 = 061, .55 M)| = 0.

Proof.
10515 s 80) — D1, o505 M)

< Z f”'fqu . "Zs"’E[I_n]f(X“”(w(ltj)))<P/(/1tj)] d; ... dt,

Ap(dt) € M

n
< ”f“oo z f“'J‘0<tl<.”<t,,e_zj9“sjtj

Ap(At ) <M

X E[ H Jx Y'“(w(/ltj)))w’(itj)]w'(mk) de, ... dt,

Jtk
=Hf||oo Z DN 1515 v s Skm15 Skt 15 +n 5 5n):

Here we understand that ¢{”, = 1 when n = 1. Therefore, by mathematical induc-
tion, we have the assertion from Lemma 3.8(1). [J
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We are now ready to prove Lemma 2.1: The assertion follows from Lemmas 3.8(i1)
and 3.9.
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