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Abstract

Consider the following model of strong-majority bootstrap percolation on a graph. Let r ≥ 1 be some
integer, and p ∈ [0, 1]. Initially, every vertex is active with probability p, independently from all other
vertices. Then, at every step of the process, each vertex v of degree deg(v) becomes active if at least
(deg(v) + r)/2 of its neighbours are active. Given any arbitrarily small p > 0 and any integer r , we
construct a family of d = d(p, r)-regular graphs such that with high probability all vertices become active
in the end. In particular, the case r = 1 answers a question and disproves a conjecture of Rapaport et al.
(2011).
c⃝ 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Given a graph G = (V, E), a set A ⊆ V , and j ∈ N, the bootstrap percolation process
B j (G; A) is defined as follows: initially, a vertex v ∈ V is active if v ∈ A, and inactive otherwise.
Then, at each round, each inactive vertex becomes active if it has at least j active neighbours.
The process keeps going until it reaches a stationary state in which every inactive vertex has less
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than j active neighbours. We call this the final state of the process. Note that we may slow down
the process by delaying the activation of some vertices, but the final state is invariant. If G is a
d-regular graph, then there is a natural characterization of the final state in terms of the k-core
(i.e., the largest subgraph of minimum degree at least k): the set of inactive vertices in the final
state of B j (G; A) is precisely the vertex set of the (d − j +1)-core of the subgraph of G induced
by the initial set of inactive vertices V \ A (see e.g. [36]). We say that B j (G; A) disseminates if
all vertices are active in the final state.

Define B j (G; p) to be the same bootstrap percolation process, where the set of initially active
vertices is chosen at random: each v ∈ V is initially active with probability p, independently from
all other vertices. This process (which can be regarded as a type of cellular automaton on graphs)
was introduced in 1979 by Chalupa, Leath and Reich [24] on an infinite rooted tree, the so called
Bethe lattice, as a simple model of dynamics of ferromagnetism, and has been widely studied ever
since on many families of deterministic or random graphs. The following obvious monotonicity
properties hold: for any A′

⊆ A′′
⊆ V , if B j (G; A′) disseminates, then B j (G; A′′) disseminates

as well; similarly, if i ≤ j and B j (G; A) disseminates, then Bi (G; A) must also disseminate.
Therefore, the probability that B j (G; p) disseminates is non-increasing in j and non-decreasing
in p. In view of this, one may expect that, for some sequences of graphs Gn , there may be a sharp
probability threshold pn such that: for every constant ε > 0, a.a.s.1 B j (Gn; pn) disseminates, if
pn ≥ (1+ε)pn ; and a.a.s. it does not disseminate, if pn ≤ (1−ε)pn . If such a value pn exists, we
call it a dissemination threshold of B j (Gn; pn). Moreover, if limn→∞ pn = p ∈ [0, 1] exists, we
call this limit p the critical probability for dissemination, which is non-trivial if 0 < p < 1. A lot
of work has been done to establish dissemination thresholds or related properties of this process
for different graph classes. For instance, the first rigorous results on bootstrap percolation on the
infinite lattice Zm were obtained by van Enter [52] and Schonmann [48]. For the finite grid [n]

m ,
the first results were given by Aizenman and Lebowitz [2] for the case m = 2. Later, Holroyd [35]
found a sharp threshold for [n]

2 with the 2-active-neighbour update rule: he showed that the
dissemination threshold is π2

18 log n + o(1/ log n) as n → ∞. For the 3-dimensional case, the first
results were given by Cerf and Cirillo [22], and then Balogh, Bollobás and Morris [11] obtained
a sharp threshold. For the general m-dimensional case, the threshold function was determined by
Cerf and Manzo [23] up to a constant factor; more recently, Balogh, Bollobás, Duminil-Copin
and Morris [10] gave sharp thresholds for the dissemination of B j ([n]

m
; p) for any constant

dimension m ≥ 2 and every 2 ≤ j ≤ m. The case of m → ∞ (in fact, m ≫ log n and j = 2)
was analysed in [13]. In the case of the 2-dimensional grid, even more precise results are known;
see [32,43]. Other graph classes that have been studied are trees, hypercubes and hyperbolic
lattices (see e.g. [14,9,12,47]).

In the context of random graphs, Janson, Łuczak, Turova and Vallier [37] considered the
model B j (G; A) with j ≥ 2, G = G (n, p)2 and A being a set of vertices chosen at random
from all sets of size a(n). They showed a sharp threshold with respect to the parameter
a(n) that separates two regimes in which the final set of active vertices has a.a.s. size o(n)

or n − o(n) (i.e. ‘almost’ dissemination), respectively. Moreover, there is full dissemination
in the supercritical regime provided that G (n, p) has minimum degree at least j . Balogh
and Pittel [15] analysed the bootstrap percolation process on random d-regular graphs, and

1 We say that a sequence of events Hn holds asymptotically almost surely (a.a.s.) if limn→∞ Pr(Hn) = 1.
2 G (n, p) is the probability space consisting of all graphs on n vertices with vertex set [n], and with each pair of

vertices being connected by an edge with probability p, independently of all others.
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established non-trivial critical probabilities for dissemination for all 2 ≤ j ≤ d − 1. Bootstrap
percolation was studied in many other random graph models, including random graphs with more
general degree sequences [4], power-law random graphs [5], inhomogeneous random graphs [6],
hyperbolic random graphs [21], preferential attachment graphs [1] and, very recently, geometric
inhomogeneous random graphs [39].

More general bootstrap percolation models on Zm (or similarly also on Zm
n , the m-dimensional

discrete torus) have been studied as well. Of particular relevance is the so called U -bootstrap
percolation: in this case, the update rule depends on an arbitrary finite collection of finite subsets
U = {X1, . . . , Xq} ⊆ Zm

\ {0}, and works as follows: given a set A ⊆ Zm of initially active
sites, set A0 = A, and define for each t ≥ 0,

At+1 = At ∪ {x ∈ Zm
: x + X ⊆ At for some X ∈ U }.

Denote also by [A] =


t≥0 At the closure of A, that is, the set of sites that eventually become
active. Whereas the general classification of U -bootstrap percolation in higher dimensions is
still wide open, for m = 2 precise results are known: the first results were given in [19,7]. As
their main result, the collection U can be classified into three families, that we define below. For
each u ∈ S1, let Hu := {x ∈ Z2

: ⟨x, w⟩ < 0} be the discrete half-plane whose boundary is
perpendicular to u. A unit vector u ∈ S1 is called a stable direction if [Hu] = Hu , and we denote
by S = S(U ) ⊆ S1 the collection of stable directions. Then, an update family U is called to
be

• subcritical, if every semicircle in S1 has infinite intersection with S ,
• critical, if there exists a semicircle in S1 that has finite intersection with S , and if every open

semicircle in S1 has non-empty intersection with S , and
• supercritical, if there exists an open semicircle in S1 that is disjoint from S .

Summarizing then the results of [19,7], the dissemination threshold pn for any supercritical
family U is polynomial (that is, pn = n−Θ(1)); while for any critical family U , it is
polylogarithmic (that is, pn = (log n)−Θ(1)); and for any subcritical family U , the thresholdpn is bounded away from zero. Moreover, by Theorem 1 of [7], a subcritical family U satisfiespn = 1 if and only if S = S1. Later, in [16] the previous bounds for critical families were
strengthened: for every critical update family U , the threshold was found up to a constant factor.
In fact, the form of the threshold depends on whether or not U is balanced, which is defined as
follows. Let Q1 ⊆ S1 denote the set of rational directions on the circle (that is, the set of all
u ∈ S1 such that u has rational or infinite gradient with respect to the standard basis vectors),
and for each u ∈ Q1, let ℓ+

u be the subset of the line ℓu := {x ∈ Z2
: ⟨x, u⟩ = 0} consisting of

the origin and the sites to the right of the origin as one looks in the direction of u. Similarly, let
ℓ−

u := (ℓu \ℓ+
u )∪{0}. Define then α+(u) (α−(u), respectively) as the minimum (possibly infinite)

cardinality of a set Z ⊆ Z2 such that [Hu ∪ Z ] contains infinitely many sites of ℓ+(u) (ℓ−(u),
respectively). For such u, the difficulty of u is α(u) := min{α+(u), α−(u)} if both α+(u) < ∞

and α−(u) < ∞, and α(u) := ∞ otherwise. The difficulty of U is then defined as

α = α(U ) := min
C∈C

max
u∈C

α(u),

with C denoting the collection of open semicircles of S1. The family U is then balanced
if there exists a closed semicircle C such that α(u) ≤ α for all u ∈ C , and unbalanced
otherwise. Theorem 1.5 of [16] says the following: if U is a balanced critical family, then
the dissemination threshold is (Θ(1/ log n))1/α , whereas if U is an unbalanced critical family,
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then the dissemination threshold is Θ

(log log n)2/ log n

1/α
. In a few cases, more precise

results are known: the authors of [26] determined the leading constant of the dissemination
threshold for symmetric, balanced, threshold models. In the unbalanced case, sharp thresholds
are known for some specific models: for instance, for the update family U that consists of
all two-element subsets of {(−1, 0), (0, 1), (0, −1)} (which is known as the Duarte model), it

was very recently shown in [17] that the dissemination threshold is ( 1
8 + o(1))

(log log n)2

log n (a
weaker statement had been previously obtained by [44]). Similarly, in another special case,
the (1, 2)-model of Gravner and Griffeath, in which U consists of all three-element subsets

of {(−2, 0), (−1, 0), (0, 1), (0, −1), (1, 0), (2, 0)}, a sharp threshold of ( 1
12 + o(1))

(log log n)2

log n
was recently established in [27] (a weaker result had been previously obtained by [31] using
somewhat non-rigorous methods and by [53], correcting an assertion of [31]). Even more precise
results containing second and third order terms were very recently obtained by [28].

Another line of research is bootstrap percolation with inhibition, that is, with vertices whose
presence hinders the diffusion. In [33] the following model was studied: consider the model in
which a low density p of sites of Z2 are initially active, and then a proportion q of them is
removed, the others being initially inactive. The update rule is as follows: inactive sites change
their states to active once they have at least 2 active nearest neighbours, whereas removed or
active sites never change their status. The authors of [33] show that if q/p2 is at least a large
constant, then most sites remain inactive forever, whereas if q/p2 is at most a small constant,
then eventually most sites will be active. A similar model with inhibition was more recently
studied in [29].

Yet another recent line of research on bootstrap percolation is the following: given a graph
together with an initial infection probability such that percolation is likely to occur, one would
also like to know how long percolation takes. The time of bootstrap percolation with dense
initial sets was studied in [20], generalizing previous results of [18], and the time of bootstrap
percolation in two dimensions was analysed in [8].

Aside from its mathematical interest, bootstrap percolation was extensively studied by
physicists: it was used to describe complex phenomena in jamming transitions [51], magnetic
systems [46] and neuronal activity [50], and also in the context of stochastic Ising models [30].
For more applications of bootstrap percolation, see the survey [3] and the references therein.

Strong-majority model. In this paper, we introduce a natural variant of the bootstrap percolation
process. Given a graph G = (V, E), an initially active set A ⊆ V , and r ∈ Z, the r-majority
bootstrap percolation process Mr (G; A) is defined as follows: starting with an initial set of
active vertices A, at each round, each inactive vertex becomes active if the number of its active
neighbours minus the number of its inactive neighbours is at least r . In other words, the activation
rule for an inactive vertex v of degree deg(v) is that v has at least ⌈(deg(v) + r)/2⌉ active
neighbours. As in ordinary bootstrap percolation, we are mainly interested in characterizing the
set of inactive vertices in the final state of and determining whether it is empty (i.e. the process
disseminates) or not. Note that for a d-regular graph G, Mr (G; A) is exactly the same process
as B⌈(d+r)/2⌉(G; A), and therefore the final set of inactive vertices of Mr (G; A) is precisely
the vertex set of the ⌊(d − r)/2 + 1⌋-core of the graph induced by the initial set of inactive
vertices. If G is not regular, the two models are not comparable. The process Mr (G; p) is defined
analogously for a random initial set A of active vertices, where each vertex belongs to A (i.e. is
initially active) with probability p and independently of all other vertices. Note that Mr (G; A)

and Mr (G; p) satisfy the same monotonicity properties with respect to A, to r , and to p that
we described above for ordinary bootstrap percolation, and thus we define the dissemination
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threshold p (if it exists) analogously as before. Additionally, for any (random or deterministic)
sequence of graphs Gn , definep+

= inf{p ∈ [0, 1] : a.a.s. Mr (Gn; p) disseminates} andp−
= sup{p ∈ [0, 1] : a.a.s. Mr (Gn; p) does not disseminate}.

Trivially, 0 ≤ p−
≤ p+

≤ 1; and, in case of equality, the dissemination threshold p must exist
and satisfy p = p−

= p+. The r -majority bootstrap percolation process is a generalization
of the non-strict majority and strict majority bootstrap percolation models, which correspond
to the cases r = 0 and r = 1, respectively. The study of these two particular cases has
received a lot of attention recently. For instance, Balogh, Bollobás and Morris [12] obtained
the dissemination threshold p = 1/2 for the non-strict majority bootstrap percolation process
M0(G; p) on the hypercube [2]

n , and extended their results to the m-dimensional grid [n]
m for

m ≥ (log log n)2(log log log n). Also, Stefánsson and Vallier [49] studied the non-strict majority
model for the random graph G (n, p). (Note that, since G (n, p) is not a regular graph, this process
cannot be formulated in terms of ordinary bootstrap percolation). For the strict majority case, we
first state a consequence of the work of Balogh and Pittel [15] on random d-regular graphs
mentioned earlier. Let Gn,d denote a graph chosen uniformly at random (u.a.r. for short) from the
set of all d-regular graphs on n vertices (note that n is even if d is odd). Then, for any constant
d ≥ 3, the dissemination threshold of the process M1(Gn,d; p) is equal to

p(d) := 1 − inf
y∈(0,1)

y

F(d − 1, 1 − y)
, (1)

where F(d, y) is the probability of obtaining at most d/2 successes in d independent trials with
success probability equal to y. Moreover,p(3) = 1/2, min{p(d) : d ≥ 3} = p(7) ≈ 0.269, and lim

d→∞

p(d) = 1/2. (2)

The case of strict majority was studied by Rapaport, Suchan, Todinca and Verstraete [45] for
various families of graphs. They showed that, for the wheel graph Wn (a cycle of length n
augmented with a single universal vertex), p+ is the unique solution in the interval [0, 1] to
the equation p+

+ (p+)2
− (p+)3

=
1
2 (that is, p+

≈ 0.4030); and they also gave bounds
on p+ for the toroidal grid augmented with a universal vertex. Moreover, they proved that, for
every sequence Gn of 3-regular graphs of increasing order (that is, |V (Gn)| < |V (Gn+1)| for all
n ∈ N) and every p < 1/2, a.a.s. the process M1(Gn; p) does not disseminate (so p−

≥ 1/2).
Together with the result from (2) that p(3) = 1/2, their result implies, roughly speaking, that,
for every sequence of 3-regular graphs, dissemination is at least as ‘hard’ as for random 3-regular
graphs. In view of this, they conjectured the following:

Conjecture 1 ([45]). Fix any constant d ≥ 3, and let Gn be any arbitrary sequence of d-regular
graphs of increasing order. Then, for the strict majority bootstrap percolation process on Gn , we
have p−

≥ p(d). That is, for any constant 0 ≤ p < p(d), a.a.s. the process M1(Gn; p) does
not disseminate.

Observe that, if the conjecture were true, then for every sequence of d-regular graphs of
growing order, p−

≥ p(d) ≥ p(7) ≈ 0.269. This motivated the following question:

Question 2 ([45]). Is there any sequence of graphs Gn such that their dissemination threshold
(for strict majority bootstrap percolation) is p = 0?
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Further results for strict majority bootstrap percolation on augmented wheels were given
in [38], and some experimental results for augmented tori and augmented random regular graphs
were presented in [42]. The underlying motivation in both papers (in view of Question 2) was the
attempt to construct sequences of graphs Gn such that a.a.s. M1(Gn; p) disseminates for small
values of p (i.e., sequences Gn with a small value of p+). However, to the best of our knowledge,
for all graph classes investigated before the present paper, the values of p+ obtained were strictly
positive. We disprove Conjecture 1 by constructing a sequence of d-regular graphs such that p+

can be made arbitrarily small by choosing d large enough (see Theorem 3 and Corollaries 5 and
7). Moreover, by allowing d → ∞, we achieve p+

= 0, and thus we answer Question 2 in the
affirmative. It is worth noting that, if one considers the non-strict majority model (r = 0) instead
of the strict majority model (r = 1), then Question 2 has a trivial answer as a result of the work
of [10] on the m-dimensional grid [n]

m . Indeed, their results imply that the process M0([n]
m
; p)

has dissemination threshold p = 0. (In fact, they establish a sharp threshold for dissemination
at p(n) = λ/ log(m−1) n → 0, for a certain constant λ > 0, where logm(n) = log(logm−1(n))).
However, the aforementioned results do not extend to the strict majority model.

In order to categorize both models in the framework of the concepts introduced before,
observe also that non-strict majority bootstrap percolation on Z2 is critical, since in this case only
the directions u corresponding to the x and y-axis are stable, and hence all semicircles in S1 have
finite, non-empty intersection with S . For all non-stable directions u, α(u) = 0, whereas for the
two directions corresponding to the x and y-axis, one element has to be added in order to activate
infinitely many elements of ℓ+

u (ℓ−
u , respectively). Clearly, each open semicircle in S1 contains

at least one of the two directions, and thus α = 1, and the model is balanced. By Theorem 1.5
of [16] the model M0([n]

m
; p) has dissemination threshold Θ(1/ log n) (the aforementioned

result of [10] clearly is more precise). In the case of strict majority bootstrap percolation,
however, all directions u are stable, and hence this process is subcritical, and by Theorem 1 of [7],pn = 1. (Note that there is an easy direct proof of this as well: observe that if all the vertices in
the cube {1, 2}

m or any of its translates in the grid [n]
m are initially inactive, then they remain

inactive at the final state. If p < 1, then each of these cubes is initially inactive with positive
probability, so a.a.s. there exists an initially inactive cube and we do not get dissemination.)

Our sequence of regular graphs. To state our results precisely, we first need to define a sequence
of regular graphs that disseminates ‘easily’. For each n ∈ N and k = k(n) ∈ N, consider the
following graph L (n, k): the vertices are the n2 points of the toroidal grid [n]

2 with coordinates
taken modulo n; each vertex v = (x, y) is connected to the vertices v + w, where w ∈ K :=

{−k, . . . ,−1, 0, 1, . . . , k} × {−1, 1}. Assuming that 2k + 1 ≤ n (so that the neighbourhood of
a vertex does not wrap around the torus), we have that |K | = 2(2k + 1) = 4k + 2, and thus our
graph L (n, k) is (4k +2)-regular. Therefore, in the process M2r (L (n, k), p), an inactive vertex
needs at least 2k+r +1 active neighbours to become active. Note that if we consider the analogue
of the graph L (n, k) but with vertex set Z2 instead of [n]

2, then the activation update rule we just
described corresponds to a subcritical family U , since every direction is stable, and by Theorem
1 of [7] we have p = 1. It is easy to see that also in our toroidal model L (n, k) we have pn = 1.
In spite of that, we will show that, even if we take a very small p, the process M2r (L (n, k), p)

‘almost’ disseminates in the following sense: at the final state of M2r (L (n, k), p), a.a.s. most of
the vertices of [n]

2 are active, and inactive vertices form tiny connected clusters surrounded by
active vertices (see Proposition 12).

Next, for even n and r = r(n) ∈ N, we also consider the (random) graph L ∗(n, k, r),
consisting of adding r random perfect matchings to L (n, k). These matchings are chosen
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u.a.r. from the set of perfect matchings of [n]
2 conditional upon not creating multiple edges

(i.e. the perfect matchings are pairwise disjoint and do not use any edge from L (n, k)). Note
that L ∗(n, k, r) is (4k + r +2)-regular. Moreover, the process Mr (L ∗(n, k, r); p) has the same
activation rule as M2r (L (n, k); p): namely, an inactive vertex becomes active at some round of
the process if it has at least 2k + r + 1 active neighbours. In view of this and since L (n, k) is a
subgraph of L ∗(n, k, r), we can couple the two processes in a way that the set of active vertices
of M2r (L (n, k); p) is always a subset of that of Mr (L ∗(n, k, r); p). We will show that for every
p > 0 (and even p = p(n) → 0 not too fast as n → ∞) and every not too large r ∈ N, there is
k ∈ N such that a.a.s. Mr (L ∗(n, k, r); p) disseminates. On a high level, our analysis comprises
two phases: in phase 1, we will consider M2r (L (n, k); p) and show that most vertices become
active in this phase. In phase 2, we incorporate the effect of the r perfect matchings and consider
then Mr (L ∗(n, k, r); p) to show that all remaining inactive vertices become active. This 2-phase
analysis is motivated by the fact that the final set of inactive vertices of Mr (L ∗(n, k, r); p) is
a subset of the final set of inactive vertices of M2r (L (n, k); p), in view of the aforementioned
coupling between the two processes.

We will use the graph L ∗(n, k, r) with r = 1 to disprove Conjecture 1 and answer Ques-
tion 2 in the affirmative. Let us point out that, since the added perfect matching is random, the
graph L ∗(n, k, 1) is not vertex-transitive in general, and therefore we cannot describe the pro-
cess Mr (L ∗(n, k, 1); p) in terms of the U -bootstrap percolation framework. In particular, the
corresponding update rule for the set of active vertices cannot be categorized into any of the
subcritical, critical or supercritical update families defined above. It would be interesting to find
a suitable sequence Gn of regular graphs on vertex set [n]

2 for which the update rule of the
r -majority bootstrap percolation process corresponds to a critical or supercritical update family
(in that case, disproving Conjecture 1 would be immediate from the results in [19]). Yet it does
not seem an easy task to construct such a sequence Gn .

Notation and results. We use standard asymptotic notation for n → ∞. All logarithms in this
paper are natural logarithms. We make no attempt to optimize the constants involved in our
claims.

Our main result is the following:

Theorem 3. Let p0 > 0 be a sufficiently small constant. Given any p = p(n) ∈ [0, 1], k =

k(n) ∈ N and r = r(n) ∈ N satisfying (eventually for all large enough even n ∈ N),

200
(log log n)2/3

(log n)1/3 ≤ p ≤ p0,

1000
p

log(1/p) ≤ k ≤
p2 log n

3000 log(1/p)
, and 1 ≤ r ≤

pk

20
,

(3)

consider the r-majority bootstrap percolation process Mr (L ∗(n, k, r); p) on the (4k + r + 2)-
regular graph L ∗(n, k, r), where each vertex is initially active with probability p. Then,
Mr (L ∗(n, k, r); p) disseminates a.a.s.

Remark 4. 1. By our assumptions on p, it is easy to verify that ⌈
1000

p log(1/p)⌉ <

⌊
p2 log n

3000 log(1/p)
⌋ (see (14) in the proof of Proposition 12), and so the range for k is non-

empty, and the statement is not vacuously true. In particular, k = ⌈
1000

p log(1/p)⌉ satisfies
the assumptions of the theorem.
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2. Note that the lower bound required for k in terms of p is almost optimal: in Theorem 2
of [45], the authors showed (for the 1-majority model) that for any sequence of d-regular
graphs (of increasing order) with d < 1/p (in the case of odd d) or d < 2/p (in the
case of even d), a.a.s. dissemination does not occur. (For the r -majority model with r ≥ 2,
dissemination is even harder.) Hence, setting k = ⌈

1000
p log(1/p)⌉, our sequence of Θ(k)-

regular graphs L ∗(n, k, r) has the smallest possible degree up to an additional Θ(log(1/p))

factor for achieving dissemination.

As a consequence of Theorem 3, we get the following two corollaries. The first one follows
from an immediate application of Theorem 3 with

p = 200 (log log n)2/3

(log n)1/3 , k = ⌊
p2 log n

3000 log(1/p)
⌋ and r = ⌊400 log log n⌋,

together with the monotonicity of the process Mr (L ∗(n, k, r); p) with respect to p and r .

Corollary 5. There is d = Θ

(log n · log log n)1/3


, and a sequence Gn of d-regular graphs of

increasing order such that, for every

200
(log log n)2/3

(log n)1/3 ≤ p ≤ 1 and 1 ≤ r ≤ 400 log log n,

the process Mr (Gn; p) disseminates a.a.s.

Remark 6. 1. Setting r = 1, this corollary answers Question 2 in the affirmative.
2. Note that the smallest admissible value of p in the statements of Theorem 3 and Corollary 5

is Θ
 (log log n)2/3

(log n)1/3


, which coincides with the dissemination threshold of a critical unbalanced

model with difficulty α = 3 (see Theorem 1.5 in [16]). However, as pointed out in an earlier
discussion, our model Mr (L ∗(n, k, r); p) cannot be described within the framework of
U -bootstrap percolation, and it is not immediately clear whether that framework could be
used to derive a similar result that yields an answer to Question 2.

The second corollary concerns the case in which all the parameters are constant.

Corollary 7. For any constants 0 < p ≤ 1 and r ∈ N, there exists d0 ∈ N satisfying the
following. For every natural d ≥ d0, there is a sequence Gn of d-regular graphs of increasing
order such that the r-majority bootstrap percolation process Mr (Gn; p) a.a.s. disseminates.

Proof (assuming Theorem 3). Fix r ∈ N. In view of the monotonicity of the process Mr (Gn; p)

with respect to p, we only need to prove the statement for any sufficiently small constant p > 0.
In particular, we assume that p ≤ p0 (where p0 is the constant in the statement of Theorem 3)
and also that r + 3 ≤ pk/20, where k0 = ⌈

1000
p log(1/p)⌉. For any fixed natural k ≥ k0 and any

i ∈ {0, 1, 2, 3}, we apply Theorem 3 with the same values of p and k but with r + i instead of r .
We conclude that there is a sequence Gn of d = (4k + r + 2 + i)-regular graphs (of increasing
order) such that Mr+i (Gn; p) disseminates a.a.s. (and thus Mr (Gn; p) also disseminates a.a.s.,
by monotonicity). Note that every natural d ≥ 4k0 + r + 2 was considered, and hence the proof
of the corollary follows. �

In particular, since limd→∞ p(d) = 1/2 (cf. (2)), Corollary 7 implies that, for every suffi-
ciently large constant d, there is a sequence of d-regular graphs of increasing order such that (for
the 1-majority model) p+ < p(d), which disproves Conjecture 1.
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Fig. 1. Sk
m (a, b) with m = 5, k = 5, a = 2 and b = 7.

Organization of the paper. In Section 2 we show that, given certain configurations, the set of
active vertices of Mr (L (n, k); A) grows deterministically. Section 3 deals with Phase 1 using
tools from percolation theory. Section 4 then analyses the effect of the added perfect matchings,
and concludes with the proof of the main theorem by combining the previous results with the
right parameters.

2. Deterministic growth

In this section, we assume that G = L (n, k), and show that, under the right circumstances,
the set of active vertices grows deterministically in Mr (L (n, k); A). For convenience, we will
describe (sets of) vertices in L (n, k) by giving their coordinates in Z2, and mapping them to the
torus [n]

2 by the canonical projection. This projection is not injective, since any two points in Z2

whose coordinates are congruent modulo n are mapped to the same vertex in [n]
2, but this will

not pose any problems in the argument.
Given an integer 1 ≤ m ≤ k, we say a vertex v is m-good (or just good) if each one of the

following four sets contains at least 2⌈k/m⌉ active vertices:

v + {1, 2, . . . , k} × {1}; v + {1, 2, . . . , k} × {−1};

v − {1, 2, . . . , k} × {1}; v − {1, 2, . . . , k} × {−1}.

Otherwise, call the vertex m-bad.
For any nonnegative integers a and b, we define the set Sk

m(a, b) ⊆ [n]
2 as

Sk
m(a, b) =


|i |≤m+a+1

[−xi , xi ] × {i},

where the sequence xi satisfies
xm+a+1 = b
xi = xi+1 + k m ≤ i ≤ m + a
xi = xi+1 + i⌈k/m⌉ 0 ≤ i ≤ m − 1
x−i = xi 0 ≤ i ≤ m + a + 1.

(4)

(See Fig. 1 for a visual depiction of Sk
m(a, b).) Observe that, since k ≥ m, ⌈k/m⌉ ≤ 2k/m, and

therefore

x0 = b + (a + 1)k +

m−1
i=1

i⌈k/m⌉ = b + (a + 1)k + ⌈k/m⌉
m(m − 1)

2
≤ b + (m + a)k,
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so

Sk
m(a, b) ⊆ [−b − (m + a)k, b + (m + a)k] × [−m − a − 1, m + a + 1]. (5)

In particular,

Sk
m(0, 0) ⊆ [−2mk, 2mk] × [−2m, 2m] and |Sk

m(0, 0)| ≤ 25m2k. (6)

Moreover, since xi ≥ xi+1+1 for m ≤ i ≤ m+a (i.e. the length of each row increases by at least
one unit to the left and to the right) and a symmetric observation for rows −m ≤ i ≤ −m − a,
we get

Sk
m(2a, 0) ⊇ [−a, a] × [−a, a]. (7)

A set of vertices U ⊆ [n]
2 is said to be active if all its vertices are active. Note that

Sk
m(a, b) ⊆ Sk

m(a + 1, b). The next lemma shows that, if Sk
m(a, b) is active and all vertices

in Sk
m(a + 1, b) are good (or already active), then eventually Sk

m(a + 1, b) becomes active too.

Lemma 8. Given any integers a, b ≥ 0, 1 ≤ m < k and r ≤ ⌈k/m⌉, suppose that Sk
m(a, b)

is active and all vertices in Sk
m(a + 1, b) are m-good or active in the r-majority bootstrap

percolation process. Then, deterministically Sk
m(a + 1, b) eventually becomes active.

Proof. Put k′
= ⌈k/m⌉ ≥ 2. Note that any vertex with at least 2k + k′ active neighbours has at

most 2k + 2 − k′ inactive neighbours, and thus becomes active since (2k + k′)− (2k + 2 − k′) =

2(k′
− 1) ≥ k′

≥ r . Our first goal is to show that we can make active one extra vertex to the
right and to the left of each row in Sk

m(a, b). Let xi be as in (4). For each 0 ≤ i ≤ m + a + 1,
consider the vertex vi = (xi + 1, i). Observe that vi ∈ Sk

m(a + 1, b), so it must be active or good.
If vi is active, then we are already done. Suppose otherwise that vi is good. By the definition
of Sk

m(a, b), vi has at least min{k + (i − 1)k′, 2k} neighbours in Sk
m(a, b) one row below, and

max{k − ik′, 0} one row above, so in particular at least 2k − k′ neighbours in Sk
m(a, b), which are

active. Additionally, since vi is good, it has at least 2k′ extra active neighbours above and to the
right, so it becomes active. By symmetry, we conclude that, for every |i | ≤ m + a + 1, vertices
(−xi − 1, i) and (xi + 1, i) become active. Therefore, all vertices in Sk

m(a, b + 1) become active.
A close inspection of (4) yields the following chain of inclusions:

Sk
m(a, b) ⊆ Sk

m(a, b + 1) ⊆ · · · Sk
m(a, b + k) ⊆ Sk

m(a + 1, b). (8)

In view of this, the same argument can be inductively applied to show that for every 0 ≤ j ≤

k − 1, if all vertices in Sk
m(a, b + j) are active, then we eventually reach a state in which all

vertices in Sk
m(a, b + j + 1) become active as well. (Note that the argument requires that the

newly added vertices vi satisfy vi ∈ Sk
m(a + 1, b), which follows from (8).)

Finally, observe that all vertices in [−b, b]×{−m−a−2, m+a+2} have 2k+1 neighbours in
Sk

m(a, b + k) (either in the row below or the row above). Since these vertices are good, they have
at least 4k′ active neighbours not in Sk

m(a, b + k), and thus they become active too. We showed
that all vertices in Sk

m(a + 1, b) became active, and the proof of the lemma is finished. �

We consider two other graphs L1(n) and L∞(n) on the same vertex set [n]
2 as L (n, k). Two

vertices (x, y) and (x ′, y′) in [n]
2 are adjacent in L1(n) if

x ′
= x

y′
− y ≡ ±1 mod n;

or


y′
= y

x ′
− x ≡ ±1 mod n.
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Similarly, (x, y) and (x ′, y′) are adjacent in L∞(n) if

(x, y) ≠ (x ′, y′) and


x ′
− x ≡ 0, ±1 mod n

y′
− y ≡ 0, ±1 mod n.

In other words, L1(n) is the classical square lattice n × n, and L∞(n) is the same lattice with
diagonals added. Given any two vertices u, v ∈ [n]

2, the ℓ1-distance and ℓ∞-distance between
u and v respectively denote their graph distance in L1(n) and L∞(n). (These correspond to
the usual ℓ1- and ℓ∞-distances on the torus.) Also, we say that a set U ⊆ [n]

2 is ℓ1-connected
(or ℓ∞-connected) if the subgraph of L1(n) (or L∞(n)) induced by U is a connected graph.
Given two sets U, U ′

⊆ [n]
2, we say U ′ is a translate of U if there exists (x, y) ∈ Z2 such that

U ′
= (x, y) + U (recall that we interpret coordinates modulo n).
Roughly speaking, the next lemma shows that if a set is good, all vertices close to the set are

good, and the set itself contains a certain active subset, then the whole set becomes active.

Lemma 9. Let k, m, r ∈ Z satisfying 1 ≤ m < k and r ≤ ⌈k/m⌉. Suppose that U ⊆ [n]
2

has the following properties: U is ℓ1-connected; all vertices in [n]
2 within ℓ1-distance at most

32mk2 from U are m-good (or active); and U contains an active set S which is a translate of
Sk

m(0, 0). Then, eventually U becomes active in the r-majority bootstrap percolation process.

Proof. Without loss of generality, we assume that S = Sk
m(0, 0) (by changing the coordinates

appropriately). Then, by (6), S is contained inside the square Q = [−2mk, 2mk]×[−2mk, 2mk].
We weaken our hypothesis that S ⊆ U , and only assume that Q ∩U ≠ ∅. Let S′

= Sk
m(14mk, 0).

By (5), S′
⊆ [−15mk2, 15mk2

] × [−15mk2, 15mk2
]. Therefore, every vertex in S′ must

lie within ℓ1-distance 30mk2
+ 4mk ≤ 32mk2 from U , and thus must be good (or already

active). We repeatedly apply Lemma 8 and conclude that S′ eventually becomes active. By (7),
Sk

m(14mk, 0) ⊇ [−7mk, 7mk]
2, so S′ contains not only the square Q, but all 8 translated copies

of Q around it. More precisely, for every i, j ∈ {−1, 0, 1},

S′
⊇ Qi j , where Qi j = (4mk + 1)(i, j) + Q.

Hence, all nine squares Qi j eventually become active.
Note that, for any x, y ∈ Z, the translate Q̂ = (x, y)+ Q contains Ŝ = (x, y)+ S. Therefore,

if Q̂ is active and intersects U , the argument above shows that all nine squares

Q̂i j = (4mk + 1)(i, j) + Q̂

eventually become active as well. We may iteratively repeat the same argument to any active
translate of Q that intersects U . Since U is ℓ1-connected, we can find a collection of translates
of Q that eventually become active and whose union contains U . This finishes the proof of the
lemma. �

The t-tessellation

Given any integer 1 ≤ t ≤ n, we define the t-tessellation T (n, t) of [n2
] to be the partition of

[n]
2 into cells

Ci j = [ai + 1, ai+1] × [a j + 1, a j+1], 0 ≤ i, j ≤ ⌊n/t⌋ − 1,

where ai = i t for 0 ≤ i ≤ ⌊n/t⌋ − 1 and a⌊n/t⌋ = n. Most cells in T (n, t) are squares with
t vertices on each side, except for possibly those cells on the last row or column if t - n. These
exceptional cells are in general rectangles, and have between t and 2t vertices on each side.
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We may regard the set of cells T (n, t) of the t-tessellation as the vertex set of either L1(⌊n/t⌋)
or L∞(⌊n/t⌋) (that is, T (n, t) ≃


⌊n/t⌋

2) by identifying each cell Ci j ∈ T (n, t) with

(i, j) ∈

⌊n/t⌋

2. Call each of the resulting graphs L1(n, t) and L∞(n, t), respectively. In

other words, the vertices of L1(n, t) are precisely the cells in T (n, t) ≃

⌊n/t⌋

2, and each
cell is adjacent to its neighbouring cells at the top, bottom, left and right (in a toroidal sense);
and a similar description (adding the top-right, top-left, bottom-right and bottom-left cells to
the neighbourhood) holds for L∞(n, t). To avoid confusion, we always call the vertices of
L1(n, t) ≃ L1(⌊n/t⌋) and L∞(n, t) ≃ L∞(⌊n/t⌋) cells, and reserve the word vertex for
the original graph L (n, k).

For i ∈ {1, ∞}, we say that a set of cells Z ⊆ T (n, t) is ℓi -connected, if Z induces a
connected subgraph of Li (n, t). Also, the ℓi -distance between two cells C and C ′ corresponds
to their graph distance in the graph of cells Li (n, t). This should not be confused with the
ℓi -distance (in Li (n)) between the vertices inside C and C ′. Sometimes, we will also refer to the
ℓi -distance between a vertex v and a cell C . By this, we mean the minimum distance in Li (n)

between v and any vertex u ∈ C .
Given 1 ≤ m ≤ k, we say that a cell C ∈ T (n, t) is m-good (or simply good) if every vertex

inside or within ℓ1-distance 32mk2 of C is good or active. Otherwise, we call it bad. Note that
deciding whether a cell C is good or bad only depends on the status of the vertices inside or
within ℓ1-distance 32mk2

+ k + 1 from C . We call a cell a seed if it contains an active translate
of Sk

m(0, 0). (By (6), this definition is not vacuous if t ≥ 4mk + 1.)
In view of all these definitions, Lemma 9 directly implies the following corollary.

Corollary 10. Let k, m, r, t ∈ Z satisfying 1 ≤ m < k, r ≤ ⌈k/m⌉ and 1 ≤ t ≤ n. Suppose that
Z is an ℓ1-connected set of cells in T (n, t) such that all cells in Z are m-good and Z contains
a seed. Then, in the r-majority bootstrap percolation process, eventually all cells in Z become
active.

3. Percolative ingredients

In this section, we consider the t-tessellation T (n, t) defined in Section 2 for an appropriate
choice of t . We combine the deterministic results in Section 2 together with some percolation
techniques to conclude that eventually most cells in T (n, t) (and thus most vertices in L (n, k))
will eventually become active a.a.s. This corresponds to Phase 1 described in the introduction.

Throughout the section, we definen = ⌊n/t⌋ and assume thatn → ∞ as n → ∞. We identify
the set of cells T (n, t) with [n]

2 in the terms described in Section 2, and consider the graphs of
cells L1(n, t) ≃ L1(n) and L∞(n, t) ≃ L∞(n). Recall (for i ∈ {1, ∞}) the definitions of
ℓi -connected sets of cells and ℓi -distance between cells from that section. Moreover, define an
ℓi -path of cells to be a path in the graph Li (n), and the ℓi -diameter of an ℓi -connected set of
cells Z to be the maximal ℓi -distance between two cells C, C ′

∈ Z . (The ℓi -diameter of Z is
also denoted diamℓi Z .) Finally, given a set of cells Z , an ℓi -component of Z is a subset C ⊆ Z
that induces a connected component of the subgraph of Li (n) induced by Z .

We need one more definition to characterize very large sets of cells that “spread almost
everywhere” in [n]

2. Set A = 108 hereafter. Given any ε = ε(n) ∈ (0, 1) and a set of cells
Z ⊆ [n]

2, we say that Z is ε-ubiquitous if it satisfies the following properties:

(i) Z is an ℓ1-connected set of cells;
(ii) |Z| ≥ (1 − Aε)n2; and
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(iii) given any collection B1, B2, . . . , B j of disjoint ℓ∞-connected non-empty subsets of
[n]

2
\ Z ,

min
1≤i≤ j


diamℓ∞

Bi


≤
A

log(1/ε)
log

n2/j


. (9)

In particular, (iii) implies that

(iv) every ℓ∞-connected set of cells B ⊆ [n]
2
\ Z has ℓ∞-diameter at most A

log(1/ε)
log(n2).

Our goal for this section is to show that a.a.s. there is an ε-ubiquitous set of cells that eventually
become active. As a first step towards this, we adapt some ideas from percolation theory to find
an ε-ubiquitous set of good cells in [n]

2. We formulate this in terms of a slightly more general
context. A 2-dependent site-percolation model on L1(n) is any probability space defined by the
state (good or bad) of the cells in [n]

2 such that the state of each cell C is independent from the
state of all other cells at ℓ1-distance at least 3 from C . We represent such a probability space by
means of the random vector X = (XC )C∈[n]2 , where XC is the indicator function of the event
that a cell C is good. In this setting, let G = {C ∈ [n]

2
: XC = 1} be the set of all good cells,

and let G0 be the largest ℓ1-component of G (if G has more than one ℓ1-component of maximal
size, pick one by any fixed deterministic rule).

Lemma 11. Let ϵ0 > 0 be a sufficiently small constant. Given any ϵ = ϵ(n) satisfyingn−1/3 < ϵ ≤ ϵ0, consider a 2-dependent site-percolation model X on L1(n), where each cell in
[n]

2 is good with probability at least 1 − ϵ. Then, a.a.s. asn → ∞, the largest ℓ1-component G0
of the set of good cells is ϵ-ubiquitous.

Proof. Throughout the argument, we assume that ϵ0 is sufficiently small so that ϵ meets all the
conditions required. Let G 0 = [n]

2
\ G0. Our first goal is to show the following claim.

Claim 1. A.a.s. every ℓ∞-component of G 0 has ℓ∞-diameter at mostn/2.

For this purpose, we will use a classical result by Liggett, Schonmann, and Stacey
(cf. Theorem 0.0 in [40]) that compares X with the product measure. Given a constant 0 < p0 <

1 (sufficiently close to 1), consider X = (XC )C∈[n]2 , in which the XC are independent indicator
variables satisfying Pr(XC = 1) = p0, and define G = {C ∈ [n]

2
: XC = 1}. If ϵ0 (and thus ϵ) is

small enough given p0, then our 2-dependent site-percolation model X stochastically dominatesX, that is, E(F(G)) ≥ E(F(G)) for every non-decreasing function F over the power set 2[n]
2

(i.e. satisfying F(Z) ≤ F(Z ′) for every Z ⊆ Z ′
⊆ [n]

2).
Set s = ⌊n/4⌋ and, for i, j ∈ {0, 1, 2, 3, 4}, consider the rectangles (in Z2)

Ri, j = (is, js) + [1, s] × [1, 2s] and R′

i, j = (is, js) + [1, 2s] × [1, s].

We regard Ri, j and R′

i, j as subsets of the torus [n]
2 by interpreting their coordinates modulo n.

Note that, if 4 |n then some of these rectangles are repeated (e.g. R0,0 = R4,0), but this does not
pose any problem for our argument. Let R be any of the rectangles above and Z ⊆ [n]

2 be any set
of cells. We say that Z is ℓ1-crossing for R if the set Z ∩ R has some ℓ1-component intersecting
the four sides of R. It is easy to verify that if Z is ℓ1-crossing for all Ri, j and all R′

i, j , then every

ℓ∞-component of [n]
2
\ Z has ℓ∞-diameter at most 2s ≤n/2. If p0 is sufficiently close to 1, by

applying a result by Deuschel and Pisztora (cf. Theorem 1.1 in [25]) to all Ri, j and all R′

i, j , we

conclude that a.a.s. G contains an ℓ1-component with more thann2/2 cells which is ℓ1-crossing
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for all Ri, j and all R′

i, j . This is a non-decreasing event, and hence a.a.s. G has an ℓ1-component
with exactly the same properties (which must be G0 by its size). This implies the claim.

In view of Claim 1, we will restrict our focus to ℓ∞-components of G 0 of small ℓ∞-diameter.
Let Nd be the number of cells that belong to ℓ∞-components of G 0 of ℓ∞-diameter d. Then, the
following holds.

Claim 2. For every 0 ≤ d ≤n/2,

ENd ≤ Bn2ϵ⌈(d+1)/4⌉ (B = 106) and VarNd ≤ (4d + 5)2ENd .

In order to prove this claim, we need one definition. A special sequence of length j is a
sequence of j + 1 different cells C0, C1, . . . , C j in [n]

2 such that any two consecutive cells in
the sequence are at ℓ∞-distance exactly 3, and any two different cells are at ℓ∞-distance at least
3. Observe that there are at most 24 j special sequences of length j starting at a given cell C0.
Moreover, by construction, the states (good or bad) of the cells in a special sequence are mutually
independent.

We now proceed to the proof of Claim 2. Let B be an ℓ∞-component of G 0 of ℓ∞-diameter
0 ≤ d ≤ n/2, and let F be the set of cells inside B but at ℓ1-distance 1 of some cell in G0. F
is ℓ∞-connected (since L1(n) and L∞(n) are dual lattices) and only contains bad cells. More-
over, F must contain two cells C and C ′ at ℓ∞-distance d (with C = C ′ if and only if d = 0).
Let P = C1, C2, . . . , Cm be a path joining C = C0 and C ′

= Cm in the subgraph of L∞(n)

induced by F . From this path, we construct a special sequence Q = D0, D1, . . . , D⌊d/3⌋ as
follows. Set D0 = C0 and, for 1 ≤ i ≤ ⌊d/3⌋, Di = C j+1, where C j is the last cell in P at
ℓ∞-distance at most 2 from Di−1. By construction, Q is a special sequence of length ⌊d/3⌋ con-
tained in B and it consists of only bad cells. Therefore, if any given cell D ∈ [n]

2 belongs to an
ℓ∞-component of G 0 of ℓ∞-diameter d , then there must be a special sequence of bad cells and
length ⌊d/3⌋ starting within ℓ∞-distance d from D. This happens with probability at most

(2d + 1)224⌊d/3⌋ϵ1+⌊d/3⌋
≤ Bϵ⌈(d+1)/4⌉,

where it is straightforward to verify that the last inequality holds for B = 106 and all d , as long
as ϵ0 is sufficiently small. Summing over alln2 cells, we get the desired upper bound on ENd .
To bound the variance, we consider separately pairs of cells that are within ℓ∞-distance greater
than 2d + 2 and at most 2d + 2, and we get

E(Nd
2) ≤ (ENd)2

+ (4d + 5)2ENd ,

so

VarNd ≤ (4d + 5)2ENd .

This proves Claim 2. Next, let N ′

d =


i≥d Ni be the number of cells that belong to
ℓ∞-components of G 0 of ℓ∞-diameter at least d. Then, we have the next claim.

Claim 3. A.a.s. for every d ≥ 0, N ′

d < B ′n2ϵ⌈(d+1)/5⌉, where B ′
= 11B.

Suppose first that ENd ≥ n1/2. By Claim 2, we must have (1/ϵ)⌈(d+1)/4⌉
≤ Bn3/2, so in

particular d ≤ logn. Then, using Chebyshev’s inequality and the bounds in Claim 2,

Pr (Nd ≥ 2ENd) ≤
VarNd

(ENd)2 ≤
(4d + 5)2

ENd
≤

25 log2nn1/2 . (10)
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Summing the probabilities over all 0 ≤ d ≤ logn, the probability is still o(1). Suppose otherwise
that ENd ≤n1/2. By Markov’s inequality,

Pr


Nd ≥n2ϵ⌈(d+1)/5⌉


≤

ENdn2ϵ⌈(d+1)/5⌉
. (11)

Recall from Claim 2 and our assumptions that ENd ≤ min
n1/2, Bn2ϵ⌈(d+1)/4⌉


. If n1/2

≤

Bn2ϵ⌈(d+1)/4⌉, then (11) becomes

Pr


Nd ≥n2ϵ⌈(d+1)/5⌉


≤

1n3/2ϵ⌈(d+1)/5⌉
.

For 0 ≤ d ≤ 15, the bound above is o(1) as long as say ϵ ≥ n−1/3. For d ≥ 16, we have
⌈(d + 1)/5⌉ + (d + 1)/100 ≤ 0.95⌈(d + 1)/4⌉, and therefore

Pr


Nd ≥n2ϵ⌈(d+1)/5⌉


≤

1n3/2ϵ⌈(d+1)/5⌉
≤

ϵ(d+1)/100n3/2ϵ0.95⌈(d+1)/4⌉
≤

B0.95ϵ(d+1)/100n0.075 ,

where for the last step we used that (1/ϵ)⌈(d+1)/4⌉
≤ Bn3/2. Summing the bound above over all

d ≥ 16 gives again a contribution of o(1). Finally, if Bn2ϵ⌈(d+1)/4⌉
≤ n1/2, then we must have

d ≥ 16 since ϵ ≥n−1/3. Therefore (11) becomes

Pr


Nd ≥n2ϵ⌈(d+1)/5⌉


≤

Bn2ϵ⌈(d+1)/4⌉n2ϵ⌈(d+1)/5⌉
≤ Bϵ0.05⌈(d+1)/4⌉+(d+1)/100

≤
B0.95ϵ(d+1)/100n0.075 ,

where for the last step we used that ϵ⌈(d+1)/4⌉
≤ n−3/2/B. Summing the bound above over

all d ≥ 16 gives o(1). Putting all the previous cases together, we conclude that a.a.s. for all
0 ≤ d ≤n/2,

Nd ≤ max
n2ϵ⌈(d+1)/5⌉, 2ENd


≤ 2Bn2ϵ⌈(d+1)/5⌉.

The same is true for d ≥n/2 by Claim 1. Hence, a.a.s. for all d ≥ 0,

N ′

d =


i≥d

Ni ≤ 2Bn2ϵ⌈(d+1)/5⌉

i≥0

5ϵi < 11Bn2ϵ⌈(d+1)/5⌉.

This proves Claim 3.
Finally, assume that the a.a.s. event in Claim 3 holds. Given any 1 ≤ j ≤n2, set

d =


5 log(B ′n2/j)

log(1/ϵ)


.

Then, ⌈(d + 1)/5⌉ ≥
log(B′n2/j)

log(1/ϵ)
, and so

N ′

d < B ′n2ϵ⌈(d+1)/5⌉
≤ j.

Therefore, given any disjoint ℓ∞-connected non-empty sets B1, B2, . . . , B j ⊆ G 0 (not necessar-
ily components), at least one of the j sets must have ℓ∞-diameter strictly less than d . Hence,

min
1≤i≤ j


diamℓ∞

Bi


≤ d − 1 ≤
5 log(n2/j) + 5 log B ′

log(1/ϵ)
− 1 ≤

5 log(n2/j)

log(1/ϵ)
.
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This proves part (iii) of the definition of ϵ-ubiquitous for G0. Part (i) is immediate since G0 is
ℓ1-connected by definition. Finally, since N ′

0 < B ′n2ϵ, then |G0| > n2(1 − B ′ϵ), which implies
part (ii). So G0 is ϵ-ubiquitous. �

The next result combines Corollary 10 and Lemma 11 in order to show that most of the cells
become active during Phase 1 of the process.

Proposition 12. Let 0 < p0 < 1 be a sufficiently small constant. Given any p = p(n) ∈ R, k =

k(n) ∈ N and r = r(n) ∈ Z satisfying (eventually for all n ∈ N sufficiently large)

200
(log log n)2/3

log1/3 n
≤ p ≤ p0,

1000
p

log(1/p) ≤ k ≤
p2 log n

3000 log(1/p)
, and r ≤ pk/9,

(12)

define

t = t (n) = 100k3 and ε = ε(n) = k−100. (13)

Consider the r-majority bootstrap percolation process Mr (L (n, k); p), and the t-tessellation
T (n, t) of [n]

2 into n2
= ⌊n/t⌋2 cells. Then, a.a.s. the set of all cells that eventually become

active contains an ε-ubiquitous ℓ1-component.

Proof. Assume that p0 is sufficiently small and n sufficiently large so that the parameters p, k, t
and ε satisfy all the required conditions below in the argument. (In particular, we may assume
that k, r, t are larger than a sufficiently large constant, and ε is smaller than a sufficiently small

constant.) Define k0 =


1000

p log(1/p)


and k1 =


p2 log n

3000 log(1/p)


. From (12) and since p0 is

small enough,

k0 <
2000

p
log(1/p) =

2000p2 log2(1/p)

p3 log(1/p)
≤

2000

2003

p2 log n

log(1/p)
< k1, (14)

so there exist k ∈ N satisfying k0 ≤ k ≤ k1, and thus the statement is not vacuous. Later in the
argument we will need the bound

pk

8
=

pk

8 log k
log k ≥

pk0

8 log k0
log k ≥

900
8

log k ≥ 111 log k. (15)

Define m = ⌈8/p⌉, so in particular

m <
9
p

< k0 ≤ k,

as required for the definition of m-good. Moreover, k ≤ k1 < log n < n−1
2 , so every vertex of

L (n, k) has exactly 4k + 2 neighbours (i.e. neighbourhoods in L (n, k) do not wrap around the
torus). The number of vertices that are initially active in a set of k vertices is distributed as the
random variable Bin(k, p). Thus, by Chernoff’s bound (see, e.g., Theorem 4.5(2) in [41]), the
probability that a vertex is initially m-bad is at most

4Pr

Bin(k, p) < 2⌈k/m⌉


≤ 4Pr


Bin(k, p) ≤ (1 − 1/2)pk


≤ 4 exp(−pk/8), (16)

where we used that 2⌈k/m⌉ ≤ 2⌈pk/8⌉ ≤ pk/2.



D. Mitsche et al. / Stochastic Processes and their Applications ( ) – 17

Now consider the t-tessellation T (n, t) of [n]
2 with t = 100k3. In particular, we have

t ≤ 100k1
3 < log3 n < n, (17)

so T (n, t) is well defined. For each cell C ∈ T (n, t), let XC denote the indicator function of
the event that C is m-good. Recall that every cell C is a rectangle with at most 2t vertices per
side, and thus C has at most (2t + 64mk2)2

≤ 3002k6 vertices within ℓ1-distance 32mk2. Then,
by (16), (15) and a union bound,

Pr(XC = 0) ≤ 4(3002k6) exp(−pk/8) ≤ 6002k6 exp(−111 log k) ≤ (1/k)100
= ε.

Moreover, the outcome of XC is determined by the status (active or inactive) of all vertices within
ℓ1-distance 32mk2

+k +1 ≤ 100mk2
≤ t from some vertex in C . All these vertices must belong

to cells that are within ℓ1-distance at most 2 from C (recall that this refers to the distance in the
graph of cells L1(n, t)). Therefore, for every cell C ∈ T (n, t) and set of cells Z ⊆ T (n, t)
such that C is at ℓ1-distance greater than 2 from all cells in Z , the indicator XC is independent
of (XC ′)C ′∈Z . Hence, X = (XC )C∈T (n,t) is a 2-dependent site-percolation model on the lattice
L1(n, t) with Pr(XC = 1) ≥ 1 − ε. Observe that X satisfies the conditions of Lemma 11,
assuming that ε = (1/k)100 is small enough (which follows from our choice of p0) and since
ε ≥ k1

−100 > log−100 n > ⌊n/t⌋−1/3 (recall by (17) that t ≤ log3 n, so the number of cells in
T (n, t) is n2

= ⌊n/t⌋2
→ ∞.) Then, by Lemma 11, the largest ℓ1-component G0 induced by

the set of m-good cells is a.a.s. ε-ubiquitous. In particular

Pr

|G0| < (1 − Aε)⌊n/t⌋2


= o(1), (18)

where A = 108. We want to show that a.a.s. G0 contains a seed. For each cell C ∈ T (n, t), let
YC be the indicator function of the event that

SC = (x + ⌊t/2⌋, y + ⌊t/2⌋) + Sk
m(0, 0)

is initially active, where (x, y) are the coordinates of the bottom left vertex in C . By (6), SC is
contained in C , and at ℓ1-distance greater than ⌊t/2⌋ − 2mk > 40k3 > 32mk2

+ k + 1 from any
other cell in T (n, t), and therefore YC depends only on vertices inside C and at distance greater
than 32mk2

+ k +1 from any other cell. In particular, YC = 1 implies that C is a seed. Moreover,
for any two disjoint sets of cells Z, Z ′

⊆ T (n, t), the random vectors (YC )C∈Z and (XC ′)C ′∈Z ′

are independent, since they are determined by the status of two disjoint sets of vertices. For the
same reason, (YC )C∈Z and (YC ′)C ′∈Z ′ are also independent. By (6) and (12), the probability that
a cell C is a seed is at least

Pr(YC = 1) ≥ p25m2k
≥ p25(9/p)2(p2 log n)/(3000 log(1/p))

= e−(452/3000) log n
≥ n−1. (19)

For each cell C , define X̄C = 1 − XC and ȲC = 1 − YC . Moreover, for each set of cells Z , let

X Z =


C∈Z

XC , X̄ Z =


C∈Z

X̄C , YZ =


C∈Z

YC and ȲZ =


C∈Z

ȲC .

Now fix an ℓ1-connected set of cells Z containing at least an 1 − Aε fraction of the cells,
and let ∂Z be the set of cells not in Z but adjacent in L1(n, t) to some cell in Z (i.e. the
strict neighbourhood of Z in L1(n, t)). Since Aε < 1/2, the event G0 = Z is the same as



18 D. Mitsche et al. / Stochastic Processes and their Applications ( ) –

X Z X̄∂Z = 1. Furthermore,

Pr

(ȲZ = 1) ∩ (X Z X̄∂Z = 1)


= Pr


(ȲZ = 1) ∩ (X̄∂Z = 1)


− Pr


(ȲZ = 1) ∩ (X Z = 0) ∩ (X̄∂Z = 1)


≤ Pr(ȲZ = 1)Pr(X̄∂Z = 1) − Pr(ȲZ = 1)Pr


(X Z = 0) ∩ (X̄∂Z = 1)


= Pr(ȲZ = 1)Pr(X Z X̄∂Z = 1),

where we used that ȲZ and X̄∂Z are independent (since Z and ∂Z are disjoint sets of cells) and
the fact that events (ȲZ = 1) and (X Z = 0) ∩ (X̄∂Z = 1) are positively correlated (by the FKG
inequality – see e.g. Theorem 2.4 in [34] – since they are both decreasing properties with respect
to the random set of active vertices). Therefore, using (19), the independence of YC and (17), we
get

Pr

ȲZ = 1 | G0 = Z


≤ Pr


ȲZ = 1


=


C∈Z

Pr

YC = 0


≤


1 − n−1

|Z |

≤ exp

−n−1(1 − Aε)⌊n/t⌋2


≤ exp


−(1 − Aε)n−1+15/8


= o(1).

This bound is valid for all Z with |Z| ≥ (1 − Aε)⌊n/t⌋2, and hence r

Pr

(G0 has no seed) ∩ |G0| ≥ (1 − Aε)⌊n/t⌋2

= o(1).

Combining this with (18), we conclude that G0 has a seed a.a.s. When this is true, determinis-
tically by Corollary 10, G0 must eventually become active. Since we already proved that G0 is
a.a.s. ε-ubiquitous, the proof is completed. �

4. The perfect matchings

In this section, we analyse the effect of adding r extra perfect matchings to L (n, k)

regarding the strong-majority bootstrap percolation process, and prove Theorem 3. Throughout
this section we assume n is even, and restrict the asymptotics to this case. An r -tuple
M = (M1, M2, . . . ,Mr ) of perfect matchings of the vertices in [n]

2 is k-admissible if
M1 ∪ M2 ∪ · · · ∪ Mr ∪ L (n, k) (i.e. the graph resulting from adding the edges of all Mi
to L (n, k)) does not have multiple edges. Observe that, if 1 ≤ r ≤ n/2, then such k-admissible
r -tuples exist: for instance, given a cyclic permutation σ of the elements in [n/2], we can pick
each M j to be the perfect matching that matches each vertex (x, y) ∈ [n/2] × [n] to vertex
(n/2+σ j−1(x), y). Note that L ∗(n, k) is precisely the uniform probability space of all possible
graphs M1∪M2∪· · ·∪Mr ∪L (n, k) such that M is a k-admissible r -tuple of perfect matchings
of [n]

2.
The following lemma will be used to bound the probability of certain unlikely events for a

random choice of a k-admissible r -tuple M of perfect matchings of [n]
2.

Lemma 13. Let S ⊆ Z ⊆ [n]
2 with |S| = 4s for some s ≥ 1, |Z | = z, and suppose that

z + 2(4k + r + 2)2(4rs) ≤ n2/2 and 4erz ≤ n2/2. Let M = (M1, M2, . . . ,Mr ) be a random
k-admissible r-tuple of perfect matchings of [n]

2. The probability that every vertex in S is
matched by at least one matching in M to one vertex in Z is at most

(16r z/n2)2s .
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Proof. Let Hw be the event that there are exactly w edges in M1 ∪ M2 ∪ · · · ∪ Mr with one
endpoint in S and the other one in Z (possibly also in S). Note that the event in the statement
implies that


2s≤w≤4rs Hw holds. We will use the switching method to bound Pr(Hw). For

convenience, with a slight abuse of notation, the set of choices of M that satisfy the event Hw is
also denoted by Hw.

Given any arbitrary element in Hw (i.e. given a fixed k-admissible r -tuple M satisfying event
Hw), we build an element in H0 as follows. Let u1v1, u2v2, . . . , uwvw be the edges with one
endpoint ui ∈ S and the other one vi ∈ Z (if both endpoints belong to S, assign the roles of ui
and vi in any deterministic way), and let 1 ≤ ci ≤ r be such that uivi belongs to the matching
Mci . Let R = {u1, . . . , uw, v1, . . . , vw}. Throughout the proof, given any U ⊆ [n]

2, we denote
by N (U ) the set of vertices that belong to U or are adjacent in M1 ∪ M2 ∪ · · · ∪ Mr ∪ L (n, k)

to some vertex in U . Now we proceed to choose vertices u′

1, u′

2, . . . , u′
w and v′

1, v
′

2, . . . , v
′
w as

follows. Pick u′

1 ∉ N (N (R)) ∪ Z and let v′

1 be the vertex adjacent to u′

1 in Mc1 ; for each
1 < i ≤ r , pick u′

i ∉ N (N (R ∪ {u′

1, . . . , u′

i−1, v
′

1, . . . , v
′

i−1})) ∪ Z and let v′

i be the vertex
adjacent to u′

i in Mci . Since

|N (N (R ∪ {u′

1, . . . , u′
w, v′

1, . . . , v
′
w})) ∪ Z | ≤ 4w + 4w(4k + r + 2)

+ 4w(4k + r + 2)2
+ z

≤ 2(4k + r + 2)2(4rs) + z ≤ n2/2,

then there are at least

(n2/2)w

choices for u′

1, u′

2, . . . , u′
w (v′

1, v
′

2, . . . , v
′
w are then determined). We delete the edges uivi and

u′

iv
′

i , and replace them by ui u′

i and viv
′

i . This switching operation does not create multiple edges,
and thus generates an element of H0.

Next, we bound from above the number of ways of reversing this operation. Given an element
of H0, there are exactly 4rs edges in M1 ∪ M2 ∪ · · · ∪ Mr incident to vertices in S (each such
edge has exactly one endpoint in S and one in [n]

2
\ Z ). We pick w of these 4rs edges. Call

them u1u′

1, u2u′

2, . . . , uwu′
w, where ui ∈ S and u′

i ∈ [n]
2

\ Z , and let 1 ≤ ci ≤ r be such that
ui u′

i ∈ Mci . Pick also vertices v1, v2, . . . , vw ∈ Z , and let v′

i be the vertex adjacent to vi in Mci .
Delete ui u′

i and viv
′

i , and replace them by uivi and u′

iv
′

i . There are at most
4rs

w


zw

≤


4ersz

w

w

≤ (2erz)w

ways of doing this correctly, and thus recovering an element of Hw. Therefore, (n2/2)w|Hw| ≤

(2erz)w|H0|, so Pr(Hw) ≤ (4erz/n2)w. Hence, we bound the probability of the event in the
statement by

4rs
w=2s

Pr(Hw) ≤


w≥2s

(4erz/n2)w ≤ (4erz/n2)

w≥0

2−w
= 2(4erz/n2)2s

≤ (16r z/n2)2s .

This proves the lemma. �

Given 1 ≤ t ≤ n, consider the t-tessellation T (n, t) defined in Section 2. Recall that we
identify the set of cells T (n, t) with [n]

2, wheren = ⌊n/t⌋. Given a k-admissible r -tuple M of
perfect matchings, we want to study the set of cells R ⊆ [n]

2 that contain vertices that remain
inactive at the end of the process Mr (M1 ∪ M2 ∪ · · · ∪ Mr ∪ L (n, k); p). The following
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lemma gives a deterministic necessary condition that “small” ℓ∞-components of R must satisfy,
regardless of the initial set U of inactive vertices. Recall that the set of vertices that remain
inactive at the end of the process is precisely the vertex set of the (2k + 2)-core of the subgraph
induced by U .

Lemma 14. Given any r, k, t, n ∈ N (with even n) satisfying

2r < 2k + 2 ≤ t ≤ n/2,

let M be a k-admissible r-tuple of perfect matchings of the vertices in [n]
2, and let U ⊆ [n]

2

be any set of vertices. Let U ◦
⊆ U denote the vertex set of the (2k + 2)-core of the subgraph of

M1∪M2∪· · ·∪Mr ∪L (n, k) induced by U. Assuming that U ◦
≠ ∅, let R be the set of all cells in

the t-tessellation T (n, t) that contain some vertex in U ◦; and let B be an ℓ∞-component of R of
diameter at mostn/2 in L∞(n, t). Then,


C∈B C must contain at least 4 vertices v1, v2, v3, v4

such that each vi is matched by some matching of M to a vertex in U◦.

Proof. We first include a few preliminary observations that will be needed in the argument. Note
that the condition 2k + 2 ≤ t ≤ n/2 implies that T (n, t) has at least 2 × 2 cells, and also that
the neighbourhood of any vertex in L (n, k) has smaller horizontal (and vertical) length than the
side of any cell in T (n, t) (so that the neighbourhood does not cross any cell from side to side,
and does not wrap around the torus). Set A = [n]

2
\ U (we can think of A and U as the sets of

initially active and inactive vertices, respectively), and define B =


C∈B C , namely the set of
all vertices in cells in B. Any two vertices v and w that are adjacent in L (n, k) must belong to
cells at ℓ∞-distance at most 1 in T (n, t). In particular, if v ∈ B and w ∉ B, then w must belong
to some cell not in R (since B is an ℓ∞-component of R), and therefore w ∈ A (so w ∉ U ◦).
Finally, since the ℓ∞-diameter of B is at mostn/2, B can be embedded into a rectangle that does
not wrap around the torus [n]

2. All geometric descriptions (such as ‘top’, ‘bottom’, ‘left’ and
‘right’) in this proof concerning vertices in B should be interpreted with respect to this rectangle.

In view of all previous ingredients, we proceed to prove the lemma. Let vT (respectively,
vB) be any vertex in the top row (respectively, bottom row) of B ∩ U ◦, which is non-empty by
assumption. Suppose for the sake of contradiction that vT = vB. Then, B ∩ U◦ has a single row,
and the leftmost vertex v of this row has no neighbours (with respect to the graph L (n, k)) in
U ◦. Indeed, from an earlier observation, any neighbour of v lies either in B (and thus in a row
different from B ∩ U ◦) or in A (and then not in U ◦). Therefore, v has at most r < 2k + 2
neighbours in U ◦ with respect to the graph M1 ∪ M2 ∪ · · · ∪ Mr ∪ L (n, k), which contradicts
the fact that v ∈ U◦. We conclude that vT ≠ vB. Let vL (respectively, vR) be the topmost vertex in
the leftmost column (respectively, rightmost column) of B ∩ U ◦. Similarly as before, if vL = vT,
then vL has at most k + 1 neighbours in U ◦ with respect to L (n, k) (the ones below and not
to the left of vL), and thus at most r + k + 1 < 2k + 2 neighbours in U ◦ with respect to
M1 ∪ M2 ∪ · · · ∪ Mr ∪ L (n, k), which leads again to contradiction. Therefore, vL ≠ vT and,
by a symmetric argument, vL ≠ vB, vR ≠ vT and vR ≠ vB. This also implies vL ≠ vR (since
otherwise, vL = vT = vR). Hence, the vertices vT, vB, vL, vR are pairwise different, and each
of them has at most 2k + 1 neighbours in U ◦ with respect to the graph L (n, k) (this follows
again from the extremal position of vT, vB, vL, vR in B ∩ U◦, together with the earlier fact that a
neighbour of v ∈ B not in B must belong to A). Therefore, vT, vB, vL, vR must be matched by at
least one matching in M to other vertices in U◦. �

The conclusion of this lemma motivates the following definition. A collection of sets of
cells B1, B2, . . . , Bs ⊆ T (n, t) is said to be stable (w.r.t. a k-admissible r -tuple M of perfect
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matchings) if, for every set B j , there are at least 4 vertices in


C∈B j
C that are matched by

some perfect matching of M to some vertex in
s

i=1


C∈Bi
C . So the conclusion of Lemma 14

says that the small ℓ∞-components of R must form a stable collection of sets with respect to
M . In Section 3, we showed that, for an appropriate choice of parameters, the set of cells
that are active at the end of Phase 1 is a.a.s. contains an ε-ubiquitous ℓ1-component (recall
that we apply Phase 1 to M2r (L (n, k); p)). If this event occurs, then the set of cells that
are active after Phase 2 (i.e. after adding a k-admissible r -tuple M of perfect matchings, and
resuming the strong-majority bootstrap percolation process) must also contain an ε-ubiquitous
ℓ1-component, deterministically regardless of the matchings. In particular, the set of cells R
containing some inactive vertices at the end of the process must contain at most Aεn2 cells, and
every subset of ℓ∞-components of R must satisfy (9). Moreover, by Lemma 14, the collection
of ℓ∞-components of R must be stable with respect to M . The following lemma shows that for
a randomly selected k-admissible perfect matching M , a.a.s. there is no proper set of cells R
satisfying all these properties. Therefore, assuming that Phase 1 terminated with an ε-ubiquitous
set of active cells, Phase 2 ends with all cells (and thus all vertices) active a.a.s.

Lemma 15. Let 0 < ε0 < 1/(2A) be a sufficiently small constant (where A = 108). Given any
ε = ε(n) ∈ R, k = k(n) ∈ N, r = r(n) ∈ N and t = t (n) ∈ N satisfying (eventually for all
large enough even n ∈ N)

1 ≤ r ≤ k, 0 < ε ≤ ε0 and 1 ≤ kt5
≤ min


(1/ε)1/4, n/ log6 n


, (20)

consider the t-tessellation T (n, t) of [n]
2, and pick a k-admissible r-tuple M of perfect

matchings of the vertices in [n]
2 uniformly at random. Setn = ⌊n/t⌋ → ∞. Then, the following

holds a.a.s.: for any 1 ≤ s ≤ Aεn2 and any collection of disjoint ℓ∞-connected sets of cells
B1, B2, . . . , Bs satisfying

min
1≤i≤ j

{diamℓ∞
(Bi )} ≤

A

log(1/ε)
log(n2/j) ∀1 ≤ j ≤ s, (21)

the collection B1, B2, . . . , Bs is not stable with respect to M .

Proof. We assume throughout the proof that ε0 is sufficiently small and n sufficiently large, so
that all the required inequalities in the argument are valid. In particular, by (20), k ≤ (n − 1)/2,
so the neighbourhood with respect to L (n, k) of any vertex does not wrap around the torus.

Given 1 ≤ s ≤ Aεn2, suppose there exists a collection of s pairwise-disjoint ℓ∞-connected
sets of cells {B1, B2, . . . , Bs} satisfying (21) and which is stable with respect to M . Assume
w.l.o.g. that diamℓ∞

(B1) ≥ · · · ≥ diamℓ∞
(Bs), so in particular

diamℓ∞
(Bi ) ≤ di ∀i ∈ [s], where di =

A

log(1/ε)
log(n2/ i).

This implies that there must exist 4s distinct vertices vi,ℓ (i ∈ [s], ℓ ∈ [4]) with the following
properties. Let Ci,ℓ be the cell containing vi,ℓ, and let Zi ⊇ Bi be the set of cells in T (n, t) within
ℓ∞-distance di from Ci,1. (Note that not necessarily Zi ∩ Z j = ∅ for i ≠ j .) Then, for each
i ∈ [s], the cells Ci,2, Ci,3, Ci,4 are within ℓ∞-distance di from Ci,1 (i.e. Ci,2, Ci,3, Ci,4 ∈ Zi ).
Moreover, putting Z =

s
i=1 Zi and Z =


C∈Z C, M matches each vertex vi,ℓ (i ∈ [s], ℓ ∈

[4]) with some vertex in Z . Let Es be the event that a tuple of 4s distinct vertices vi,ℓ with
the above properties exists. We will show that it is very unlikely that Es holds, given a random
k-admissible r -tuple M of perfect matchings. Given 1 ≤ s ≤ Aεn2, let Ms count the number
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of ways to choose 4s distinct vertices vi,ℓ (i ∈ [s], ℓ ∈ [4]) so that, for each i ∈ [s], the cells
Ci,2, Ci,3, Ci,4 belong to Zi . Also, define M0 = 1 for convenience. We will bound Ms from above
by M⌊s/2⌋ times the number of choices for the remaining vertices v⌊s/2⌋+1,ℓ, . . . , vs,ℓ (ℓ ∈ [4]).
Note that, if i ≥ ⌊s/2⌋ + 1, for each choice of Ci,1, there are (2di + 1)2

≤ 9d2
i ≤ 9(d⌊s/2⌋+1)

2

choices for each Ci,ℓ (ℓ ∈ {2, 3, 4}) (since di ≥ 1 for all i ∈ [s]). Moreover, each cell
C ∈ T (n, t) has at most 4t2 vertices. Therefore,

Ms ≤ M⌊s/2⌋

 n2

⌈s/2⌉


9(d⌊s/2⌋+1)

2
3⌈s/2⌉

(4t2)4⌈s/2⌉

≤ M⌊s/2⌋


en2

⌈s/2⌉

⌈s/2⌉ 
9A2

log2(1/ε)
log2

 n2

⌊s/2⌋ + 1

3⌈s/2⌉

(4t2)4⌈s/2⌉

= M⌊s/2⌋


2836 A6e

t8

log6(1/ε)

n2

⌈s/2⌉
log6

 n2

⌊s/2⌋ + 1

⌈s/2⌉

.

This combined with an easy inductive argument implies that, for every 1 ≤ s ≤ Aεn2,

Ms ≤


107 A6 t8

log6(1/ε)
(n2/s) log6

n2/s
s

.

Now observe that, regardless of the choice of the 4s vertices vi,ℓ,

|Z| ≤

s
i=1

|Zi | ≤

s
i=1

9di
2

=

s
i=1

9A2

log2(1/ε)
log2(n2/ i) ≤

9A2

log2(1/ε)


s

i=1

log(n2/ i)

2

=
9A2

log2(1/ε)
log2(n2s/s!) ≤

9A2

log2(1/ε)
s log2(en2/s)

≤
10A2

log2(1/ε)
s log2(n2/s). (22)

We will use Lemma 13 to bound the probability Ps that each vertex in S = {vi,ℓ : i ∈ [s], ℓ ∈ [4]}

is matched by a random k-admissible perfect matching of M to a vertex in Z =


C∈Z C . Let
z = |Z |, and recall |S| = 4s with s ≤ Aεn2. Then, from (22) and the fact that each cell has at
most 4t2 vertices, we get

z ≤ 4t2
|Z| ≤

40A3εt2

log2(1/ε)
⌊n/t⌋2 log2(1/(Aε)) ≤ 40A3εn2. (23)

Our assumptions in (20) imply r ≤ k ≤ (1/ε)1/4. Using this fact and (23), yields

4erz ≤ 160eA3ε3/4n2
≤ n2/2

and also

z + 2(4k + r + 2)2(4rs) ≤ z + 400k3s ≤ 40A3εn2
+ 400(1/ε)3/4 Aεn2

≤ n2/2,

which are the two conditions we need to apply Lemma 13. Hence, by Lemma 13 and using (22)
and the first step in (23),

Ps = (16r z/n2)2s
≤ (64r t2

|Z|/n2)2s
≤


640A2r

log2(1/ε)
(s/n2) log2(n2/s)

2s

.
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We conclude that, for 1 ≤ s ≤ Aεn2,

Pr(Es) ≤ Ms Ps ≤


1013 A10 r2t8

log10(1/ε)
(s/n2) log10

n2/s
s

≤


1013 A11r2t8ε

s
≤ εs/2,

where we used (20) and the fact that ε0 is sufficiently small. Summing over s, since the ratio
Pr(Es+1)/Pr(Es) ≤ ε1/2 < 1/2 and using (20) once again,

⌊Aεn2
⌋

s=1

Pr(Es) ≤ 2Pr(E1) = O


r2t8 log10nn2


= O


r2t10 log10 n

n2


= o(1). �

We have all the ingredients we need to prove our main result.

Proof of Theorem 3. Pick a sufficiently small constant p0 > 0, and suppose p, k and r sat-
isfy (3). Define t and ε as in (13), so the conclusion of Proposition 12 is true for the 2r -majority
model (note that 2r ≤ pk/9). Moreover, let ε0 = p0

100, and assume that ε0 is small enough as
required by Lemma 15. We have ε ≤ ( 1000

p log(1/p))−100
≤ p100

≤ ε0. Note that our choice of
k, r, ε and t trivially satisfies (20).

Let U ⊆ [n]
2 be the initial set of inactive vertices, and let U ◦ be the (2k + 2)-core

U ◦ of the subgraph of L ∗(n, k, r) induced by U (i.e. the final set of inactive vertices of
Mr (L ∗(n, k, r); p)). Let R be the set of cells in T (n, t) ≃ [⌊n/t⌋]2 that contain some ver-
tex in U ◦. Since U◦ is contained in the (2k − r + 2)-core of the subgraph of L (n, k) induced by
U (i.e. the final set of inactive vertices of M2r (L (n, k); p)), Proposition 12 shows that a.a.s. the
set of cells [⌊n/t⌋]2

\ R contains an ε-ubiquitous ℓ1-component. Therefore, the ℓ∞-components
of R, namely B1, . . . , Bs , must satisfy properties (iii) and (iv) in the definition of ε-ubiquitous
and, by Lemma 14, must be a stable collection of sets of cells with respect to a random r -tuple M
of k-admissible perfect matchings of [n]

2. Finally, Lemma 15 claims that a.a.s. there are no such
stable collections, and therefore U must be empty. This concludes the proof of the theorem. �
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