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Abstract

We develop a new method to obtain stochastic characterizations of Yang–Mills �elds. Our
main tool is the Itô-equation for the stochastic parallel transport. We estimate the drift terms in
a small ball of radius � and �nd that for a general connection the average rotation is of order
�3 but that for a Yang–Mills connections the average rotation is of order �4. Using a Doob
h-transform we give a new proof of the stochastic characterization of Yang–Mills �elds by
S. Sta�ord. Varying the starting point of the Brownian motion we obtain an unconditioned
version of this result. By considering the horizontal Laplace equation we then apply our result
to obtain a new analytic characterization of Yang–Mills �elds. c© 2000 Elsevier Science B.V.
All rights reserved.
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1. Introduction

To date there are two stochastic characterizations of the Yang–Mills equations on a
vector bundle (Bauer, 1998; Sta�ord, 1990). Both characterize connections that satisfy
the Yang–Mills equations in terms of their associated stochastic parallel transport. In
Bauer (1998), we showed that the “derivative” of the stochastic parallel transport under
variations of the connections induced by gradient 
ows on the base manifold is a
martingale if and only if the connection satis�es the Yang–Mills equations.
In Sta�ord (1990) the author studies the stochastic parallel transport along a

Riemannian Brownian motion x(t) until there exits a small geodesic ball of radius
� at a �xed point �. He found that for a general connection

E[v(��)− Id | x(��) = �] = O(�3);

(where v(��) is the stochastic parallel transport from zero until the exit time ��), and
that a connection satis�es the Yang–Mills equations if and only if

E[v(��)− Id | x(��) = �] = O(�4):
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The proof is based on the Liao–Pinsky method (Liao and Pinsky, 1987) of �rst ex-
panding the in�nitesimal generator of the stochastic parallel transport, then solving a
system of partial di�erential equations and evaluating the solutions at zero using a gen-
eralization of Pizetti’s formula (Liao, 1988). To condition the Riemannian Brownian
motion to exit the geodesic ball at a certain point the author uses a limiting procedure
as in Liao and Pinsky (1987).
In this paper we develop a new method to prove this and other results. Our method

is based on the Itô-integral equation for the stochastic parallel transport. We estimate
the various terms using expansions of the metric and connection symbols in conve-
nient coordinates and well-known bounds for the Green function and its derivatives.
In Theorems 5.1 and 5.2 we use this method to characterize connections that satisfy
the Yang–Mills equations. Theorem 5.2 provides a new proof of the result in Sta�ord
(1990). In our proof, the conditioning of Brownian motion is incorporated from the
beginning through a Doob h-transform.
Theorem 5.1 avoids the conditioning through variation of the starting point of the

Brownian motion. Roughly stated, it says that if one starts a Brownian motion anywhere
inside a ball of radius � and evaluates the stochastic parallel transport at the exit time
from the ball (at an unspeci�ed exit point), then the average rotation is of order �4 if
and only if the connection satis�es the Yang–Mills equations at the origin of the ball.
This result lends itself naturally to a recasting in analytic terms. Corollary 5.3 shows
that solutions u� of the horizontal Laplace equation �Hu� = 0 in a ball of radius �
with constant boundary value have variation of order �4 if and only if the connection
is Yang–Mills at the origin.
To put our results into perspective they have to be compared to a characterization

of Yang–Mills �elds by physicists in the general context of the Penrose transform.
Here, one studies extensions of holomorphic vector bundles over ambi-twistor space
Q to formal neighborhoods of Q in CP3 × CP3. In general, a vector bundle is given
in terms of transition functions satisfying a cocycle condition. In particular, for each
triple of open sets U�; U�; U
 with U�∩U�∩U
 6= ∅, the transition functions h��; h�
; h
�

satisfy h��◦h�
◦h
�=Id. It is shown in Isenberg and Yasskin (1979) and Witten (1978)
that for a general connection A the corresponding holomorphic vector bundle over Q
extends to the second formal neighborhood in CP3 × CP3, meaning that

h�� ◦ h�
 ◦ h
� = Id + O(�3);

where � is the distance of a point in CP3×CP3 to Q, and that the connection satis�es
the Yang–Mills equations if and only if the vector bundle extends to the third formal
neighborhood, i.e.

h�� ◦ h�
 ◦ h
� = Id + O(�4):

The striking similarity of the ambi-twistor representation to the results presented here
will be explored in a forthcoming paper. The ambi-twistor representation is a gener-
alization of twistor methods used in the representation of the much stronger self-dual
Yang–Mills equations on R4. For self-dual �elds, the representation lead to the explicit
construction of all self-dual Yang–Mills �elds of �nite energy, the ADHM-construction
(Atiyah et al., 1978). For the full Yang–Mills equations the results are much weaker
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and the characterizations, including the ones given here, have not led to the construc-
tion of Yang–Mills �elds. Thus, our results are rather an illumination of the role the
Yang–Mills equations play in the study of multiplicative functionals calculated along
Brownian paths, i.e. stochastic parallel transports. In particular, for short time, the main
contribution to the stochastic parallel transport comes from the Yang–Mills current. A
detailed study of multiplicative operator functionals, which include stochastic parallel
translation as a special case, can be found in Pinsky (1974).
The paper is organized as follows. In Section 2 we introduce the di�erential geo-

metric objects we will work with. Good references for this material are Roe (1993),
Lawson (1985) and Bourguignon and Lawson (1981). Section 3 compares the Green
function for a small Euclidean ball with the Green function for a geodesic ball on a
Riemannian manifold (see Gr�uter and Widman, 1982; De Rham, 1946=1947, 1950).
Section 4 establishes some probabilistic prerequisites. For more background on these
topics we suggest Emery (1989), Ikeda and Watanabe (1989) and Norris (1992).

2. Geometric preliminaries

The di�erential objects we will be working with are a Riemannian manifold M with
metric tensor g(·; ·), a vector bundle � over M with �ber �x

∼= Rn and compact structure
group G. Denote the Lie algebra of G by g and the adjoint and automorphism bundles
by Ad � and Aut �, respectively. Assume also � has a metric compatible with the action
of G and an inclusion G⊂SO(n). Given any vector bundle � over M , we denote by

p(�) ≡ �(

∧p T ∗M ⊗ �) the space of exterior di�erential p-forms with values in �.
Since our results are local in nature we will later assume that M =U is a coordinate

chart and a convenient local choice of gauge �: � |U ∼= U×Rn has been made. Then all
bundles considered become cross products, �: Aut � |U∼=U×G and �: Ad � |U∼=U×g.
The gauge group is G = C∞(Aut �), which in the trivial bundle case is G ∼=

C∞(U;G). The choice of � introduces a 
at covariant derivative given by d =
(@=@x1; : : : ; @=@xd). Any covariant derivative (or connection) ∇ is then given by ∇ =
d + A = {@=@xi + Ai}, where Ai(x)∈ g. One can think of A as a Lie algebra valued
1-form, or locally A:U → Rd ⊗ g.
Gauge changes s:U → G act on ∇= d+ A by

s−1 ◦ ∇ ◦ s= d+ s−1 ds+ s−1As= d+ Ã:

This means A and Ã = s−1 ds + s−1As represent the covariant derivative in di�erent
coordinates (or gauges).
For each connection ∇ on a vector bundle � there are operators d∇: 
p(�) →


p+1(�); p¿ 0, de�ned by

d∇(�⊗ �) = d�⊗ � + (−1)p�⊗∇�

for a real-valued di�erential p-form � and a section � of �. This extends to general
 ∈
p(�) by linearity. Note that d∇ =∇ on 
0(�).
Suppose now that � is furnished with an inner product preserved by ∇. Using the

Riemannian metric we can de�ne an inner product 〈 ; 〉 in 
p(�)x =
∧p T ∗

x M ⊗ �x.
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Integrating this over M with respect to the Riemannian volume gives an inner product
in 
p(�). We then de�ne �∇: 
p+1(�) → 
p(�); p¿ 0, to be the formal adjoint of
the operator d∇.
The curvature or �eld F=F(∇) of a connection is de�ned by F=d∇ ◦d∇. Locally,

F : U → Rd ∧ Rd ⊗ g is a Lie algebra-valued two-form, F = {Fij}= {[∇i ;∇j]}:

Fij =
@
@xi

Aj − @
@x j Ai + [Ai; Aj]∈ g: (2.1)

Under a gauge transformation s∈G the curvature transforms by F → s−1Fs.
The Yang–Mills equations are the Euler–Lagrange equations for the action integral

‖F‖2 = 1
8�2

∫
M
〈F〉2 d�M =

1
8�2

∫
U
gikg jl〈Fij; Fkl〉g dx:

Here the second integral is in local coordinates, g2 the determinant of the metric tensor
(gij); (gij) the inverse matrix of (gij) and 〈A; B〉 = tr AB∗ is the trace inner product
in g.
The Yang–Mills equations, or the Euler–Lagrange equations for the integral ‖F‖2,

are �∇F = 0. In coordinates on U this means explicitly,

(�∇F)k =−gij
(

@
@xi

Fjk + [Ai; Fjk ]− �l
ijFlk − �l

ikFjl

)
= 0; k = 1; : : : ; d;

where (�l
ij) are the Christo�el symbols of the Levi–Civita connection on TM . We say

∇ is a Yang–Mills connection and F = F(∇) is a Yang–Mills �eld if �∇F = 0. If s
lies in the gauge group G, then ‖s−1Fs‖2 = ‖F‖2. Therefore, the solutions of �∇F =0,
as either Yang–Mills connections or Yang–Mills �elds, are an invariant space under
gauge transformation.
To do calculations near a point o in M we choose coordinates as follows. We use the

exponential map exp to identify a small ball in T0M , centered at zero, with its image
U under exp. Together with the identi�cation T0M ∼= Rd this provides a normal
coordinate system at o. Over U we trivialize the tangent bundle TM | U ∼= U × Rd

using an orthonormal moving frame and the vector bundle � | U ∼= U × Rn using a
radial gauge. In these coordinates we have the well known (see, e.g. Sta�ord, 1990;
Liao and Pinsky, 1987; Roe, 1993), expansions of the metric {gij}, the Christo�el
symbols {�i

jk} and the connection symbols {A�
i�};

gij(x) = �ij +O( | x | 2);
�i
jk(x) =

1
2R

i
pjk(0)x

p + 1
3@pRi

qjk(0)x
pxq +O( | x | 3);

A�
i�(x) =

1
2F

�
pi�(0)x

p + 1
3@pF�

qi�(0)x
pxq +O( | x | 3): (2.2)

By the symmetries of the curvature tensors R and F , we have Ri
jjk = 0; F�

jj� = 0.
Consequently,

gij(x)@i�k
jl(x) =

1
3

d∑
i=1

@iRk
qil(0)x

q +O( | x | 2);

g ij(x)@iA�
j�(x) =

1
3

d∑
i=1

@iF�
qi�(0)x

q +O( | x | 2): (2.3)
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Furthermore, at the origin o of a normal coordinate system in radial gauge, the Yang–
Mills equations simplify as

d∑
i=1

@
@xi

Fik(o) = 0; k = 1; : : : ; d: (2.4)

3. The Green function for a small geodesic ball

Let B� ⊂U be a small open ball of radius �¿ 0 centered at o and write S� = @B�.
In B� the Laplacian � on functions on M is given by

� = gij(x)
(

@
@xi@x j − �k

ij (x)
@

@xk

)
: (3.1)

Denote G�(x; y) the Green function for 1
2 the Euclidean Laplacian �

′ =
∑

i @
2=(@xi)2

on B�,

G�(x; y) = Cd | x − y | 2−d − Cd�d−2 |y | 2−d

∣∣∣∣x − �2

|y | 2y
∣∣∣∣
2−d

(3.2)

with Cd = �(d=2 − 1)=(2�d=2). Denote G(x; y) the Green function for 1=2� on B�.
We have the following estimates in dimension d¿ 3 (Gr�uter and Widman, 1982,
Theorem 3:3=3:4): For any x; y∈B�, setting �(y) = dist(y; @B�),

(i) G(x; y)6K | x − y | 2−d;

(ii) G(x; y)6K�(x) | x − y | 1−d;

(iii)
∣∣∣∣grad

x
G(x; y)

∣∣∣∣ 6K | x − y | 1−d;

(iv)
∣∣∣∣grad

x
grad

y
G(x; y)

∣∣∣∣ 6K | x − y |−d: (3.3)

Furthermore, as follows from the Neumann series representation of G(x; y) (De Rham,
1950, Section 17),

(i) |G(x; y)− G�(x; y) | 6O( | x − y | 4−d);

(ii)
∣∣∣∣grad

x
G(x; y)− grad

x
G�(x; y)

∣∣∣∣ 6O( | x − y | 3−d): (3.4)

Remark 3.1. As is shown in De Rham (1946=1947), the di�erence between the
Riemannian distance and the Euclidean distance is

(dist(x; y))2 − | x − y | 2 = O( | x − y | 4):
Since in the calculations that will follow only the leading order terms are of impor-
tance it is not necessary (for the purpose of said calculations) to distinguish between
Riemannian and Euclidean distance. Similarly, by (2.2), g(x) = 1 + O(| x |2), and we
will not distinguish between the Riemannian volume form g(x) dx and dx.
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4. Probabilistic preliminaries

Let (W;F; (Ft)t¿ 0;P) be a �ltered probability space satisfying the usual conditions
and let b= {b(t); t¿ 0} be a Brownian motion on this probability space taking values
in Rd with P(b(0) = 0) = 1. In this paper we will denote Stratonovich di�erentials by
@ and Itô di�erentials by d.
In a coordinate chart U the stochastic parallel transport v = {v(t); t¿ 0} in � is

de�ned by a system of stochastic di�erential equations (in the sense of Stratonovich)

dxi(t) = ui
j(t)@b

j(t);

dui
k(t) =−�i

lm(x(t))u
m
k (t)u

l
j(t)@b

j(t);

dv��(t) =−A�
i
(x(t))v



�(t)u

i
j(t)@b

j(t) (4.1)

with the initial conditions x(0) = x0, u(0) = idRd , and v(0) = idRn . In (4.1) (A�
i�) is the

matrix representation of Ai ∈ g. A global solution is obtained by patching the solutions
in the coordinate charts together. The process x = {x(t); t¿ 0} thus obtained is called
an M -valued (or Riemannian) Brownian motion and u={u(t); t¿ 0} its horizontal lift
into the frame bundle of M . For details on this setup and existence and uniqueness
results for system (4.1) see, e.g. Emery (1989), Norris (1992) and Ikeda and Watanabe
(1989).
To obtain estimates on the stochastic parallel transport we need to know the Itô

equation for v(t). Using the usual Itô–Stratonovich conversion formula and the equality∑d
i=1 u

m
i (t)u

l
i (t) = gml(x(t)), we �nd

dv��(t) =−A�
i
(x(t))v



�(t)u

i
j(t) db

j(t)

− 1=2grl(x(t))@rA�
l
(x(t))v



�(t) dt

+1=2grl(x(t))A�
l
(x(t))A



r�(x(t))v

�
�(t) dt

+1=2gsr(x(t))A�
i
(x(t))v



�(t)�

i
rs(x(t)) dt: (4.2)

Denote {x(t); t¿ 0} an M -valued Brownian motion started at x0 ∈B�, and P x0 its
law, and set

�� = inf{t: x(t) 6∈B�};
the exit time of x from B�. Let �∈ S�. For x0 =0 we construct a Riemannian Brownian
motion conditioned to exit B� at � as a Doob h-transform (see Pinsky, 1995). Set

h(x) =
@
@n�

G(x; �); x∈B�;

where n� is the inward unit normal vector at �. Similarly,

h�(x) =
@
@n�

G�(x; �); x∈B�:
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Let P� =P x0 (: | x(��) | = �). Then, under P�,

x(t) = w(t) +
∫ t

0
grad log h(x(s)) ds; 06 t ¡ ��;

where w= {w(t); 06 t ¡ ��} is a P�-(Riemannian) Brownian motion. h is the Poisson
kernel at �. By Gr�uter and Widman (1982, Lemma 3:1) combined with the Harnack
inequality (Grigor’yan, 1995) we have

| grad log h(x) | 6K�(x)−1: (4.3)

The exit distribution for Brownian motion in B� started at zero is known to have strictly
positive density. Since the Poisson kernel (in our de�nition) gives the density of the exit
distribution relative to non-normalized sphere measure (which assigns volume cd�d−1

to S�), we have

h(0)¿K�1−d: (4.4)

Lemma 4.1. Denote by Ex0 the expectation with respect to P x0 . Then

Ex0 [�p� ] = O(�
2p); p= 1; 2:

Lemma 4.2. Denote by E� the expectation with respect to P�. Then

E�[�p� ] = O(�
2p); p= 1; 2

and

E�

[(∫ ��

0
| grad log h(x(s)) | ds

)p]
=O(�p); p= 1; 2:

The proof of Lemmas 4.1 and 4.2 will be given in the appendix.

5. Probabilistic characterization of Yang–Mills �elds

Theorem 5.1. The �eld F is Yang–Mills at o if and only if

sup
x0 ∈ B�

Ex0 [ | v(��)− Id | ] = O(�4):

Proof. By (4.2) we have

v(��)− Id =−
∫ ��

0
A(x(t))〈u(t) db(t)〉v(t)

− 1=2
∫ ��

0
gki(x(t))@kAi(x(t))v(t) dt

+1=2
∫ ��

0
gki(x(t))Ai(x(t))Ak(x(t))v(t) dt

+1=2
∫ ��

0
gml(x(t))�i

lm(x(t))Ai(x(t))v(t) dt: (5.1)
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Since the integrand of the martingale term is bounded and Ex0 [��]¡∞, we have

Ex0

[∫ ��

0
A(x(t))〈u(t) db(t)〉v(t)

]
= 0:

By (2.2) A and � are O(�) in B�. Using this and Lemma 4.1 it follows that the
expectation of the third and fourth term on the right-hand side in (5.1) is O(�4). From
(2.3) it follows that the expected value of the second term is

−1=6E
[∫ ��

0

d∑
i=1

@iFqi(0)xq(t)v(t) dt

]
+O(�4);

where we suppressed the x0 subscript in the expectation. Expand v(t) = Id + v(t)− Id.
Then

E

[∫ ��

0

∣∣∣∣∣
∑

i

@iFqi(0)xq(t)(v(t)− Id)
∣∣∣∣∣ dt

]
6 c�E

[∫ ��

0
| v(t)− Id | dt

]
:

Denote the martingale term and the drift term of v(t)− Id by M (t) and D(t), respec-
tively. Then

E
[∫ ��

0
|D(t) | dt

]
6 cE

[∫ ��

0
t dt

]
6 cE[�2� ] = O(�

4)

and writing M∗
�� = supt6 �� |M (t) | , by Burkholder’s inequality for p= 2,

E
[∫ ��

0
|M (t) | dt

]
6 E[M∗

�� ��]6 (E[(M∗
��)
2])1=2(E[�2� ])

1=2

6 c(E[��])1=2(E[�2� ])
1=2 = O(�3):

Leaving aside all terms of order O(�4) we are left with

− 1=6
∑

i

@iFqi(0)E
[∫ ��

0
xq(t) dt

]
: (5.2)

This last expectation is∫
B�

G(x; x0)xq dx:

By (3.4),∫
B�

G(x; x0)xq dx =
∫
B�

G�(x; x0)xq dx +O(�5):

Suppose now that x0 = (y; 0; : : : ; 0). Then
∫
B�

G�(x; x0)xq dx = 0 for q 6= 1. From the
scaling properties of the Euclidean Green function we obtain∫

B�

G�(x; x0)x1 dx = �3
∫
B1

G1(x; x0)x1 dx:

Using (3.2) and a change of variables, we obtain∫
B1

G1(x; x0)x1 dx = Cd vol(Sd−2)
∫ 1

0

∫ �=2

0
tdcosd−2� sin � f(y; t; �) dt d�;
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where

f(y; t; �) = (y2 + t2 − 2yt sin �)1−d=2 − (1 + y2t2 − 2yt sin �)1−d=2

− (y2 + t2 + 2yt sin �)1−d=2 + (1 + y2t2 + 2yt sin �)1−d=2: (5.3)

We are done if we can show that this integral is non-zero for y 6= 0. Assume y¿ 0
(the case y¡ 0, except for a sign, being completely analogous). Then, for �¿ 0,
f(y; t; �) is of the form

1
xm

− 1
(x + a)m

− 1
ym +

1
(y + a)m

with y¿x, a¿ 0 and m¿ 0. But this equals

1
xm

(
1−

(
1

1 + a=x

)m)
− 1

ym

(
1−

(
1

1 + a=y

)m)
¿ 0:

The result now follows from (2.4) and (5.2).

We now use the above method to give a new proof of the probabilistic characteri-
zation of Yang–Mills �elds in Sta�ord (1990).

Theorem 5.2. The �eld F is Yang–Mills at o if and only if

Eo[v(��)− Id | x(��) = � ] = O(�4) for all �∈ S�:

Proof. Choose normal coordinates so that � = (�; 0; : : : ; 0). Under the law P� the Itô
decomposition of v(t) contains an additional term

v(��)− Id =−
∫ ��

0
A(x(t))〈u(t) db(t)〉v(t)

−
∫ ��

0
A(x(t))v(t)grad log h(x(t)) dt

− 1=2
∫ ��

0
gki(x(t))@kAi(x(t))v(t) dt

+1=2
∫ ��

0
gki(x(t))Ai(x(t))Ak(x(t))v(t) dt

+1=2
∫ ��

0
gml(x(t))�i

lm(x(t))Ai(x(t))v(t) dt: (5.4)

As in the proof of Theorem 5.1 it follows from Lemma 4.2 that the expectation of the
�rst term on the right-hand side vanishes, the expectation of the fourth and �fth term
is O(�4), and the expected value of the third term is

−1=6E�

[∫ ��

0

d∑
i=1

@iFqi(0)xq(t)v(t) dt

]
+O(�4):

Expand v(t) = Id + v(t)− Id. Then

E�

[∫ ��

0

∣∣∣∣∣
∑

i

@iFqi(0)xq(t)(v(t)− Id)
∣∣∣∣∣ dt

]
6 c�E�

[∫ ��

0
| v(t)− Id | dt

]
:



222 R.O. Bauer / Stochastic Processes and their Applications 89 (2000) 213–226

The four terms of the Itô decomposition of v(t)− Id that already appeared in (5.1) can
be dealt with as in the proof of Theorem 5.1, using Lemma 4.2. The additional term
is bounded by

c�2E�

[∫ ��

0

∫ s

0
| grad log h(x(t)) | dt ds

]

6 c�2E�

[∫ ��

0
| grad log h(x(t)) | dt ��

]

6 c�2E�

[(∫ ��

0
| grad log h(x(t)) | dt

)2]1=2
E�[�2� ]

1=2 = O(�5);

where we used H�older’s inequality and Lemma 4.2. Thus, the expectation of the third
term is

− 1=6
∑

i

@iFqi(0)E�

[∫ ��

0
xq(t) dt

]
+O(�4): (5.5)

For the expectation of the second term in (5.4) one proceeds by expanding v(t) =
Id + v(t)− Id inside the integrand. The part containing v(t)− Id can be shown to be
O(�4) much the same as in the proof of Theorem 5.1, using Lemma 4.2 instead of
Lemma 4.1. Hence, the second term’s contribution is

− E�

[∫ ��

0
A(x(t))grad log h(x(t)) dt

]
+O(�4): (5.6)

The expectations in (5.5) and (5.6) are∫
B�

xqG(0; x)h(x)=h(0) dx

and

T =
∫
B�

A(x)grad log h(x)G(0; x)h(x)=h(0) dx;

respectively. We integrate by parts in (T ), using G(0; :) = 0 on S�. This gives

T =−
∑

i

∫
B�

@iAi(x)G(0; x)h(x)=h(0) dx

−
∑

i

∫
B�

Ai(x)@iG(0; x)h(x)=h(0) dx: (5.7)

By (2.3), the �rst of these integrals equals

− 1
3

∑
i

@iFqi(0)
∫
B�

xqG(0; x)h(x)=h(0) dx +O(�4): (5.8)

For the second, using (2.2), we get

−1
2

∑
i

Fpi(0)
∫
B�

xp@iG(0; x)h(x)=h(0) dx +O(�4):
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It follows from (3.4) that | h(x) − h�(x) | = O(�(x)3−d) and we can replace h; G by
h�; G�, incurring an error O(�4), giving us

−1
2

∑
i

Fpi(0)
∫
B�

xp@iG�(0; x)h�(x)=h(0) dx +O(�4):

Since h� and @iG(0; :) are even in the component xp unless p=1, the integral vanishes
unless p = 1. Now, G�(0; x) = f( | x | 2) and so @iG�(0; x) = f′( | x | 2)2xi. Again, for
i 6= 1; h�; f′( | : | 2) are even in xi, and the integral vanishes. But for i = p = 1
we have Fip = 0. Combining (5.5) and (5.8) we �nd that the total expectation is

1
6

∑
i

@iFqi(0)
∫
B�

xqG(0; x)h(x)=h(0) dx +O(�4):

By the same steps as above we get

E�[v(�� − Id)] = 16
∑

i

@iF1i(0)
∫
B�

x1G�(0; x)h�(x)=h(0) dx +O(�4): (5.9)

The scaling properties of h�; G� and (4.4) imply that the integral is O(�3) and it
is straightforward to check that it is strictly positive (for x1¿ 0; h�(x1; x2; : : : ; xd)¿
h�(−x1; x2; : : : ; xd)).
It is now clear that if F satis�es the Yang–Mills equations at o, (2.4), then E�[v(��)−

Id] = O(�4). Conversely, if E�[v(��)− Id] is O(�4), then
∑

j @jFj1(0) = 0, which is the
Yang–Mills “equation”, (2.4), for k = 1. If we replace � by �′ = (0; : : : ; 0; �; 0; : : : ; 0),
where � is the kth coordinate, we obtain the same result for any k. In fact, expansion
(5.9) still holds if we replace � by �′ and Fj1(0) by Fjk(0).

We next give an analytic reformulation of Theorem 5.1. Denote �H the horizontal
Laplacian on �, whose local form is

�H = gjk(∇j∇k − �i
jk∇i):

Note that 1=2�H is the in�nitesimal generator of {v(t); t¿ 0}. It is well known (Hsu,
1987) that for a �xed vector V ∈Rn the section u�:B� → Rn de�ned by u�(x) =
Ex[v(��)−1V ] satis�es

�Hu�(x) = 0 for x∈B�;

u�|@B� = V: (5.10)

In fact, for � small enough, say �¡ �1; u� is the unique solution of (5.10).

Corollary 5.3. Denote u�; for 0¡�¡�1; a family of solutions to the horizontal
Laplace equation (5:10). Then the following are equivalent;
(a) supx;y∈ B�

| u�(x)− u�(y) | =O(�4);
(b) the connection A solves the Yang–Mills equations at o.

Proof. By the remarks above, for 0¡�¡�1, we have u�(x)=Ex[v(��)−1V ]. The result
now follows from Theorem 5.1.
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Appendix. Proof of Lemmata

Our proofs follow the exposition in Chung and Zhao (1995).

Lemma A.1 (Lemma 4.1 in the main part). Denote by Ex0 the expectation with
respect to P x0 . Then

Ex0 [�p� ]6K�2p; p= 1; 2:

Proof. First,

Ex0 [��] =
∫
B�

G(x0; y) dy6K�2

by (3.3), (i). Second, using the Markov property,

1
2
Ex0 [�2� ] = Ex0

[∫ ��

0
�� ◦ �t dt

]

=
∫ ∞

0
Ex0{t ¡ ��; �� ◦ �t} dt

=
∫ ∞

0
Ex0{t ¡ ��; Ex(t)[��]} dt (A.1)

and this equals∫ ∞

0
Ex0

{
t ¡ ��;

∫
B�

G(x(t); y) dy
}
dt =

∫
B�×B�

G(x0; x)G(x; y) dx dy:

By (3.3), (i), this is bounded by∫
B�×B�

c|x − x0|2−d|x − y|2−d dx dy6 �2
∫
B�

c′|x0 − y|2−d dy6K�4:

(A.2)

Lemma A.2 (Lemma 4.2 in the main part). Denote by E� the expectation with
respect to P�. Then

E�[�p� ] = O(�
2p); p= 1; 2

and

E�

[(∫ ��

0
| grad log h(x(s)) | ds

)p]
=O(�p); p= 1; 2:
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Proof. We only prove the most di�cult part. The other statements of the Lemma then
are easy exercises. Set

a(t) =
∫ t

0
| grad log h(x(s)) | ds:

Then, using the Markov property,

1
2
E�

[(∫ ��

0
| grad log h(x(s)) | ds

)2]

=E�

[∫ ��

0
a(��) ◦ �t | grad log h(x(t)) | dt

=
∫ ∞

0
E�{t ¡ ��; Ex(t)

� [a(��)] | grad log h(x(t)) | } dt: (A.3)

But

Ex(t)
� [a(��)] =

∫
B�

G(x(t); y)
h(y)

h(x(t))
| grad log h(y) | dy:

Thus, (A.3) equals∫
B�×B�

G(0; x)
h(x)
h(0)

| grad log h(x) |G(x; y)h(y)
h(x)

| grad log h(y) | dx dy:

The y-integral is∫
B�

G(x; y)grad h(y) dy:

Near x the integrand is bounded by K�(x)−d | x−y | 2−d, see (3.3) (i), (iv). Integration
over a ball at x with radius �(x)=2 gives c�(x)2−d. Outside of this ball the integrand
is bounded by K�(x)1−d�(y)�(y)−d (see (3.3), (ii), (iv)). Integration over B� gives
c′�(x)1−d�. Thus, (A.3) is bounded by

c′′
∫
B�

G(0; x)
h(0)

| grad log h(x) | (�(x)2−d + ��(x)1−d) dx:

In B�=2 bound the integrand by c′′′ | x | 2−d, using (4.3), (4.4) and (3.3)(i). The integral
over this ball then is bounded by c(4)�2. Outside of this ball bound the integrand by
c(5)(�(x)2−d + ��(x)1−d), using (4.3), (4.4) and (3.3)(ii). The integral over B� now is
bounded by c(6)�2. This proves the lemma.
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