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Abstract

The martingale optimal transport aims to optimally transfer a probability measure to another along the
class of martingales. This problem is mainly motivated by the robust superhedging of exotic derivatives in
financial mathematics, which turns out to be the corresponding Kantorovich dual. In this paper we consider
the continuous-time martingale transport on the Skorokhod space of càdlàg paths. Similar to the classical
setting of optimal transport, we introduce different dual problems and establish the corresponding dualities
by a crucial use of the S-topology and the dynamic programming principle.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Initialed by the famous work of Monge and Kantorovich, the optimal transport problem
optimizes the cost of the transfer of mass from one location to another. Namely, let P(Rd) be the
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space of probability measures on the Euclidean space Rd . For any given measures µ, ν ∈ P(Rd),
let

P(µ, ν) :=


P ∈ P(Rd

× Rd) : P ◦ X−1
= µ and P ◦ Y −1

= ν

, (1.1)

where (X, Y ) denotes the canonical process on Rd
× Rd , i.e. X (x, y) = x and Y (x, y) = y for

all (x, y) ∈ Rd
× Rd . Then the optimal transport problem consists in optimizing the expectation

of some measurable function ξ : Rd
× Rd

→ R among all probability measures in P(µ, ν).
Various related issues are studied, e.g. the general duality theory and optimality results, we refer
to Rachev & Rüschendorf [37] and Villani [39] for a comprehensive account of the literature.

Recently, a martingale optimal transport problem was introduced in Beiglböck, Henry-
Labordère & Penkner [2] in discrete-time (see Galichon, Henry-Labordère & Touzi [16] for the
continuous-time case), where a maximization problem is considered over a subset M(µ, ν) :=
P ∈ P(µ, ν) : EP

[Y |X ] = X, P-a.s.

:

P(µ, ν) := sup
P∈M(µ,ν)

EPξ(X, Y )

.

Each element of M(µ, ν) is called a transport plan. Similarly to the classical setting, the
corresponding dual problem is defined by

D(µ, ν) := inf
(λ,ϕ,H)∈D(µ,ν)


λdµ+


ϕdν


,

with D(µ, ν) being the collection of triplets (λ, ϕ, H), where λ, ϕ, H : Rd
→ R are measurable

functions such that λ ∈ L1(µ), ϕ ∈ L1(ν) and

λ(x)+ ϕ(y)+ H(x)(y − x) ≥ ξ(x, y) for all (x, y) ∈ Rd
× Rd . (1.2)

The last dual formulation has the interpretation of minimal robust superhedging cost of derivative
security defined by the payoff ξ by trading the underlying security and any possible Vanilla
option. When d = 1, as observed by Breeden & Litzenberger [4], the marginal distributions of the
underlying asset are recovered by the market prices of calls for all strikes, and any Vanilla option
has a non-ambiguous price as the integral of its payoff function with respect to the marginal.
Therefore, the inequality (1.2) represents a super-replication of ξ , which consist of the trading
of the underlying and Vanilla options at different maturities. Since there is no specific model
imposed on the process (X, Y ), the dual problem may be interpreted as the robust superhedging
cost, i.e. the minimum cost to construct super-replications. Similar to the classical setting, the
duality P(µ, ν) = D(µ, ν) holds under quite general conditions.

The present paper considers the continuous-time martingale optimal transport problem. Let
X :=


ω = (ωt )0≤t≤1 : ωt ∈ Rd for all t ∈ [0, 1]


, where X is either the space of continuous

functions or the Skorokhod space of càdlàg functions. Denote by X = (X t )0≤t≤1 the canonical
process and by M the set of all martingale measures P, i.e. X is a martingale under P. For a given
family of probability measures µ = (µt )t∈T, where T ⊆ [0, 1] is a subset, define by M(µ) the
subset of transport plans P, i.e. P ◦ X−1

t = µt for all t ∈ T. Then for a measurable function
ξ : X → R, the problem is defined by

P(µ) := sup
P∈M(µ)

EP
[ξ(X)]. (1.3)
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In contrast with the discrete-time case, the set M(µ) is generally not tight with respect to the
usual topologies. Without the crucial compactness, the arguments in the classical setting fail to
be adapted to handle the related issues.

In the existing literature, there are two dual formulations for the problem (1.3), Galichon,
Henry-Labordère & Touzi studied a class of transport plans defined by stochastic differential
equations in [16] and introduced a quasi-sure dual problem. They applied a stochastic control
approach and deduced the duality. Another important contribution is due to Dolinsky &
Soner [14,13], see also Hou & Oblój [26], where the dual problem is still pathwisely formulated
as in (1.2). By discretizing the paths and a technical construction of approximated martingale
measures, they avoid the compactness issue and derive the duality.

In addition, the martingale optimal transport problem is studied by the approach of Skorokhod
embedding problem. Following the seminal paper of Hobson [20], this methodology generated
developments in many directions, see e.g. Brown, Hobson & Rogers [5], Cox & Oblój
[8,7], Cox, Hobson & Oblój [6], Cox, Oblój & Touzi [9], Cox & Wang [10], Davis, Oblój &
Raval [11], Gassiat, Oberhauser & dos Reis [17], Hobson & Klimmek [22,24,23], Hobson &
Neuberger [25] and Madan & Yor [31]. A thorough literature is provided in the survey papers
Hobson [21] and Oblój [36].

Our main contribution in the paper is to study systematically the tightness of the set M(µ)

by means of the S-topology introduced in Jakubowski [28]. Endowing properly the space of
marginal laws with a Wasserstein kind topology, the tightness yields the upper semicontinuity of
the map µ → P(µ) and thus the first duality, obtained by penalizing the marginal constraints.
Based on the first duality and using respectively the dynamic programming principle and the
discretization argument of path-space, the dualities are established for both quasi-sure and
pathwise dual formulations.

The above analysis immediately gives rise to a stability consequence. Denote P := P and
P(µ) := infP∈M(µ) EP

[ξ(X)], then it is shown that the map µ → P(µ) (resp. µ → P(µ))
is upper (resp. lower) semicontinuous, which yields the stability, i.e. for any sequence (µn)n≥1
convergent to µ, there exists a sequence (εn)n≥1 ⊆ R+ convergent to zero such that

P(µn), P(µn)


⊆

P(µ)− εn, P(µ)+ εn


for all n ≥ 1,

i.e. the interval of model-free prices is stable with respect to the market.
The paper is organized as follows. We formulate the martingale optimal transport

problem and provide the dual problems in Section 2. In Section 3, the duality results are
presented and we reduce the infinitely-many marginal constraints to the finitely-many marginal
constraints. In Sections 4, 5 we focus on the finitely-many marginal case and provide all related
proofs.

2. Martingale optimal transport

For all 0 ≤ s < t , denote by D([s, t],Rd) the space of càdlàg functions defined on
[s, t] taking values in Rd . Let Ω := D([0, 1],Rd) with generic element denoted by ω.
Denote further by X := (X t )0≤t≤1 the canonical process, i.e. X t (ω) = ωt and by F :=

(Ft )0≤t≤1 its natural filtration, i.e. Ft = σ(Xu, u ≤ t). Let P := P(Ω ,F1) be the set of
probability measures on Ω . A probability measure P ∈ P is called a martingale measure if
the canonical process X is a martingale under P. Denote by M the collection of all martingale
measures.
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2.1. Peacock and martingale optimal transport

Let P := P(Rd) be the space of all probability measures µ on Rd with finite first moment. A
pair (µ, ν) ∈ P × P is said to be increasing in convex ordering if

Rd
λ(x)µ(dx) := µ(λ) ≤ ν(λ) :=


Rd
λ(x)ν(dx)

holds for every convex function λ : Rd
→ R. This relation is denoted by µ ≼ ν. Let T ⊆ [0, 1]

be some subset containing 1 and define the T-product of P by

PT
:=


µ := (µt )t∈T : µt ∈ P for all t ∈ T


.

Definition 2.1. A family of probability measures µ = (µt )t∈T ∈ PT is called a peacock
(T-peacock) if µs ≼ µt holds for all s, t ∈ T such that s ≤ t . A peacock µ is said to be
càdlàg if the map t → µt is càdlàg on T with respect to the weak convergence. Denote by PT

≼

the set of all càdlàg peacocks.

For each peacock µ ∈ PT
≼, define the set of transport plans

M(µ) :=


P ∈ M : P ◦ X−1

t = µt for all t ∈ T

. (2.1)

We may assume without loss of generality that T is closed under the lower limit topology, i.e. the
topology generated by all half-open intervals [s, t) ⊆ [0, 1], see e.g. Steen & Seebach [38].
Indeed, denote by T̄ the closure of T under the lower limit topology, then it follows that the
law of X t for t ∈ T̄ is uniquely determined by the right continuity of X . This implies that
M(µ̄) = M(µ), where µ̄ := (µ̄t )t∈T̄ is defined by

µ̄t := lim
n→∞

µtn for any sequence (tn)n≥1 ⊆ T decreasing to t. (2.2)

Remark 2.2. (i) Since µtn ≼ µ1 for all n, we have

µtn


(xi − K )+


≤ µ1


(xi − K )+


for all i = 1, . . . , d,

thus showing that the sequence (µtn )n≥1 is uniformly integrable. In particular, (µtn )n≥1 is
tight, and we may verify immediately by a direct density argument that any two possible
accumulation points µ̄t and µ̄′

t coincide, i.e. µ̄t = µ̄′
t . Hence the sequence (µtn )n≥1

converges weakly, justifying the convergence in (2.2) is well defined.
(ii) When T = [0, 1], M(µ) is nonempty by Kellerer’s theorem, see e.g. Hirsch & Roynette

[18,19] and Kellerer [29]. For a general closed T, we may extend µ to some µ̄ = (µ̄t )0≤t≤1

by µ̄t := µ̄t̄ with t̄ := inf{s ≥ t : s ∈ T}. Clearly, µ̄ ∈ P[0,1]

≼ and µ̄t = µt for all t ∈ T.
Hence M(µ) ⊇ M(µ̄) is again nonempty.

Let ξ : Ω → R be a measurable function. For every peacock µ ∈ PT
≼, define the martingale

optimal transport problem by

P(µ) := sup
P∈M(µ)

EPξ(X), (2.3)

where EP
[ξ ] := EP

[ξ+
] − EP

[ξ−
] with the convention +∞ − ∞ = −∞.
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2.2. Dual problems

First dual problem. Let Λ be the set of continuous functions λ : Rd
→ R with linear growth,

i.e. supx∈Rd

|λ(x)|/(1 + |x |)


< +∞. Define

ΛT
:=


λ := (λti )1≤i≤m : ti ∈ T, λti ∈ Λ for all i = 1, . . . ,m, m ∈ N


.

For every λ = (λti )1≤i≤m ∈ ΛT, µ = (µt )t∈T ∈ PT
≼ and ω ∈ Ω , denote

λ(ω) :=

m
i=1

λti (ωti ) and µ(λ) :=

m
i=1

µti (λti ).

Next, we introduce three dual formulations. Roughly speaking, as X is required to be a martingale
and has the given marginal laws in problem (2.3), then we dualize respectively these two
constraints. The first dual problem is defined by

D1(µ) := inf
λ∈ΛT


µ(λ)+ sup

P∈M
EPξ(X)− λ(X)


. (2.4)

The dual problem D1 is the Kuhn–Tucker formulation in convex optimization, where the
marginal constraints µ are penalized by the Lagrange multipliers λ.

Second dual problem. The second dual problem dualizes further the martingale constraint and
has close analogues in the mathematical finance literature in the context of a financial market
with d risky assets, where the price process is modeled by the canonical process X = (X t )0≤t≤1.
For technical reasons, the underlying process X is assumed to be non-negative and start at some
fixed price that may be normalized to be 1 := (1, . . . , 1) ∈ Rd . Namely, define the set of market
scenarios

Ω+ :=

ω ∈ Ω : ω0 = 1 and ωt ∈ Rd

+ for all t ∈ [0, 1]


and the set of all possible models M+ :=

P ∈ M : supp(P) ⊆ Ω+


. Consequently, the market

calibration µ should satisfy

µ0(dx) = δ1(dx) and supp(µ1) ⊆ Rd
+. (2.5)

Moreover, let us denote by FU
= (F U

t )0≤t≤1 the universally completed filtration, i.e. F U
t :=

∩P∈P F P
t , where F P

t is the completed σ -field of Ft under P.

Definition 2.3. A process S = (St )0≤t≤1 is called a M+-supermartingale if it is FU -adapted and
is a P-supermartingale for all P ∈ M+. Denote by S the collection of all M+-supermartingales
and by S0 ⊆ S the subset of processes starting at 0. Denote further

D2(ξ) :=


(λ, S) ∈ ΛT

× S0 : λ(ω)+ S1(ω) ≥ ξ(ω) for all ω ∈ Ω+


.

For a peacock µ ∈ PT
≼ satisfying (2.5), the second dual problem is defined by

D2(µ) := inf
(λ,S)∈D2(ξ)

µ(λ). (2.6)
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Remark 2.4. (i) Notice that the supermartingale S ∈ S is not required to have any regularity.
If it were càdlàg then it would follow from Theorem 2.1 in Kramkov [30] that, for every
P ∈ M+ there exist a predictable process HP

= (HP
t )0≤t≤1 and an optional non-decreasing

process AP
= (AP

t )0≤t≤1 such that

St = S0 +

 t

0
HP

s d Xs − AP
t for all t ∈ [0, 1], P-a.s.

However, it is not clear whether one can aggregate the last representation, i.e. find predictable
processes H and A such that (H, A) = (HP, AP), P-almost surely. See also Nutz [35] for a
partial result of this direction.

(ii) In financial mathematics, the pair (λ, HP) has the interpretation of a semi-static super-
replicating strategy under the model P. If the aggregation above were possible, then the
dual problem D2 turns to the quasi-sure formulation of the robust superhedging problem,
see also Beiglböck, Nutz & Touzi [3], and the duality P = D2 reduces to the quasi-sure
pricing–hedging duality.

Third dual problem. Following the pioneering work [20] of Hobson, the martingale optimal
transport approach is applied to study the robust hedging problems in finance. We do not postulate
any specific model on the underlying assets and pursue here a robust approach. Assume further
that all call/put options are liquid in the market for maturities t ∈ T, thus yielding a family
of marginal distributions µ = (µt )t∈T that is considered to be exogenous, see e.g. Breeden &
Litzenberger [4]. Then, the time 0 market price of any derivative λ(X t ) is given by µt (λ). Hence,
the cost of a static strategy λ ∈ ΛT is µ(λ).

The return from a zero-initial cost dynamic trading, defined by a suitable process H =

(Ht )0≤t≤1, is given by the stochastic integral (H · X) which we define similarly to Dolinsky
& Soner [13]. We restrict H : [0, 1] → Rd to be left-continuous with bounded variation. Then,
we may define the stochastic integral by integration by parts:

(H · X)t := Ht · X t − H0 · X0 −

 t

0
Xu · d Hu for all t ∈ [0, 1], (2.7)

where
 t

0 Xu · d Hu refers to the scalar Lebesgue–Stieltjes integration.

Definition 2.5. An F-adapted process H : [0, 1] × Ω+ → Rd is called a dynamic strategy if
t → Ht (ω) is left-continuous and of bounded variation for every ω ∈ Ω+ and (H · X) is a
supermartingale under every P ∈ M+. Let A be the set of all dynamic strategies and define the
set of robust super-replications

D3(ξ) :=


(λ, H) ∈ ΛT

× A : λ(ω)+ (H · X)1(ω) ≥ ξ(ω) for all ω ∈ Ω+


.

For a peacock µ ∈ PT
≼ satisfying (2.5), the third dual problem is defined by

D3(µ) := inf
(λ,H)∈D3(ξ)

µ(λ). (2.8)

Remark 2.6. It is clear by definition that the weak duality P(µ) ≤ D1(µ) holds. Moreover, if
the peacock µ satisfies (2.5), then

P(µ) ≤ D1(µ) ≤ D2(µ) ≤ D3(µ).
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3. Main results

We aim to study the existence of optimal transport plans and establish the dualities in a
systematic way. Before providing these results in Sections 3.2 and 3.3, we first introduce some
notions of topology on Ω and the associated space of probability measures in Section 3.1.

3.1. Preliminaries

In the classical optimal transport problem, the relevant results (existence of optimizers,
duality, etc.) rely essentially on the compactness condition of M(µ, ν). However, when passing
to the continuous-time case, as shown by Example 3.1 below, the set M(µ) is in general not
tight with respect to the topologies L∞ (uniform topology) and J1 (Skorokhod topology). For
our purpose, we endow Ω with the S-topology introduced by Jakubowski [28] such that the Borel
σ -field agrees with the projection σ -field F1, and more importantly, the S-topology facilitates the
tightness issue and both Skorokhod representation theorem and Prohorov’s theorem hold true.
Before introducing the S-topology, we give an example which shows that the topologies L∞ and
J1 are not convenient to handle the tightness of M(µ).

Example 3.1. Let M = (M0,M1,M2) be a discrete-time martingale on some probability space
such that P


M0 ≠ M1 and M1 ≠ M2


> 0. Define Pn := P ◦ (Mn)−1 for n ≥ 3, where

Mn
= (Mn

t )0≤t≤1 is defined by

Mn
t := M01


0, 1

2 −
1
n

(t)+ M11


1
2 −

1
n ,

1
2 +

1
n

(t)+ M21


1
2 +

1
n ,1

(t).
Clearly, Pn ∈ M(µ) for all n ≥ 3 with T = {0, 1} and µ =


P ◦ M−1

0 ,P ◦ M−1
2


. However,

it follows from Theorem VI.3.21 in Jacod & Shiryaev [27] that, the sequence (Pn)n≥3 is not
J1-tight and thus not L∞-tight.

Definition 3.2 (S-topology). The S-topology on Ω is the sequential topology induced by the
following S-convergence, i.e. a set F ⊆ Ω is closed under S-topology if it contains all limits of

its S-convergent subsequences, where the S-convergence (denoted by
S

−→) is defined as follows.

Let (ωn)n≥0 ⊆ Ω , we say that ωn S
−→ ω0 as n → ∞ if for each ε > 0, we may find a sequence

(vn
ε )n≥0 ⊆ Ω such that

vn
ε has bounded variation, ∥ωn

− vn
ε ∥ ≤ ε for all n ≥ 0

and

lim
n→∞


[0,1]

f (t) · dvn
ε (t) =


[0,1]

f (t) · dv0
ε (t) for all f ∈ C([0, 1],Rd).

We denote by
S∗

−→ the convergence induced by the S-topology.

Remark 3.3. (i) It is shown in Jakubowski [28] that the S-topology is not metrizable. However,
its associated Borel σ -field coincides with F1. In a metric space, a subset is sequentially
closed if and only if it is closed; but in a non metrizable space, a sequentially closed set may

not be closed. In particular, a sequentially closed set under
S∗

−→ may not be closed under

S-topology (which is equivalent to be sequentially closed under
S

−→). More precisely, it is



8 G. Guo et al. / Stochastic Processes and their Applications ( ) –

shown in Remark 2.6 of [28] that the convergence
S∗

−→ is weaker than the original one
S

−→.
However, this is not a real problem for our case, since we know, from [28],

ωn S∗

−→ ω, if and only if, in every subsequence (nk)k≥1,

one may find a further subsequence (nkl )l≥1 such that ωnkl
S

−→ ω.

In particular, a function ξ : Ω → R is S-continuous (semicontinuous) if and only if ξ is
S∗-continuous (semicontinuous).

(ii) The functions ω → ωi,1, ω →
 1

0 ωi,t dt and ω →
 1

0 |ωt |dt for i = 1, . . . , d are
S-continuous. The functions ω → ∥ω∥ and ω → sup0≤t≤1 ωi,t for i = 1, . . . , d are
S-lower semicontinuous.

Notice that the S-topology is not metrizable, then instead of the usual weak convergence,
we use another convergence of probability measures introduced in [28], which induces easy
criteria for S-tightness and preserves the Prohorov’s theorem, i.e. tightness yields sequential
compactness.

Definition 3.4. Let (Pn)n≥1 be a sequence of probability measures on the space (Ω ,F1). We say
Pn

∗
=⇒DP if for each subsequence (Pnk )k≥1, one can find a further subsequence (Pnkl

)l≥1 and

stochastic processes (Y l)l≥1 and Y defined on the probability space

[0, 1],B[0,1], ℓ


endowed

with the Lebesgue measure ℓ, such that L(Y l) = Pnkl
for all l ≥ 1, L(Y ) = P,

Y l(e)
S∗

−→ Y (e) for all e ∈ [0, 1],

and for each ε > 0, there exists an S∗-compact subset Kε ⊆ Ω such that

inf
l≥1

Pnkl


X ∈ Kε


> 1 − ε.

It follows from Jakubowski [28] (see Theorem A.1) that the convergence
∗

=⇒D implies in
some sense the convergence of finite dimensional distributions that is specified later, and more
importantly, the limit of every convergent sequence of martingale measures is still a martingale
measure.

Remark 3.5. Meyer & Zheng [32] have also introduced a topology on Ω (for the case d = 1),
called pseudo-path topology, by considering the occupation measure induced by every path
ω ∈ Ω on [0, 1] × R. We notice that ωn → ω0 under S-topology induces ωn → ω0 under the
pseudo-path topology, and hence under the pseudo-path topology, it is easier to obtain the relative
compactness of a sequence of martingale measures, but one has less continuous functionals
defined on Ω . In particular, the simple maps ω → ∥ω∥, ω → ω1 are not upper semicontinuous,
which makes it unsuitable to study the current martingale optimal transport.

We next introduce the Wasserstein distance for the purpose of deriving the duality P = D1.
Recall the set P(µ, ν) introduced in (1.1).

Definition 3.6. The Wasserstein distance of order 1 is defined by

W1(µ, ν) := inf
P∈P(µ,ν)

EPX − Y
 for all µ, ν ∈ P.

A sequence (µn)n≥1 ⊆ P converges to µ ∈ P in W1 if W1(µ
n, µ) → 0 as n → ∞ or,

equivalently, limn→∞ µn(λ) = µ(λ) for all λ ∈ Λ, see e.g. Theorem 6.9 in Villani [39].
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For

µn

= (µn
t )t∈T


n≥1 ⊆ PT

≼ and µ = (µt )t∈T ∈ PT
≼, we say that µn converges to µ if µn

t

converges to µt in W1 for all t ∈ T and this convergence is denoted by
W T

1
−→. We now provide a

crucial tightness result for the present paper which is a consequence from [28].
Let T0 ⊆ T be the collection of all condensation points under the lower limit topology,

i.e. t = 1 or [t, t + ε) ∩ T is uncountable for any ε > 0.

Lemma 3.7. Let (Pn)n≥1 be a sequence of probability measures such that Pn ∈ M(µn) for some
µn

∈ PT
≼, satisfying

µn W T
1

−→ µ ∈ PT
≼. (3.1)

(i) Then, (Pn)n≥1 is S-tight, i.e. any subsequence (Pnk )k≥1 admits a further convergent

subsequence under
∗

=⇒D . Moreover, any limit point P of (Pn)n≥1 is again a martingale
measure.

(ii) Assume in addition that T0 = T, then P ∈ M(µ).

Proof. (i) By Theorem A.1, it is clear that (Pn)n≥1 is S-tight and there exists a convergent
subsequence (Pnk )k≥1 with limit P ∈ P . Moreover, one has a countable subset T ⊆ [0, 1)
such that for any finite set {u1, . . . , ur } ⊂ [0, 1] \ T ,

Pnk ◦

Xu1 , . . . , Xur

−1 L
−→ P ◦


Xu1 , . . . , Xur

−1 as k → ∞. (3.2)

Let s, t ∈ [0, 1] \ T such that s < t , and take a finite subset {u1, . . . , ur } ⊆ [0, s] \ T and
a sequence of bounded continuous functions { fi }1≤i≤r . Notice that for every u ∈ [0, 1], Xu is
uniformly integrable with respect to (Pn)n≥1. Indeed,

lim
R→∞

sup
n≥1

EPn
Xu

1|Xu |≥R


≤ lim

R→∞
sup
n≥1

EPn


|Xu | − R/2

+


≤ lim

R→∞
sup
n≥1

EPn


|X1| − R/2

+


= lim

R→∞
sup
n≥1

µn
1


(|x | − R/2)+


= 0. (3.3)

Combining (3.2) and (3.3), one has

EP


f1(Xu1) · · · fr (Xur )

X t − Xs


= lim

k→∞
EPnk


f1(Xu1) · · · fr (Xur )


X t − Xs


= 0.

Since T is at most countable, it follows that EP
[X t |Fs] = Xs for any s, t ∈ [0, 1] \ T such that

s < t . It follows by the right continuity of X that P ∈ M.
(ii) To prove that P ∈ M(µ), it remains to show that P◦ X−1

t = µt for all t ∈ T. When t ∈ T\ T ,

by the convergence (3.2) and the fact that µn
W T

1
−→ µ, it follows that P◦ X−1

t = µt . Further, notice
that T0 = T, then for every t ∈ T, there exists a sequence (ti )i≥1 ⊆ T \ T decreasing to t . Using
again the right continuity of X , we conclude P ◦ X−1

t = limi→∞ P ◦ X−1
ti = µt . �

As a consequence, the set M(µ) is S-tight and it is closed if T0 = T. The following example
shows that the closeness may fail when T0 ≠ T.
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Example 3.8. Let T = {0, 1} and consider a random variable Y such that P(Y = 1) = P(Y =

−1) = 1/2. Define Pn := P ◦ (Mn)−1 for n ≥ 1, where Mn
= (Mn

t )0≤t≤1 is defined by

Mn
t := Y1 1

n ,1
(t).

Define a peacock µ = (µ0, µ1) by µ0 := δ{0} and µ1 =

δ{−1}+δ{1}


/2. Obviously, Pn ∈ M(µ)

for all n ≥ 1. However, the limit of (Pn)n≥1 is a martingale measure P such that X t = X0, P-a.s.
and P ◦ X−1

0 = µ1, which does not lie in M(µ).

3.2. Finitely-many marginal constraints

We start by studying the finitely-many marginal case and assume throughout this subsection
that T = {0 = t0 < · · · < tm = 1}. Denote 1ti := ti − ti−1 for all i = 1, . . . ,m and
1T := min1≤i≤m 1ti . Let us formulate some conditions on the reward function ξ . We shall see
later that the usual examples satisfy our conditions.

Assumption 3.9. lim supn→∞ ξ(ωn) ≤ ξ(ω) holds for all (ωn)n≥1 ⊆ Ω and ω ∈ Ω such that

ωn S∗

−→ ω and ωn
ti −→ ωti for all i = 0, . . . ,m − 1.

For ε = (ε1, . . . , εm) ∈ Rm
+ such that |ε| < 1T, let fε (forward function) and bε (backward

function) be two non-decreasing functions defined on [0, 1]:

fε(t) :=

m
i=1

1(ti−1,ti ](t)


ti−1 +
1ti

1ti − εi


t − ti−1 − εi

+
, (3.4)

bε(t) :=

m
i=1

1(ti−1,ti ](t)


ti −


1ti −

1ti
1ti − εi


t − ti−1

+
. (3.5)

Assumption 3.10. There is a continuous function α : R+ → R+ with α(0) = 0 such that the
following inequality holds for any ε ∈ Rm

+ satisfying |ε| < 1T

ξ(ω)− ξ

ω fε

 ≤ α(|ε|)


1 +

m
i=0

|ωti | +

 1

0
|ωt |dt


, (1)

ξ(ω)− ξ

ωbε

 ≤ α(|ε|)


1 +

m
i=0

|ωti | +

 1

0
|ωt |dt


, (2)

where ω fε (resp. ωbε ) denotes the composition of ω and fε (resp. bε).

Theorem 3.11. Le ξ be bounded from above and satisfies Assumptions 3.9 and 3.10(1). Then for
all µ ∈ PT

≼:

(i) The duality P(µ) = D1(µ) holds.
(ii) Assuming further that ξ is bounded, the duality D1(µ) = D2(µ) holds for all µ satisfying

(2.5).
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To establish the duality D1(µ) = D3(µ), we need more regularity conditions on ξ . Define a
distance ρT on Ω by

ρT(ω, ω
′) :=

m
i=1

ρ[ti−1,ti ](ω, ω
′)+

 1

0


ωu − ω′

u


du
 for all ω,ω′

∈ Ω , (3.6)

where ρ[s,t] : D([s, t],Rd) × D([s, t],Rd) → R+ denotes the Skorokhod metric on the space
D([s, t],Rd). Clearly, |ωti − ω′

ti | ≤ ρT(ω, ω′) for all ω,ω′
∈ Ω and i = 1, . . . ,m.

Assumption 3.12. ξ is locally ρT-uniformly continuous, i.e. for every R > 0, there exists a
continuous increasing function h R : R+ → R+ with h(0) = 0, such that

|ξ(ω)− ξ(ω′)| ≤ h R

ρT(ω, ω

′)


for all ∥ω∥, ∥ω′
∥ ≤ R.

Theorem 3.13. Let ξ be bounded and µ ∈ PT
≼ satisfying (2.5). Then under Assumptions 3.9,

3.10 and 3.12, the duality P(µ) = D3(µ) holds.

Remark 3.14. Using the pathwise Doob’s inequality in Acciaio, Beiglböck, Penkner,
Schachermayer & Temme [1], the boundedness condition in Theorem 3.13 may be removed
when µ1(|x |

p) < +∞ for some p > 1, see also Dolinsky & Soner [13].

3.3. Infinitely-many marginal constraints

Using approximation techniques, we then obtain some results for the martingale transport
problem under infinitely-many marginal constraints.

Proposition 3.15. Let ξ be S∗-upper semicontinuous and bounded from above. For all µ ∈ PT
≼:

(i) Assume that there exists an increasing sequence of finite sets {Tn}n≥1 such that 1 ∈ Tn ⊆ T
for all n ≥ 1 and ∪n≥1 Tn is dense in T under the lower limit topology. Then

lim
n→∞

P(µn) = P(µ) with µn
:= (µt )t∈Tn .

(ii) Assume T0 = T, then there exists an optimal transport plan P∗
∈ M(µ), i.e.

P(µ) = EP∗

[ξ(X)]. (3.7)

Proof. (i) It follows by the definition of µn that P(µn) is non-increasing with respect to n. Take
a sequence (Pn)n≥1 such that Pn ∈ M(µn) and

P(µ) ≤ lim
n→∞

P(µn) = lim
n→∞

EPn [ξ ].

By Lemma 3.7(i), there is a convergent subsequence (Pnk )k≥1 with some limit P ∈ M. It follows
by the same arguments in the proof of Lemma 3.7 that P ∈ M(µ) and, the upper semicontinuity
of ξ yields

lim
n→∞

P(µn) = lim
k→∞

EPnk [ξ ] ≤ EP
[ξ ] ≤ P(µ).

(ii) Take a maximizing sequence (Pn)n≥1 ⊆ M(µ), then we may get a limit point P∗ and by
Lemma 3.7(ii), P∗ is the required optimal transport plan. �

Consequently, we obtain immediately the dualities for general T through Proposition 3.15.
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Theorem 3.16. Let ξ be S∗-upper semicontinuous and bounded from above and µ ∈ PT
≼,

consider an increasing sequence of finite sets {Tn}n≥1 such that Tn ⊆ T, ∪n≥1 Tn is dense
in T, and set µn

:= (µt )t∈Tn .

(i) Assume that P(µn) = D1(µ
n) for all n ≥ 1. Then P(µ) = D1(µ).

(ii) Assume further that µ satisfies (2.5) and D1(µ
n) = D2(µ

n) = D3(µ
n) for all n ≥ 1. Then

D1(µ) = D2(µ) = D3(µ).

Proof. It is enough to show (i). Notice by definition that D1(µ
n) ≥ D1(µ) for all n ≥ 1, then it

follows by Proposition 3.15(i) that

P(µ) = lim
n→∞

P(µn) ≥ D1(µ).

Then the proof is fulfilled by the weak duality P(µ) ≤ D1(µ). �

Remark 3.17. In the present setting, the marginal constraint µ = (µt )t∈T is given by a family
of joint distributions µt on Rd . If we replace the probability distribution µt by, either d marginal
distributions (µ1

t , . . . , µ
d
t ) on R, or a joint distribution µ⃗t⃗ on Rl×d for some t⃗ := (t1, . . . , tl)with

0 ≤ t1 < · · · < tl ≤ 1, then all the arguments still hold true and we can obtain similar duality
results as in Theorems 3.11, 3.13 and 3.16.

4. The dualities P = D1 = D2

In the following, we focus on the finite-marginal case, i.e. T = {0 = t0 < · · · < tm = 1}

and start by proving the first duality. To prove the equality P = D1, we shall apply the following
well-known result from convex analysis.

Theorem 4.1 (Fenchel–Moreau). Let (E,Σ ) be a Hausdorff locally convex space and F : E →

R be a concave and upper semicontinuous function. Then F is equal to its biconjugate F∗∗ which
is defined by

F∗∗(e) := inf
e∗∈E∗


⟨e, e∗

⟩ + sup
e′∈E


F(e′)− ⟨e′, e∗

⟩


and E∗ denotes the dual space of E.

Next we show that the map µ → P(µ) is W T
1 -upper semicontinuous and concave and then

identify its dual space to be ΛT by ⟨µ,λ⟩ = µ(λ).

4.1. Space of signed measures on Rd and its dual space

Let M denote the space of all finite signed Borel measures µ on Rd satisfying
Rd


1 + |x |


|µ|(dx) < +∞.

It is clear that M is a linear vector space. We endow M with a topology (of Wasserstein kind)
induced by the following convergence: Let (µn)n≥0 ⊆ M be a sequence of bounded signed
measures, we say µn converges to µ0 if

lim
n→∞


Rd
λ(x)µn(dx) =


Rd
λ(x)µ0(dx) for all λ ∈ Λ.
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Notice that the above topology restricted on the subspace P ⊆ M of probability measures is
exactly that induced by the Wasserstein distance. As for the space M0 of all finite signed Borel
measures on Rd equipped with the weak convergence topology, it is well known that its dual
space M∗

0 can be identified as the space of all bounded continuous functions Λ0, see e.g. Deuschel
& Stroock [12]. The following lemma identifies the dual space of M.

Lemma 4.2. The space M is a Hausdorff locally convex space, and the duality relation

(λ, µ) ∈ Λ × M −→ µ(λ)

determines a representation of M∗ as Λ.

The proof is almost the same as that of M∗

0 = Λ0. For completeness, we provide a short proof
in the Appendix. For the finite set T, let us endow MT with the product topology and obviously,
the dual space of MT is given by ΛT.

4.2. Proof of the duality P = D1

In preparation for the first duality, we show first the upper semicontinuity of µ → P(µ) in the
context of Theorem 3.11(i). For ε = (ε1, . . . , εm) ∈ Rm

+ such that |ε| < 1T, we introduce

Mε(µ) :=


P ∈ M(µ) : X t = X tk on [tk, tk + εk) for all k = 0, . . . ,m − 1, P-a.s.


and

Pε(µ) := sup
P∈Mε(µ)

EPξ(X).
Proposition 4.3. Let ξ be bounded from above and satisfying Assumptions 3.9 and 3.10(1), then
µ → P(µ) is W T

1 -upper semicontinuous on PT
≼.

Proof. (i) First notice Pε(µ) ≤ P(µ) since Mε(µ) ⊆ M(µ). Next, for each P ∈ M(µ),
define Pε

:= P ◦ X−1
fε

, where fε is defined in (3.4). It is clear that Pε
∈ Mε(µ) and

EPε
[ξ(X)] = EP

[ξ(X fε )]. It follows by Assumption 3.10(1),

EPξ(X) ≤ EPξ(X fε )

+ α(|ε|)


1 + (m + 2)EP

|X1|


= EPε
ξ(X)


+ α(|ε|)


1 + (m + 2)µ1(|x |)


≤ Pε(µ)+ α(|ε|)


1 + (m + 2)µ1(|x |)


,

which implies that

P(µ) = inf
0<|ε|<1T


Pε(µ)+ α(|ε|)


1 + (m + 2)µ1(|x |)


.

(ii) In order to prove that µ → P(µ) is upper semicontinuous, it suffices to verify that
µ → Pε(µ) is upper semicontinuous. To see this, let (µn)n≥1 ⊆ PT

≼ be a sequence such that

µn
W T

1
−→ µ ∈ PT

≼. By definition, we have a sequence (Pn)n≥1 such that Pn ∈ Mε(µn) and

lim sup
n→∞

Pε(µn) = lim sup
n→∞

EPn

ξ

.
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Then one may find a convergent subsequence (Pnk )k≥1 with limit P ∈ M. It follows by exactly
the same arguments as in Lemma 3.7 (ii) that P ∈ Mε(µ). Since ξ is bounded from above, then
it follows from Fatou’s lemma that

lim sup
n→∞

EPn [ξ ] = lim
k→∞

EPnk [ξ ] ≤ EP
[ξ ] ≤ Pε(µ),

which concludes the proof. �

Now we are ready to provide the first duality P(µ) = D1(µ). To apply Fenchel–Moreau
theorem, we need to embed PT

≼ to a locally convex space. Recall that M is the space of all finite
signed measures µ such that

Rd


1 + |x |


|µ|(dx) < +∞,

and MT is its T-product. We then extend the map P from PT
≼ to MT by

P(µ) :=


P(µ), if µ ∈ PT

≼,

−∞, otherwise.

Proof of Theorem 3.11. (i) The concavity of the map µ → P(µ) is immediate from its
definition. Together with the upper semicontinuity of Proposition 4.3, we may directly verify
that the extended map P is also W T

1 -upper semicontinuous and concave. Then, combining the
Fenchel–Moreau theorem and Lemma 4.2, it follows that for all µ ∈ MT,P(µ) = P∗∗(µ),

whereP∗∗ denotes the biconjugate ofP. In particular, for µ ∈ PT
≼ one has

P(µ) = P(µ) = P∗∗(µ)

= inf
λ∈ΛT


µ(λ)−P∗(λ)


= inf

λ∈ΛT


µ(λ)− inf

ν∈MT


ν(λ)−P(ν)

≥ inf
λ∈ΛT


µ(λ)+ sup

ν∈PT
≼


sup

P∈M(ν)

EPξ − λ(X)


= inf
λ∈ΛT


µ(λ)+ sup

P∈M
EPξ − λ(X)


= D1(µ) ≥ P(µ),

which yields P(µ) = D1(µ). �

4.3. Proof of the duality D1 = D2

For technical reasons, we need to restrict the static strategy λ to a smaller class of functions
ΛT

li p defined by

ΛT
li p :=


λ = (λti )1≤i≤m ∈ ΛT

: each λti is boundedly supported and Lipschitz

.

Proposition 4.4. Under the conditions of Theorem 3.11(ii) one has

D1(µ) = inf
λ∈ΛT

li p


µ(λ)+ sup

P∈M+

EPξ − λ(X)

. (4.1)
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Proof. Clearly, by the definition of D1 and the fact that µ0 = δ1(dx) and supp(µ1) ⊆ Rd
+, one

obtains by interchanging inf and sup that

D1(µ) ≥ inf
λ∈ΛT

sup
P∈M+


µ(λ)+ EPξ − λ(X)


≥ sup

P∈M+

inf
λ∈ΛT


µ(λ)+ EPξ − λ(X)


= P(µ) = D1(µ),

by Theorem 3.11(i). Hence

D1(µ) = inf
λ∈ΛT


µ(λ)+ sup

P∈M+

EPξ − λ(X)

.

Next for every λ = (λti )1≤i≤m ∈ ΛT, there exists some constant L > 0 such that for every
1 ≤ i ≤ m,

λL
ti (x) := λti (x)− L(1 + 1 · x) ≤ 0 for all x ∈ Rd

+.

Denote λL
:= (λL

ti )1≤i≤m , then for every martingale measure P ∈ M+, we have

µ(λ)+ EPξ − λ(X)


= µ(λL)+ EPξ − λL(X)

.

Further, for each R > 0, let ψR : Rd
→ [0, 1] be some continuous function such that

ψR(x) = 1 whenever |x | ≤ R and ψR(x) = 0 whenever |x | > R + 1.

Let λL ,R
:=

λ

L ,R
ti


1≤i≤m with λL ,R

ti (x) := λL
ti (x)ψR(x) ≥ λL

ti (x), then

sup
P∈M+

EPξ − λL ,R(X)


≤ sup
P∈M+

EPξ − λL(X)

.

On the other hand, for all P ∈ M+ we have by monotone convergence theorem

lim
R→∞

EPξ − λL ,R(X)


= EPξ − λL(X)

.

Hence

lim
R→∞

sup
P∈M+

EPξ − λL ,R(X)


= sup
P∈M+

EPξ − λL(X)

.

It follows that

lim
R→∞


µ(λL ,R)+ sup

P∈M+

EPξ − λL ,R(X)


= µ(λL)+ sup
P∈M+

EPξ − λL(X)


= µ(λ)+ sup
P∈M+

EPξ − λ(X)

.

Finally, by a convolution argument each λL ,R
ti can be approximated uniformly by some Lipschitz

function that is also boundedly supported, which yields the required result. �

For all (ω, t) ∈ Ω+ × [0, 1], denote by Bsem
ω,t ⊆ P the set of probability measures P such that

P

Xs = ωs for all 0 ≤ s ≤ t


= 1 and (Xs)s≥t is a non-negative semimartingale under P.

Denote further

Mloc
ω,t :=


P ∈ Bsem

ω,t : (Xs)s≥t is a local martingale under P

.
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Write in particular Bsem
= Bsem

ω,0 and Mloc
= Mloc

ω,0. Let ζ : Ω → R be a measurable function
and put

Vt (ω) := sup
P∈Mloc

ω,t

EPζ(X). (4.2)

Our objective now is to show that the process (Vt )0≤t≤1 is FU -adapted and that the dynamic
programming principle holds. To achieve this, we use the related results in Neufeld & Nutz
[33,34]. Let P ∈ Bsem be a semimartingale measure with the triplet (BP,CP, νP) of predictable
semimartingale characteristics, see e.g. Chapter II of Jacod & Shiryaev [27]. Notice that

Mloc
=


P ∈ Bsem

: BP
t = 0 for all t ∈ [0, 1]


.

By Theorem 2.5 in [33], the map P → (BP,CP, νP) is measurable, then it follows that Mloc is
Borel. Moreover, by the same arguments we have the following lemma.

Lemma 4.5. The set

(ω, t,P) ∈ Ω × [0, 1] × P(Ω) : P ∈ Mloc

ω,t


is Borel.

By Theorem 2.1 in [34], we have the following lemma.

Lemma 4.6. Let P ∈ Mloc
ω,t and τ be an F-stopping time taking values in [t, 1].

(i) There is a family of conditional probability (Pω)ω∈Ω of P with respect to Fτ such that
Pω ∈ Mloc

ω,τ(ω) for P-a.e. ω ∈ Ω .
(ii) Assume that there exists a family of probability measures (Qω)ω∈Ω+

such that

Qω ∈ Mloc
ω,τ(ω) for P-a.e. ω ∈ Ω , and the map ω → Qω is Fτ -measurable,

then P ⊗ Q ∈ Mloc
ω,t , where

P ⊗ Q(·) :=


Ω

Qω(·)P(dω).

The dynamic programming principle follows by Lemmas 4.5 and 4.6, and as a consequence
we have the following proposition.

Proposition 4.7. Assume that ζ is bounded, then the process V = (Vt )0≤t≤1 defined in (4.2) is
a M+-supermartingale, i.e. V ∈ S .

Proposition 4.8. Let ζ be a measurable and bounded function, then one has

sup
P∈M+

EP
[ζ(X)] = inf


V0 : (Vt )0≤t≤1 ∈ S such that V1(ω) ≥ ζ(ω) for all ω ∈ Ω+


.

Proof. By Proposition 4.7 with the process V defined in (4.2), it remains to show that

sup
P∈M+

EP
[ζ(X)] = sup

P∈Mloc
EP

[ζ(X)].

It is clear that supP∈M+
EP

[ζ(X)] ≤ supP∈Mloc EP
[ζ(X)] since M+ ⊆ Mloc, then it suffices

to prove the converse inequality. For each P ∈ Mloc, there exists an increasing sequence of
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stopping times (σn)n≥1 such that σn → +∞, P-almost surely and Xσn∧· is a P-martingale,
where Xσn∧· := (Xσn∧t )0≤t≤1. Hence

EP
[ζ(Xσn∧·)] ≤ sup

Q∈M+

EQ
[ζ(X)].

The required result follows from the dominated convergence theorem. �

Proof of Theorem 3.11. (ii) It remains to show D1(µ) ≥ D2(µ). Indeed, one has by Proposi-
tion 4.4,

D1(µ) = inf
λ∈ΛT

li p


µ(λ)+ sup

P∈M+

EPξ(X)− λ(X)

.

For each ε > 0, by Proposition 4.8 there exist a vector λε ∈ ΛT
li p and a process V ε

= (V ε
t )0≤t≤1

∈ S such that

D1(µ)+ ε ≥ µ(λε)+ V ε
0 and V ε

1 (ω) ≥ ξ(ω)− λε(ω).

This implies that D1(µ)+ ε ≥ D2(µ), and the required result by the arbitrariness of ε. �

5. Proof of the duality D1 = D3

Now let us turn to prove the third duality D1 = D3 in Theorem 3.13. We will follow the idea
in Dolinsky & Soner [13] to discretize the underlying paths and then use the classical constrained
duality result of Föllmer & Kramkov [15]. The proof in [13] relies on the min–max theorem and
the explicit approximation of a martingale measure. We emphasize that the present proof is less
technically involved than [13] as the marginals constraints have already been reduced by the first
duality.

5.1. Reduction of ξ to be boundedly supported

In this section we denote P(µ, ξ) and D3(µ, ξ) in place of P(µ) and D3(µ) to emphasize the
dependence on ξ , then clearly for any ξ , ξ ′

: Ω → R and c ∈ R, one has

D3(µ, ξ + ξ ′) ≤ D3(µ, ξ)+ D3(µ, ξ
′) and D3(µ, ξ + c) = D3(µ, ξ)+ c.

In particular for c > 0 one has

D3(µ, cξ) = cD3(µ, ξ).

Hence, under the conditions of Theorem 3.13, we may assume that 0 ≤ ξ ≤ 1. Indeed, we show
next that it suffices to establish the duality P(µ, ξ) = D3(µ, ξ) for ξ that is boundedly supported.
For all R > 0, define the continuous function χR : R+ → [0, 1] by

χR(x) := 1[0,R](x)+ (R + 1 − x)1(R,R+1](x) for all x ∈ R+.

Denote further for R > 0

ξR(ω) := ξ(ω)χR(∥ω∥) for all ω ∈ Ω .

Notice that 0 ≤ ξ ≤ 1 yields ξR(ω) ≤ ξ(ω) ≤ ξR(ω)+ 1{∥ω∥≥R}, then it follows that

D3(µ, ξR) ≤ D3(µ, ξ) ≤ D3(µ, ξR)+ D3(µ,1{∥X∥≥R}). (5.1)
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Lemma 5.1. Let ξ be bounded and µ ∈ PT,+
≼ . Then

D3(µ, ξ) = lim
R→∞

D3(µ, ξR).

Proof. It is enough to prove by (5.1) that

lim
R→+∞

D3(µ,1{∥X∥≥R}) = 0.

This is indeed a direct consequence of the pathwise inequality, see e.g. Lemma 2.3 of Brown,
Hobson and Rogers [5]

1{∥X i ∥≥R} ≤
(|X i,1| − K )+

R − K
+ 1{∥X i ∥≥R}

R − X i,1

R − K
for all i = 1, . . . , d

holds for every 0 < K < R. It follows by taking K = R/2d that

D3(µ,1{∥X∥≥R}) ≤

d
i=1

D3(µ,1{∥X i ∥≥R/d}) ≤
2d

R

d
i=1

µ1


xi −

R

2d

+

.

The proof is fulfilled by letting R → +∞. �

Next we show that ξR inherits almost the same properties as ξ .

Lemma 5.2. For each R > 0:

(i) If ξ satisfies Assumptions 3.9 and 3.10, then so does ξR .
(ii) If ξ satisfies Assumption 3.12, then

ξR is L∞-uniformly continuous, and

ξR(ω)− ξR(ω
′) ≤ β


ρT(ω, ω

′)


for all ω,ω′
∈ Ω such that ∥ω′

∥ ≤ ∥ω∥
(5.2)

for some continuous increasing function β : R+ → R+ with β(0) = 0.

Proof. (i) follows by the fact that ω → ∥ω∥ is S∗-lower semicontinuous and ∥ω fε∥ = ∥ωbε∥ =

∥ω∥. Let us turn to show (ii). Notice that ξ is ρT-uniformly continuous on

ω : ∥ω∥ ≤ R


,

i.e. there exists a continuous increasing function β : R+ → R+ with β(0) = 0 such that for all
∥ω∥, ∥ω′

∥ ≤ R

|ξ(ω)− ξ(ω′)| ≤ β

ρT(ω, ω

′)

.

Hence, for any ω,ω′
∈ Ω such that ∥ω′

∥ ≤ ∥ω∥, one has

ξR(ω)− ξR(ω
′) ≤ 1{∥ω∥≤R}


ξ(ω)− ξ(ω′)


≤ β


ρT(ω, ω

′)

.

Moreover,

|ξR(ω
′)− ξR(ω)| ≤ |ξ(ω′)− ξ(ω)|χR(∥ω∥)+ |χR(∥ω∥)− χR(∥ω

′
∥)|

≤ β

ρT(ω, ω

′)

+ ∥ω − ω′

∥

≤ β

2∥ω − ω′

∥

+ ∥ω − ω′

∥,

which yields the L∞-uniform continuity of ξR . �

Therefore, in the following it suffices to consider the function ξ that is boundedly supported
such that Assumptions 3.9 and 3.10 and Condition (5.2) hold. Similar to the proof of the duality
P(µ) = D2(µ), it remains to prove a duality without marginal constraints.
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5.2. Duality without marginal constraints

We consider in this section the optimization problem without marginal constraints. Let ζ : Ω
→ R be bounded and define

P(ζ ) := sup
P∈M+

EP
[ζ(X)] and D(ζ ) := inf

(z,H)∈D(ζ )
z (5.3)

where, with the same definition of integral in (2.7),

D(ζ ) :=


(z, H) ∈ R × A : z + (H · X)1(ω) ≥ ζ(ω) for all ω ∈ Ω+


.

We provide immediately a duality result for the above optimization problems, and leave its proof
in Section 5.3.

Theorem 5.3. Suppose that ζ satisfies Assumptions 3.9, 3.10 and Condition (5.2), then

P(ζ ) = D(ζ ). (5.4)

By exactly the same arguments as in the proof of Theorem 3.11(ii), the duality P(µ, ξR) =

D3(µ, ξR) follows immediately by taking ζ = ξR − λ in Theorem 5.3.

Proof of Theorem 3.13. Using Lemma 5.1 as well as the first duality P = D1 for ξR , one has

P(µ, ξ) ≥ lim
R→∞

P(µ, ξR) = lim
R→∞

D3(µ, ξR) = D3(µ, ξ).

Hence we conclude the proof by the weak duality P(µ, ξ) ≤ D3(µ, ξ). �

5.3. Proof of Theorem 5.3

Recall that T = {0 = t0 < · · · < tm = 1}, 1ti = ti − ti−1 for i = 1, . . . ,m and
1T = min1≤i≤m 1ti . Let ζ : Ω → R be measurable and boundedly supported. Then
for each 0 ≤ δ < 1T, denote Ω δ

:= D([0, 1 + δ],Rd) and all its elements by ωδ . Put
Tδ := {0 = tδ0 < · · · < tδm = 1 + δ}, where tδi := kδti for all i = 0, . . . ,m with kδ := 1 + δ.
Define ζ δ : Ω δ

→ R by

ζ δ(ωδ) := ζ(ω̄δ), where ω̄δ ∈ Ω is defined by ω̄δt := ωδkδ t for all t ∈ [0, 1]. (5.5)

Proposition 5.4. Assume that ζ satisfies Assumptions 3.9, 3.10 and Condition (5.2). Then:

(i) For all 0 ≤ δ < 1T, the ζ δ defined by (5.5) satisfies Assumptions 3.9, 3.10 and Condition
(5.2).

(ii) There is a continuous function η : R+ → R+ with η(0) = 0 such that for all 0 ≤ δ < δ′ <

1T the following inequality holdsζ δ(ωδ)− ζ δ
′

(ωδ
′,δ)

 ≤ η
 δ′ − δ

1 + δ′


1 +

m
i=0

|ωδ
tδi
| +

 1+δ

0
|ωδt |dt


for all ωδ ∈ Ω δ,

where ωδ
′,δ

∈ Ω δ′ is defined by

ω
δ′,δ
t := ωδ

(t−tδ
′

i +tδi )∧tδi+1
for all t ∈ [tδ

′

i , tδ
′

i+1] and i = 0, . . . ,m − 1.
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Proof. (i) will be proved in Lemmas 5.10–5.12 in Section 5.5.
(ii) Clearly, ζ δ

′

(ωδ
′,δ) = ζ(ω̄δ

′,δ), where

ω̄
δ′,δ
t := ω

δ′,δ
kδ′ t

for all t ∈ [0, 1].

Direct computation reveals that ω̄δ,
′δ

= ω̄δ ◦ bε with

ε :=
δ′ − δ

1 + δ′


1t1, . . . ,1tm


.

Hence by Assumption 3.10 one obtainsζ δ(ωδ)− ζ δ
′

(ωδ
′,δ)

 =

ζ(ω̄δ)− ζ(ω̄δ
′,δ)


≤ α(|ε|)


1 +

m
i=0

|ω̄δti | +

 1

0
|ω̄δt |dt


≤ α


|1T|

δ′ − δ

1 + δ′


1 +

m
i=0

|ωδ
tδi
| +

 1+δ

0
|ωδt |dt


.

The proof is completed by taking η(·) = α(1T × ·). �

We are now ready to prove the required duality. Define

Ω δ
+ :=


ωδ ∈ Ω δ

: ωδ0 = 1 and ωδt ∈ Rd
+ for all t ∈ [0, 1 + δ]


and the corresponding martingale optimal transport problem

Pδ := sup
P∈Mδ

+

EP
[ζ δ(X δ)],

where similarly, X δ = (X δt )0≤t≤kδ denotes the canonical process and Mδ
+ denotes the set of

martingale measures supported on Ω δ
+. The dual problem is slightly different. Denote further

Ω c,δ
+ :=


ωδ ∈ Ω δ

+ : ωδ
tδi −

= ωδ
tδi

for all i = 1, . . . ,m


and define the dual problem by

Dc
δ := inf

(z,H)∈Dc
δ

z,

with Dc
δ given by

Dc
δ :=


(zδ, H δ) ∈ R × Aδ

: zδ + (H δ
· ωδ)1 ≥ ζ δ(ωδ) for all ωδ ∈ Ω c,δ

+


,

where, similarly to Definition 2.5, Aδ denotes the collection of all left-continuous adapted
processes with bounded variation such that the stochastic integral (H δ

· X δ) is a supermartingale
under all probability measures in Mδ

+.
The main technical step for our result is the following.

Lemma 5.5. Suppose that ζ satisfies Assumptions 3.9, 3.10 and Condition (5.2). Then

Dc
δ ≤ Pδ for all δ ≥ 0. (5.6)

The proof of Lemma 5.5 is adapted from Dolinsky & Soner [13] and is reported in Section 5.4.
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Lemma 5.6. Suppose that ζ satisfies Assumptions 3.9, 3.10 and Condition (5.2). Then

lim inf
δ↓0

Dc
δ ≥ D(ζ ) and lim sup

δ↓0
Pδ ≤ P(ζ ). (5.7)

Proof. (i) For each (zδ, H δ) ∈ Dc
δ with δ > 0 let us construct a robust super-replication on Ω+.

For any ω ∈ Ω+ define H0(ω) = H δ
0 (ω

δ,0) and

Ht (ω) := H δ

t−ti +tδi
(ωδ,0) for all t ∈ (ti , ti+1] and i = 0, . . . ,m − 1,

where ωδ,0 ∈ Ω c,δ
+ is defined as before by

ω
δ,0
t = ω(t−tδi +ti )∧ti+1

for all t ∈ [tδi , tδi+1] and i = 0, . . . ,m − 1.

It is clear that H is F-adapted, left-continuous, with bounded variation, and (H · X) is a
supermartingale under every P ∈ M+, hence H ∈ A. Moreover,

zδ +

H δ

· ωδ,0


1+δ
≥ ζ δ(ωδ,0) for all ω ∈ Ω+. (5.8)

Notice that

H δ

· ωδ,0


1+δ
= (H · ω)1, thus we obtain by Assumption 3.10 and Condition (5.8)

zδ + (H · ω)1 ≥ ζ(ω)− η
 δ

1 + δ


1 +

m
i=0

|ωti | +

 1

0
|ωt |dt


for all ω ∈ Ω+,

which yields Dc
δ +


1 + (m + 2)d


η

δ

1+δ


≥ D(ζ ) and therefore

lim inf
δ↓0

Dc
δ ≥ D(ζ ).

(ii) Let (δn)n≥1 be such that δn > 0 and δn ↓ 0. Then there is a sequence (Pn)n≥1 such that

lim sup
n→∞

Pδn = lim sup
n→∞

EPn

ζ δn (X δn )


.

For any fixed δ0 > 0, we assume without loss of generality that δn ≤ δ0 for all n ≥ 1. Then for
each n ≥ 1, let us define P̃n := Pn ◦


X̃ δn

−1 where X̃ δn (ωδn ) := X δ0(ωδ0,δn ) is the extended
process from Ω δn to Ω δ0 . It follows by Proposition 5.4(ii) that

EPn

ζ δn (X δn )


≤

1 + (m + 2)d


η
δ0 − δn

1 + δ0


+ EPn


ζ δ0(X̃ δn )


=

1 + (m + 2)d


η
δ0 − δn

1 + δ0


+ EP̄n


ζ δ0(X δ0)


.

Again by the same argument in Proposition 4.3 we obtain

lim sup
n→∞

Pδn ≤ 2

1 + (m + 2)d


η
 δ0

1 + δ0


+ P(ζ )

which yields the required result since δ0 > 0 is arbitrary. �

Proof of Theorem 5.3. Let (z, H) ∈ D(ζ ), we know by definition z + (H · ω)1 ≥ ζ(ω),
∀ω ∈ Ω+. Taking expectation over each sides, it follows that

z ≥ EP
[ζ(X)] for all P ∈ M+.

Then we get the weak duality P(ζ ) ≤ D(ζ ). The reverse inequality follows by Lemmas 5.5 and
5.6. �
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5.4. Proof of Lemma 5.5

The arguments are mainly adapted from Dolinsky & Soner [13] and the main idea is to
discretize the paths on the Skorokhod space. By Proposition 5.4(i), the proof of Dc

δ ≤ Pδ is
not altered by the value of δ. We therefore consider δ = 0 in this subsection.

5.4.1. A probabilistic hedging problem
For all n ∈ N, put

A(n) :=

2−nq : q ∈ Nd and B(n) :=


i
√

d2−n
: i ∈ N


∪
√

d2−n/j : j ∈ N∗

.

We then define a subspace Ω̂ := Ω̂ (n)
⊆ Ω+ as follows.

Definition 5.7. A path ω ∈ Ω+ belongs to Ω̂ if there exist non-negative integers 0 = K0 <

K1 +1 < · · · < Km +m and a partition

0 = τ̂0 < τ̂1 < · · · < τ̂Km+m = 1


such that τ̂Ki +i = ti

for 1 ≤ i ≤ m and

ωt =

m−1
i=0

Ki+1+i−1
k=Ki +i

ωτ̂k1[τ̂k ,τ̂k+1)(t)+ ωti+11[τ̂Ki+1+i ,ti+1)(t)


+ ω11{t=1},

where ωti ∈ A(n) for 1 ≤ i ≤ m and for 0 ≤ i < m

ωτ̂k ∈ A(n+k−Ki −i), Ki + i < k < Ki+1 + i + 1,

τ̂k − τ̂k−1 ∈ B(n+k−Ki −i), Ki + i < k < Ki+1 + i + 1.

Notice that Ω̂ is countable, then there exists a probability measure P̂ := P̂(n) on Ω+ supported
on Ω̂ which gives positive weight to every element of Ω̂ . In particular, the canonical process X
has finitely many jumps P̂-almost surely. Denote by F̂ the completed filtration of F under P̂. Put

Ĥ(n)
:=


Ĥ : [0, 1] × Ω+ → Rd is F̂-predictable such that ∥Ĥ∥ ≤ n


and

Â(n)
:=


Ĥ ∈ Ĥ(n)

: (Ĥ · X)t ≥ K for all t ∈ [0, 1], P̂-a.s. for some K ∈ R

.

Let

D̂(n)(ζ ) :=


(z, Ĥ) ∈ R × Â(n)

: z + (Ĥ · X)1 ≥ ζ(X), P̂-a.s.


and define the robust superhedging problem under the dominating measure P̂

D(n)(ζ ) := inf
(z,Ĥ)∈D̂(n)(ζ )

z.

Let P̂ ⊆ P be the subset of probability measures supported on Ω̂ , and M̂n ⊆ P̂ be the subset of
probability measures Q that have the following properties:

EQ
Km+m

k=1

EQ
[X τ̂k |Fτ̂k−] − X τ̂k−1

 ≤
1
n
,
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where 0 < τ̂1(ω) < · · · < τ̂Km+m−1(ω) < 1 are the jumps times of the piecewise constant
process X (ω) with τ̂0(ω) = 0 and τ̂Km+m(ω) = 1. Then the required result Dc(ζ ) ≤ P(ζ )
follows from the following Propositions 5.8 and 5.9.

Proposition 5.8. Assume that ζ satisfies Assumptions 3.9, 3.10 and is L∞-uniformly continuous,
then

lim sup
n→∞

D(n)(ζ ) ≤ P(ζ ).

Proof. (i) From Example 2.3 and Proposition 4.1 in Föllmer & Kramkov [15], it follows that

D(n)(ζ ) = sup
Q∈P̂

EQ

ζ − n

Km+m
k=1

X τ̂k−1 − EQ
[X τ̂k |Fτ̂k−]

.
Since 0 ≤ ζ ≤ 1, we determine that D(n)(ζ ) ≥ 0 and we have for every Q ∈ P̂ \ M̂n ,

EQ

ζ − n

Km+m
k=1

X τ̂k−1 − EQ
[X τ̂k |Fτ̂k−]

 ≤ 0,

which yields

D(n)(ζ ) ≤ sup
Q∈M̂n

EQ
[ζ(X)].

(ii) Let us take a sequence (Qn)n≥1 with Qn ∈ M̂n such that

lim sup
n→∞


sup

Q∈M̂n

EQ
[ζ(X)]


= lim sup

n→∞

EQn [ζ(X)].

Since under each Qn the canonical process X is piecewise constant with jump times 0 <

τ̂1 < · · · < τ̂Km+m−1 < 1, X is a Qn-semimartingale. Then we have the decomposition
X = MQn − AQn , where AQn is a predictable process of bounded variation and MQn is a
martingale under Qn . Moreover, AQn is identified by

AQn
t =

Km+m−1
k=1

1[τ̂k ,τ̂k+1)(t)
k

j=1


X τ̂ j−1 − EQn [X τ̂ j |Fτ̂ j −]


for all t ∈ [0, 1),

and AQn
1 = limt→1 AQn

t . It follows then EQn

|X1 − MQn

1 |


≤ EQn

|AQn

1 |


≤ 1/n and

Qn


∥AQn ∥ ≥ n−1/2


≤ n1/2EQn

Km+m−1
k=1

X τ̂k−1 − EQn [X τ̂k |Fτ̂k−]
 ≤ n−1/2.

Since ζ is L∞-uniformly continuous, one obtains

lim sup
n→∞

EQn [ζ(X)] ≤ lim sup
n→∞

EQn [ζ(MQn )].

Let Pn = Qn ◦ (MQn )−1, then

sup
n≥1

EPn [|X1|] = sup
n≥1

EQn [|MQn
1 |]

≤ sup
n≥1

EQn [|MQn
1 − X1|] + sup

n≥1
EQn [X1]
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≤ sup
n≥1

EQn [|MQn
1 − X1|] + sup

n≥1
EQn [X1 − MQn

1 ] + sup
n≥1

EQn [MQn
1 ]

≤ 1 +
2
n

≤ 3.

By Assumptions 3.9 and 3.10, it follows that for any ε ∈ Rm
+ such that 0 < |ε| < 1T

lim sup
n→∞

EPn [ζ(X)] ≤ lim sup
n→∞

EPn [ζ(X fε )] +

1 + (m + 2)d


α(|ε|).

Again with the same reasoning, we may prove

lim sup
n→∞

EPn [ζ(X fε )] ≤ P(ζ ).

Since ε is arbitrary we get

lim sup
n→∞


sup

Q∈M̂n

EQ
[ζ(X)]


≤ P(ζ ),

and hence the required result. �

5.4.2. Time–space discretization

Discretization: For each ω ∈ Ω c
+ let us define τk := τ

(n)
k (ω) and Ki := K (n)

i (ω) by

τ0 := 0, K0 := 0,

τ1 := t1 ∧
√

d2−n
∧ inf


t > 0 : |ωt − ω0| ≥ 2−n ,

τk+1 := t1 ∧ (τk +1τk) ∧ inf

t > τk : |ωt − ωτk | ≥ 2−n , 1τk = τk − τk−1 for k ≥ 1.

Set further

K1 := min {k ∈ N : τk = t1} .

Recursively, we define for 1 ≤ i ≤ m − 1 and k ≥ Ki ,

τKi +1 := ti+1 ∧ (ti +
√

d2−n) ∧ inf

t > ti : |ωt − ωti | ≥ 2−n ,

τk+1 := ti+1 ∧ (τk +1τk) ∧ inf

t > τk : |ωt − ωτk | ≥ 2−n for k ≥ Ki + 1

and

Ki+1 := min {k ∈ N : τk = ti+1} .

Notice that the above τk , k ≥ 0 are all stopping times w.r.t. to the right-continuous filtration
F+

= (Ft+)t≥0, and

0 = τ0 < τ1 · · · < τKm = 1 and τKi = ti for all i = 1, . . . ,m.

Moreover, for 0 ≤ i ≤ m − 1, Ki < k ≤ Ki+1 and t ∈ [τk−1, τk),

|ωt − ωτk−1 | ≤ 2−n and 1τk+1 ≤ 1τk ≤ 2−n .

Also by the continuity of ω at τKi = ti for all i = 1, . . . ,m

|ωt − ωτKi −1 | ≤ 2−n for all t ∈ [τKi −1, ti ] and i = 1, . . . ,m.
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Lifting: Set τ̂0 := 0 and for 0 ≤ i ≤ m − 1

τ̂Ki +1 := τ̂Ki +
√

d2−n,

τ̂k := τ̂k−1 +

1 −

√
d2−n/1ti+1


sup


1t > 0 : 1t ∈ B(n+k−Ki −i),

1t < 1τk−1

, for all Ki + i + 2 ≤ k ≤ Ki+1 + i,

τ̂Ki+1+i+1 := ti+1.

Denote Π̂ (ω) =

Π̂ (ω)


0≤t≤1 by

Π̂t (ω) :=

m−1
i=0

Ki+1+i−1
k=Ki +i

π (n+k−Ki −i)(ωτk )1[τ̂k ,τ̂k+1)(t)+ π (n)(ωti )1[τ̂Kr ,ti+1)(t)


+π (n)(ω1)1{t=1},

then Π̂ (ω) ∈ Ω̂ . For each Ĥ ∈ Â we may define

Ht (ω) :=

Km−1
k=0

Ĥτ̂k+1(ω)(Π̂ (ω))1(τk (ω),τk+1(ω)](t) for all (ω, t) ∈ Ω+ × [0, 1]. (5.9)

We observe that (ω, t) → Ht (ω) is Borel measurable on Ω+ × [0, 1], t → Ht (ω) is left-
continuous, ω → Ht (ω) is Ft+-measurable. Hence H is F+-predictable, which is equivalent
to be F-predictable. Further, following the argument of Lemmas 3.5 and 3.6 of Dolinsky &
Soner [13], we see that the process H defined by (5.9) belongs to A, and more importantly, there
exists some constant C > 0 independent of n such that for all ω ∈ Ω+,

ρT(ω, Π̂ (ω)) ≤ C2−n1 + ∥ω∥


and
(H · ω)1 − (Ĥ(Π̂ (ω)) · Π̂ (ω))1


≤ Cn2−n . (5.10)

Proposition 5.9. Assume that ζ satisfies Condition (5.2), then one has

lim inf
n→∞

D(n)(ζ ) ≥ Dc(ζ ).

Proof. Take an arbitrary (ẑ, Ĥ) ∈ D̂. Then for any ω ∈ Ω+ one has Π̂ (ω) ∈ Ω̂ and thus

ẑ + (Ĥ(Π̂ (ω)) · Π̂ (ω))1 ≥ ζ(Π̂ (ω)) for all ω ∈ Ω+.

Take H constructed as (5.9), then by (5.10), we have H ∈ A and

ẑ + (H · ω)1 ≥ ζ(Π̂ (ω))− Cn2−n for all ω ∈ Ω+.

Moreover, by the construction of Π̂ (ω) one has ∥Π̂ (ω)∥ ≤ ∥ω∥. Notice that ζ is boundedly
supported, saying by


ω ∈ Ω : ∥ω∥ ≤ R


. Then by (5.2) one has a continuous increasing

function β : R+ → R+ with β(0) = 0 such that for all ω ∈ Ω+,

ζ(Π̂ (ω)) ≥ ζ(ω)− 1{∥ω∥≤R}β

ρT

ω, Π̂ (ω)


≥ ζ(ω)− β


C(1 + R)2−n,

which implies that

ẑ + β


C(1 + R)2−n


+ Cn2−n, H


∈ Dc(ζ ). Hence

Dc(ζ ) ≤ D(n)(ζ )+ β

C(1 + R)2−n

+ Cn2−n,

which yields the required result. �
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5.5. Proof of Proposition 5.4(i)

Recall that ξ satisfies Assumptions 3.9, 3.10 and Condition (5.2). The required statement
follows from the three lemmas below.

Lemma 5.10. lim supn→∞ ξ δ(ωδ,n) ≤ ξ(ωδ,0) holds for any sequence (ωδ,n)n≥0 ⊆ Ω δ such
that

ωδ,n
S∗

−→ ωδ,0 and ω
δ,n
tδi

−→ ω
δ,0
tδi

for all i = 0, . . . ,m − 1.

Proof. For the sake of simplicity we may assume that

lim sup
n→∞

ξ δ(ωδ,n) = lim
n→∞

ξ δ(ωδ,n).

Since (ωδ,n)n≥1 is S-tight, then by the S-tightness criteria and the construction in (5.5) we
determine that (ω̄δ,n)n≥1 is again S-tight, which yields a convergent subsequence (ω̄δ,nk )k≥1

and a limit ω0
∈ Ω , i.e. ω̄δ,nk

S∗

−→ ω0. Clearly, ωδ,n
tδi

−→ ω
δ,0
tδi

implies in particular that

ω̄
δ,nk
ti −→ ω̄

δ,0
ti for all i = 0, . . . ,m − 1. Next, ωδ,nk

S∗

−→ ωδ,0 yields a countable set
T ⊆ [0, 1 + δ) such that

ω
δ,nk
t −→ ω

δ,0
t for all t ∈ [0, 1 + δ] \ T ,

which yields another countable set T ′
⊆ [0, 1) such that

ω̄
δ,nk
t −→ ω̄

δ,0
t for all t ∈ [0, 1] \ T ′.

Hence one has ω̄δ,0 = ω0 and thus

ω̄δ,nk S∗

−→ ω̄δ,0 and ω̄
δ,nk
ti −→ ω̄

δ,0
ti for all i = 0, . . . ,m − 1,

which implies that

lim
k→∞

ξ δ(ωδ,nk ) = lim
k→∞

ξ(ω̄δ,nk ) ≤ ξ(ω̄δ,0) = ξ δ(ωδ,0). �

Lemma 5.11. There exists a continuous function αδ : R+ → R+ with αδ(0) = 0 such that for
all ε = (ε1, . . . , εm) ∈ Rm

+ sufficiently small one has

ξ δ(ωδ)− ξ δ

ωδf δε

, ξ δ(ωδ)− ξ δ

ωδbδε

 ≤ αδ(|ε|)


1 +

m
i=0

|ωδ
tδi
| +

 1+δ

0
|ωδt |dt


,

where f δε , bδε : [0, 1 + δ] → [0, 1 + δ] are two non-decreasing functions defined as in (3.4) and
(3.5).

Proof. We only prove the inequality on f δε , while the inequality on bδε follows by the same
arguments. Define f̄ δε : [0, 1 + δ] → [0, 1 + δ] by

f̄ δε (t) :=
1
kδ

f δε (kδt) for all t ∈ [0, 1].
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Thus by the construction of f δε we get

f̄ δε (t) =
1
kδ

m
i=1

1(tδi−1,t
δ
i ]
(kδt)


tδi−1 +

1tδi
1tδi − εi


kδt − tδi−1 − εi

+
=

m
i=1

1(ti−1,ti ](t)


ti−1 +
1ti

1ti − εi/kδ


t − ti−1 −

εi

kδ

+
,

which implies that

ω̄δf δε (t)
= ωδ

kδ f̄ δε (t)
for all t ∈ [0, 1]

and thus ω̄δ
f δε

= ω̄δ ◦ f̄ δε . Henceξ δ(ωδ)− ξ δ

ω̄δf δε

 =
ξ(ω̄δ)− ξ


ω̄δ ◦ f̄ δε


≤ α(|ε|/kδ)


1 +

m
i=0

|ω̄δti | +

 1

0
|ω̄δt |dt


= α(|ε|/kδ)


1 +

m
i=0

|ωδ
tδi
| +

1
kδ

 1+δ

0
|ωδt |dt


≤ α(|ε|/kδ)


1 +

m
i=0

|ωδ
tδi
| +

 1+δ

0
|ωδt |dt


.

The proof is completed by taking αδ(·) = α(·/kδ). �

Lemma 5.12. ξ δ is L∞-uniformly continuous and satisfies Condition (5.2) for ρTδ .

Proof. For any ωδ, vδ ∈ Ω δ such that ∥vδ∥ ≤ ∥ωδ∥, one has

ξ δ(ωδ)− ξ δ(vδ) = ξ(ω̄δ)− ξ(v̄δ) ≤ β

ρT(ω̄

δ, v̄δ)

,ξ δ(ωδ)− ξ δ(vδ)

 =
ξ(ω̄δ)− ξ(v̄δ)

.
It is thus enough to show that

ρ[ti−1,ti ](ω̄
δ, v̄δ) ≤ ρ

[tδi−1,t
δ
i ]
(ωδ, vδ) for all i = 1, . . . ,m

and  1

0


ω̄δt − v̄δt


dt
 ≤

 1+δ

0


ωδt − vδt


dt
.

Let Γ[s,t] denotes the collection of strictly increasing continuous functions γ defined on [s, t]
such that γ (s) = s and γ (t) = t . For any γ δ ∈ Γ

[tδi−1,t
δ
i ]

, define γ ∈ Γ[ti−1,ti ] by

γ (t) :=
1
kδ
γ δ

kδt


for all t ∈ [ti−1, ti ].

Hence

sup
ti−1≤t≤ti

ω̄δγ (t) − v̄δt

 = sup
ti−1≤t≤ti

ωδkδγ (t) − vδkδ t

 = sup
ti−1≤t≤ti

ωδ
γ δ(kδ t)

− vδkδ t


= sup

tδi−1≤t≤tδi

ωδ
γ δ(t) − vδt


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and

sup
ti−1≤t≤ti

γ (t)− t
 = sup

ti−1≤t≤ti

 1
kδ
γ δ

kδt

− t
 =

1
kδ

sup
ti−1≤t≤ti

γ δkδt− kδt


=
1
kδ

sup
tδi−1≤t≤tδi

γ δ(t)− t
 ≤ sup

tδi−1≤t≤tδi

γ δ(t)− t
,

which implies that

ρ[ti−1,ti ](ω̄
δ, v̄δ) ≤ ρ

[tδi−1,t
δ
i ]
(ωδ, vδ).

We may thus conclude by 1

0


ω̄δt − v̄δt


dt
 =

1
kδ

 1+δ

0


ωδt − vδt


dt
 ≤

 1+δ

0


ωδt − vδt


dt
. �

Appendix

A.1. Tightness under S-topology

Recall that Ω = D([0, 1],Rd) is the Skorokhod space of càdlàg paths on [0, 1], with canonical
process X = (X t )0≤t≤1 and canonical filtration F = (Ft )0≤t≤1, and P denotes the set of all
probability measures on (Ω ,F1). A sequence of probability measures (Pn)n≥1 ⊂ P is said to be
S-tight if for any ε > 0, there exists a S-compact set Kε ⊂ Ω such that

inf
n≥1

Pn

X ∈ Kε


≥ 1 − ε.

The following result is recalled from Jakubowski [28] (see their Theorem 3.1 and the discussion
at the beginning of Section 4 in [28]).

Theorem A.1 (Jakubowski).

(i) Let (Pn)n≥1 ⊆ P be a sequence of probability measures such that X is a Pn-supermartingale
for all n ≥ 1, then

sup
n≥1

sup
0≤t≤1

EPn

|X t |


< +∞ =⇒ (Pn)n≥1 is S-tight.

(ii) Let (Pn)n≥1 ⊆ P be a S-tight sequence of probability measures. Then there exist a
subsequence (Pnk )k≥1, a probability measure P ∈ P and a countable subset T ⊂ [0, 1)
such that for all finite sets {u1 < u2 < · · · < ur } ⊂ [0, 1] \ T ,

Pnk ◦ (Xu1 , . . . , Xur )
−1

−→ P ◦ (Xu1 , . . . , Xur )
−1 as k → ∞. (A.1)

In particular, Xnk ∗
=⇒D X0 as k → ∞.

A.2. Dual space of M

Recall that M denotes the space of all finite signed measures µ on Rd satisfying
Rd


1 + |x |


|µ|(dx) < +∞,
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and it is equipped with the topology induced by the convergence
W1
−→. We would like to identify

its dual space as Λ, where the arguments are mainly adapted from Lemma 3.2.3 of Deuschel &
Stroock [12]. Notice that the topology on M is generated by all the following open balls

Uλ1,...,λm ,c(µ) :=


ν ∈ M :

µ(λi )− ν(λi )
 < c for all 1 ≤ i ≤ m


,

where λi
∈ Λ for 1 ≤ i ≤ m and c > 0. Let O be the collection of open sets generated by the

open balls above, then clearly, every open set U ∈ O could be expressed as

U =


α

Uλ1
α,...,λ

nα
α ,cα (µ

α) with λi
α ∈ Λ for 1 ≤ i ≤ nα, nα ∈ N and cα > 0.

Theorem A.2. The space (M,O) is a Hausdorff locally convex space, whose dual space can be
identified by M∗

= Λ.

Proof. (i) First, (M,O) is clearly a topological vector space. For every µ ∈ M, let

U(µ) :=

Uλ1

α,...,λ
nα
α ,cα (µ) : λi

α ∈ Λ1 for 1 ≤ i ≤ nα, nα ∈ N and cα > 0

.

By definition, one can check that U(µ) is a local basis of µ for every µ ∈ M. Moreover, by
denoting 0 ∈ M the null measure, U(0) is a local basis of absolutely convex absorbent sets and
thus M is a locally convex space.
(ii) Now, let us identify the dual space of M. First, for every λ ∈ Λ, the map Fλ : M → R defined
by Fλ(µ) := µ(λ) gives a unique element in M∗, and hence Λ ⊆ M∗. On the other hand, for any
F ∈ M∗, we define a function λF by

λF (x) := F(δ{x}) for all x ∈ Rd .

Clearly one has the following implication

xn → x0 =⇒ δ{xn}

O
−→ δ{x0} =⇒ λF (xn) → λF (x0),

which implies that λF is continuous. It follows that the set F−1

(−1, 1)


is open and thus there

exists some Uλ1,...,λm ,c(0) such that

Uλ1,...,λm ,c(0) ⊆ F−1(−1, 1)

,

where λi
∈ Λ for all i = 1, . . . ,m and c > 0. Now for any µ ∈ M such that

m
i=1

µ(λi )
 > 0,

we define

µ̄ :=
cµ

m
i=1

µ(λi )
 .

Then µ̄ ∈ Uλ1,...,λm ,c(0) and thus |F(µ̄)| < 1. It follows that

|F(µ)| ≤ c
m

i=1

µ(λi )
 for all µ ∈ M,

and hence λF
∈ Λ. When µ is a linear combination of Dirac measures, it is obvious that

F(µ) = µ(λF ). Moreover, since such µ are dense in M, it follows that F(µ) = µ(λF ) holds for
all µ ∈ M. �
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