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Abstract

We establish a representation formula for the transition probability density of a diffusion per-
turbed by a vector field, which takes a form of Cameron—Martin’s formula for pinned diffusions.
As an application, by carefully estimating the mixed moments of a Gaussian process, we deduce
explicit, strong lower and upper estimates for the transition probability function of Brownian
motion with drift of linear growth.
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1. Introduction

In the paper (Qian et al., 2003) by the present authors in collaboration with F. Russo,
a comparison theorem (see below Theorem 2.4) for the density function of a Brownian
motion with drift in terms of the transition function of the diffusion with two-valued
drift has been established. By computing the transition function for a model diffusion,
sharp bounds for the transition function of one-dimensional Brownian motion with
bounded drift has been established in Qian and Zheng (2002). The goal of this paper
is to extend the above results to the case with unbounded drift, which is important
in many applications. We obtain a representation formula for the transition function

* Corresponding author. Department of Mathematics, University of California, 103 MSTB, Irvine, CA
92697, USA. Tel.: +1-9498245379; fax: +1-9498247993.

E-mail addresses: qian@math.ups-tlse.fr (Z. Qian), wzheng@uci.edu (W. Zheng).

I Research partially supported by N.S.F. Grants DMS-0203823, partially supported by Doctoral Program
Foundation of the Ministry of Education of China, Grant No. 20020269015 and N.S.F.C. Grant 10371074.

0304-4149/$ - see front matter (© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.spa.2003.12.004


mailto:qian@math.ups-tlse.fr
mailto:wzheng@uci.edu

58 Z. Qian, W. Zheng| Stochastic Processes and their Applications 111 (2004) 57-76

of a diffusion perturbed by a vector field, which takes a form of Cameron—Martin’s
formula for pinned diffusions. As consequences we deduce a very precise estimate for
the density function of Brownian motion with a drift bounded by linear growth.

Although there are many excellent results on the estimates of the transition density
functions of diffusions with generators in divergence form (see Aronson, 1967; Davies,
1989 and the literature therein), the explicit estimates for Brownian motion with drift
of order not faster than linear growth presented in this paper (see Theorems 3.1 and
3.2 below) are new and useful to the applications of the statistical inference of diffusion
processes with stochastic volatility used in the mathematical finance.

The paper is organized as the following. In Section 2, several folklore facts about
conditional diffusion processes are recalled. We then deduce an integral representation
for the transition probability density of a diffusion perturbed by a vector field, which
is the main tool we will use to establish the lower and upper bounds. Indeed, the
representation theorem of this type is applied to a more general setting, and is very
useful formula in obtaining information about the density functions perturbed by some
drift. Therefore it has interest by its own. In order to prove Theorems 3.1 and 3.2
we need several technical estimates about the mixed moments of the linear diffusion,
which will be done in Section 3.

2. A representation formula

In this section we deduce our first result, a presentation formula (Theorem 2.4) for
the transition function of a diffusion perturbed by a vector field. We begin with some
remarks about pinned diffusions or conditional diffusions. The materials presented here
belong to the tool box about Markov processes, though we could not find a reference
which address these issues. The reader may regard them as a set of folklore facts,
which are known to experts in stochastic analysis.

2.1. Conditional diffusions

Let (X;,P*) be a (time homogenous) diffusion process with its natural filtration
(Z)i>0 and state space M (for example a complete Riemannian manifold such as R").
Suppose its transition probability function P,(x,dy) possesses a positive, continuous
density function p(x,t, y) for all ¢+ > 0, with respect to a g-finite measure ¢ on M (in
many applications it will be a weighted Riemann—Lebesgue measure on M).

For T > 0 and a point y € M, define a non-homogenous transition density function

p(Z,[ _SsW)P(WaT — 1, y)
P T —s,y)

(2.1)

HT,y(Saz; t,W) =
for all 0 <s <t < 7T, and a transition probability function

ST”,yf(z) = /Mf(w)Hr,y(s,z; tw)u(dw) for0<s<t<T. (2.2)
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We will omit indices 7, y if no confusion may arise. In most part of this section, both
T >0 and yeM are fixed. Then for any 0 < s <t < 7T, and functions f and g we
have

PO f(X)g(Xr)| 7} = P{f(X)g(X7r)| 7 s} 23)
and thus formally (by taking g = ¢,), for every 0 <s <t < T,
P05, f(X)0,(XT)|F s} = PH{f(X)0,(X7)| 7 s} (2.4)

or equivalently

Px{(f()(t)|yc)|XT = y} = [px{Qx,tf(XvNXT = y}:

which explains that the process (X;);~7r possesses the Markov property with transition
function Q;, under “the conditional probability” P*{-|X7 = y}.

For given T > 0 and two points x and y in M, define
_ pPX, T —t,y)
- pxTy)
Then (N,;),<r is a non-negative martingale under the probability P*, therefore define a
probability P7” on the o-algebra o{Z,:t < T} by

X,y
dPy = P T —1y) forall t < T (2.6)
dpx 7, px,T,y)

called the conditional probability of (X;) such that Xy =x and X7 = y. Since (X;) is
continuous, 6{ %, : t < T} equals Z 7. Note that P7” may be not absolutely continuous
with respect to P* on Z 7. In the literature, P} is also denoted by P*(-|X7 = y) or
P(-|Xo = x, X7 = »).

N; for all t < T. (2.5)

Lemma 2.1. The continuous process (X,,t < T) under the probability P}” is a diffu-
sion process with transition density function H(s,z;t,w).

The diffusion process (Xt < T;P7”) is called a pinned diffusion, a diffusion
conditioned on Xy = x and X7 = y, or a diffusion bridge from x to y with running
time 7.

2.2. Cameron—Martin’s formula for pinned diffusions

In this subsection we consider an L,-diffusion process (X;, P*), where L; is an elliptic
differential operator of second order. L, may be in non-divergence form

1 i 0 0
= _ Y ! —
Ly 2;g 0 gz * Zjb () 50 @27

in this case the symmetric matrix (g”) is uniformly continuous, or L, may be in
divergence form

11 G N N
Lo=3 o) 2o O (q(x)gf(x) 0x,> + Zb () 50 (2.8)

Lj
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where coefficients (g”), positive function g(x) and (b'(x)) are Borel measurable. In
both the cases (¢g¥) is supposed to be positive definite. Let (M;),;o be the martingale
part of (X;). Then

t
(M M), = / §7(X,) ds.
0

Let pp(x,t, y) denote the transition density function of the L,-diffusion with respect
to the Lebesgue measure. By It6’s formula we have the following (Lyons and Zheng,
1990; Zheng, 1995).

Lemma 2.2. The conditional diffusion process (Xi,t < T,P}”) possesses infinitesimal
generator

A=Ly,+ Vilog p(z,T —t,y)VI

. 0 0
=L+ ZQU(Z) = logp(z, T —t,y) =
ij ! 4

Let

; 0
c(x)= Z c'(x) e

i

be a measurable vector field on R” which is of at most linear growth, such that

1 T
IP’Jcexp(2 / |c|5(XS)ds> < oo0.
, Il

Define a probability measure Q* by
dQ-~ ! 1 [
= exp [/ (e(Xy), dM), — 5 / |c|§(Xs)ds].
0 0

dp~
The lower index ¢ indicates that both the norm and the inner product are computed in
term of the metric (g;;) (which is the inverse of (¢V)). Thus

(). dMy)g =) gy (X' (X)) dM]

Lj

T
7,

and
le[p(X) =) g (X (X)) (X,).
i,j
By the Cameron—Martin formula, (X;, #,, Q") is an L + c-diffusion process, with tran-
sition density pp.c(x,t, y).

Lemma 2.3. Suppose pp(x,t,y) and pp..(x,t, y) are continuous, and suppose the func-
tion

y— PY (efJ<c(X,),dM,>§ Iy |c|2<X,)dt)
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is continuous, then

C( 7T9 ) X,y r 1 r
%:Pﬂ xp{/o <c(Xt),sz>g—§/0 c|j()c)dt}. (2.9)

Proof. For every 0 < ¢ < T and any bounded, continuous function ¢ we have

Py (go(XT )ejo (e(X0), dM, ) — Zﬂ, le| (x,)d,>

:% <p"(XT s Y )P (K)ol ) =3 [ e (x,m>
Po\X, 1, )y

then multiplying by pp(x, 7, y) both sides and integrating in y over R” we obtain

/ po(x, T, y)Pp” <<0(XT pely Hlen.am) - zf”lclz“f)d’) dy

(m(xf el etkn.au) - f”'clzvfﬂdf).

From Lyons and Zheng (1990), the bounded variational part of {,}, under P}’

satisfies
T
P {expl k / dtp p <0
0

for any bounded constant k. Since ¢ is locally bounded and at most of linear growth,
we can let ¢ — 0 and obtain thus

1
/d Pi(x, T,y)l]y;y <¢(XT)e.foT<c(&),dM>—2f{|c2()g)dt) dy
R

. 0
> 9"(X) 5= log p(X,, T — 1,y)
j i

= P ((p(XT)e'[ONC(X‘)’dM)—; foT |02()Q)dt) ’

where the exchanges of limits with integrals are justified under our conditions. There-
fore

[ poscs Tt d
=0 (p0r)

=P (qo(XT)efo’<C<Xf%de>é i |c2<x,)dt>
:/ o6 TP (co(XT)elan,dM»éfJ |c|2<x,>dz) dy
Rd

=/ o) po(%, T, y)PT* < I3 et = 17 I ”"”’) dy.
Rd
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The conclusion follows from the fact that

y— Py <ej;f<c()c),sz>—§ Iy |c|2<X,>dt)
is continuous. [

Theorem 2.4. Same conditions as in Lemma 2.3. Let

t 1 t
U,:exp(/o <c(XS),dMX>g—§/0 |c(XS)|§ds)

which is a martingale up to time T. Then
T
Pore(x, T, y) = po(x, T,y)+/ PHU(c(X), Vipp(Xe, T — 1, y))g}dt. (2.10)
0

Proof. By Lemma 2.3

pb+c(xy T, y) X,y
———— =Pz (Ur).
po(x, T, y) 4
On the other hand,
dpP%” —
T — pb()(tyT f:)’)’ Vi < T,
dpx F, Pb(X,TJ’)

of which the right-hand side will be denoted by N; for t < T'. By Girsanov’s theorem
t
. 1
Uu =0 - — d{(U,N);
t t /0 N, < P >

is a martingale under P7” for 1 < T. While as (U,) is the exponential martingale of
Jo(e(X;),dM,), so that

U=1+ /Ot U {c(Xy), dM).
On the other hand,

(UN)i = /Ot UsNy(c(X;), V{log py(X;, T — 5, ¥)) g ds,
so that

pb+C(xsTay) X,y xy(’” /T 1 >
— = =P (Un)=P7" (Ur+ —d{(U,N
Pb(X,TJ/) r ( T) r ! 0 Nt < >t

T
=1+Py (/ Ui(c(X:), VIlog pp(Xes T — 1, )4 dt)
0

T
. / PE U (), VY log py(X T — 6, y))}de. (211
0
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Since U, is Z ;-measurable,
P {Uc(X)), VI1og po(X,, T —1,9))g}

X, T —t,
—p <pb(y) Ui(e(X,), V¥ log py(X,, T r,y)>g>
po(x, T, y)
B 1
po(x, T, y)
and therefore; together with Eq. (2.11);
pb+6(x9 Ts J’) 1 /T
=1+ P{Uc(X,), VI pp(X;, T — ¢, dr (2.12
o T.y) P Ty Jy | D VRO T = A 212)
which in turn yields the claim of the theorem. [J

P{U(c(X,), VI pp(Xe, T — 1, )4}

Remark 2.5. The conditions in Lemma 2.3 hold in many practical situations. For ex-
ample when (g;;) is elliptic, ¢ is uniformly bounded from zero and above, and the
additional vector field » has at most linear growth. In the manifold case with smooth
metric (g;;), Lemma 2.3 is applicable if

11 0 0 -0
L=>—Y — i b —
2 \/g T 8x,- (ﬂg 0x,-> +Z 6x,~’

the manifold (M, g;;) is stochastically complete. In all these cases, it may be verified
that Uy and (U,N)r both are integrable with respect to the conditional distribution
P7” under our assumptions.

It is clear all the results still hold for a vector field ¢ dependent on ¢. As a direct
consequence we have the following

Corollary 2.6. Fix ye M. We have the following conclusions:

L. If {c(+), Vilog py( 1, y)) = 0 for all t and x, then

DPoic(X,t,¥) = pp(x,t,y)  for all (t,x).
2. If (c(+), Vi log py(-,t,y)) <0 for all t and x, then

pb+(7(x’ t’ y) < pb(x’ t: J/) fOI" all (t’x)'

The usefulness of this corollary of course depends on the knowledge of the compar-
ison transition density p,(x,t, y). Required information in applying Corollary 2.6 may
be obtained for some class of diffusion processes. Let us consider a simple case, that
is we consider L,-diffusions in R" with

Lb:%A—‘rb,

where 4 is the Laplacian in R” and b is a vector field. The L,-diffusion is called a
Brownian motion with drift. Let y € R” be a fixed point, let o,  be two constants. Let

b(x)=pV|x — y| — oaV|x — y|?
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(we note that V|x — y| = sgn(x — y) in one-dimensional case), which is at most of
linear growth. Then for all x # y, V. p;(x,¢, ») exists. From the symmetry, according
to Qian et al. (2003) there is a function f(¢,7), (¢t = 0,r > 0) non-increasing in r such

that p;(x,t,y) = f(t|x — y|). Thus
(Vilog py(x,t, ), Vx — y|) <O0.

Thus when ¢¥(.) = ;; we have

Theorem 2.7 (Qian et al., 2003). Let
b(x) = BVilx = y| = aVilx — »?

and let y € R". Consider Brownian motion with drift b (b is measurable and of at
most linear growth). Then

1. if (b(x) — b(x), Vi|x — y|) = 0 for all (x,t) such that |x — y| > 0, then
po(x,t,¥) < pi(x,t,y)  for all (x,1),
2. if (b(x) — b(x), Vilx — y|) <0 for all (x,t) such that |x — y| > 0, then
po(x,t,y) = pi(x,t,y)  for all (x,1).
Indeed, this theorem follows from representation (2.10) applying to ¢ =b — b and
L;-diffusion.

Consider the following two vector fields on the Euclidean space R™: b(x)=>", b'(x)
0/0x" with

b'(x) = y;sgn(x; — y;) — 20(x; — y7)
and the standard one used in Theorem 2.7
b(x) = BV x — y| = aVi|x — yf
x—
-y Y
b — |

where o, ff and y; are constants. It is easy to see that

. e N RN Y%V
<b(x)—b(x),vx|x—y|>—;{ngn(xf i) ﬂlx—y|} =yl

’)) n
= > -yl -8
Jj=1

e — ¥y &

= 20(x — y),

which, together with the following elementary inequality
n
o=y <D i — il < Valx =y,
i=1

implies the following:
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Lemma 2.8. Under the above notations, we have
(1) if p=0,y=p (or if p<0, y=p/\/n), and for any o € R,
(b(x) = b(x),Vilx — y[) =0 for all x # y,
(2) if B=0,y=p/Vn (or if p<0,y=p), and for any o € R,
(b(x) — b(x), Vilx — y|) <O for all x # y.
Let py, k,v(x,t,z) denote the transition density function of the following diffusion:
dX; = dW] + (ky sgn(X] — yi) — ko (X — y))dt  (i=1,....n)
and let pp, ,(x,%,2z) be that of the diffusion
dX, = dW, + (BV.|X; — y| — aV| X, — y*) de.
Thus pi, i, »(x,2,2) = pp(x,t,z) with b(x) =", b'(x)0/dx" where
b'(x) = kisgn(x; — yi) — ka(xi — y1)-

We would like to mention that if the dimension n =1, then pg, ,(x,%z) coincides
with pg 1, (x,,2), where the factor 2 comes from the fact that

“vxlx - y|2 =2a(x — y).
As applying Theorem 2.7 to the vector field » we thus have

Corollary 2.9. Let o, f €R be two constants.
() If =0 then

Pp2ay(%6Y) < Ppay(x,t,y) - for all (x,t)
and
Ppiey (Xt y) Z Ppay(x.t,y)  for all (x,t).
(2) If f <0 then
Ppa2e (Xt Y) < Ppay(x.t,y) - for all (x,t)
and
Pp2ay(6 1Y) = Ppo (Xt y)  for all (x,1).

The Comparison Theorem 2.7 together with Corollary 2.9 allow us to deduce explicit,
sharp upper and lower bounds for the transition function of a Brownian motion with
a general drift of linear growth. As announced, these bounds are established through
carefully estimating the density function pg, ,(x,%, ).
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A simple application of the Comparison Theorem 2.7 we establish

Lemma 2.10. Let b(x) =", b'(x)d/dx; be a vector field on R", and y € R". Let
b(x) = fVilx — y| = aVilx — y*.
(1) If for all i=1,...,n and x
|6 ()] < & + dilx — yl,
where ¢ = (&), 0 =(9;), & =0 and 6; = 0, then
(b(x) = b(x). Vily — y]) <0

with = |e| and o= —|5]/2.
(2) If for all i=1,...,n and x

|b'(x)] < & + difx — ],
then

(b(x) = b(x), Vilx = ¥]) = 0
with = —|¢| and o =19]/2.

Proof. Indeed, suppose
|b'(x)] < & + dilx — I,
then, for any x # y,
(b(x) = b(x), Vlx = ¥])

=Z{b"(x>—ﬁx"_y" + 20(x, —yf)} i
i=1

b — ¥l lx —

., Xi — Vi
=3 b)) 2 B 2afx — )|
— x =yl

1 n n
D ILTENED 3 ISRy FEAI
i=1 i=1

< lel = B+ (0] + 2a)x — |
upon setting = |¢| and o = —|d|/2 we have
(b(x) = b(x). Vulr = y]) <0
which proves the first claim. Similarly for y # x

Xi — )i

(b(x) = b(x), Vilx — y]) = > b(x) — B+ 2afx — y|
i=1

i — Y
b — vl
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1 n
Z = 28i|xi — il
=yl =

= il — yil = B+ 20x — y

i=1
> (—lel = B) = (0] = 20)x — y|

which yields the second conclusion. [
By Theorem 2.7, Corollary 2.9 and Lemma 2.10 we thus establish the following:

Proposition 2.11. Let b(x) =Y, b'(x)d/0x; be a vector field on R", and let ¢| and c;
be two non-negative constants, y € R". If for all x and i =1,...,n
|b'(x)] < & + difx — y|
for some & =0, 0; =0, then
Per—e (X, 6, 3) < pp(X,1,3) < Pcy (X, 1, )
for all (x,t), where

and ¢ =

The nice feature of the last inequality is that the bound function pg, ,(x,%,z) in this
estimate has a product form, more precisely

n

p/f,oc,y(xa t7Z) = H pﬁ,%y/('xja t’Z])
J=1

in terms of the standard coordinate system x = (xi,...,x,).

3. Brownian motion with drift in R”

In this section we establish precise estimates for pg. ,(x,#,y) which allow us, by
Proposition 2.11 to establish strong estimates for p,(x,z, y), where b is a vector field
of at most linear growth.

3.1. Bounds for diffusion with drift of linear growth

Let, for every ¢ > 0, ¢ > 0,
1 / 2 1 —e 2
alg = —— x|%e ™ dx, a(t,c)=4{ —
Lg m . | | (t.c) 2c
and set a(£,0) = lim._ 0(¢,c) = V1.
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As usual py(x,t,y) is the transition density function of the Brownian motion with
drift b. We prove the following two theorems. For lower bounds we have

Theorem 3.1. Fix y € R". Suppose that b= (b;); is a vector field with at most linear
growth, and

|b'(x)| <&+ 8ilx—yl, VxeR"
for some ¢ >0, 6; = 0. Define

Cc1 =

n n
2 — 2
E & and ¢y = E 5.
i=1 i=1

Then

n

o t,y) = [ § heer (i = yiut.0)

i=1

eZczt —1 2

1
% + |xi — yil 3 (3.1)

XeXp —26’1 ai,

for all t >0 and x,y, where h_.,(x; — yi,1,0) is given by

1 |Z,‘ — e_“txi|2)
hy(xi, t,z;) = exp| — . 32
A ) V2ma(t, o) p( 20(t,o)? (3-2)

The upper bound is given in the following

Theorem 3.2. Under the same assumption in Theorem 3.1, then for every g > 1 we
have

“ Cl 1-— 67262t
X, t’ < hc‘ i~ Vi t,O + g + Xi — Vi
pr(x,t, ) l} L6 — ¥1,1,0) Vrmotey | 2 palxi — vil
e 2 |x; — y,|? i
- t s 3.3
Xexp( 2qot ey 2g-1) ) ()

where
Cq = q22_1/‘1 q/al’q’ Pg = q22—]/f1.

Indeed, we will prove that p. _., ,(x,t, y) has the right-hand side of (3.1) as its
lower bound, p_., ., ,(x,t, y) has the right-hand side of (3.3) as its upper bound, then
Proposition 2.11 thus lead to the estimates in Theorems 3.1 and 3.2. Since both the
bounds in (3.1) and (3.3) and pi, =, (X, %, y) have product forms, therefore we only
need to prove these estimates for one-dimensional case. Thus we only consider the
case n =1 in what follows.
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To see the above lower bound is sharp, we first notice that this lower bound coincides
with the transition density function /4_.,(x — »,7,0) of the linear diffusion with drift
(- — y) if ¢; =0. Moreover, if ¢; =0, since

. 1 x—yP
i%ha(x_ystao)_\/%exp(_ 2 5

and thus if the vector field satisfies || < ¢, Theorem 3.1 implies in this case that

(x,t,y) = ! exp _|x—y\2 exp | —2¢y (a Vit |x — |)—ﬁt
DPo\X, L,y /\/m 2 1 41,1 y >

which is very close to the best possible we could hope under the bound of |b|, since
it has the exact leading Gaussian term (l/\/2m> exp(—|x — y[>/2t) and the correct

leading term for large ¢. Indeed, the best estimate one could achieve is the following:
if |b| < ¢; then (which is proved in Qian et al., 2003, see also Gradinaru et al., 2001;
Karatzas and Shreve, 1988)

1 0 |Z+c|t|2)
x,t,y) = zexp| ———— | dz.
pu(x,1,y) o /|x_y p( Y

To see the sharpness of our upper bound in Theorem 3.2, we have the same remark
as the previous lower bound. First when ¢; = 0, then the upper bound is reduced to
he,(x — »,¢,0) which is the best possible one can hope when the drift » has linear
growth. On the other hand if ¢, =0, that is » is bounded with bound ¢, then the upper
bound for this case reads as, for every ¢ > 1,

=yl

1
X, L, < ——eX _—
Pu(x,1, ) ont p< % )

i =) oo 52 )
2mr ! 1 2qt 2(g—1)

which is a very strong estimate for pp(x,?, y) in terms of the bound of b.
It follows immediately from the above lower and upper bounds the following
Varadhan’s asymptotic for small time #:

lim 2¢log p(x. £, y) = —|x — yI*.
t—

3.2. Several technical facts

As we have mentioned, we will prove Theorems 3.1 and 3.2 by establishing an
estimate for p_. ., ,(x,%,y) from above, and a bound for p., _,,(x,t, y) from below,
and we only need to consider the case that n =1.
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An exact formulas are known (but only for one-dimensional case, Gradinaru et al.,
2001; Karatzas and Shreve, 1988) for ppo ,(x,%,y) and po, ,(x,%y), and they are
given by

- _ B2
Ppo, (x5, y) = t\/27/| Zexp< | 2ﬁt| ) (3.4)
x—y

o ae—Zut|x _ y|2
Do y(X, 1, y) = 1/ m exp <_(le2°")) .

However we know no closed formula for the transition probability density pg . ,(x,t,z),
and indeed the main goal of the present section is to develope some methods of
estimating pg . ,(x,t,z) which we believe will be useful in treating other problems.

For simplicity denote by #4,(x,t,z) the transition probability density of the linear
diffusion process

dét = 7dit dr + dBt, é() =X. (35)

and

The unique strong solution to Eq. (3.5) is well known and is given by (see for example
Ikeda and Watanabe, 1981, (8.2))

t
E=e%x+ / e =) dB,. (3.6)
0

Thus by a simple computation we can see that 4,(x,,z) is given by (3.2).
Obviously

P00y (X, 1, ¥) = hy(x — »,1,0).

Let us give estimates about the transition density function p, ., ,(x,t, y) from below,
and p_. ., ,(x,t,y) from above, where ci, c; are two non-negative constants. The proof
of Theorems 3.1 and 3.2 follow these estimate easily.

Given o € R, consider the following Gaussian diffusion (&, 7, P*):

dé, = —a,dt+dB;, &o=x, 3.7)

of which the transition probability density is known as Gaussian function, denoted by
hy(x,t,z). Then by using the Cameron—Martin formula we may add a two-valued drift
Psgn(-). Thus the transition density function pg, ,(x,f, y) can be expressed in terms
of h,(x,t,z) and the conditional distribution of the Gaussian diffusion &; such that
Eo=x and &, = y. Our results will then follow careful estimates about these conditional
probabilities.

In fact under the probability measure @* defined by

X t 2
aq =exp (ﬁ / sgn(&y) dB — i_t)
, 0

dPr|
for all ¢, the process (&) is a weak solution to our model process

= fsgn(X;)dt —oX,dt +dB,, Xyp=x, (3.8)
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and thus, by the Cameron—Martin formula

Ppant0) g / P
7. 1.0) =P exp|( p ; sgn(&y) dBy 2t , 3.9)

where P*0 denotes the conditional distribution P*(-|&, =0). Let
X3 2
M, = exp (ﬁ | senteiyas, - ﬂs)
0

Since

2ae—23<t

vxha(x: 1, 0) = _m

xhy(x,2,0), (3.10)

by Theorem 2.4
2ﬁ|0€|3/2 t e—Zac(t—s)

_ _ X
p,B,Ot(xs t,O) - hd(xy ta O) \/E 0 |1 _ 6_2“(,«_‘?)‘3/2 [P)
71|cfa(t x)f |2
x| M| &le 1= | ds. (3.11)
Lemma 3.3. For ¢ > 1, and s <t we have
th‘e ot — v)g |2 2“ | aqe—Zw
— T A Toai—s) 2u(t—s 2ar X
P \fs\qe [ —e—241—s) — = Aq+ e (¢g—1e2=941—ge~
—os q
ﬁx e—zz/2 dz
27‘5 1 _ e—2m ’

where

1 — e 2% 1 — e—22(t—9)
As = 20 qe—2oz(t—s)(1 _ e—20cs) + (1 _ e—2%(t—s))

1 — e—Z%S 1 — e—2(x(t—s)
B 20 (g — 1)e=24=9) 4 (1 — ge=2¢)’

Proof. It follows a direct computation. In fact, since & has the Gaussian distribution
N(a,d?) where

—20s8
oS 2 l—e

a=¢ *x, o= ——-—
20

we therefore have
CXC]‘C ot — s)S 7q|e ot — s)Z|2 |Z—O(|2
‘é ‘qe 1— 672x(2 A) _ /|Z|qe 1— 6721(2 s) 20-2 dz
2no

71(175)Z|2 “lz_efxsx‘l

1 _ gle _
2no JRr
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Changing the variable

\/ 20 qe—Zx(t—s)(l _ e—2as) + (1 _ e—2a(t—s))
z =
1

_ e—2as 1 — e—Zx(t—s) u,
the last integral may be written as
“q‘e—a{(rfs)gvSIZ 16_2” 3 2“28—2“ 22

P <§vsqel—e—2*(’—s> =\V7 = 2 AT ¢ T = ¥ i—emmy A
_ g 208
1 20e" %4, |1 _»

X —— 74+ x| e/ dz,

/27'5 R 1 — 67213

and the lemma follows immediately. [J

Lemma 3.4. Let oo = —c, < 0. Then

ale ™ IE 2¢5(t—s5) 205t

_He sl € —1 e~ — 1

PY | & e T—e 20D <—a | —— +|x
‘ 5‘ 626’2[ 1 B 2C2 | |

0262czt 2
X exXp _mx .
Proof. Indeed, by the previous lemma we have

—o(t—s) z |2 . ,
ole & 20(t—s) _ 2cot
P (fafe e | =S g (- 25
6262[ _ 1 ezczl _ 1

1 e2czs —1 eZczt _ eZczs )
-2
x—2n /IR z\/ 26, —1—\/ ST x| e F/%dz,

then the inequality follows from the elementary inequality: for all s < ¢,

1 eZCZs —1 eZczt _ eZczs 2
_ /2d
—Tn /R Z\/ 20 +\/ 2or 1 x|e z

eZczt —1
Sa\| —5— + x| O
202

Lemma 3.5. Let a=c, = 0, and let (&, PY) be the Gaussian diffusion (3.7). Then for
every q = 1 we have

m]‘e—z(!—s)éle 1 6*2021‘ q/2
P (&% - | <297 [ay, (2C ) + Jx)?
2

1— 672cz(t7s) (g+1)/2 62672czt 5
x < 1 — e—2cat ) 28 <_1 — e—20t X ) :
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Proof. By Lemma 3.3

ozq|ef°‘“7”§“s\2
P¥ |és|qe 1 —e—2u(i—s)
2at

1— ef2ac(tfs) (g+1)/2 1 _ oge” 2

— —1 —2u(t—s) 1— —2at

= — 1\e—20(1—3) — o m e (g4=be e
(g —1De + (1 —ge™*) V2n

q
1 — 672o¢s 20 s
X/RZH 7y +“1—e*2”e Ax

e~ 2 dz,
_ a—20(t—s)
2(% e—o(SAS — e—ocs (1 C ) < 1
1 — e—2us qe—2oz(t—s)(1 _ e—Zas) + (1 _ e—2a(t—s)) ’

1 / lme [
— | Iz e ®Ax
V2r Jr 20 1 —e 2

1 — e—2ut q/2
< 20! (al,q <Zeoc ) + X[

It is easy to see that

since

we have

q
_2
e 724z

—Dut —2at

age - oe
_(q — 1)e21=s) 4 | — ge—2 A T 7

1 — e—22—s) (g+1)/2 1 — o—2u(t—9) (g+1)/2
<|(-—
((q _ 1)6—210—.?) + (1 _ qem)> = < 1 — e—2u ) :

Collecting these estimates together we thus obtain

—ali—s) 5 |2 ot (g+1)/2 .
P~ q *“‘i‘fef—zu(—f;‘ﬂ < 41 S / e 2) a1
‘€5| € = 1 — e—2c2t exp| — 1 — e—2c2t X

l_e—Zczt q/2
(52 )

3.3. Lower bound for p., _., and upper bound for p_., .,

and

As mentioned, it is sufficient to consider the case where the dimension n = 1.
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Lower bound estimate: We again may assume y =0. In this section f=c¢; > 0 and
o= —cp < 0. Applying Jensen’s inequality to Eq. (3.9) we have

o 9 ’O 2
71’}?;(:;0)) > exp {ﬁuﬂmo (/ sgn(@)dB> i ] (3.12)

However under P*{ the semimartingale fot sgn(&,) dB; possesses the following decom-
position:

t t
/ sgn(&)dBs =N, + / (sgn(&s), Vi log hy(&s,t — 5,0)) ds
0 0
where N, is a martingale under P*°. Thus by (3.10),

p0 (/t Sgn(és)st>
0

:/ P"’O((sgn(fs), V. logh,(&,t —s,0)))ds
0

t 20‘6—21([75) -
:7/0 m(ﬂj” &) ds

Qoe™ 20(t—s) .
s | B PGt — s 0l s

1 1 2|a|3/2672a(t s) . _“‘e airz :)Es_|)2
=T AmmL0) Jy Toemaopa b (16le ds.

By Lemma 3.4, as o = —¢; <0,

P /tsn@)dB S I DAY etk BN S
0 g s K = ﬁ 1,1 202 e2czt 1

co il
exp(—eztz,_lﬁ) t 203/2 2ex(t—s)

hy(x,1,0) /e2ea(i—s) _*

2¢)t 1
= -2
ai, 26 + |x]
Therefore
pC],—Cz(x: tao) ezczt - 1 C%
—_— = -2 ——t
hoani0) P 2@ T
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Upper bound estimate: The upper bound follows from the representation formula,
Lemma 3.5 and the Holder inequality. Indeed, by the Holder inequality and
Lemma 3.5, for any ¢ > 1 of which p is the conjugate exponent,

s e .
e el =1, e e\
P* [ My|&le” T=e 9 | e 2 P [ [ ]7e T—e 7T

o 2e(t—s)\ V2129 (p—1)c e,
< 21—1/q <1e) e 2 f—q(l_c,zcz,)x

1 _ 67262t

| — =20t \%? . Va
x | aigq T + |x| .

After integrating in s we deduce that
t o—20(t—s) ale Vg2
————— P* | M,|& e 1—e) | ds
/o |1 — e 2=9)]32 1]

- 1_e72czt q/2 1 (P—l)C%t_ 62872"22" 2
<2'-Va aLg |\ —— + |x|? e 2 q(1—e=%2")

26‘2
t o—2(t—s) 1 — e—202(t—9) 1/24+1/29 .
“ 1 — e 20—p2 \ | e2a §

g ( pe2 —2ey1 1/2
1 — g2t q/2 =Dy, e , q 1 /
__nl—1/q q 2 l—e=20 1 (=
=2 (al,q < 20, ) + |x| € gl=e™) o (1 _ e—2c2t) :

Thus by Eq. (3.11)

P—c1.2(%,1,0)

22_1/qqc1 ¢ 1/2 1 _ e—2czt q/2
i q
< hcz(x, t,O) + \/E (1 _ eZCzt) al,q < 2C2 ) + ‘x|

—2cst 2
20 >, (p— 1)
xexp(—q(l_ezqt)x + 5 t

1/q

which yields the upper bound.
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