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Abstract 

Recently, N. K6no gave a limit theorem for occupation times of fractional Brownian motion, 
which result generalizes the well-known Kallianpur-Robbins law for two-dimensional 
Brownian motion. This paper studies a functional limit theorem for KBno’s result. It is proved 
that, under a suitable normalization, the limiting process is the inverse of an extremal process. 
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1. Introduction 

Let fB’2’(t))t a 0 be a standard Brownian motion on the plane and let ,f be 
a bounded integrable function on (w ‘. The following theorem due to Kallianpur- 
Robbins (1953) is well known. 

Theorem A. If f:= fRL f(x) dx # 0, then 

f(Bc2’(u)) du < x = 1 - emx, x > 0. 1 
An “invariance principle” for Theorem A was given by Kasahara-Kotani (1979). 

To explain the limiting process we first define the canonical extremal process Y = 

iY(t)3,2lb which is defined to be a nondecreasing process such that Y(0) = 0 with the 
finite-dimensional marginal distributions 

P[Y(t,) < Xl, . . . . Y(t,J < x,] = G(x~)~~G(x~)‘~-*~ . . G(x,)‘“-‘n-1 
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for 0 < t1 < ... < t,, 0 d x1 d ... d x,, where G(x) = e-l’“. One of the method of 
constructing Y is as follows. Let p be a Poisson point process on (0, a) x (Iw\{O}) with 
intensity dx/x2 (i.e., the mean measure of the counting process N,(dt, dx) is given by 
dt dx/x2). It is easy to see that the maximal process of p is a canonical extremal 

process. Since such a point process p appears in the theory of Brownian excursions, 

Y may also be expressed using one-dimensional Brownian motion B(‘)(t) as follows. 
Let M = {M(t)} and e = {e(t)} be the maximal process and the local time at 0 of 

B”‘(t), respectively, i.e., 

f 

M(t) = ,yzt B”‘(s), a(t) = lim L 
s 

I,-,,,, (B%)) ds. , \ 610 4E 0 

Then 

{Y(t)} g {M(/-l(t))}. 

We refer to the textbook of Ikeda and Watanabe (1981) for the notation and 
fundamental results on point processes and Brownian excursions. 

A functional limit theorem for Theorem A was given by Kasahara and Kotani 

(1979). 

Theorem B. Let q(x) = xe2X. Then, 

1 
: 

s 

VOJ) f 
f(BC2’(u)) du Ld+ - Z(t) as A + co, 

A 0 Tc 

where Z(t) = {(M-‘(t)) is the inverse process of a canonical extremal process Y(t). 

Here, “f$ ” denotes the weak convergence of all finite-dimensional distributions. 
See Remark 1.1 below for the reason why we use the above normalization due to 

D. Stroock (private communication) instead of 

We also remark that the assertion of Theorem B does not hold with respect to 

Skorohod’s J,-topology. If it does hold, then the limiting processes Z should necessa- 
rily be continuous, which is clearly a contradiction. In fact, we can claim the 
M,-convergence, but we shall not go into details here. For an extension of Theorem B 
from the view point of Markov processes, see Kasahara (1982). 

Recently, N. K&o extended Theorem A forfractional Brownian motions: Let Xy be 
a fractional Brownian motion with index ~(0 < y < 1). That is, Xy is a real-valued 
centered Gaussian process such that 

E[XY(t)XY(s)] = + {P + s2y - It - sp>, s, t 3 0, 

or, equivalently, 

Xy(0) = 0 and E[(XY(t) - Xy(s))2] = 1 t - SIDE, t, s 3 0. 
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If y = $, then Xy is the usual Brownian motion. A d-dimensional fractional Brownian 

motion is defined to be an @-valued Gaussian process 

XyJ(t) = (XT(t), x;(t), . . . ,x;(t)), 

where X:(t), Xl, . . . are independent copies of X’. We shall consider only the 
recurrent case, i.e., 0 < yd < 1. If 0 < yd < 1, then the existence of jointly continuous 

local time !;,.d(t, x) is known and, therefore, it is easy to obtain a limit theorem for the 

occupation times: Let f be a bounded summable function on Rd and let f= iRdf(x) dx 

as before. We easily see by the self-similarity of the fractional Brownian motion that 

4ff,.,d(t, 0) as i. -+ x 

over the function space C([O, a)). (See Kasahara and Matsumoto (1996) for some 

remarks on the law of /y,d(t, O).) Therefore, the remaining case (i.e., yd = 1) is the only 

interesting case and Kono (1996) proved the following theorem, which extends 
Theorem A. 

Theorem C. Let d 3 2. Suppose yd = 1 and let f(x) > 0 be a bounded integrable 
,function on Rd such that f:= iRdf(x) dx # 0. Then, 

lim P 
c s 

& 1 f(Xg,d(s)) du d x] = 1 -emx, x>O, 
t*ic 

where 

f 1 
’ = (2,)W = (2X)diz s Iw,, f (4 dx. (1.1) 

The aim of the present paper is to obtain a functional limit theorem for 

Theorem C to extend Theorem B. Our main result is the following. 

Theorem 1. Under the assumptions of Theorem C, it holds 

An(t) := ; 
s 

e” 
f(Xy,d(u)) du ‘d; CZ(t) CIS 1. -+ XI, 

i 0 

where C is as in (1.1) and Z is the inverse of a canonical extremal process as in Theorem B. 

The assertion of Theorem 1 may be rewritten as follows: 

lim P 
A-r 1 i A,@,) 3 x,, . . . >; &.(4J 3 x, 1 

i 
-x1-__ . _ x2 -x1 

=exp 
t1 t2 

for 0 < t, d ... d t,, 0 d x1 d ... d x,. 



(1’2) 
I 

‘0 4 J ‘(J)d,,_aJ + >p (>)d+a 
s 

= (l)dsn 
m 

:SMOjIOJ St3 

(co ‘oly3 3 d”fl auyap aM (cc ‘0143 3 d .haAa 10~ pue 0 < s haAa ION ‘1.z uoyuyaa 

.(co ‘o] uo 

1 UlXIOaqJ, JO JOO’d ‘Z 

‘I=P:“+ . + IX %.~!ll~sges 1 > [,I > 0 Jalaumed 8uym say luauoduIo3 

wapuadapu! q3Ea YlJM UO!lOW UI?IUMO.Ig j”UO!13”.IJ ~FXIO~SUXU~p-~ .IOJ p!JZA [l!lS Sr 1 

uraJoayL JO uogJasse ayL :pauayeaM aq um 1 = pC, lcqi uoy!puo3 ayL ‘$*I q.mura~ 

‘0 Q 1 ‘(f&z = (J),Z sar@y syl ‘0 Q (x)sJ! J u! auOlOU0~ ST np ((n)cz,8)j-r;~ =U!S 

‘0 = {y 801 - (1y)%o1} F m+y “!I = 

il O nP (P)c,,a)S 
Sl [ 

2 - nP (w(,,a)S O Y JY s1 I 
27 F “;!; 

am ‘m +- 1 SB 3 8013 01 pmba il[pm!~o~dtuICse s! np [((n)c,,g)J 911~~ ams :(o Q 1 
‘(+o)*z = (I)*2 ‘.a.!) 3 uo puadap $0~ saop I! vzyj asuas ayi u! awaua8ap s! (J)*z uayl 

pur? suo!~our uey~0.q~ p~o!pq ‘suIalqo.‘d aurg uogednmo ayl .IOJ se ‘IE!~I u~ouy 

s! I! (1 > pA > 0 ‘.a.!) sasm lay10 u! asnmaq sJoylnv ayj 01 asuas amos u! Zkr~zeum 

s! I! ‘~~~J u! 1nq ‘pmtleu sr 1 rua.IoayL i~!q~ yu!y~ icmu lapcal ay$ OS .aaoqv se 2 ssaDold 

Ek~yuu~ sum ayl ql!M 1 uraIoayL 01 .w~!w!s uraloayj Iruu~ v amy aM ‘uoyzzy~~~.~ou 
aIq%?yns e lapun uoynqys!p pyuauodxa LIE 01 MB[ UT a%laauo3 saw!) uoydtmo 
ayl alaym saw3 yms u! ‘my1 (2861) E?.w~E?s~z->I dq panoJd s! I! sassaDold AO~.II?JAJ .IO+J 
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Let us consider some examples. Let 1 denote the function which is identically equal 

to 1. (i.e., 1 (t) s 1.) Then, 

&l(t) = t epsr + e-9, 

As a special case, we have 

U,,l(O) = ;‘3 r/,,VQl(O) = l 
1 

1 S&I + s2) + (s1 + s2)2’ 
(2.2) 

Without loss of generality we may and do assume that C = 1. The following is the key 

lemma. 

Lemma 2.1. Let p(x) = ex - 1 nndfor every sl, s2, . . . ,s, > 0 dejine 

(2.3) 

lim &“(s,, . . . , s,) = Us, Us2 . . U,,,l(O). 
i.- r 

The reason why we set q(x) as above is that this function is asymptotically equal to 

eX and satisfies q(O) = 0, which condition is technically convenient. But in fact q(x) 
may be any other smooth function such that @l(x) is asymptotically equal to log .Y 
(e.g. q(x) = e”, xe”, etc; cf. Theorem B). We postpone the proof of Lemma 2.1 until the 
next section and we shall prove Theorem 1. The idea is due to Bingham (1971). 

Lemma 2.1 implies that 

= Qn(.sl )  .  ,  SE), 

where 

@n(s 1, ... , &J = 1 us~,,,v,~,,l .” u,J(O). 
n 

(2.4) 

Here, 7~ runs over all permutations of ( 1, . , n) and, for example, by (2.2) 

Integrating by parts, (2.4) may be rewritten as 

‘X ‘Z 
lim s1 . ..s. 

s s 
... 

l-r 
e-Z”“JEIAX(tl) . . . Az(tn)] dt, ... dt, = @,,(s~, . . . ,sn), 

0 0 
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where 

A,*(t) := ; 
s 

V(J.1) 
f(X”,d(~)) du. 

0 

Notice that Af(t) and A,(t) have the same limiting process. In order to find the 

relationship between the right-hand side Qn and the process Z, we use the idea of 

‘invariance principle’: Let us consider the special case of two-dimensional Brownian 
motion, in which case we have, by Theorem B, AAf$Z. Therefore, by a routine 

argument we see that the limiting function @,,(si, . . . , s,) is in fact the Laplace 

transform of E[Z(t,) . . . Z(t,)]; for every sj > 0 and y1 2 1, 

53 CC 
@(s,, . . . ,s,)=sr . ..s. 

1 s 
..’ e-tsj’JE[Z(t,) . . . Z(t,)] dt, ... dt,. 

0 0 

So (2.4) can be rewritten as 

OCI Cc 
lim si . . . s, 
I+00 s s 

... e-ZsJfJEIAL(tl) . . . A,(&)] dt, ... dt, 
0 0 

‘x 

=S I...& ... s s m e-'s~'IEIZ(t,) . . . Z(t,)] dt, ... dt, 
0 0 

which implies 

,I$ EC&(ri) . . . &(tJl = ECZ(td . . . zk)l 

for every tl , . . . , t, B 0 (n 2 1). Here it should be noticed that the right-hand side is 

continuous in (t l, . . , t,). Now keeping in mind that repetition of {tj} is allowed 

(e.g., E[A,(t)‘] may be rewritten as E[A,(t)A,(t)]), this implies 

jijm E[A,(t,)“’ . . . A,(t,Jmn] = EIZ(tl)ml . . Z(t,)“‘] 

for every tj 2 0, mj > 1 and FI 2 1. This proves the assertion of Theorem 1 since it is 
easy to see that the limiting law is characterized by moments. 0 

The proof of Lemma 2.1 will be given in Section 3 and in the rest of this section we 

shall explain the idea. 

Definition 2.2. Throughout the paper we set to = 0 and let 0 < tl < ... < t,. We 
denote by Cn(tl, . , t,) the covariance matrix of 

(XY(t1) - XY(to), . . . ,XY@,) - XY(t,_1)), 

and for every A > 0 we define 

C,“(t 1, ... ,t,) = G(cp(&), ... >@il)). 

So C,“(t,, . . , t,) is the covariance matrix of 

(XYcp(Ar,)) - XYcP(Jbto)), ..’ ,XY(V(&J) - 
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and the diagonal elements are 

C,“(t 1, . . . , t,)jj = (Aq(Itj))2Y, j = 1, . . . ,n 

where 

Aq(I.tj) = ,(Ibtj) - q(/2tj- r), j = 1, . . . , II. 

Now writing down the Gaussian kernel it is not difficult to see that the right-hand 
side of (2.3) is asymptotically equal to 

ss . . e-w, q_f(kl) . . q’(/lt,) 

o<t, < .., <t, (det C,“(t,, . . ,t,))d’2 dtl “. dtn (2.5) 

since fimdjf(x) dx = 1 by assumption. The difficulty in proving Lemma 2.1 comes 
not only from the complicated det C,“(t r, . . . , t,) but also from the fact that 

lim ... 
SI 

e-W, cp’(&) . qi(h”) 
IF+cc 0<11 < ... <fn (det C,“(t,, . . ,t,))d’2 dtl ‘.’ dtn 

# 
ss 

. . . o<,, < .,, <t. ji% ee=.““l (d~t’~f;),:.,Y7~~~~d,2 drr ... dr,. (2.6) 

However, in the Markovian case (i.e., 1’ = 3, C,“(t,, . . . , t,) is diagonal and so 

det C,“(t 1. ,.. ) t,) = fi (Aq(/ztj))2i 
j=l 

and hence 

(2.7) 

ss . e-X”,t, cp’W1) ... 4fbkl) dt .., dt 
n O<rl < <t, (det C,“(t 1, . . ..t.))d’2 ’ 

= SYi 
e-r”,‘, cp’(JJ,) . . . cp’(&J dt dt 

o<i,< <1. A(p(%tr) . . . A&It,) r ’ ” 

since l;d = 1. Therefore, the assertion of Lemma 2.1 may be reduced to 

lim 
ss 

. . . e-zSJt, 
J.-x, 

cp’(lt1) ... V’(&J dt, ... dt 
act,<. <f” Ay@t,) . . . A~(,&) ’ 

= L&v,, . UJ(0). 

If we define 

then (2.9) can be rewritten as 

lim Ui, . . . UtJ(O) = U,,Us2 . . . U,J(O). 
I+= 

Thus, for the proof of Lemma 2.1 it suffices to show that 

j@$P(t) = USP(O, P E C,(CO> 4). 

(2.8) 

(2.9) 

(2.10) 

(2.11) 
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This idea is already given in Kasahara (1982) but in the present case the difficulty is 
that we have to treat non-Markovian cases, where (2.7) does not hold. Nevertheless, 

we shall show that, thanks to a special situation coming from the crucial condition 
yd = 1, an analogue of (2.8) does hold and the problem may be reduced to (2.9) as in 
the Markovian case and hence the problem can be reduced to (2.11). We emphasize 

here that an analogue does not hold unless yd = 1. 
Of course, in the above we only explained the idea and did not mention about 

technical conditions. For example, precisely speaking, (2.5) and (2.10) diverge. So the 

domain of integration in (2.5) should be restricted to the set {(tr , . . . , t,): Aq(itj) 3 1 
(j = 1, . . . ,n)} and also (2.10) should be modified a little (see Definition 3.1 in 

Section 3): 

(2.12) 

3. Proof of Lemma 2.1 

We first define an operator U,“,” which generalize the operator U,” we defined in 

(2.12). (U.f = U,“, ‘). As we shall see later, U,“- M converges in some sense to U, which we 
defined in Definition 2.1. 

Definition 3.1. For every s > 0, M 3 1 and for every p E C,[O, co) we define 

U,“.“p E C,[O, a) by 

U? MP(t) 

(3.1) 

Notice that (3.1) may be rewritten as follows: 

s 

cc 
U$“p(t) = e-“%(5) T& T,(k r) di”, (3.2) 

To 

where 

T,(<; t) := i log(cp(i5) - q(h)) = ;‘: log(e”< - e”) 

and 

&, = (,,(3,, t; M) := f log(e”’ + M). (3.3) 

We shall also use the convention that T,(& t) = 0 when t < to. We remark that 

0 d ; log M = TA(&,; t) < T,(5; r) G 5, 5 E CL,, m), (3.4) 

lim to = t, 
,k+oc (3.5) 
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and 

lim T,(& t) = 5, 
i.- m 

ir > t. 

Furthermore, it holds that 

(3.6) 

Indeed, the convergence for each fixed t follows from (3.6) combined with (3.4) and by 

the monotonicity in t of j,” epS5 T,(<; t) dt, we see that the convergence is uniform for 
t 3 0. The following lemma is what we mentioned in (2.11). 

Lemma 3.1. For euery M 3 1, s > 0 and p E C,[O, cc), 

(i) II Kp II x G (l/s) II P II xv 

(ii) l Uf,“p(t)l < llpllccs 
s 

F eesit d< ( t 3 0, A > 0) 

(iii) I/ u.t.“~ II ;c d (l/s) IIP l;x (2 > 0) 
(iv) lim A‘JX II ~,“~“P(~) - &p(t) II % = 0. 

Proof. (i) 

I Usp( < l/p II x, 
(s 

* ems< d< + e+t 
f 

s 

11 
G IIPllzmX 

0 
e-“fd5 <f lIpllr,. 

(ii) Integrating by parts, we see from (3.2) that 

Iw”P(t)l d IlPllm Q+W) 

( s 

x 

=IIPIL e -“T,(5; t) l&<,, + s em”‘Ti,(<; t) d< 
Co > 

s 

‘X 
GO+ IIPlln x.7 e-“c[ d<. 

f 

Here we have used T,(<; t) < 5 (see (3.4)) and to > t. 
(iii) is an easy consequence of (ii). 
(iv) In view of (ii), it is a routine work to see that it suffices to show the assertion 
only for p having compact support, and furthermore, by (i) and (iii), it suffices to 
prove assuming that p is a smooth function with compact support. Let to be as in 

(3.3). Then, 

Ui.“p(t) = ePs5p(5)T,(& t)(Fzio - 
s 

m (e-“‘p([))‘Tj.(c; t) di; 
in 



170 Y. Kasahara, N. Kosugi / Stochastic Processes and their Applications 67 (1997) I61 -- I75 

(with the convention that Tn(& t) = 0 when 5 < to) and 

USPV) = - 
s 

3t (e-“5p(5))’ r d5. 
f 

Therefore, 

I UYP(d - UsP(Q 

d e-“5”Ip(50)) flog M + 
Is 

rY_ (e-%(O)‘(T~(5; t) - 4) d5 

G ll~ll,~b~+(~ll~ll, + IIP’IL) ~me~‘~lri(C;~)-51dt, 
f 

which converges uniformly to 0 as I, -+ cc by (3.7). 0 

Lemma 3.2. For every A4 > 1, sl, s2, . , s, > 0 and p E C,[O, co), 

6) II u2”Usl.M ... U2sM~II, G U/SISZ . . . sn)Il~llm. 

(ii) p”, UkM Us”;” . . . U;“p(t) = U,, U,, . . . U,.p(t), t 2 0. 

Proof. The assertion is an easy consequence of Lemma 3.1. 0 

The reader will probably find the following arguments tedious. But the authors 

would like to stress that the difficulty comes from (2.6), which is due to the singularity 
of the integration around the boundary. 

Definition 3.2. Let Atj = tj - tj_ 1 and to = 0 as before. For every n = 1,2, . . and 

M> 1, a > 1, we define 

(1) G(n; M) = {(t 1, . . . , t,) E KY; Atj 3 M, j = 1, . . . , n}. 

(4 Hj,(n; M, a) = ((t,, . , t,) E G(n; M); l/a < Atj/At, < a}. 

(3) G(n; M, a) = G(n; M)\Uj + k Hjdn; M, a). 

(4) G’(n; M) = {(t 1, . . . ,L) E R”; (cp(W, . ,cpWn)) E G(n; M)>. 

(5) H$(n; M, a) = { (tl, . . , L) E R”; (cp(l.td, . . . , d&J) E Hjk(n; M, a)} 

(6) G’(n; M, a) = {(t I, . . . ,h)~ K (cp(ltA . . . ,(P(&,))E G(n; M, a)}. 

Lemma 3.3. For every M 3 1, 

lim ... dt 
I-+m s s 

e-&‘, @WI) ... 4+(&J 1 . . . dt, = Us, Us, . . . UJ (0). (3.8) 
G”(n; M) A#,) . . . Acp(&) 

Proof. Since the left-hand side may be expressed as limA,,U$M . . . U2”1(0), the 
assertion follows immediately from Lemma 3.2(ii) by setting t = 0. 0 
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Lemma 3.4. Let 1 d j, k < n, j # k. Then, for every M > 1 and a > 1, 

(i) 

lim e_ZSjt, 
J.+m 

P’(&) ... VW”) & ,, & = () 
A&t,) . . . A#,) 1 ’ ’ ’ 

(ii) 

lim 
I-co s s 

. . . e-M, @(At,) ... cp’(W 

&n; M, u) (det C,“(t 1, . . . > 4r))d’2 

dt 
1 ,.. dt, = 0. 

Proof. Let j < k. By Lemma 3.l(iii), 

ss . . . 
e-&t, cp’@t1) ... cp’(k) dt . dt 

Aq$tl) . . . Acp(,It,) ’ ’ ’ a H:ot;M, a) 

= 
s s 

. . . e-Z,<k%t, 4o’WJ ... cp’&) u”,Jf 

H&M,a) Wet,) . . . Ad&J 
SX+, . . U:;“l(t,) dt, . . . dt, 

1 
d . . . e-E,,skSjtj q’(ntl) ... (P’(itk) dt ,,, dt 

Sk+1 ... &I ss H$(k;M. a) Aq(kl) . . . A&b,) ’ k 

1 
< 

Sk+1 . ..%I ss 
. . . e-&_,s,t, q’(Atl) ... @tntk-d 

@(k- 1;M) @WA . . . &@tk- d 

dt, . . . dtkml ;loga 

sk 2 
6 ~- 

Sl . . s, /z 
log a + 0 (2 + co), 

which proves (i). From Lemma 3.3 of CsGrga et al. (1995) (see also Goldman, 1984) we 
have 

detC&,, t2 , . . . , t,) 3 2-“{At, . . . At,}2y 

and, hence, 

(3.9) 

det C,"(t, , . , t,) 3 2 -’ {Aq@t,) . . A(p(;itJ}“‘. 

Since yd = 1, (ii) follows from (i). 0 

The following lemma is essentially due to K&o (1996) but for the convenience of 
the reader we shall give the proof. 

Lemma 3.5. For every M > 1, 

lim sup det Cn(tlY t2, . . . ,t,) _ 1 = o 
a-a, G(n; M,a) (At 1 . . . AL,,)~~ 

Proof. For 0 < tl < ... < t, let &(t,, t2 t ) denote the correlation matrix of > . . . . n 
fXy(tj) - X’(tj_ l)}j”= 1, i.e., C,(tl, t2, . . . , tn) is the n x n matrix with elements 

‘ij = Iti- - tj12’ + Iti - tj-112’ - Iti - tj12’ - Iti- - tj_l12Y 

2(ti - ti_l)?(tj - tj-1)’ 
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Notice that 

det C,(t,, tz, . . . ,t,) = 
det G(tl, b, . , . , L) 

{At, . . . At,12? ’ 
(3.10) 

As is pointed out by KBno (1996) we easily have 

(Here we used the fact that 0 < y < f which follows from d > 2 and yd = 1). Combin- 
ing this with the definition of G(n; M, a) we have 

lim SUP 
0-a C(n; M,a) 

IYijl = 0, i #j. 

Since r 11 = y22 = . . . = 1, this implies 

lim sup ldet e,(t,, tZ, . . . , t,) - 11 = 0. 
a-m G(n; M,o) 

The assertion of the lemma follows from (3.10) and (3.11). 0 

Lemma 3.6. For every n > 1 and M > 1, 

lim ... e-ZSjt, cp’W1) .‘. cp’(k) 

a+m s s (det C,“(t 1) . . . ) t,y 
dt, ... dt 

n G”(n; M) 

= u,,u,, . . . UJ(0). 

(3.11) 

(3.12) 

Proof. By Lemma 3.4(ii), it holds that for every a > 1, 

lim 
I+m s s 

. . . e-WJ @WI) ‘.’ cp’(k) dt . dt 

G”(n; M) (det C,“(t 1, . . ..t.))d’2 1 .. n 

= lim 

s s 

e-XS,fj cp'W1) ... cp'Wn) dt 

A+m 
1 . . . dt, 

G”(n; M, a) (det C,“(t 1, . . . 2 4J)d’2 

provided that the right-hand side exists. Combining this with Lemmas 3.3 and 3.5 we 
easily have the assertion. 0 

Lemma 3.7. Let G(n; M) and Cn(tl, t,, . . . , t,) be as before. Then, 

lim sup sup 
M+m G(~;M) x t w/xl < I 

(C,(t,, t2, . . . ) t,)_lx, x) = 0. 

Proof. Let e,(t,, t 2, . . . , t,) be as in the proof of Lemma 3.5. By (3.9) it holds for 
0 < t, < ... < t, that 

det C,(t,, t2, . . . , t,) = detG(k t2, . . ,t,), 1, 
(At 1 . . . At,J2? ’ 2” 

Now let 0 < p1 d ... < P,, be eigenvalues of C,(t,, t2, . . , t,). Since 

Pk d trace C,(t,, t2, . . . , t,) = n, k = 1, . . . ,n, 
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we see that the minimal eigenvalue is uniformly positive, 

det&(tl, h, . ,h) 1 1 Pl = ~ -. 
Pz ... Pn 2”p, 

3  

. pn 2W-l 

Therefore, for (tI, . . . , t,) E G(n; M), letting y = (xJ(AtJ, . . . , x,/(AtJ’) we have 

(C,(t,, f2, . ..) tn)-l.x,X)=(e&,t2, ..‘, tJ1y.y) 

n 2 2nnn - 1 

< 2”n”-1 kc, (A~~)27 d 3+.423 

which proves the assertion. 0 

Lemma 3.8. For every sl, s2, . . . ,s, > 0 and M 2 1 dejne 

@(s,, ,sn; M) = 
ss 

... epxsJrJ E fI f(Xy.d(cp(~tj)))cp’(3”tj) dt, . dt,,. 
G”(n; M) j= 1 1 

Then, 

(i) lim supi+, @(s,, . . ,s,; M) < U,,U,, . . . U,“l(O), M 3 1, 
(ii) lim,,, lim SU~~+~~~~~~‘)(S~, . . . ,s,; M) - U,,U,, . . . USfll(0)I = 0. 

Proof. Let g’(fI, . . . , t,; x) (x E R”) denote the density function of 

(XY(q@fl)) - X’(cp(/Zt& . . . ,XY(q(&J) - XY(q(k-1))) 

i.e., 

gqt,, . . ) t,; x) = 
1 

(2n)“” ,/det C,“(t,, . . . , t,) 
exp { - f(C,“(t 1, . . . ,&Jl.x. x)}. 

By Lemma 3.7 we have 

lim sup 
YVl> .” ,t,; x) _ 1 = o 

‘+4-v G”(n:M) gyt1, ... ,r,; 0) 
(3.13) 

the convergence being uniform for x E R” on every compact set. The density 
function of 

(X;‘.“(q(iJ,)) - Xi’3d(cp(ko)), . . ,XY*d(q(;ltn)) - X’,d(cp(i.t,_l))) 

is given by 

d 

gi(tl, . ) t,; x1, . ,x”) = n gi(tl, . . . ,t,; 2) (xl, . ,.ud) E (R”)d. 
k=l 

Therefore, by (3.13) 

lim sup 
gl(t1, ... , t,; x1* ... ,Xd) _ 1 = o 

M-r, G”(n; M) gl(t1, ... ,tn; 0, “’ 30) 
(3.14) 
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the convergence being uniform for (xl, . . . , xd) E (Rn)d on every compact set, and it 
holds 

4% 1, . . ..s.;M)= s s ‘.. e -=““dt, . . . dt, 
G"(n;M) 

X s s . . . &l, . . ) t,; xl, . . . > xdbPVtl) . . . cp’ml) 
(R”) 

xf(xl)f(xl + x2) . . . j-(x1 + ... + x,) dxi . . . dx,, 

where Xi = (x!, . . . ,x9) (i = 1, . . . ,n) when xj = (xi, . . . ,x’,) (j = 1, ,.. ,d). Now by 
(3.14) it suffices to show the assertion (ii) of the lemma replacing 4;” by 

@)(sl, . . . , s,; M) = ... ss emxsjtJ dt, . . . dt, 
G”(n; M) 

X ss . . . lwdx ,,, x IWd &l, ..’ 3 t,; 0, . . . ,wP’(nt,) ... q’(k) 

xf(xl)f(xl + x2) . . . j-(x1 + ... + x,) dxi . . . dx,, 

= C” ss . . . e_ISjtj cp’(At,) . . . cp’@t,) 

G"(n; M) (det C,“(t, . . . t,))d’2 dtl .‘. dtn’ 

where C is as before (see (1.1)) and recall that we assumed that C = 1. Therefore, the 
assertion (ii) follows from Lemma 3.6. In a similar way, we can show (i) using the 
obvious inequality 

&(Si, . . . ,s,; M) < $I;‘+,, . . . ,s,; M). 

Lemma 3.9. For every M > 1, 

jim_ ( q5:A’(s,, . . . , s,) - @‘(s,, . . . , s,; M)l = 0. 

Proof. 

I44%1, ... > 4 - (P?(sI > . . . > s,; Ml I 

o<t,<.. <he 
AcpVt,) < M 

jfi1 l(Xy9d(q()fi)))(Pl(Jli)] dti ... dt, 

= iifiim 7 i d&~~Ih, .‘. ,sk-l,sk+l, ... ,s,). 
k-l 

Here we understand that &?! 1 = 1 when n = 1. Therefore, by mathematical induc- 
tion, we have the assertion from Lemma 3.8(i). q 
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We are now ready to prove Lemma 2.1: The assertion follows from Lemmas 3.8(ii) 
and 3.9. 
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