
Stochastic Processes and their Applications 111 (2004) 57–76
www.elsevier.com/locate/spa

A representation formula for transition probability
densities of di$usions and applications

Zhongmin Qiana;b, Weian Zhengc;d ;∗;1
aUniversit	e Paul-Sabatier, 118, route de Narbonne, 31062 Toulouse, France

bCNRS, France
cEast China Normal University, Shanghai, China

dDepartment of Mathematics, University of California, 103 MSTB, Irvine, CA 92697, USA

Received 29 April 2003; received in revised form 17 November 2003; accepted 9 December 2003

Abstract

We establish a representation formula for the transition probability density of a di$usion per-
turbed by a vector 1eld, which takes a form of Cameron–Martin’s formula for pinned di$usions.
As an application, by carefully estimating the mixed moments of a Gaussian process, we deduce
explicit, strong lower and upper estimates for the transition probability function of Brownian
motion with drift of linear growth.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In the paper (Qian et al., 2003) by the present authors in collaboration with F. Russo,
a comparison theorem (see below Theorem 2.4) for the density function of a Brownian
motion with drift in terms of the transition function of the di$usion with two-valued
drift has been established. By computing the transition function for a model di$usion,
sharp bounds for the transition function of one-dimensional Brownian motion with
bounded drift has been established in Qian and Zheng (2002). The goal of this paper
is to extend the above results to the case with unbounded drift, which is important
in many applications. We obtain a representation formula for the transition function
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of a di$usion perturbed by a vector 1eld, which takes a form of Cameron–Martin’s
formula for pinned di$usions. As consequences we deduce a very precise estimate for
the density function of Brownian motion with a drift bounded by linear growth.

Although there are many excellent results on the estimates of the transition density
functions of di$usions with generators in divergence form (see Aronson, 1967; Davies,
1989 and the literature therein), the explicit estimates for Brownian motion with drift
of order not faster than linear growth presented in this paper (see Theorems 3.1 and
3.2 below) are new and useful to the applications of the statistical inference of di$usion
processes with stochastic volatility used in the mathematical 1nance.

The paper is organized as the following. In Section 2, several folklore facts about
conditional di$usion processes are recalled. We then deduce an integral representation
for the transition probability density of a di$usion perturbed by a vector 1eld, which
is the main tool we will use to establish the lower and upper bounds. Indeed, the
representation theorem of this type is applied to a more general setting, and is very
useful formula in obtaining information about the density functions perturbed by some
drift. Therefore it has interest by its own. In order to prove Theorems 3.1 and 3.2
we need several technical estimates about the mixed moments of the linear di$usion,
which will be done in Section 3.

2. A representation formula

In this section we deduce our 1rst result, a presentation formula (Theorem 2.4) for
the transition function of a di$usion perturbed by a vector 1eld. We begin with some
remarks about pinned di$usions or conditional di$usions. The materials presented here
belong to the tool box about Markov processes, though we could not 1nd a reference
which address these issues. The reader may regard them as a set of folklore facts,
which are known to experts in stochastic analysis.

2.1. Conditional di;usions

Let (Xt;Px) be a (time homogenous) di$usion process with its natural 1ltration
(Ft)t¿0 and state space M (for example a complete Riemannian manifold such as Rn).
Suppose its transition probability function Pt(x; dy) possesses a positive, continuous
density function p(x; t; y) for all t ¿ 0, with respect to a �-1nite measure � on M (in
many applications it will be a weighted Riemann–Lebesgue measure on M).

For T ¿ 0 and a point y∈M , de1ne a non-homogenous transition density function

HT;y(s; z; t; w) =
p(z; t − s; w)p(w; T − t; y)

p(z; T − s; y)
(2.1)

for all 06 s¡ t¡T , and a transition probability function

QT;y
s; t f(z) ,

∫
M
f(w)HT;y(s; z; t; w)�(dw) for 06 s¡ t¡T: (2.2)
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We will omit indices T , y if no confusion may arise. In most part of this section, both
T ¿ 0 and y∈M are 1xed. Then for any 06 s¡ t¡T , and functions f and g we
have

Px{QT;XT
s; t f(Xs)g(XT )|Fs} = Px{f(Xt)g(XT )|Fs}; (2.3)

and thus formally (by taking g = �y), for every 06 s¡ t¡T ,

Px{Qs; tf(Xs)�y(XT )|Fs} = Px{f(Xt)�y(XT )|Fs} (2.4)

or equivalently

Px{(f(Xt)|Fs)|XT = y} = Px{Qs; tf(Xs)|XT = y};
which explains that the process (Xt)t¡T possesses the Markov property with transition
function Qs; t under “the conditional probability” Px{·|XT = y}.

For given T ¿ 0 and two points x and y in M , de1ne

Nt =
p(Xt; T − t; y)

p(x; T; y)
for all t ¡T: (2.5)

Then (Nt)t¡T is a non-negative martingale under the probability Px, therefore de1ne a
probability Px;y

T on the �-algebra �{Ft : t ¡T} by

dPx;y
T

dPx

∣∣∣∣
Ft

=
p(Xt; T − t; y)

p(x; T; y)
for all t ¡T (2.6)

called the conditional probability of (Xt) such that X0 = x and XT = y. Since (Xt) is
continuous, �{Ft : t ¡T} equals FT . Note that Px;y

T may be not absolutely continuous
with respect to Px on FT . In the literature, Px;y

T is also denoted by Px(·|XT = y) or
P(·|X0 = x; XT = y).

Lemma 2.1. The continuous process (Xt; t6T ) under the probability Px;y
T is a di;u-

sion process with transition density function H (s; z; t; w).

The di$usion process (Xt; t6T ;Px;y
T ) is called a pinned di$usion, a di$usion

conditioned on X0 = x and XT = y, or a di$usion bridge from x to y with running
time T .

2.2. Cameron–Martin’s formula for pinned di;usions

In this subsection we consider an Lb-di$usion process (Xt;Px), where Lb is an elliptic
di$erential operator of second order. Lb may be in non-divergence form

Lb =
1
2

∑
i; j

gij(x)
@2

@xi@xj
+
∑
i

bi(x)
@
@xi

; (2.7)

in this case the symmetric matrix (gij) is uniformly continuous, or Lb may be in
divergence form

Lb =
1
2

1
q(x)

∑
i; j

@
@xi

(
q(x)gij(x)

@
@xj

)
+
∑
i

bi(x)
@
@xi

; (2.8)
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where coeLcients (gij), positive function q(x) and (bi(x)) are Borel measurable. In
both the cases (gij) is supposed to be positive de1nite. Let (Mt)t¿0 be the martingale
part of (Xt). Then

〈Mi;Mj〉t =
∫ t

0
gij(Xs) ds:

Let pb(x; t; y) denote the transition density function of the Lb-di$usion with respect
to the Lebesgue measure. By Itô’s formula we have the following (Lyons and Zheng,
1990; Zheng, 1995).

Lemma 2.2. The conditional di;usion process (Xt; t6T;Px;y
T ) possesses in=nitesimal

generator

A = Lb + ∇g
z logp(z; T − t; y)∇g

= Lb +
∑
i; j

gij(z)
@
@zi

logp(z; T − t; y)
@
@zj

:

Let

c(x) =
∑
i

ci(x)
@
@xi

be a measurable vector 1eld on Rn which is of at most linear growth, such that

Px exp
(

1
2

∫ T

0
|c|2g(Xs) ds

)
¡∞:

De1ne a probability measure Qx by

dQx

dPx

∣∣∣∣
Ft

= exp
[∫ t

0
〈c(Xs); dMs〉g − 1

2

∫ t

0
|c|2g(Xs) ds

]
:

The lower index g indicates that both the norm and the inner product are computed in
term of the metric (gij) (which is the inverse of (gij)). Thus

〈c(Xs); dMs〉g =
∑
i; j

gij(Xs)ci(Xs) dMj
s

and

|c|2g(Xs) =
∑
i; j

gij(Xs)ci(Xs)cj(Xs):

By the Cameron–Martin formula, (Xt;Ft ;Qx) is an L+ c-di$usion process, with tran-
sition density pb+c(x; t; y).

Lemma 2.3. Suppose pb(x; t; y) and pb+c(x; t; y) are continuous, and suppose the func-
tion

y → Px;y
T

(
e
∫ T
0 〈c(Xt);dMt〉− 1

2
∫ T
0 |c|2(Xt) dt

)
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is continuous, then

pb+c(x; T; y)
pb(x; T; y)

= Px;y
T exp

{∫ T

0
〈c(Xt); dMt〉g − 1

2

∫ T

0
|c|2g(Xt) dt

}
: (2.9)

Proof. For every 0¡!¡T and any bounded, continuous function ’ we have

Px;y
T

(
’(XT−!)e

∫ T−!
0 〈c(Xt);dMt〉− 1

2
∫ T−!
0 |c|2(Xt) dt

)

=
1

pb(x; T; y)
Px
(
pb(XT−!; !; y)’(XT−!)e

∫ T−!
0 〈c(Xt);dMt〉− 1

2
∫ T−!
0 |c|2(Xt) dt

)

then multiplying by pb(x; T; y) both sides and integrating in y over Rn we obtain∫
Rd

pb(x; T; y)Px;y
T

(
’(XT−!)e

∫ T−!
0 〈c(Xt);dMt〉− 1

2
∫ T−!
0 |c|2(Xt) dt

)
dy

=Px
(
’(XT−!)e

∫ T−!
0 〈c(Xt);dMt〉− 1

2
∫ T−!
0 |c|2(Xt) dt

)
:

From Lyons and Zheng (1990), the bounded variational part of {Mt}t under Px;y
T

satis1es

Px;y
T

{
exp

{
k
∫ T

0

∣∣∣∣∣
∑
j

gij(Xt)
@
@xj

logp(Xt; T − t; y)

∣∣∣∣∣ dt

}}
¡∞

for any bounded constant k. Since c is locally bounded and at most of linear growth,
we can let ! → 0 and obtain thus∫

Rd
pb(x; T; y)Px;y

T

(
’(XT )e

∫ T
0 〈c(Xt);dMt〉− 1

2
∫ T
0 |c|2(Xt) dt

)
dy

=Px
(
’(XT )e

∫ T
0 〈c(Xt);dMt〉− 1

2
∫ T
0 |c|2(Xt) dt

)
;

where the exchanges of limits with integrals are justi1ed under our conditions. There-
fore ∫

Rd
pb+c(x; T; y)’(y) dy

=Qx(’(XT ))

=Px
(
’(XT )e

∫ T
0 〈c(Xt);dMt〉− 1

2
∫ T
0 |c|2(Xt) dt

)

=
∫
Rd

pb(x; T; y)Px;y
T

(
’(XT )e

∫ T
0 〈c(Xt);dMt〉− 1

2
∫ T
0 |c|2(Xt) dt

)
dy

=
∫
Rd

’(y)pb(x; T; y)Px;y
T

(
e
∫ T
0 〈c(Xt);dMt〉− 1

2
∫ T
0 |c|2(Xt) dt

)
dy:
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The conclusion follows from the fact that

y → Px;y
T

(
e
∫ T
0 〈c(Xt);dMt〉− 1

2
∫ T
0 |c|2(Xt) dt

)

is continuous.

Theorem 2.4. Same conditions as in Lemma 2.3. Let

Ut = exp
(∫ t

0
〈c(Xs); dMs〉g − 1

2

∫ t

0
|c(Xs)|2g ds

)

which is a martingale up to time T . Then

pb+c(x; T; y) = pb(x; T; y) +
∫ T

0
Px{Ut〈c(Xt);∇g

xpb(Xt; T − t; y)〉g} dt: (2.10)

Proof. By Lemma 2.3

pb+c(x; T; y)
pb(x; T; y)

= Px;y
T (UT ):

On the other hand,

dPx;y
T

dPx

∣∣∣∣
Ft

=
pb(Xt; T − t; y)

pb(x; T; y)
; ∀t ¡T;

of which the right-hand side will be denoted by Nt for t ¡T . By Girsanov’s theorem

Ũ t = Ut −
∫ t

0

1
Ns

d〈U;N 〉s

is a martingale under Px;y
T for t ¡T . While as (Ut) is the exponential martingale of∫ t

0 〈c(Xs); dMs〉g so that

Ut = 1 +
∫ t

0
Us〈c(Xs); dMs〉:

On the other hand,

〈U;N 〉t =
∫ t

0
UsNs〈c(Xs);∇g

x logpb(Xs; T − s; y)〉g ds;

so that

pb+c(x; T; y)
pb(x; T; y)

=Px;y
T (UT ) = Px;y

T

(
Ũ T +

∫ T

0

1
Nt

d〈U;N 〉t
)

= 1 + Px;y
T

(∫ T

0
Ut〈c(Xt);∇g

x logpb(Xt; T − t; y)〉g dt
)

= 1 +
∫ T

0
Px;y

T {Ut〈c(Xt);∇g
x logpb(Xt; T − t; y)〉g} dt: (2.11)
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Since Ut is Ft-measurable,

Px;y
T {Ut〈c(Xt);∇g

x logpb(Xt; T − t; y)〉g}

=Px
(
pb(Xt; T − t; y)

pb(x; T; y)
Ut〈c(Xt);∇g

x logpb(Xt; T − t; y)〉g
)

=
1

pb(x; T; y)
Px{Ut〈c(Xt);∇g

xpb(Xt; T − t; y)〉g}

and therefore; together with Eq. (2.11);

pb+c(x; T; y)
pb(x; T; y)

= 1 +
1

pb(x; T; y)

∫ T

0
Px{Ut〈c(Xt);∇g

xpb(Xt; T − t; y)〉g} dt (2.12)

which in turn yields the claim of the theorem.

Remark 2.5. The conditions in Lemma 2.3 hold in many practical situations. For ex-
ample when (gij) is elliptic, q is uniformly bounded from zero and above, and the
additional vector 1eld b has at most linear growth. In the manifold case with smooth
metric (gij), Lemma 2.3 is applicable if

L =
1
2

1√
g

∑
i; j

@
@xi

(√
ggij @

@xj

)
+
∑
i

bi @
@xi

;

the manifold (M; gij) is stochastically complete. In all these cases, it may be veri1ed
that UT and 〈U;N 〉T both are integrable with respect to the conditional distribution
Px;y

T under our assumptions.

It is clear all the results still hold for a vector 1eld c dependent on t. As a direct
consequence we have the following

Corollary 2.6. Fix y∈M . We have the following conclusions:

1. If 〈c(·);∇x logpb(·; t; y)〉¿ 0 for all t and x, then

pb+c(x; t; y)¿pb(x; t; y) for all (t; x):

2. If 〈c(·);∇x logpb(·; t; y)〉6 0 for all t and x, then

pb+c(x; t; y)6pb(x; t; y) for all (t; x):

The usefulness of this corollary of course depends on the knowledge of the compar-
ison transition density pb(x; t; y). Required information in applying Corollary 2.6 may
be obtained for some class of di$usion processes. Let us consider a simple case, that
is we consider Lb-di$usions in Rn with

Lb = 1
2* + b;

where * is the Laplacian in Rn and b is a vector 1eld. The Lb-di$usion is called a
Brownian motion with drift. Let y∈Rn be a 1xed point, let +, , be two constants. Let

b̃(x) = ,∇|x − y| − +∇|x − y|2
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(we note that ∇|x − y| = sgn(x − y) in one-dimensional case), which is at most of
linear growth. Then for all x �= y, ∇xpb̃(x; t; y) exists. From the symmetry, according
to Qian et al. (2003) there is a function f(t; r); (t¿ 0; r ¿ 0) non-increasing in r such
that pb̃(x; t; y) = f(t; |x − y|): Thus

〈∇x logpb̃(x; t; y);∇|x − y|〉6 0:

Thus when gij(:) = �ij we have

Theorem 2.7 (Qian et al., 2003). Let

b̃(x) = ,∇x|x − y| − +∇x|x − y|2

and let y∈Rn. Consider Brownian motion with drift b (b is measurable and of at
most linear growth). Then

1. if 〈b(x) − b̃(x);∇x|x − y|〉¿ 0 for all (x; t) such that |x − y|¿ 0, then

pb(x; t; y)6pb̃(x; t; y) for all (x; t);

2. if 〈b(x) − b̃(x);∇x|x − y|〉6 0 for all (x; t) such that |x − y|¿ 0, then

pb(x; t; y)¿pb̃(x; t; y) for all (x; t):

Indeed, this theorem follows from representation (2.10) applying to c = b − b̃ and
Lb̃-di$usion.

Consider the following two vector 1elds on the Euclidean space Rn: b(x)=
∑

i b
i(x)

@=@xi with

bi(x) = .i sgn(xi − yi) − 2+(xi − yi)

and the standard one used in Theorem 2.7

b̃(x) = ,∇x|x − y| − +∇x|x − y|2

= ,
x − y
|x − y| − 2+(x − y);

where +, , and .i are constants. It is easy to see that

〈b(x) − b̃(x);∇x|x − y|〉 =
n∑

j=1

{
. sgn(xj − yj) − ,

xj − yj

|x − y|
}

xj − yj

|x − y|

=
.

|x − y|
n∑

j=1

|xj − yj| − ,

which, together with the following elementary inequality

|x − y|6
n∑

i=1

|xi − yi|6
√
n|x − y|;

implies the following:
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Lemma 2.8. Under the above notations, we have

(1) if ,¿ 0, . = , (or if ,6 0, . = ,=
√
n), and for any +∈R,

〈b(x) − b̃(x);∇x|x − y|〉¿ 0 for all x �= y;

(2) if ,¿ 0, . = ,=
√
n (or if ,6 0, . = ,), and for any +∈R,

〈b(x) − b̃(x);∇x|x − y|〉6 0 for all x �= y:

Let pk1 ; k2 ;y(x; t; z) denote the transition density function of the following di$usion:

dX i
t = dWi

t + (k1 sgn(X i
t − yi) − k2(X i

t − yi)) dt (i = 1; : : : ; n)

and let p̃,;+;y(x; t; z) be that of the di$usion

dXt = dWt + (,∇x|Xt − y| − +∇x|Xt − y|2) dt:

Thus pk1 ; k2 ;y(x; t; z) = pb(x; t; z) with b(x) =
∑

i b
i(x)@=@xi where

bi(x) = k1sgn(xi − yi) − k2(xi − yi):

We would like to mention that if the dimension n = 1, then p̃,;+;y(x; t; z) coincides
with p,;2+;y(x; t; z), where the factor 2 comes from the fact that

+∇x|x − y|2 = 2+(x − y):

As applying Theorem 2.7 to the vector 1eld b we thus have

Corollary 2.9. Let +; ,∈R be two constants.
(1) If ,¿ 0 then

p,;2+;y(x; t; y)6 p̃,;+;y(x; t; y) for all (x; t)

and

p,=
√

n;2+;y(x; t; y)¿ p̃,;+;y(x; t; y) for all (x; t):

(2) If ,6 0 then

p,=
√

n;2+;y(x; t; y)6 p̃,;+;y(x; t; y) for all (x; t)

and

p,;2+;y(x; t; y)¿ p̃,;+;y(x; t; y) for all (x; t):

The Comparison Theorem 2.7 together with Corollary 2.9 allow us to deduce explicit,
sharp upper and lower bounds for the transition function of a Brownian motion with
a general drift of linear growth. As announced, these bounds are established through
carefully estimating the density function p,;+;y(x; t; y).
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A simple application of the Comparison Theorem 2.7 we establish

Lemma 2.10. Let b(x) =
∑

i b
i(x)@=@xi be a vector =eld on Rn, and y∈Rn. Let

b̃(x) = ,∇x|x − y| − +∇x|x − y|2:
(1) If for all i = 1; : : : ; n and x

|bi(x)|6 !i + �i|x − y|;
where ! = (!i), � = (�i), !i¿ 0 and �i¿ 0, then

〈b(x) − b̃(x);∇x|x − y|〉6 0

with , = |!| and + = −|�|=2.
(2) If for all i = 1; : : : ; n and x

|bi(x)|6 !i + �i|x − y|;
then

〈b(x) − b̃(x);∇x|x − y|〉¿ 0

with , = −|!| and + = |�|=2.

Proof. Indeed, suppose

|bi(x)|6 !i + �i|x − y|;
then, for any x �= y,

〈b(x) − b̃(x);∇x|x − y|〉

=
n∑

i=1

{
bi(x) − ,

xi − yi

|x − y| + 2+(xi − yi)
}

xi − yi

|x − y|

=
n∑

i=1

bi(x)
xi − yi

|x − y| − , + 2+|x − y|

6
1

|x − y|
n∑

i=1

!i|xi − yi| +
n∑

i=1

�i|xi − yi| − , + 2+|x − y|

6 |!| − , + (|�| + 2+)|x − y|
upon setting , = |!| and + = −|�|=2 we have

〈b(x) − b̃(x);∇x|x − y|〉6 0

which proves the 1rst claim. Similarly for y �= x

〈b(x) − b̃(x);∇x|x − y|〉 =
n∑

i=1

bi(x)
xi − yi

|x − y| − , + 2+|x − y|
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¿− 1
|x − y|

n∑
i=1

!i|xi − yi|

−
n∑

i=1

�i|xi − yi| − , + 2+|x − y|

¿ (−|!| − ,) − (|�| − 2+)|x − y|
which yields the second conclusion.

By Theorem 2.7, Corollary 2.9 and Lemma 2.10 we thus establish the following:

Proposition 2.11. Let b(x) =
∑

i b
i(x)@=@xi be a vector =eld on Rn, and let c1 and c2

be two non-negative constants, y∈Rn. If for all x and i = 1; : : : ; n

|bi(x)|6 !i + �i|x − y|
for some !i¿ 0, �i¿ 0, then

pc1 ;−c2 ;y(x; t; y)6pb(x; t; y)6p−c1 ;c2 ;y(x; t; y)

for all (x; t), where

c1 =

√√√√ n∑
i=1

!2i and c2 =

√√√√ n∑
i=1

�2
i :

The nice feature of the last inequality is that the bound function p,;+;y(x; t; z) in this
estimate has a product form, more precisely

p,;+;y(x; t; z) =
n∏

j=1

p,;+;yj (xj; t; zj)

in terms of the standard coordinate system x = (x1; : : : ; xn).

3. Brownian motion with drift in Rn

In this section we establish precise estimates for p,;+;y(x; t; y) which allow us, by
Proposition 2.11 to establish strong estimates for pb(x; t; y), where b is a vector 1eld
of at most linear growth.

3.1. Bounds for di;usion with drift of linear growth

Let, for every q¿ 0; t¿ 0,

a1; q =
1√
20

∫
R

|x|qe−x2=2 dx; �(t; c) =

√
1 − e−2ct

2c

and set �(t; 0) = limc→0 �(t; c) =
√
t.
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As usual pb(x; t; y) is the transition density function of the Brownian motion with
drift b. We prove the following two theorems. For lower bounds we have

Theorem 3.1. Fix y∈Rn. Suppose that b= (bi)i is a vector =eld with at most linear
growth, and

|bi(x)|6 !i + �i|x − y|; ∀x∈Rn

for some !i¿ 0, �i¿ 0. De=ne

c1 =

√√√√ n∑
i=1

!2i and c2 =

√√√√ n∑
i=1

�2
i :

Then

pb(x; t; y)¿
n∏

i=1


h−c2 (xi − yi; t; 0)

×exp


−2c1


a1;1

√
e2c2t − 1

2c2
+ |xi − yi|


− c2

1

2
t




 (3.1)

for all t ¿ 0 and x; y, where h−c2 (xi − yi; t; 0) is given by

h+(xi; t; zi) =
1√

20�(t; +)
exp
(

−|zi − e−+txi|2
2�(t; +)2

)
: (3.2)

The upper bound is given in the following

Theorem 3.2. Under the same assumption in Theorem 3.1, then for every q¿ 1 we
have

pb(x; t; y)6
n∏

i=1


hc2 (xi − yi; t; 0) +

c1√
20�(t; c2)


2q

√
1 − e−2c2t

2c2
+ 3q|xi − yi|




×exp
(

−e−2c2t |xi − yi|2
2q�(t; c2)2 +

c2
1

2(q − 1)
t
)
 ; (3.3)

where

2q = q22−1=q q
√
a1; q; 3q = q22−1=q:

Indeed, we will prove that pc1 ;−c2 ;y(x; t; y) has the right-hand side of (3.1) as its
lower bound, p−c1 ;c2 ;y(x; t; y) has the right-hand side of (3.3) as its upper bound, then
Proposition 2.11 thus lead to the estimates in Theorems 3.1 and 3.2. Since both the
bounds in (3.1) and (3.3) and p±c1 ;∓c2 ;y(x; t; y) have product forms, therefore we only
need to prove these estimates for one-dimensional case. Thus we only consider the
case n = 1 in what follows.
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To see the above lower bound is sharp, we 1rst notice that this lower bound coincides
with the transition density function h−c2 (x − y; t; 0) of the linear di$usion with drift
c2(· − y) if c1 = 0. Moreover, if c2 = 0, since

lim
+→0

h+(x − y; t; 0) =
1√
20t

exp
(

−|x − y|2
2t

)
;

and thus if the vector 1eld satis1es |b|6 c1, Theorem 3.1 implies in this case that

pb(x; t; y)¿
1√
20t

exp
(

−|x − y|2
2t

)
exp
[
−2c1

(
a1;1

√
t + |x − y|)− c2

1

2
t
]

which is very close to the best possible we could hope under the bound of |b|, since

it has the exact leading Gaussian term
(
1=

√
20t
)

exp(−|x − y|2=2t) and the correct
leading term for large t. Indeed, the best estimate one could achieve is the following:
if |b|6 c1 then (which is proved in Qian et al., 2003, see also Gradinaru et al., 2001;
Karatzas and Shreve, 1988)

pb(x; t; y)¿
1

t
√

20t

∫ ∞

|x−y|
z exp

(
−|z + c1t|2

2t

)
dz:

To see the sharpness of our upper bound in Theorem 3.2, we have the same remark
as the previous lower bound. First when c1 = 0, then the upper bound is reduced to
hc2 (x − y; t; 0) which is the best possible one can hope when the drift b has linear
growth. On the other hand if c2 =0, that is b is bounded with bound c1, then the upper
bound for this case reads as, for every q¿ 1,

pb(x; t; y)6
1√
20t

exp
(

−|x − y|2
2t

)

+
c1√
20t

(
2q

√
t + 3q|x − y|) exp

(
−|x − y|2

2qt
+

c2
1

2(q − 1)
t
)

which is a very strong estimate for pb(x; t; y) in terms of the bound of b.
It follows immediately from the above lower and upper bounds the following

Varadhan’s asymptotic for small time t:

lim
t→0

2t logp(x; t; y) → −|x − y|2:

3.2. Several technical facts

As we have mentioned, we will prove Theorems 3.1 and 3.2 by establishing an
estimate for p−c1 ;c2 ;y(x; t; y) from above, and a bound for pc1 ;−c2 ;y(x; t; y) from below,
and we only need to consider the case that n = 1.
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An exact formulas are known (but only for one-dimensional case, Gradinaru et al.,
2001; Karatzas and Shreve, 1988) for p,;0;y(x; t; y) and p0; +;y(x; t; y), and they are
given by

p,;0;y(x; t; y) =
1

t
√

20t

∫ ∞

|x−y|
z exp

(
−|z − ,t|2

2t

)
dz (3.4)

and

p0; +;y(x; t; y) =
√

+
0(1 − e−2+t)

exp
(

−+e−2+t |x − y|2
(1 − e−2+t)

)
:

However we know no closed formula for the transition probability density p,;+;y(x; t; z),
and indeed the main goal of the present section is to develope some methods of
estimating p,;+;y(x; t; z) which we believe will be useful in treating other problems.

For simplicity denote by h+(x; t; z) the transition probability density of the linear
di$usion process

d4t = −+4t dt + dBt; 40 = x: (3.5)

The unique strong solution to Eq. (3.5) is well known and is given by (see for example
Ikeda and Watanabe, 1981, (8.2))

4t = e−+tx +
∫ t

0
e−+(t−s) dBs: (3.6)

Thus by a simple computation we can see that h+(x; t; z) is given by (3.2).
Obviously

p0; +;y(x; t; y) = h+(x − y; t; 0):

Let us give estimates about the transition density function pc1 ;−c2 ;y(x; t; y) from below,
and p−c1 ;c2 ;y(x; t; y) from above, where c1, c2 are two non-negative constants. The proof
of Theorems 3.1 and 3.2 follow these estimate easily.

Given +∈R, consider the following Gaussian di$usion (4t ;Ft ;Px):

d4t = −+4t dt + dBt; 40 = x; (3.7)

of which the transition probability density is known as Gaussian function, denoted by
h+(x; t; z). Then by using the Cameron–Martin formula we may add a two-valued drift
, sgn(·). Thus the transition density function p,;+;y(x; t; y) can be expressed in terms
of h+(x; t; z) and the conditional distribution of the Gaussian di$usion 4s such that
40 =x and 4t =y. Our results will then follow careful estimates about these conditional
probabilities.

In fact under the probability measure Qx de1ned by

dQx

dPx

∣∣∣∣
Ft

= exp
(
,
∫ t

0
sgn(4s) dBs − ,2

2
t
)

for all t, the process (4t) is a weak solution to our model process

dXt = , sgn(Xt) dt − +Xt dt + dBt; X0 = x; (3.8)
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and thus, by the Cameron–Martin formula
p,;+(x; t; 0)
h+(x; t; 0)

= Px;0 exp
(
,
∫ t

0
sgn(4s) dBs − ,2

2
t
)

; (3.9)

where Px;0 denotes the conditional distribution Px(·|4t = 0). Let

Ms = exp
(
,
∫ s

0
sgn(4u) dBu − ,2

2
s
)

:

Since

∇xh+(x; t; 0) = − 2+e−2+t

1 − e−2+t xh+(x; t; 0); (3.10)

by Theorem 2.4

p,;+(x; t; 0) = h+(x; t; 0) − 2,|+|3=2√
0

∫ t

0

e−2+(t−s)

|1 − e−2+(t−s)|3=2 P
x

×
(
Ms|4s|e− +|e−+(t−s)4s|2

1−e−2+(t−s)

)
ds: (3.11)

Lemma 3.3. For q¿ 1, and s¡ t we have

Px

(
|4s|qe− +q|e−+(t−s)4s|2

1−e−2+(t−s)

)
=

√
2+

1 − e−2+s A
q+1
s e

− +qe−2+t

(q−1)e−2+(t−s)+1−qe−2+t x2

× 1√
20

∫
R

∣∣∣∣z +
2+e−+sAs

1 − e−2+s x
∣∣∣∣
q

e−z2=2 dz;

where

As =

√
1 − e−2+s

2+
1 − e−2+(t−s)

qe−2+(t−s)(1 − e−2+s) + (1 − e−2+(t−s))

=

√
1 − e−2+s

2+
1 − e−2+(t−s)

(q − 1)e−2+(t−s) + (1 − qe−2+t)
:

Proof. It follows a direct computation. In fact, since 4s has the Gaussian distribution
N (a; �2) where

a = e−+sx; �2 =
1 − e−2+s

2+
we therefore have

Px

(
|4s|qe

+q|e−+(t−s)4s|2
1−e−2+(t−s)

)
=

1√
20�

∫
R

|z|qe− +q|e−+(t−s)z|2
1−e−2+(t−s) − |z−+|2

2�2 dz

=
1√
20�

∫
R

|z|qe− +q|e−+(t−s)z|2
1−e−2+(t−s) − +|z−e−+sx|2

1−e−2+s dz:
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Changing the variable√
2+

1 − e−2+s

qe−2+(t−s)(1 − e−2+s) + (1 − e−2+(t−s))
1 − e−2+(t−s) z = u;

the last integral may be written as

Px

(
|4s|qe

+q|e−+(t−s)4s|2
1−e−2+(t−s)

)
=

√
2+

1 − e−2+s A
q+1
s e

− +e−2+s

1−e−2+s x
2+ 2+2e−2+s

(1−e−2+s)2 A2
s x

2

× 1√
20

∫
R

∣∣∣∣z +
2+e−+sAs

1 − e−2+s x
∣∣∣∣
q

e−z2=2 dz;

and the lemma follows immediately.

Lemma 3.4. Let + = −c2 ¡ 0. Then

Px

(
|4s|e− +|e−+(t−s)4s|2

1−e−2+(t−s)

)
6

e2c2(t−s) − 1
e2c2t − 1


a1;1

√
e2c2t − 1

2c2
+ |x|




× exp
(

− c2e2c2t

e2c2t − 1
x2
)

:

Proof. Indeed, by the previous lemma we have

Px

(
|4s|e− +|e−+(t−s)4s|2

1−e−2+(t−s)

)
=

e2c2(t−s) − 1
e2c2t − 1

exp
(

− c2e2c2t

e2c2t − 1
x2
)

× 1√
20

∫
R

∣∣∣∣∣∣z
√

e2c2s − 1
2c2

+

√
e2c2t − e2c2s

e2c2t − 1
x

∣∣∣∣∣∣ e−z2=2 dz;

then the inequality follows from the elementary inequality: for all s6 t,

1√
20

∫
R

∣∣∣∣∣∣z
√

e2c2s − 1
2c2

+

√
e2c2t − e2c2s

e2c2t − 1
x

∣∣∣∣∣∣ e−z2=2 dz

6 a1;1

√
e2c2t − 1

2c2
+ |x|:

Lemma 3.5. Let +=c2¿ 0, and let (4s;Px) be the Gaussian di;usion (3.7). Then for
every q¿ 1 we have

Px

(
|4s|qe− +q|e−+(t−s)4s|2

1−e−2+(t−s)

)
6 2q−1

(
a1; q

(
1 − e−2c2t

2c2

)q=2
+ |x|q

)

×
(

1 − e−2c2(t−s)

1 − e−2c2t

)(q+1)=2

exp
(

− c2e−2c2t

1 − e−2c2t
x2
)

:
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Proof. By Lemma 3.3

Px

(
|4s|qe− +q|e−+(t−s)4s|2

1−e−2+(t−s)

)

=
(

1 − e−2+(t−s)

(q − 1)e−2+(t−s) + (1 − qe−2+t)

)(q+1)=2
1√
20

e
− +qe−2+t

(q−1)e−2+(t−s)+1−qe−2+t x2

×
∫
R

∣∣∣∣∣z
√

1 − e−2+s

2+
+

√
2+

1 − e−2+s e−+sAsx

∣∣∣∣∣
q

e−z2=2 dz;

since

√
2+

1 − e−2+s e−+sAs = e−+s

√
(1 − e−2+(t−s))

qe−2+(t−s)(1 − e−2+s) + (1 − e−2+(t−s))
6 1;

we have

1√
20

∫
R

∣∣∣∣∣z
√

1 − e−2+s

2+
+

√
2+

1 − e−2+s e
−+sAsx

∣∣∣∣∣
q

e−z2=2 dz

6 2q−1

(
a1; q

(
1 − e−2+t

2+

)q=2
+ |x|q

)
:

It is easy to see that

− +qe−2+t

(q − 1)e−2+(t−s) + 1 − qe−2+t 6− +e−2+t

1 − e−2+t

and (
1 − e−2+(t−s)

(q − 1)e−2+(t−s) + (1 − qe−2+t)

)(q+1)=2

6
(

1 − e−2+(t−s)

1 − e−2+t

)(q+1)=2

:

Collecting these estimates together we thus obtain

Px

(
|4s|qe− +q|e−+(t−s)4s|2

1−e−2+(t−s)

)
6
(

1 − e−2c2(t−s)

1 − e−2c2t

)(q+1)=2

exp
(

− c2e−2c2t

1 − e−2c2t
x2
)

2q−1

×
(
a1; q

(
1 − e−2c2t

2c2

)q=2
+ |x|q

)
:

3.3. Lower bound for pc1 ;−c2 and upper bound for p−c1 ;c2

As mentioned, it is suLcient to consider the case where the dimension n = 1.
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Lower bound estimate: We again may assume y = 0. In this section ,= c1 ¿ 0 and
+ = −c26 0. Applying Jensen’s inequality to Eq. (3.9) we have

p,;+(x; t; 0)
h+(x; t; 0)

¿ exp
[
,Px;0

(∫ t

0
sgn(4s) dBs

)
− ,2

2
t
]
: (3.12)

However under Px;0 the semimartingale
∫ t

0 sgn(4s) dBs possesses the following decom-
position:∫ t

0
sgn(4s) dBs = Nt +

∫ t

0
〈sgn(4s);∇x log h+(4s; t − s; 0)〉 ds;

where Nt is a martingale under Px;0. Thus by (3.10),

Px;0
(∫ t

0
sgn(4s) dBs

)

=
∫ t

0
Px;0(〈sgn(4s);∇x log h+(4s; t − s; 0)〉) ds

= −
∫ t

0

2+e−2+(t−s)

1 − e−2+(t−s) (Px;0|4s|) ds

= − 1
h+(x; t; 0)

∫ t

0

2+e−2+(t−s)

1 − e−2+(t−s) P
x(h+(4s; t − s; 0)|4s|) ds

= − 1√
0

1
h+(x; t; 0)

∫ t

0

2|+|3=2e−2+(t−s)

|1 − e−2+(t−s)|3=2 P
x

(
|4s|e− +|e−+(t−s)4s|2

1−e−2+(t−s)

)
ds:

By Lemma 3.4, as + = −c2 ¡ 0,

Px;0
(∫ t

0
sgn(4s) dBs

)
¿− 1√

0


a1;1

√
e2c2t − 1

2c2
+ |x|


 1

e2c2t − 1

×
exp
(
− c2e2c2 t

e2c2 t−1x
2
)

h+(x; t; 0)

∫ t

0

2c3=2
2 e2c2(t−s)

√
e2c2(t−s) − 1

ds

= −2


a1;1

√
e2c2t − 1

2c2
+ |x|


 :

Therefore

pc1 ;−c2 (x; t; 0)
h−c2 (x; t; 0)

¿ exp


−2c1


a1;1

√
e2c2t − 1

2c2
+ |x|


− c2

1

2
t


 :
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Upper bound estimate: The upper bound follows from the representation formula,
Lemma 3.5 and the HRolder inequality. Indeed, by the HRolder inequality and
Lemma 3.5, for any q¿ 1 of which p is the conjugate exponent,

Px

(
Ms|4s|e− +|e−+(t−s)4s|2

1−e−2+(t−s)

)
6 e

(p−1)c2
1

2 t

(
Px

(
|4s|qe− q+|e−+(t−s)4s|2

1−e−2+(t−s)

))1=q

6 21−1=q
(

1 − e−2c2(t−s)

1 − e−2c2t

)1=2+1=2q

e
(p−1)c2

1
2 t− c2e−2c2 t

q(1−e−2c2 t) x2

×
(
a1; q

(
1 − e−2c2t

2c2

)q=2
+ |x|q

)1=q

:

After integrating in s we deduce that∫ t

0

e−2+(t−s)

|1 − e−2+(t−s)|3=2 P
x

(
Ms|4s|e− +|e−+(t−s)4s|2

1−e−2+(t−s)

)
ds

6 21−1=q

(
a1; q

(
1 − e−2c2t

2c2

)q=2
+ |x|q

)1=q

e
(p−1)c2

1
2 t− c2e−2c2 t

q(1−e−2c2 t) x2

×
∫ t

0

e−2+(t−s)

|1 − e−2+(t−s)|3=2
(

1 − e−2c2(t−s)

1 − e−2c2t

)1=2+1=2q

ds

= 21−1=q

(
a1; q

(
1 − e−2c2t

2c2

)q=2
+ |x|q

)1=q

e
(p−1)c2

1
2 t− c2e−2c2 t

q(1−e−2c2 t) x
2 q
+

(
1

1 − e−2c2t

)1=2

:

Thus by Eq. (3.11)

p−c1 ;c2 (x; t; 0)

6 hc2 (x; t; 0) +
22−1=qqc1√

0

(
c2

1 − e−2c2t

)1=2
(
a1; q

(
1 − e−2c2t

2c2

)q=2
+ |x|q

)1=q

×exp
(

− c2e−2c2t

q(1 − e−2c2t)
x2 +

(p − 1)c2
1

2
t
)

which yields the upper bound.
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