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Abstract

Finding independent sets of maximum size in fixed graphs is well known to be an NP-hard task. Using
caling limits, we characterise the asymptotics of sequential degree-greedy explorations and provide
ufficient conditions for this algorithm to find an independent set of asymptotically optimal size in large
parse random graphs with given degree sequences. In the special case of sparse Erdös–Rényi graphs,
ur results allow to give a simple proof of the so-called e-phenomenon identified by Karp and Sipser

for matchings and to give an alternative characterisation of the asymptotic independence number.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Given a graph G = (V, E), an independent set is a subset of vertices A ⊆ V where no pair
f vertices are connected to each other (i.e., for every pair x, y ∈ A we have that {x, y} /∈ E).
n the sequel, the number of vertices will be denoted by n.

Independent sets are relevant in the study of diverse physical and communication models.
or example in physics, where dynamics that generate independent sets are used to study the
eposition of particles in surfaces [13,17] as well as to model the number of excitations in
ltracold gases [39]. In the context of communications, similar stochastic processes were used
n [5,14] for theoretically modelling the possible number of simultaneous transmissions of
nformation within a WiFi network.
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An independent set is said to be maximal if it is not strictly contained in another independent
et; and is said to be maximum if there is no other independent set of greater size. Given a (finite
ndirected) graph G, the size of the maximum independent set(s) is called the independence
umber and is usually represented with α(G). Finding a maximum independent set (or its size)
n a general graph is known to be NP-hard [20]. For sparse random graphs, characterising
he size of maximum independent sets and defining algorithms that find independent sets of
asymptotically, i.e., as n diverges) maximum size are two questions that have received a lot
f attention in the last decades but remain largely open. Before explaining our main results,
e review the extended body of literature on this problem.
Mainly two types of approaches have been followed to obtain maximum size independent

ets in random graphs: on the one hand, using reversible stochastic dynamics (usually Glauber
ynamics); and on the other hand, using sequential algorithms. The Glauber dynamics consists
f a reversible Markov dynamics on graphs where vertices become occupied (at a fixed rate
alled the activation rate) when none of its neighbours are; and, if occupied, become unoccupied
t rate 1. When the rate of activation tends to infinity, this dynamics are easily shown to
oncentrate on configurations being independent sets of maximum size. Though this is a very
seful property, and not unlike for many other discrete optimisation problems, these dynamics
ight not be helpful in practice as the convergence towards a maximum size configuration

an be extremely slow when the activation rate is large. In some special cases, the mixing
ime has been theoretically characterised. For example in [41], when the degree distribution is
ounded by ∆ ≥ 0 and the activation rate is small (β < 2

∆−2 ), the mixing time is shown to
e O(n log(n)). In the case of a bipartite regular graph, it was shown in [21] that for β large
nough the mixing time is actually exponential in n. Finally, this method does not allow to
heoretically characterise the (asymptotical) independence number.

A completely different approach consists in defining algorithms that explore the graph
equentially (and hence terminate the exploration in less than n steps). For this, at each step
≥ 0 the vertex set is partitioned in three: the unexplored vertices Uk , the active vertices Ak

nd the blocked vertices Bk . A typical sequential algorithm works as follows. Initially, it sets
0 = V , A0 = ∅ and B0 = ∅. To explore the graph, at the (k + 1)th step it selects a vertex

vk+1 ∈ Uk (possibly taking into account its current or past degree towards other unexplored
vertices), and changes its state into active. After this, it takes all of its unexplored neighbours,
i.e. the set Nvk+1 := {w ∈ Uk |(vk+1, w) ∈ E}, and changes their states into blocked. This means
that, if in the (k + 1)th step vertex vk+1 is selected, the resulting set of vertices will be given
by Uk+1 = Uk\{vk+1 ∪ Nvk+1}, Ak+1 = Ak ∪ {vk+1} and Bk+1 = Bk ∪ Nvk+1 . Note that at each
step, the set of active vertices defines an independent set. The algorithm keeps repeating this
procedure until the step k∗

n in which all vertices are either active or blocked (or equivalently
U∗

kn
= ∅). The set of active vertices at step k∗

n then defines a maximal independent set.
In the greedy algorithm, during the kth step the activated vertex vk is selected uniformly from

the subgraph of remaining vertices Gk (i.e., the subgraph formed by the unexplored vertices).
If G is a graph, we will call σGr (G) the size of the independent set obtained by the greedy
algorithm ran on G. This algorithm has been extensively studied, specially in the context of
Erdös–Rényi graphs. There are many ways of approaching the problem of determining the
asymptotic value of the independent set obtained by the greedy algorithm in a sparse Erdös–
Rényi graph. For example, there has been [23,31] combinatorial analysis of the problem. More
akin to the rest of the paper, in [7] an hydrodynamic limit for a one-dimensional Markov
process associated to the algorithm was proved. The description of this exploration process
in a Configuration Model cannot be described as a one-dimensional Markov process, as the
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unexplored vertices have degrees (towards other unexplored) that are not interchangeable and
that depend in a complicated way on the evolution of the process. This makes the analysis
much more involved than in the case of an Erdös–Rényi graph. There have been two works
n the literature that describe a hydrodynamic limit for this process. In [6], a hydrodynamic
imit for the degree distribution of the remaining graph was obtained. While in [12], a similar
ydrodynamic limit was proved but for a modified dynamics that allows for a simplification of
he limiting differential equations. Through these limits, the size of the independent set obtained
y the algorithm is determined.

The degree-greedy algorithm is a variation of the greedy algorithm that takes into account
he degree of the vertices in the remaining graph. During the kth step an unexplored vertex vk

s selected uniformly from the vertices of minimum degree (towards other unexplored vertices)
ithin the remaining subgraph Gk . If G is a graph, we will denote by σDG(G) the (possibly

andom) proportion of vertices in the independent set obtained by the degree-greedy algorithm
an on G. Although having been studied in the computer science community (for example,

in [24]), there are few exact mathematical results that characterise or bound the independent
set found by this algorithm. A remarkable exception can be found in [1,32] which, although
considering a completely different problem (namely, maximum matchings), imply that the
degree-greedy algorithm is asymptotically optimal for Erdös–Rényi graphs when the mean

egree is λ < e, a result coined as the e-phenomenon. Results by Wormald [42] also describe
a hydrodynamic limit for the process generated by the degree-greedy algorithm when run on
a d-regular graph but these do not imply asymptotic optimality.

Characterisation of maximum independent sets. In the case of Erdös–Rényi graphs, their
independence numbers are better understood in the case of large connection probabilities. In
this case, a second moment argument [9] yields its convergence in probability towards −

2 log np
log q .

n this same context, the relationship between the independence number and the asymptotic
ize of the independent set obtained by the greedy algorithm is also known to be 1/2. In

the case of sparse Erdös–Rényi graphs, as a consequence of the results proved in [10,18],
similar (but weaker) results can be established. This shows that the greedy algorithm has,
for G a sparse Erdös–Rényi graph of mean degree λ, a performance ratio σGr (G)/α(G) that
s 1/2 asymptotically in n for large λ. As mentioned before, it follows from [1,32] that the
egree-greedy algorithm finds asymptotically a.s. maximum independent sets in Erdös–Rényi
raphs of mean degree smaller than e. In the same works, they also characterise the asymptotic
ndependence number of these graphs as the combination of the roots of certain functions.

The proof of the existence of a limiting independence ratio for random d-regular graphs
as given in [4]. In [34], Wormald proved a lower bound for the independence number of a
-regular graph. While in the same work, Wormald (and Gamarnik and Goldberg independently

n [22]) showed that the proportion of vertices in the independent set found by a greedy
lgorithm in a d-regular graph is (for d ≥ 3), asymptotically (in probability) when n → ∞

nd the girth1 g → ∞, given by a certain function of d . Moreover, bounds were also proved
n [8,36] and an alternative lower bounds in [19]. Finally, in a recent work [15], the exact large
umber law for the independence ratio of regular graphs of sufficiently large d was established
s the solution of a polynomial equation.

1 Length of the shortest cycle.
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Contribution. Both the characterisation of independence numbers and of algorithms to discover
independent sets in polynomial times for large sparse random graphs (e.g. in Configuration
Models) are still open problems for most cases. The only exceptions being the characterisations
of the independence numbers of regular graphs of large enough degree and the optimality of
degree-greedy for sparse Erdös–Rényi graphs with λ < e.

Using scaling limits on sequential explorations that select only degree 1 vertices, we
ecompose the exploration in different steps and show that these steps can be described as
combination of two maps acting on the degree-distribution of the graph. Using these results,
e show that for a large class of sparse random graphs, a degree-greedy exploration is actually

symptotically optimal. We first give a sufficient condition, which can be easily verified in
ractice, for this exploration to be optimal in one step. We then show how to generalise
his sufficient condition by characterising the remaining graph after several steps. Finally, we
tudy the case of Configuration Models with Poisson distributions (which are asymptotically
quivalent to sparse Erdös–Rényi graphs) and show, in an alternative way, that when the mean

degree is smaller than e the exploration is asymptotically optimal. We use this fact to give a
new characterisation of the independence number under these circumstances.

We now state rigorously our results and give various examples.

2. Main results

We first state lemmas for deterministic graphs. Afterwards, we enunciate optimality results
for random graphs when the hydrodynamic limit of the degree-greedy sequential exploration
selects only degree 1 vertices. We then show that this property is actually satisfied by a large
class of random graphs (including all strictly subcritical graphs, in the connectivity sense). We
finally proceed to characterise this class of graphs.

2.1. First characterisation of degree-greedy asymptotic optimality

Criterion for deterministic graphs. In Lemma 2.1, we show that any algorithm that selects at
each step of its implementation a vertex of degree 1 (or 0) is optimal in the sense that it finds a
maximum independent set. An analogous version of this lemma for matchings is stated in [32].

We introduce now some definitions to state this more precisely.

Definition 2.1. Given a graph G = (V, E), we call a finite sequence W = (w1, w2, . . . , wm)
m ≤ n) of distinct vertices of V a selection sequence (of G) if no vertex in W is neighbour
o another vertex in W and every vertex in V is either in W or neighbour of a vertex in W .

Note that the conditions in this definition ensure that the vertices in W define a maximal
ndependent set. By definition, sequential algorithms define random selection sequences.

efinition 2.2. Let W = (w1, . . . , wm) be a selection sequence. Then, for every 1 ≤ i ≤ m,
e denote by ith remaining subgraph, the subgraph formed by the vertices that are neither

n (w1, . . . , wi ) nor neighbours of any of them. We denote it by G i and we define G0 := G.

When there is no ambiguity to which value of i the remaining graph corresponds to, we
just call it the remaining graph. When analysing the degree-greedy algorithm, the remaining
graphs will refer to the remaining graphs with respect to the selection sequence defined by the
algorithm. Of course, as a selection sequence W = (w1, . . . , wm) always determines a maximal
ndependent set, G = ∅.
m
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The degree-greedy algorithm runs on a finite graph G and can be thought of as a random
election sequence WDG , built inductively in the following manner: given (w1, . . . , wk) the
rst k ≥ 1 vertices of WDG , wk+1 is a vertex chosen uniformly from the lowest degree vertices
f Gk .

efinition 2.3. Let W be a selection sequence. We say that W has the property T1 if for
very 1 ≤ i ≤ m the degree of wi in G i−1 is equal to or less than 1.

Then, a selection sequence has the property T1 if at each step it selects a vertex that has
egree either 0 or 1 in the corresponding remaining graph.

We are now in a position to state our first lemma.

emma 2.1. Let G be a finite graph and W be a selection sequence of G. Then, if W has
he property T1, |W | = α(G).

T1 Property and asymptotic optimality of the degree-greedy exploration. From now on, we
se the usual big O(·) and little o(·) notation to describe the asymptotic behaviour of functions
f the graph size n. We also use the probabilistic big OP(·) and little oP(·) notation in the
ollowing sense:

• A sequence of random variables Xn is OP( fn) (for some function fn : N → R>0) if for
every ϵ > 0 there exist M > 0 and N ∈ N s.t. P(|Xn/ fn| > M) < ϵ for every n ≥ N .

• Conversely, a sequence of random variables Xn is oP( fn) if Xn/ fn
P
−→ 0 as n → ∞.

We will also say that a sequence of events holds with high probability (w.h.p.) whenever
heir corresponding probabilities are some function 1 + o(1) of the graph size.

Throughout the paper we will consider random graphs with given degrees, (a.k.a., Configu-
ation Models [40]). In this construction, given a degree sequence d̄ (n)

∈ Nn
0 (which could either

e a fixed sequence or a collection of i.i.d. variables), we form an n-sized multigraph2 with
egrees d̄ (n) in the following manner: first assign to each vertex v ∈ {1, . . . , n} a number dv of
alf-edges, then sequentially match uniformly each half-edge with another unmatched one, and
nally for every pair of vertices in the multigraph establish an edge between them for every
air of matched half-edges they share. The distribution of the random multigraphs generated
ccording to this matching procedure will be denoted by CMn(d̄ (n)). Because all the matchings
re made uniformly, the resulting multigraph is equally distributed no matter in which order
he half-edges are chosen to be paired [40]. This fact allows, when analysing a process in the
raph, for the matching to be incorporated into the dynamics in question.

In the remaining of the paper we will consider Configuration Model graphs that obey the
ollowing assumption:
onvergence assumption (CA): when dealing with sequences of graphs (Gn)n≥1 with Gn ∼

Mn(d̄ (n)), we will always assume that D(n) d
−→ D and E(D(n)2)

n→∞
−−−→ E(D2). Where D(n) is

he r.v. that gives the degree of a uniformly chosen vertex in Gn and D is a random variable
ith finite second moment. We will also use (p(n)

k )k≥0 to refer to the distribution of D(n) and
pk)k≥0 to the one of the asymptotic degree random variable D.

When there is no ambiguity, we will omit the subindex in Gn .

2 That is, a graph where there are possibly edges between a vertex and itself (selfedges) and multiple edges
etween a pair of vertices (multiedges).
126
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Although this construction results in a multigraph rather than a simple graph,3 as showed
in [27], because under the (CA) there is asymptotically a probability bounded away from 0 of
obtaining a simple graph. This means that any event that has been shown to hold w.h.p. for
G ∼ CMn(d̄ (n)), can be automatically showed to hold w.h.p. for the construction conditioned
to result in a simple graph.

Another important feature of the model is that its largest connected component asymptoti-
cally contains a positive proportion of the vertices of the graph iff ν := E(D(D − 1))/E(D) >

1 [29,37] (this quantity will be referred as the criticality parameter of the graph). When this
condition holds, we will say that the graph is supercritical; and when it does not, that it is
subcritical.

We can now state a sufficient condition for the degree-greedy algorithm to find w.h.p. an
independent set that asymptotically contains the same proportion of vertices as a maximum
one:

Proposition 2.1 (Sufficient Condition for the near Optimality of the Degree-Greedy in CM).
Let G ∼ CMn(d̄ (n)) be a sequence of CM graphs with limiting degree distribution (pk)k∈N. If
the degree-greedy algorithm defines w.h.p. a selection sequence that selects only vertices of
degree 1 or 0 until the remaining graph is subcritical and has a degree distribution that is
O(e−γ k) (for some γ > 0), then (for every α > 0) σDG(G) = α(G) + OP(nα).

This is so because a subcritical graph looks like (up to sufficiently small differences) a
collection of trees. We can then couple the algorithm running in the subcritical graph with one
running in the collection of spanning trees of its components. This coupling will only differ in
the components that are not trees which, as shown in Proposition 3.1, contain (for every α > 0)

P(nα) vertices if the limiting degree distribution has an exponentially thin tail. Therefore, both
algorithms find an independent set of roughly the same size.

2.2. Further characterisations of asymptotic optimality

We now give explicit criteria to show that a given limiting distribution meets the hypothesis
n Proposition 2.1. We first state a criterion that can be easy to handle in practice. We then refine
his criterion and give a general way of characterising the degree distributions in question.

ne application criteria. To characterise when the degree-greedy algorithm does only select
vertices of degree 1 or 0 until the remaining subgraph is subcritical, it will be useful to break
the evolution of the process into discrete intervals of time for which we know for sure that the
only vertices selected have these degrees.

The key observation is that if the graph initially has np1 + o(n) vertices of degree 1,4 then
he degree-greedy will select vertices of degree 1 at least until an equivalent number of degree

vertices have been explored. Then we define the map M (n)
1 : RN

≥0 −→ RN
≥0 as the map

hat when evaluated in a degree distribution of an n sized graph (p(n)
k )k≥0 gives the resulting

ormalised (by n) degree measure of unexplored vertices after np(n)
1 vertices of degree 1 have

een activated or blocked (and their neighbours blocked). This is in principle a stochastic map

3 One with no self loop nor multiedges.
4 For simplicity, vertices of degree 0 will be omitted from the analysis because, when selected, they block no

vertices and then do not modify the number of unexplored vertices of other degrees. We can think that the algorithm
selects them immediately after they are produced.
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but, as we will prove, the degree-greedy exploration converges to a deterministic limit which
implies that M (n)

1 (·) also behaves in the limit as a deterministic map M1(·).
In this section, we determine when the degree distribution obtained after one application of

the map M (n)
1 is w.h.p. subcritical, and therefore the hypothesis of Proposition 2.1 are met. Our

main result here is the following theorem:

Theorem 2.1. Given G ∼ CMn(d̄ (n)) where the (C A) holds towards a limiting degree
distribution (pk)k≥0 of mean λ > 0 and finite second moment. If

ν̃ := G ′′

D(Q)/λ < 1 (1)

where Q := (1 − p1/λ) and G D(z) is the generating function of the asymptotic degree r.v. D;
then, (for every α > 0) σDG(G) = α(G) + OP(nα).

The proof relies on breaking the dynamics induced by the matching of the initial degree
1 vertices in two: in the first phase these vertices are matched to their neighbours which are
set to blocked while their free half-edges are kept unmatched; in the second phase, the free
half-edges of vertices blocked during the previous phase are matched and removed. In this way,
Theorem 2.1 can be interpreted as the condition under which the remaining graph after the first
phase can be proved to be subcritical. Here the parameter Q gives the asymptotic probability
of a half-edge to be paired to a degree 1 vertex during this phase.

Further applications of M1. Theorem 2.1 establishes an asymptotic condition for the remaining
graph obtained after one application of the map M (n)

1 (·) to be subcritical, and thus for the
degree-greedy to be asymptotically optimal (in the sense that it finds, asymptotically, an
independent set with the same proportion of vertices as a maximum one). Here we compute
the asymptotic degree distribution of the remaining graph after one application of M (n)

1 (·) and
n doing so we allow for the study of further applications of M (n)

1 (·). This can be used to
stablish more general conditions that determine the asymptotic optimality of the degree-greedy
lgorithm. For doing so, we determine a hydrodynamic limit for the second phase of M (n)

1 (·)
nd solve the obtained equations.

heorem 2.2. Define (for every i, j ≥ 1) η j (i) := (−1) j−i
( j

i

)
1i≤ j . Then, under the same

ssumptions of Theorem 2.1 and if we call (a j ) j∈N the components of (Qk pk1{k≥2})k∈N in
he base {η j (·)} j∈N, we have that the remaining graph after one application of the map is

Configuration Model graph with normalised degree measure given by

M (n)
1

(
p(n)

k

)
(i)

P
−→ M1

(
p(n)

k

)
(i) :=

∑
j≥i

a j (−1) j−i Q̃ j
(

j
i

)
, for i ≥ 1

here Q̃ :=
∑

i≥2 i Qi pi/Q2λ.

As mentioned above, this result gives a way of generalising the condition for asymptotic
ptimality of Theorem 2.1:
eneral criterion for asymptotic optimality (GC): given a limiting degree distribution, if

fter a finite number of applications of the map M1(·) the degree distribution obtained is
ubcritical, then the degree-greedy algorithm is asymptotically optimal for a Configuration
odel graph with that limiting distribution.
The proof of this criterion is a direct consequence of Proposition 2.1. Then, Theorem 2.2

an be used to verify it. In the next section we give numerical computations of distributions
hat meet the criterion.
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2.3. Erdös-Rényi graphs

Here we analyse the special case of graphs with asymptotic Poisson degree distributions.
hey are of particular importance because, by [33], asymptotic results for them can be directly
xtended to Erdös–Rényi random graphs. We give here an alternative and simpler proof of the
o-called “e-phenomenon”, identified for matchings in [1,32]. This in turn allows us to give a
ore explicit characterisation of the asymptotic independence number than the one present in

hese works and to express them in terms of the Lambert function.

orollary 2.1. Let G ∼ ERn(λ). If λ < e, then σDG(G) = α(G) + oP(n); otherwise,
he selection sequence does not have the property T1. Furthermore, in this case, α(G) =

(z(λ) +
λ
2 z(λ)2) + oP(n), where z(λ) := e−W(λ) with W(x) the Lambert function.

Proof. Because of the following equality for Bernstein polynomials [35],(
n
i

)
x i (1 − x)n−i

=

n∑
j=i

(
n
j

)
x jη j (i),

the expansion in the base {ηk(·)}k∈N can be explicitly computed for binomial distributions,
which in turn gives the transformation for Poisson distributions taking the usual limit. Using
this, it can be easily seen that after i applications of the map M1(·) to a Poisson distribution,
the resulting distribution is a linear combination of a Poisson distribution of mean µi and a
term δ1(·) (we here ignore degree 0 vertices as they do not play a role in the dynamics), with
respective coefficients Ai and Bi .

This transformation can be used to derive the following recursion relation for λi , Ai and Bi :⎧⎪⎨⎪⎩
µi+1 = Q̃i Qiµi ,

Ai+1 = e−(1−Qi )µi Ai ,

Bi+1 = −Ai Q̃i Qiµi e−µi ,

where Qi and Q̃i are the corresponding coefficients defined in Theorems 2.1 and 2.2 for the
distribution after the i th application. Writing explicitly the coefficients Qi and Q̃i , one arrives
at the 3-dimensional iterative map⎧⎪⎪⎪⎨⎪⎪⎪⎩

µi+1 =

(
e−

ai µi
λi − e−µi

)
Ai µ

2
i

λi
,

Ai+1 = e−
ai µi
λi Ai ,

Bi+1 = −e−µi Aiµi+1,

(2)

where ai := Aiµi e−µi + Bi is the number of remaining degree 1 vertices and λi := Aiµi + Bi

is the number of remaining edges. Furthermore, the coordinate Bi can be eliminated arriving
at the closed 2-dimensional iterative map⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µi+1 =

⎛⎝e
−

Ai e−µi −Ai−1e−µi−1

Ai −Ai−1e−µi−1
µi

− e−µi

⎞⎠ Ai µi
Ai −Ai−1e−µi−1 ,

−
Ai e−µi −Ai−1e−µi−1

Ai −Ai−1e−µi−1
µi
Ai+1 = e Ai .
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Making the coordinate change vi := e−µi and wi := v
Ai /(Ai −vi−1 Ai−1)
i the map can be rewritten

as ⎧⎨⎩wi+1 = w

(
vi w

vi −1
i

)
i ,

vi+1 = wi+1w
−vi
i ,

(3)

where the initial conditions for this discrete system are v0 = w0 = e−λ. We now show that for
nitial conditions in the identity line (v0, v0) this recursion can be explicitly solved. We first
how by induction that in this case

wi = h2i+1(v0),

vi =
h2i+1(v0)
h2i (v0)

,

here we defined hm(a) := aa·
·
a

m

; that is, hm(a) is the mth iteration of a. First note that by

applying the map (3) one obtains that w1 = v
(v

v0
0 )

0 = h3(v0) and v1 = w1v
−v0
0 = h3(v0)h2(v0)−1,

hus starting the induction. To advance the induction, suppose wi = h2i+1(v0) and vi =

h2i+1(v0) h2i (v0)−1. Then, applying the map one obtains that

wi+1 = h2i+1(v0)

(
h2i+1(v0)h2i (v0)−1h2i+1(v0)(h2i+1(v0)h2i (v0)−1

−1)
)

= h2i+1(v0)

(
h2i (v0)−1h2i+1(v0)h2i+1(v0)h2i (v0)−1

)

=

(
h2i+1(v0)h2i (v0)−1

)(h2i+1(v0)h2i (v0)−1
)h2i+1(v0)

= v

(
v

h2i+1(v0)
0

)
0 = h2(i+1)+1(v0),

here we used that h2i+1(v0)h2i (v0)−1
= v0. In an analogous way, we can show that vi+1 =

h2(i+1)+1(v0)
h2(i+1)(v0) , advancing the induction.

By Theorem 5 in [3], hi (v0) converges if and only if v0 ∈ (e−e, e1/e). And in these
ases, because of (3), vi will converge to 1 as i → ∞. Undoing the coordinate change, this
mplies that if λ < e, we will have that µi

i→∞
−−−→ 0. This in turn proves that the number

f remaining vertices in the graph (1 − e−µi )Ai + Bi
i→∞
−−−→ 0 which means that the graph

anishes asymptotically, showing that under these conditions the degree-greedy algorithm is
symptotically optimal. Furthermore, also by Theorem 5 in [3], if λ > e, h2i (v0) and h2i+1(v0)
ill converge to different limits yielding vi

i→∞
−−−→ t < 1. That is, in these cases, the selection

equence defined by the degree-greedy algorithm will not (w.h.p.) have the property T1.
Moreover, making use of Proposition 2.2 from next section, we can compute the indepen-

ence number. Because in this case the number of degree 2 or greater vertices is given by a
oisson density of mean µi multiplied by Ai ,∑

j≥2

(1 − Q j
i )Ai

µ
j
i

j !
e−µi = Ai (1 − e−µi (1−Qi )) − Aiµi e−µi (1 − Qi )
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Also, using the explicit solution obtained for the map (2), it can be shown that

• Ai = h2i (e−λ)
• Qi =

(h2i (e−λ)−h2i+1(e−λ))
(h2i (e−λ)−h2i−1(e−λ))

• µi = λ(h2i (e−λ) − h2i−1(e−λ))
• ai = λ(h2i+1(e−λ) − h2i−1(e−λ))(h2i (e−λ) − h2i−1(e−λ))

Where ai is the normalised remaining number of degree 1 vertices. Using this,
roposition 2.2 gives

α(G) = n

(
1 −

∑
i≥0

h2i (e−λ) − h2i+2(e−λ) +

∑
i≥0

λ

2
h2

2i−1(e−λ) −
λ

2
h2

2i+1(e−λ)

)
+ oP(n)

= n(z(λ) + λ/2z(λ)2) + oP(n),

here we used that (for m ∈ N and a > 0) h−m(a) = 0, h0(a) = 1 and that limi→∞ hi (a) =
−W (− log(a)). □

.4. Other applications

We now apply our results to power-law distributions, which give rise to scale-free networks.
urthermore, we explain how to compute the independence ratios for this distributions and we
rove upper bounds for the independence ratios of distributions for which these theorems cannot
e used.

ower-law distributions. Here we look at the case where the degree distribution obeys a
ower law of parameter α > 3. Because the generating function of a power law distribution

pk = Cαk−α is given by CαLiα(z) (where Liα(z) is the polylogarithm function of order α):

ν̃(α) =
(CαLiα(z))′′|Q(α)∑

i≥1 iCαi−α
=

Liα−2(1 − ζ (α − 1)−1) − Liα−1(1 − ζ (α − 1)−1)
ζ (α − 1)

,

here ζ (z) is the Riemann zeta function and in the last line we used that Q(α) = 1−ζ (α−1)−1

nd that Liα(z)′ = Liα−1(z)/z. This last expression can be seen to be smaller than 1 for every
α > 3; which means that for every power law distribution of finite second moment, the degree-
greedy algorithm is asymptotically optimal. In particular, whenever it has finite second moment
and ζ (α − 2) > 2ζ (α − 1) (or 3 < α ≲ 3, 478), this distribution will be supercritical but

evertheless the degree-greedy will be asymptotically optimal.

omputing independence ratios. As a consequence of Theorem 2.2, whenever a sequence of
raphs is under its hypothesis and after a finite number of applications of the map M1(·) a
ubcritical distribution is obtained, the asymptotic independence number can be obtained by
omputing the number of vertices in the independent set constructed by the degree-greedy
lgorithm.

roposition 2.2. Given G ∼ CMn(d̄ (n)) where the (C A) holds towards a limiting degree
istribution (pk)k≥0. Then, if the criterion (GC) holds, we will have that

α(G) = n

⎛⎝1 −

∞∑ µ(i)(1)(1 − Qi )
2

+

∞∑
(1 − Q j

i )µ(i)( j)

⎞⎠+ oP(n). (4)

i=1 j=2
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Where µ(i)( j) is the remaining number of degree j vertices over n and Qi is the corresponding
arameter defined in Theorem 2.1, after i applications of the map M1(·) over the limiting degree
istribution of the graph sequence.

roof. During the i th application of the map M1(·), the number of vertices of degree j (where
j ≥ 2) that gets blocked5 is (1 − Q j

i )µ(i)( j). Moreover, for each pair of degree 1 vertices that
et connected to another degree 1 vertex, one gets blocked. The number of degree 1 vertices
hat get blocked is then (1 − Qi )µ(i)(1)/2. So, the size of the independent set obtained will be

minus the total number of blocked vertices. Also, because we are assuming we are in the
ondition of asymptotic optimality of the algorithm, the size of the independent set obtained
ill be the independence number of the graph. □

pper bounds for independence ratios. For sequences of graphs where the asymptotic optimal-
ty condition does not hold, one can nevertheless use Theorem 2.1 to construct upper bounds
n the limiting independence number.

roposition 2.3. Given G ∼ CMn(d̄ (n)) where the (C A) holds towards a limiting degree
istribution (pk)k≥0; if we define c1 := inf{a > 0 : G ′′

D(1 − (a + p1)/(a + λ)) < 1} and (for
≥ 0) p∗

k := (c1δ1k + pk)/(c1 + 1), we will have that

α(G) ≤ n

⎛⎝1 −

∞∑
i=1

µ∗(i)(1)(1 − Q∗

i )
2

+

∞∑
j=2

(1 − Q∗ j
i )µ∗(i)( j)

⎞⎠+ oP(n).

here µ∗(i)( j) is the remaining number of degree j vertices over n and Q∗

i is the corresponding
arameter defined in Theorem 2.1, after i applications of the map M1(·) over the degree
istribution (p∗

k )k≥0.

roof. Define a new graph sequence G∗
∼ CMn(d̄∗(n)) where the (C A) holds towards the

imiting degree distribution (p∗

k )k≥0. This sequence can be thought as the graphs formed by
hanging the degrees of a certain proportion of vertices in the original graphs G to 1 so that
he inequality in Theorem 2.1 holds. The resulting graphs will be distributed as the original
nes with some of its edges removed. Then, because the independence number is monotonic on
dge removal, we will have that α(G) ≤ α(G∗). Finally, using Eq. (4), α(G∗) can be computed
nd thus the desired upper bound is obtained. □

. Proofs

In this Section, we provide proofs for all our results.

.1. Proof of Lemma 2.1 on deterministic graphs

We will prove Lemma 2.1 by induction on the graph size |G|. For |G| = 1 and |G| = 2 the
tatement is trivially true.

Now assume that it holds for |G| = n, we will show that it is thus also true for |G| = n +1.
uppose that it is not the case that |W | = α(G), then there is an independent set A such that

5 Because, as we will see in Section 3.5, Qi is the probability of a single half-edge to be connected to an
ctivated vertex.
132



M. Jonckheere and M. Sáenz Stochastic Processes and their Applications 131 (2021) 122–150

t

P

w

P
t
o
v
c

w

|W | < |A| = α(G). Calling W ′
= (wi )

|W |

i=2, by the induction hypothesis (because W ′ has the T1
property in G1) we know that |W ′

| = α(G1), where G1 is the remaining graph after the first
selection.

Calling n1 the vertex adjacent to w1,6 because the independent set A is of maximum size,
it has to contain either w1 or n1 (if not, one could construct an even larger independent set by
adding w1 to the vertices in A, which would be a contradiction). This implies that

|A| = |A\{w1, n1}| + 1 > |W | = |W ′
| + 1,

which means that |A\{w1, n1}| > |W ′
| which is a contradiction because A\{w1, n1} defines an

independent set of G1 and by hypothesis we have that the independent set defined by W ′ is an
independent set of G1 of maximum size. We then have that W defines an independent set of
maximum size of G, advancing in this way the induction.

Corollary 3.1. If H is a collection of trees, then the degree-greedy algorithm run on H finds
a.s. a maximum independent set.

Proof. Because H is a collection of trees, for every leaf removed by the degree-greedy
algorithm, further leafs (or isolated vertices) will be created. The algorithm will have the
property T1 as it will only select leafs (or isolated vertices). The conclusion is then reached by
Lemma 2.1. □

3.2. Proof of Proposition 2.1

We first deal with the case where G is a subcritical graph.
The proof will extensively use the breadth-first exploration process of the connected

components of different vertices. In this process, vertices in the component explored are
sequentially revealed in a breadth-first manner.

To show the condition for optimality of Proposition 2.1 under this context, we will study
the number B of bad vertices that belong to connected components that are not trees (i.e., have
loops). The idea will be to prove that in a subcritical graph with a degree distribution with an
exponentially thin tail, almost every vertex is in a component that is a tree. Note that this is
not a consequence of the results in [28], as it is not enough to show that the 2-core7 is oP(n)
o conclude this.

roposition 3.1. Let G ∼ CMn(d) where the (C A) holds with a limiting degree distribution
(pk)k≥0 of mean 0 < λ < ∞, criticality parameter 0 < ν < 1 and such that there exists γ > 0

here pk = O(e−γ k). Then, for every 0 < α < 1 we have that B = OP(nα).

roof. By definition we have that B :=
∑

v∈[n] IBv ; where, for every vertex v ∈ [n], we define
he event Bv under which its connected component Cv is not a tree. By the interchangeability
f vertices we have that the mean value of B is equal to E(B) = nP(Bu), where u is a uniform
ertex. For establishing our result we then need to estimate the probability that the connected
omponent of a uniform vertex is not a tree.

The coupling given by Janson et al. in [26] will be instrumental in this argument. Suppose
e are in the step i ≤

√
n of the exploration (the exact power of n is in fact irrelevant, it only

6 Here we will assume that dw1 = 1. The proof is very similar in the case where w1 is an isolated vertex.
7 The 2-core of a graph is the maximum subgraph with minimum degree 2.
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needs to be o(n) and of an order smaller than the components sizes) of the exploration process.
Then the probability of finding a vertex of degree k (excluding the vertices already explored)

ill be upper bounded by

nkp(n)
k

nλ(n) − O(
√

n)
=

kp(n)
k

λ(n) (1 + O(n−1/2)).

Fix ν ′
:= ν + ϵ, where 0 < ϵ < 1 − ν and define a random variable X ∈ N0 distributed

ccording to

P(X ≥ x) = min

(
1,

ν ′

ν

∑
k≥x

(k + 1)pk+1

λ

)
. (5)

s proved in [26], one can naturally associate a random walk to the exploration process (with
ncrements the number of neighbours of the currently explored node) such that for every n large
nough X stochastically dominates the increments of the random walk. As a consequence, we
ill have that if T is the hitting time of 0 of a random walk starting from 1 and with step size

X , |Cv| ≤ T a.s. whenever T ≤
√

n. Because of the specific structure of the random walk (that
oes down only by 1), the variable T can also be thought of as the total progeny of a branching
rocess with offspring given by i.i.d. copies of X . By summing over the expression in (5) we
et that E(X ) ≤

ν′

ν
ν < 1, which means that the associated branching process is subcritical.

Because of this, for every 0 < α1 < 1/2 we have that P(|Cv| > nα1 ) ≤ P(T > nα1 ) (because
n this case, nα1 <

√
n), where as above, T is the total progeny of a subcritical branching

rocess with offspring X , and X is distributed according to (5). By hypothesis, for some γ ′ > 0,
(X = k) = O(e−γ ′k). Then, X will have finite exponential moment and by Theorem 2.1

n [38], so will T . Therefore, by Markov’s inequality, we will have that for every θ > 0

P(T > nα1 ) ≤
E(T θ )
nα1θ

= O(n−β1 ),

here we defined β1 := α1θ .
Furthermore, by an argument8 similar to the one found in the proof of Lemma 4.2 of [25],

he neighbourhood explored by a breadth-first exploration of the component Cu until step mn
s a tree with probability at least m2

n(ν(n)
+ 3)/2ln (where ln is the number of half-edges in the

raph). In our case, we have that by hypothesis ν(n)
= ν + o(1).

Let mn = nα1 , and define β2 := 1 − 2α1. Using these two results, we can then estimate the
robability of Bu as follows

P(Bu) = P(Bu; |Cu | > nα1 ) + P(Bu; |Cu | ≤ nα1 )
≤ P(|Cu | > nα1 ) + P(Bu; |Cu | ≤ nα1 )

≤ O(n−β1 ) + n−β2 (1 + o(1)) = O(n−β).

Where we set β := max{β1; β2}. Because α1, α2 > 0 can be set to be arbitrarily small and β1
rbitrarily close to 1, β can be set to be arbitrarily close to 1. Defining α′

:= 1 − β,

E(B) = nO(n−β) = O(nα′

),

here α′ > 0 is arbitrarily close to 0. The result is then reached by Markov’s inequality. □

This last proposition shows that the number of vertices in components that are not trees is
for every α > 0) OP(nα). Now, define TG as a graph formed by spanning trees of each of

8 For the convenience of the reader, we reproduce the argument in Appendix B.
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the components of G (it is not important which specific ones are chosen). We call WDG(G)
nd WDG(TG) the selection sequences defined by the degree-greedy algorithm run in G and TG

respectively. Observe that the components that are trees look exactly the same in G and TG .
We can then couple the realisations of the degree-greedy algorithm in G and TG to make

them coincide in these components in the following way:

• Call the connected components of G as C1, C2, . . . , Cl and the ones of TG as C ′

1, C ′

2,
. . . , C ′

l .
• Run a degree-greedy algorithm in each of the components. This generates the selection

sequences W1, W2, . . . , Wl for the components of G and W ′

1, W ′

2, . . . , W ′

l for the ones of
TG . If for some j ≤ l the component C j is a tree, then C j = C ′

j and the respective runs
of the degree-greedy algorithm can be trivially coupled to give W j = W ′

j . Couple in this
manner all the selection sequences of all the components that are trees.

• Now, construct WDG(G) inductively as follows: in each step i ≥ 1, count the number
of minimum degree vertices in each component j ≤ l of G i−1 and call this number
d (i)

j . Select component j ≤ l with probability d (i)
j /
∑m

k=1 d (i)
k . Set wi (the i th vertex of

WDG(G)) as the first vertex of W j not already in (w1, . . . , wi−1).
• Finally, construct WDG(TG) in an analogous way but using selection sequences W ′

1, W ′

2,
. . . , W ′

l .

It is straightforward that this construction corresponds to the degree-greedy sequential
xploration in each of both graphs.

The construction was made in such a way that for every component that is a tree, the same
ertices end up in WDG(G) as in WDG(TG). This means by Proposition 3.1 that, at most,
WDG(G)| and |WDG(TG)| will differ in size by OP(nα) (the number of vertices in components
hat are not trees). Besides, TG is a collection of trees and therefore, by Corollary 3.1, the
egree-greedy ran on it will define a selection sequence with the property T1, and then by
emma 2.1 |WDG(TG)| = α(TG). But all the edges in TG are also present in G and so TG will
ave a bigger maximum independent set than G.9 This implies that

|WDG(TG)| = |WDG(G)| + OP(nα) = α(TG) ≥ α(G)

hich in turn implies that (because |WDG(G)| = σDG(G))

|α(G) − |WDG(G)|| ≤ OP(nα)

roving the proposition in the subcritical case.
We now extend the proof for the case in which G is a supercritical graph. Call WDG the

election sequence defined by the degree-greedy algorithm ran on G. We want to show that
WDG | = α(G)+OP(nα). W.h.p. we have that this sequence selects vertices of degree 1 or 0 at
east until the remaining graph is subcritical. Suppose this is so, then there exists some value
0 ≥ 1 s.t. for every k ≥ k0 the remaining graph Gk (see Definition 2.2) is subcritical and for
very l ≤ k0 the vertex WDG(l) has degree either 1 or 0 in Gl .

The idea is to define a selection sequence W̃ that is similar to WDG , has roughly the same
ize and for which |W̃ | ≥ α(G). Calling TGk0

the graph formed by the spanning trees of Gk0 ,
e define the graph G̃ as a copy of G in which the subgraph Gk0 has been replaced by TGk0

.
e can then define a selection sequence W̃ for G̃ that coincides with WDG until step k0. For
≥ k0, because Gk0 is subcritical and the remaining graph of G̃ is a collection of spanning

9 This is because the independence number is monotonically decreasing when adding edges to a graph.
135



M. Jonckheere and M. Sáenz Stochastic Processes and their Applications 131 (2021) 122–150

w

t
o

L
t
I

t

trees of Gk0 (that is, TGk0
), we can make W̃ to have the property T1 and to differ in at most

OP(nα) vertices from WDG in exactly the same way as in the subcritical case. Because W̃ has
the property T1, using Lemma 2.1, |W̃ | = α(G̃). Furthermore, because all the edges present in
G̃ are present in G we have that α(G̃) ≥ α(G). Then,

|W̃ | = |WDG | + OP(nα) = α(G̃) ≥ α(G)

which means that

|α(G) − σDG(G)| ≤ OP(nα)

as we wanted to show.

3.3. Hydrodynamic limit results

In this section we present the results we will use in the remaining of the paper to show
the convergence of processes and stopping times towards deterministic limits. These results
are not necessarily presented in full generality but rather in the most convenient form for the
applications we intend.

Definition 3.1. Given a sequence of countable continuous time Markov jump processes
(A(n)

t (1), A(n)
t (2), . . .) ∈ D[0, ∞)N, for each n ≥ 1 and coordinate k ≥ 1, we will define

its associated Dynkin’s martingales10 by

M (n)
t (k) := A(n)

t (k) − A(n)
0 (k) −

∫ t

0
δ

(n)
k (A(n)

s (1), . . . , A(n)
s (k), . . . )ds,

here δ
(n)
k (·) is the drift of A(n)

t (k).

The following lemma will be our main tool to prove convergence of stochastic processes
owards solutions of differential equations. It is an abstraction of the reasoning behind the proof
f the limits in the main theorem of [12].

emma 3.1. Let (A(n)
t (1), A(n)

t (2), . . .) ∈ D[0, ∞)N be a sequence of countable continuous
ime Markov jump processes where (for each k ∈ N) A(n)

t (k) has drift δ
(n)
k (A(n)

t (1), A(n)
t (2), . . .).

f (for every k ∈ N):

(i) δ
(n)
k (A(n)

t (1), A(n)
t (2), . . .)/n =

∑ik
i1 αi A(n)

t (i)/n, where ik ∈ N
(ii) δ

(n)
k (A(n)

t (1), A(n)
t (2), . . .)/n are uniformly bounded

(iii) A(n)
0 (k)/n

n→∞
−−−→ a0(k) (for some constant a0(k))

(iv) the associated Dynkin’s martingales M (n)
t (k) have quadratic variation of order oP(n2)

hen, if the system of integral equations defined by

at (1) = a0(1) +

∫ t

0
δ

(n)
1 (as(1), as(2), . . .)ds

at (2) = a0(2) +

∫ t

0
δ

(n)
2 (as(1), as(2), . . .)ds

. . .

10 Which are martingales because of Dynkin’s formula [16].
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has a unique solution, the processes A(n)
t (1), A(n)

t (2), . . . converge in probability towards the
ontinuous functions at (1), at (2) that are solutions to the system.

roof. Dividing by n Dynkin’s formula we have that

A(n)
t (1)
n

=
A(n)

0 (1)
n

+

∫ t

0

δ
(n)
1 [A(n)

s (1), A(n)
s (2), . . .]

n
ds +

M (n)
t (1)
n

A(n)
t (2)
n

=
A(n)

0 (2)
n

+

∫ t

0

δ
(n)
2 [A(n)

s (1), A(n)
s (2), . . .]

n
ds +

M (n)
t (2)
n

. . .

Because the associated Dynkin’s martingales have quadratic variation of order oP(n2) by
oob’s inequality we have that, for each k ∈ N, sups≤t |M (n)

s (k)|/n converges in distribution in
[0, ∞) towards 0. Since the δ

(n)
k (·) are uniformly bounded, for every k ∈ N and T > 0, the

equences of processes (A(n)
t (k) − M (n)

t (k))/n are uniformly Lipschitz and uniformly bounded
n [0, T ]. Then, by Arzela–Ascoli’s Theorem, for every T > 0 these families of processes are
ight in C[0, T ]. This implies that for every subsequence there exists subsubsequence such that

A(n)
t (1) − M (n)

t (1)
n

→ at (1)

A(n)
t (2) − M (n)

t (2)
n

→ at (2)

. . .

uniformly in distribution in compact sets, for some continuous functions at (1), at (2), etc. Since
he processes are countable, we may take a common subsubsequence where all this conver-
ences hold. Furthermore, by Skorokhod’s Representation Theorem, there exists an (abstract)
robability space s.t. all these limits and the convergence (for every k ∈ N) of supt |M (n)

t (k)|/n
owards 0 hold uniformly and almost surely in compact sets. Then, for this subsubsequence

A(n)
t (1)
n

a.s.
−→ at (1)

A(n)
t (2)
n

a.s.
−→ at (2)

. . .

By hypothesis δ
(n)
k [A(n)

s (1), A(n)
s (2), . . .]/n =

∑ik
≥i α

(k)
i A(n)

t (k)/n, then
imn δk(A(n)

t (1), A(n)
t (2), . . .)/n = δk(at (1), at (2), . . .). And because all the drifts are uniformly

ounded, taking limit over this subsubsequence and using that A(n)
t (k)/n → a0(k) and

ominated convergence yields

at (1) = a0(1) +

∫ t

0
δ1(as(1), as(2), . . .)ds

at (2) = a0(2) +

∫ t

0
δ2(as(1), as(2), . . .)ds

. . .
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The convergence towards the solution of this system of integral equations is well defined
s, by hypothesis, it has a unique solution. We now need to prove that this convergence is
ot only in this subsubsequence but rather in the whole original sequence. For this, note that
ince the limits are continuous and deterministic, this convergence is equivalent to convergence
n distribution in the Skorokhod topology on D[0, ∞). But because every subsequence has a
ubsubsequence that converges to the same limit (because by hypothesis it is unique), the
riginal sequence converges in distribution to it. Moreover, as the limit is deterministic, the
onvergence can equivalently be taken to be in probability. □

In the following lemma, we will establish convergence criteria for the stopping times of
equences of decreasing processes that converge towards a hydrodynamic limit.

emma 3.2. Let (A(n)
t (1), A(n)

t (2), . . .) ∈ D[0, ∞)N be a sequence of countable continuous
ime Markov jump processes with A(n)

t (1) a decreasing process of transition matrix Q(n)
i j and

efine the stopping times T (n)
:= inf{t ≥ 0 : A(n)

t (1) = 0} and the deterministic time
T := inf{s ≥ 0 : as(1) = 0}. Under the same hypothesis of previous lemma and further
ssuming that:

(i) For every t ≤ T (n) and (if A(n)
t (1) = i ≥ 0),

∑
j≤i Q(n)

i j (A(n)
t (2), . . .) ≥ C (n)n with

C (n) n→∞
−−−→ C > 0

(ii) The function at (1) is continuously differentiable with ȧt (1) ≤ −C ′ (for some C ′ > 0 and
t ≤ T )

hen, T (n) P
−→ T .

roof. Given δ > 0, we want to show that the probability of {|T − T (n)
| ≥ δ} goes to 0. For

his, suppose that T > T (n). Now, suppose that the event {supt≤T |A(n)
t (1)/n − at (1)| ≤ δC ′

}

olds. Then, aT (n) (1) is at most δ/C ′. By hypothesis we have that for every t ≤ T the derivative
f at (1) is less than −C ′, then aT (n)+δ(1) ≤ aT (n) (1) − C ′δ ≤ 0. Therefore, {T − T (n)

≥ δ} ⊆

supt≤T |A(n)
t (1)/n − at (1)| ≥ δC ′

}. And because A(n)
t (1)/n

P
−→ at (1), the probability of this last

vent tends to 0.
On the other hand, now suppose that T (n) > T . If the event {supt≤T |A(n)

t (1)/n − at (1)| ≤

δ/4} holds, the value of A(n)
T /n will be at most Cδ/4. Because by hypothesis A(n)

t (1) is
ecreasing and if A(n)

t (1) = i ≥ 0 the process has transitions to lower states with rate at
east nC (n)

= nC + o(n). If we define (Z t )t≥T to be a pure death process with initial value
ZT = Cδ/4 and death rate nC/2, we can then couple (for n larger than certain n0 ≥ 0) the
rocess A(n)

t to be larger than Z t for t ≥ T . Then, for n ≥ n0, {T (n)
− T ≥ δ} ⊆ {ZT +δ ≥ 0}.

ut, defining X ∼ Pois(nCδ/2), the probability of this last event is equal to P(X ≤ nCδ/4)
nd by Chebychev’s inequality we have that

P(X ≤ nCδ/4) = P(nCδ/2 − X ≥ nCδ/4) ≤ P(|X − nCδ/2| ≥ nCδ/4) ≤
nCδ/2

n2C2δ2/16

=
8

nCδ
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Summarising,

P(|T (n)
− T | ≥ δ) = P(T − T (n) > δ)

+P(supt≤T |A(n)
t (1)/n − at (1)| ≤ Cδ/4, T (n)

− T > δ)
+P(supt≤T |A(n)

t (1)/n − at (1)| ≥ Cδ/4, T (n)
− T > δ)

≤ P(supt≤T |A(n)
t (1)/n − at (1)| ≥ δC ′)

+P(supt≤T |A(n)
t (1)/n − at (1)| ≤ Cδ/4, T (n)

− T > δ)
+P(supt≤T |A(n)

t (1)/n − at (1)| ≥ Cδ/4)
≤ P(supt≤T |A(n)

t (1)/n − at (1)| ≥ δC ′) + P(X ≤ nCδ/4)
+P(supt≤T |A(n)

t (1)/n − at (1)| ≥ Cδ/4)
n→∞
−−−→ 0,

here the last term P(supt≤T |A(n)
t (1)/n − at (1)| ≥ Cδ/4) goes to 0 because we are under the

ypothesis of the previous lemma. □

We now need to establish the convergence of the coordinates of countable Markov jump
rocesses at specific stopping times towards corresponding values of its hydrodynamic limit.
or this, we will use the following corollary.

orollary 3.2. Let (A(n)
t (1), A(n)

t (2), . . .) ∈ D[0, ∞)N be as in the previous lemma. Then, for
very k ∈ N we will have that A(n)

T (n) (k)/n
P
−→ aT (k).

roof. We have that

|AT (n) (k)/n − aT (k)| ≤ |AT (n) (k)/n − aT (n) | + |aT (n) − aT (k)|,

here the first term in the r.h.s. goes w.h.p. to 0 because by Lemma 3.1 A(n)
t (k)/n

P
−→ at (k)

niformly on compact sets (and since T (n) P
−→ T , the T (n) are w.h.p. uniformly bounded); and

he second one because T (n) P
−→ T by Lemma 3.2 and at (k) is continuous. □

.4. Proof of Theorem 2.1

For the analysis of the effect of M (n)
1 (·) we will break the degree-greedy dynamics in two.

n the first phase, we will only connect the vertices of degree 1 and we will accumulate the
umber of free half-edges stemming from the blocked vertices in a variable B(n)

t . We will do
his until we have explored np(n)

1 vertices of degree 1. While in the second phase, we will take
he final value of B(n)

t from phase 1 and we will sequentially match each of this half-edges and
emove the edges formed from the graph.

Because the Configuration Model is not sensitive to the order in which the matching of
alf-edges is done, this will not affect the final degree distribution obtained (which will be the
ame as the one obtained applying the map M (n)

1 (·)) but will nevertheless make the analysis of
he resulting limit easier. As we will see, for the proof of Theorem 2.1 it is enough to analyse
he first of these two phases.

The proof will consist of three parts. First, we give a stochastic description of a Markov
rocess that gives the evolution of the first phase. Then, we establish the concentration of the
symptotic values of the number of unmatched half-edges, the number of unmatched half-
dges stemming from blocked vertices and the normalised degree measure of the vertices not
onnected to any degree 1. Using these convergences we prove that the resulting graph after
hase 1 can be regarded as a Configuration Model with known limiting distribution. Finally,
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these limits combined with an observation from percolation for Configuration Models, allow
us to establish the criteria given by Theorem 2.1.
(i) Stochastic description of the first phase: the stochastic process used to model the first phase

f the matching of the degree 1 vertices will be similar in spirit to the one used in [12] to study
he greedy algorithm. Here, we also keep track of the number of unpaired blocked half-edges in
he random variable B(n)

t . The other variables used to describe the process will be: the number
(n)
t of unpaired half-edges, the number A(n)

t of remaining degree 1 vertices to match and (for
∈ N) the number µ

(n)
t (k) of unexplored degree k vertices.

Then, at each time t ≥ 0 the state of the process will be described by the infinite dimensional
vector (U (n)

t , A(n)
t , B(n)

t , µ
(n)
t (2), µ(n)

t (3), . . .). The process in question evolves as follows: at each
ime t ≥ 0 every degree 1 vertex in A(n)

t will have an exponential clock with rate 1. When
one of the clocks of some of these vertices rings, the vertex is removed from A(n)

t and its
dge is uniformly paired to another unpaired edge. The state of the vertex with the half-edge
elected for the pairing is declared blocked and its unmatched half-edges are added to B(n)

t . The
rocess goes on until there are no more degree 1 vertices to be paired. Because it is defined
y well-behaved transition rates, it is straightforward that the resulting process is Markovian.
he stopping time in which the process finishes will be given by T (n)

1 := inf{t ≥ 0 : A(n)
t = 0}

nd will be a.s. finite.
ii) Convergence of the final values of the coordinates: to analyse the convergence of the final
alue of the number of unmatched half-edges, we denote by {ei ̸↔ (1)} the event under which
he half-edge ei :

(a) does not belong to a degree 1 vertex (i.e., it is not the half-edge stemming from one of
these vertices),

(b) and is not matched during the first phase to a degree 1 vertex.

he set of half-edges ei for which the event {ei ̸↔ (1)} holds are precisely the half-edges that
emain unmatched at the end of the phase.

We will then define the r.v. Y (n)
:=

∑nλ(n)

i=1 1{ei ̸↔(1)} = U (n)

T (n)
1

that gives the number

f unmatched half-edges at the end of the first phase. The convergence will be proved by
howing that this variable concentrates around its mean. For this, we will then first compute
ts corresponding value

E
(
Y (n))

= E

⎛⎝nλ(n)∑
i=1

1{ei ̸↔(1)}

⎞⎠ .

Because half-edges are interchangeable, this is equal to nλ(n)P(e1 ̸↔ (1)). The probability

hat the event {e1 ̸↔ (1)} holds may be seen to be given by nλ(n)
−np(n)

1 −1
nλ(n)−1

nλ(n)
−np(n)

1 −2
nλ(n)−2

=

1 − p1/λ)2
+ o(1).

We then have that

E
(
Y (n))

= nλ(n)(1 − p1/λ)2
+ o(n) (6)

To show the concentration, we will now bound the variance of this variable

Var
(
Y (n))

= E
[(

Y (n))2
]

− E
(
Y (n))2

, (7)
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where the first term in (7) will be given by

E

⎛⎝nλ(n)∑
i ̸= j

1{ei ̸↔(1)}1{e j ̸↔(1)}

⎞⎠+ E
(
Y (n))

Then, defining A := E
(∑nλ(n)

i ̸= j 1{ei ̸↔(1)}1{e j ̸↔(1)}

)
, B := E

(
Y (n)

)
and C := E

(
Y (n)

)2, we
ave that Var

(
Y (n)

)
= A + B − C .

Using that the specific ordering of the edges is irrelevant, the term A can be bounded above
y

nλ(n)(nλ(n)
− 1) [P(e1 ↔ e2) + P(e1 ̸↔ e2, e1 ̸↔ (1), e2 ̸↔ (1))] .

With {e1 ↔ e2} representing the event that e1 is matched to e2 and {e1 ̸↔ e2} its complement.
The probability P(e1 ↔ e2) is given by 1/(nλ(n)

− 1). While the later by

P(e1 ̸↔ (1), e2 ̸↔ (1)|e1 ̸↔ e2)P(e1 ̸↔ e2).

Here, it can be easily seen that P(e1 ̸↔ (1), e2 ̸↔ (1)|e1 ̸↔ e2) =
∏4

k=1

(
1 −

np(n)
1

nλ(n)−k

)
, and

hat P(e1 ̸↔ e2) = 1 + o(1).
We then get that A ≤ nλ(nλ−1)(1− p1/λ)4

+o(n2). Also, by (6), B = nλ(1− p1/λ)2
+o(n)

nd C = n2λ2(1 − p1/λ)4
+ o(n2). This shows that the variance of Y (n) is o(n2).

Using Chebychev’s inequality we then get that (for every ϵ > 0)

P
(
|Y (n)

− E(Y (n))| > ϵn
)

≤
Var

(
Y (n)

)
ϵ2n2 → 0. (8)

hich proves that U (n)

T (n)
1

/n converges in probability towards u1 := (1 − p1/λ)2λ = Q2λ.

The computation for the convergence of the final value of the degree measure will be
ompletely analogous. We first define, for i ≥ 0, the subset of vertices of degree i given
y V (n)

i := {v ∈ V : dv = i}. We then enumerate the vertices in these sets in such a way that
V (n)

i = {v1(i), . . . , vnp(n)
i

(i)}. Furthermore, we represent with {v j (i) ̸↔ (1)} the event that the

ertex v j (i) of degree i is not connected to any degree 1 vertex at time T (n)
1 . Then, (for i ≥ 2)

he random variable Z (n)
i :=

∑np(n)
i

j=1 1{v j (i)̸↔(1)}1{dv j =i} = µ
(n)

T (n)
1

(i) gives the number of degree i

ertices not connected to any degree 1 vertex at the end of the first phase. In other words, Z (n)
i

ives the number of vertices of degree i that remain after the first phase. We first prove that
hese variables converge in probability.

For this, we compute their corresponding mean values

E
(

Z (n)
i

)
= E

⎛⎜⎝np(n)
i∑

j=1

1{v j (i)̸↔(1)}

⎞⎟⎠ ,

hich, because vertices of the same degree are interchangeable, is equal to np(n)
i P(v1(i) ̸↔

1)). This last probability is easy to compute and gives
∏i

l=1

(
1 −

np(n)
1

n
∑

i≥1 i p(n)
i −(2l−1)

)
, which

onverges as n → ∞ to (1 − p1/λ)i .
We then have that

E
(

Z (n)
)

= np(n)(1 − p1/λ)i
+ o(n). (9)
i i

141



M. Jonckheere and M. Sáenz Stochastic Processes and their Applications 131 (2021) 122–150

w

w

w
i
w

a

v

W

b

t
t

s∑
We now bound the variance of these variables

Var
(

Z (n)
i

)
= E

[(
Z (n)

i

)2
]

− E
(

Z (n)
i

)2
, (10)

here the first term in (10) will be given by

E

⎛⎜⎝np(n)
i∑

j ̸=k

1{v j (i)̸↔(1)}1{vk (i)̸↔(1)}

⎞⎟⎠+ E
(

Z (n)
i

)

Then, defining A′
:= E

(∑np(n)
i

j ̸=k 1{v j (i)̸↔(1)}1{vk (i)̸↔(1)}

)
, B ′

:= E
(

Z (n)
i

)
and C ′

:= E
(

Z (n)
i

)2
,

e have that Var
(

Z (n)
i

)
= A′

+ B ′
− C ′. Now, the term A′ can be bounded above by

np(n)
i (np(n)

i − 1) [P(v1(i) ↔ v2(i)) + P(v1(i) ̸↔ v2(i), v1(i) ̸↔ (1), v2(i) ̸↔ (1))] ,

here {v1(i) ↔ v2(i)} represents the event that v1(i) is connected to v2(i) and {v1(i) ̸↔ v2(i)}
ts complement. The term P(v1(i) ↔ v2(i)) can be seen to be o(1). While for the second one
e have that

P(v1(i) ̸↔ (1), v2(i) ̸↔ (1)|v1(i) ̸↔ v2(i)) =
∏i

l=1

(
1 −

np(n)
1

n
∑

i≥1 i p(n)
i −(i+2l−1)

)
×

(
1 −

np(n)
1

n
∑

i≥1 i p(n)
i −(2i+2l−1)

)
,

nd that P(v1(i) ̸↔ v2(i)) = 1 + o(1).
Putting all this together shows that A′

≤ n(n −1)(1− p1/λ)2i (p(n)
i )2

+o(n2). Finally, by (9),
B ′

= n(1 − p1/λ)i p(n)
i + o(n) and C ′

= n2(1 − p1/λ)2i (p(n)
i )2

+ o(n2). Which proves that the
ariance of Z (n)

i is o(n2).
By Chebychev’s inequality this implies that

P
(
|Z (n)

i − E(Z (n)
i )| > ϵn

)
≤

Var
(

Z (n)
i

)
ϵ2n2 → 0. (11)

hich in turn means that for any initial asymptotic degree distribution that is bounded, all the
Z (n)

i /n will converge jointly in probability to (1− p1/λ)i pi . But because
(

Z (n)
i

)
n≥0

is bounded

y (p(n)
i )n≥0 and this last sequence is eventually uniformly summable, then(

Z (n)
2 /n, . . . , Z (n)

i /n, . . .
)

P
−→ (µ1(2), . . . , µ1(i), . . .) :=

(
Q2 p2, . . . , Qi pi , . . .

)
. (12)

Furthermore, because we have that (for all t ≥ 0) U (n)
t = A(n)

t + B(n)
t +

∑
∞

i=2 iµ(n)
t (i) a.s.,

he normalised number BT (n)
1

/n of unmatched half-edges stemming from blocked vertices at
he end of the first phase converges in probability towards b1 := u1 −

∑
∞

i=2 iµ1(i).
Finally, as

∑
k≥1 k2 p(n)

k converges towards
∑

k≥1 k2 pk , then these sums are uniformly
ummable. And because, for every k ≥ 2, we have that µ

(n)

T (n)
1

(k)/n ≤ p(n)
k , the sums

k≥2 k2µ
(n)

T (n)
1

/n will also be uniformly summable. This implies that∑
k2 p(n)

k µ
(n)

T (n)
1

/n
P
−→

∑
k2µ1(k).
k≥2 k≥2
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We then recover the (CA) for the degree distribution of the remaining graph after the first phase.
This means that, if we regard the unexplored blocked half-edges as degree 1 vertices, the graph
obtained when the first phase is finished can be treated as a Configuration Model11 with limiting

egree distribution p̃1 = b1/K = (u1 −
∑

i≥2 µ1(i))/K , and (for k ≥ 2) p̃k = µ1(k)/K (where
K is just a normalisation constant).
iii) Criteria for subcriticality: here we will establish under which circumstances the graph
btained after applying the map M (n)

1 (·) is w.h.p. subcritical. Note that, to do so, one in principle
as to analyse what happens to the degree distribution during the second phase of the dynamics
nd then determine if the distribution obtained is subcritical or not. But the second phase of the
ynamics is equivalent to matching B(n)

T (n)
1

degree 1 vertices and then removing these vertices

nd the edges so formed. In the same way as was discussed in [30], matching degree 1 vertices
nd then removing them and their edges from the graph does not modify the criticality of a
onfiguration Model graph with finite second moment. This is so because, for each degree 1
ertex removed, the largest connected component’s size is reduced at most by 1. And therefore,
ecause by Theorem 2.3 in [29] giant components in this setting have a positive proportion of
ertices of degree larger than 1, after removing all the degree 1 vertices a positive proportion of
he vertices in the giant component will remain. Therefore, if a giant component was already
resent before the removal, there will still be one after it. This is not true for larger degree
ertices.

We can then establish the subcriticality of the graph after applying M (n)
1 (·) just by computing

he criticality parameter ν̃ of a graph of limiting degree distribution ( p̃k)k≥1.
By explicitly computing the criticality parameter we obtain that

ν̃ =

∑
i≥2 i(i − 1) p̃i∑

i≥1 i p̃i
=

1
λ

∑
i≥2

i(i − 1)Qi−2 pi = G ′′

D(Q)/λ. (13)

y Theorem 2.3 [29], the obtained graph is subcritical when this parameter is strictly less than
. The conclusion then follows by Proposition 2.1.12

.5. Proof of Theorem 2.2

The structure of the remaining of the proof the following. We will first give the description
f the stochastic process associated to the second phase of the dynamics. After this, we use
he results in Section 3.3 to establish hydrodynamic limits for this process. Finally, we use this
imits to prove the statement of the theorem.
i) Stochastic description of the second phase: this phase of the dynamics consists of sequen-
ially matching the half-edges of blocked vertices and removing the edges so formed. This is
one until no more unmatched blocked half-edges remain. In this phase, the states of vertices
re not changed, only their degrees; and so, no vertex is added to the independent set.

Initially, we have that graph has B(n)

T (n)
1

unmatched blocked half-edges and (for k ≥ 2) µ
(n)

T (n)
1

(k)

nexplored vertices of degree k. Because of the results of step (ii) of the proof of Theorem 2.1
e have that B(n)

T (n)
1

/n
P
−→ Q2λ −

∑
i≥2 i Qi pi and (for every k ≥ 2) µ

(n)

T (n)
1

(k)/n
P
−→ Qk pk .

11 For this we also need the number of remaining vertices to tend to infinity when n → ∞, but this can be easily
hecked to be the case if p1 < 1.
12 At first sight, one could only apply this proposition for distributions with asymptotically exponentially thin
ails. But, as shown in Lemma 3.3, this will be true for every degree distribution after applying the map M1(·) one
ime.
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Then, at each time t ≥ 0 the state of the process will be described by the infinite dimensional
vector (U (n)

t , B(n)
t , µ

(n)
t (0), µ(n)

t (1), . . .). The process in question will evolve as follows: at each
ime t ≥ 0 every unmatched blocked half-edge will have an exponential clock with rate

(n)
t /B(n)

t (and, when B(n)
t = 0, we define the transition rate as 0). When one of the clocks

f some of this half-edges rings, it is uniformly matched to another free half-edge and the
dge formed is removed from the graph. The process will go on until there are no more free
locked half-edges to be paired. Because it is defined by well-behaved transition rates, it is
traightforward that the resulting process is Markovian.
ii) Hydrodynamic limit of the second phase: here we establish the convergence of the process
ssociated to the second phase of the dynamics towards the solutions of a set of differential
quations. As before, we first find the drifts associated to each one of the coordinates of the
tate vector:

• With rate U (n)
t , the clock of one of the free blocked half-edges rings, at which point it is

paired to another free half-edge. So, U (n)
t has a drift given by δ(U (n)

t ) := −2U (n)
t .

• With rate U (n)
t , the clock of one of the free blocked half-edges rings, at which point two

things can happen: with probability B(n)
t

U (n)
t

the half-edge is matched to another free blocked

half-edge and therefore B(n)
t is reduced by 2; or with probability U (n)

t −B(n)
t

U (n)
t

is matched to a

half-edge belonging to an unexplored vertex and B(n)
t is only reduced by 1. So, B(n)

t has
a drift given by δ′(U (n)

t , B(n)
t ) := −(B(n)

t + U (n)
t ).

• Finally, with rate U (n)
t , the clock of one of the free blocked half-edges rings and if

matched to an unexplored half-edge, an unexplored vertex is selected according to the
size-biased distribution and has one of its half-edges removed. This means that (for each

k ≥ 0) with probability kµ
(n)
t (k)

U (n)
t

a degree k vertex is selected to be matched and therefore

µ
(n)
t (k) is reduced by 1 and µ

(n)
t (k − 1) is increased by 1. So, µ

(n)
t (k) has a drift given by

δk(µ(n)
t (k)) := −kµ

(n)
t (k) + (k + 1)µ(n)

t (k + 1).

Fix some δ > 0, then the sequence of processes U (n)
t
n , B(n)

t
n and (for every k ≥ 0) µ

(n)
t (k)

n , are
(for n large enough) uniformly bounded by λ + δ. They are then uniformly bounded. This, in
turn, means that all the drifts associated to the coordinates of (U (n)

t , B(n)
t , µ

(n)
t (0), µ(n)

t (1), . . .)
re uniformly bounded.

By the results shown in the proof of Theorem 2.1, U (n)
0 /n → λQ2, B(n)

0 /n → λQ2
−

i≥2 i Qi pi and (for every k ≥ 0) µ
(n)
0 (k)/n → Qk pk1k≥2.

Here we will denote the Dynkin’s martingales associated to U (n)
t , B(n)

t and (for each k ≥ 0)
(n)
t (k) by M (n)

t , M ′(n)
t and N (n)

t (k), respectively. These are all martingales of locally finite
ariation. Therefore, their quadratic variation will be given by

[M (n)
t ]t =

∑
0≤s≤t

(∆M (n)
s )2

=

∑
0≤s≤t

(∆U (n)
s )2

≤

∑
s≥0

(∆U (n)
s )2

≤ 4B(n)
0 = O(n) (14)

[M ′(n)
t ]t =

∑
0≤s≤t

(∆M ′(n)
s )2

=

∑
0≤s≤t

(∆B(n)
s )2

≤

∑
s≥0

(∆B(n)
s )2

≤ 4B(n)
0 = O(n) (15)

[N (n)
t (k)]t =

∑
0≤s≤t

(∆N (n)
s (k))2

=

∑
0≤s≤t

(∆µ(n)
s (k))2

≤

∑
s≥0

(∆µ(n)
s (k))2

≤ Qk p(n)
k n = O(n)

(16)
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Now, the corresponding system of integral equations (as presented in Lemma 3.1) will be
iven by

ut = λ −

∫ t

0
2usds, (17)

bt = b0 −

∫ t

0
(bs + us)ds, (18)

µt (k) = Qk pk1{k≥2} +

∫ t

0
(k + 1)µs(k + 1) − kµs(k)ds. (19)

he first two equations can be directly integrated to give

ut = λQ2e−2t , (20)

bt = Q2λe−2t
− e−t

∑
i≥2

i Qi pi . (21)

While for Eqs. (19) with k ≥ 1, they can be seen to have normal modes given by

ηk(i) = (−1)k−i
(

k
i

)
1{i≤k} (22)

where i ≥ 1 and with associated eigenvalues ωk = −k.
Furthermore, the uniqueness of these solutions can be proved by decoupling the system, and

writing it in the base of the normal modes. This results in a countable number of independent
equations with Lipschitz derivatives and the uniqueness then follows by standard ODE theory
(see, for example, [11]).

We are thus under the conditions of Lemma 3.1 and we will therefore have that, uniformly
in compact sets, U (n)

t /n
P
−→ ut , B(n)

t /n
P
−→ bt and (for every k ≥ 0) µ

(n)
t (k)/n

P
−→ µt (k).

Moreover, if we define the stopping time T (n)
2 := inf{t ≥ 0 : B(n)

t = 0} and the deterministic
ime T2 := inf{t ≥ 0 : bt = 0}, it can be proved that the conditions of Lemma 3.2 hold. For
his, first note that B(n)

t is in fact decreasing (it only transitions to states of lower value) and
hat for every i ∈ N if B(n)

t = i then the transition rate to lower states is given by∑
j≤i

Qi j = E (n)
t + B(n)

t = U (n)
t .

Because for every t ≤ T (n)
2 we have that U (n)

t ≥ U (n)
0 − 2B(n)

0 , if the initial proportion of
locked vertices if smaller than 1/2 then U (n)

t will be uniformly lower bounded by a positive
umber. But because of Lemma A.1 of Appendix A, the proportion of blocked vertices will
rop w.h.p. (for any initial value) below 1/2 at a time where U (n)

t is still a positive proportion
f n. And so, the strict positivity of U (n)

t /n will still be true.
Furthermore, if we define λ̃ :=

∑
i≥2 i Qi pi , T2 can be explicitly found to be given by

og(Q2λ/λ̃) = − log Q̃. Since (for every t ≤ T2)

ḃt = −2Q2λe−2t
+ e−t λ̃ = e−t

(
λ̃ − 2Q2λe−t

)
or t ≤ T2, e−t

≥ Q2λ/λ̃ and λ̃− 2Q2λe−t
≤ −λ̃. Then, the right hand side of this expression

s smaller than or equal to −Q2λ for this range of times, and thus we can apply Lemma 3.2
(n) P
o show that T2 −→ T2.
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4

a

UT (n)
2

/n
P
−→ uT2

BT (n)
2

/n
P
−→ bT2

µT (n)
2

(1)/n
P
−→ µT2 (1)

µT (n)
2

(2)/n
P
−→ µT2 (2)

. . .

Finally, because
∑

k≥1 k2 p(n)
k converges towards

∑
k≥1 k2 pk , then these sums are uniformly

summable. And because by Lemma 3.3, we have that µ
(n)

T (n)
2

(k)/n is OP(e−γ k) (for some γ > 0),

he sums
∑

k≥2 k2µ
(n)

T (n)
2

/n will be w.h.p. eventually uniformly summable. This implies that∑
k≥1

k2 p(n)
k µ

(n)

T (n)
2

/n
P
−→

∑
k≥2

k2µT2 (k).

We then recover the (CA) for the degree distribution of the remaining graph after the second
hase. This means that the graph obtained when the second phase is finished can be treated as
Configuration Model with limiting degree distribution (for k ≥ 1) p̃k = µT2 (k)/Z , where Z

s just a normalisation constant.
Finally, we show that the condition of exponentially thin tails in Proposition 2.1 is not

eally restrictive, as every initial distribution results in a distribution with this property after
ne application of the map M (n)

1 (·).

emma 3.3. Under the same hypothesis of Theorem 2.1 and further assuming that p1 > 0,
hen M1(pi )(k) is O(e−γ k) with γ := − log(Q) > 0.

roof. Recall that M1(pi )(k) is given by the kth coordinate of the solution of the system (19)
t time T2. It can then be seen to be smaller than or equal to the kth coordinate of the solution
f the modified system⎧⎪⎨⎪⎩

µ̃t (i) = Qi pi +
∫ t

0 (i + 1)µ̃s(i + 1) − iµ̃s(i)ds, if i > k
µ̃t (i) = Qi pi +

∫ t
0 (i + 1)µ̃s(i + 1)ds, if i = k

µ̃t (i) = Qi pi , if 1 ≤ i < k

t time T2.
Furthermore, the kth coordinate of this system can be easily shown to converge monotoni-

ally µ̃t (k) ↗
∑

∞

i=k µ̃0(i) as t → ∞. Then,

µT2 (k) ≤ µ̃T2 (k) ≤

∞∑
i=k

µ̃0(i) =

∞∑
i=k

µ0(i) ≤ C
∞∑

i=k

Qk
= O(Qk),

here C > 0 is some constant. □

. Possible extensions

In this work we showed that, for a random graph with given degrees, if the degree-greedy

lgorithm selects only degree 1 or 0 vertices until the remaining graph is subcritical, then the
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independent set obtained by it is of the same size as a maximum one up to an error term smaller
than any positive power of the graph size. We then characterised for which asymptotic degree
distributions this happens and gave a way of computing their independence ratio.

It is still an open issue to show if the independent set found is always maximum asymptot-
cally a.s. as in the Erdös–Rényi case; and if not, under which conditions it is.

In Section 2.4 we explained how, changing higher degree vertices by degree 1 vertices,
upper bounds can be obtained for the independence number of general graphs. It would be
possible, in principle, to obtain tighter bounds by finding an optimal way of dominating the
studied graphs by a graph in which the degree-greedy algorithm is asymptotically optimal.

Furthermore, Lemma 3.3 seems to suggest that the pairing of degree 1 vertices quickly
generates an exponential tail in the resulting degree distribution. We then conjecture that the
condition of finite second moment in Theorems 2.1 and 2.2 could in fact be avoided, extending
the result to heavy-tailed distributions.

Finally, the Glauber dynamics’ invariant measure is known (under certain limits) to con-
centrate around maximum independent sets. Nevertheless, when characterised in this limit, the
mixing times are exponential in the graph size. The results of this work might help in showing
that the mixing time could be reduced by starting the dynamics from an independent set found
by a degree-greedy algorithm.

Declaration of competing interest

There is no conflict of interest.

Appendix A. Pairing urn model

Suppose we have the following urn problem, which we will refer to as the Pairing urn model.
Initially we have an urn with k red balls and n − k white balls. At each step of the process, a
red ball is removed and after that a second ball is chosen uniformly from the urn and is also
removed. The process is continued until there are no more red balls left. What we will prove
here is that, if k(n) = X0n+o(n) (for some 0 < X0 < 1), then the proportion of red balls drops

.h.p. below 1/2 in a time where there are still a positive proportion of the balls still in the
rn. We will denote by (Ri )i∈N the process that gives at each step i ≥ 1 the number of red balls
emoved so far. We will also define the stopping time T := inf{i ≥ 0 : (k − Ri )/(n−2i) < 1/2}

hen the proportion of red vertices drops below 1/2.

emma A.1. Let 0 < X0 < 1 be the asymptotic initial proportion of red balls in a pairing
rn process of urn size n ∈ N, then w.h.p. T < n/2.

roof. Assume that k > n/2 (if not, the conclusion is trivial). We will compare (Ri )i∈N to a
econd process (R̃i (l))i∈N, where l(n) is some function of n to be fixed later. At each step i ≥ 1,

R̃i (l) will give the total number of red balls removed so far from an urn without replacement
ith initially k − l red and n −k white balls. We will denote by X i and X̃ i (l) the corresponding
roportion of red balls in the urns for both processes.

At each time j ≥ 1 the probability of drawing a red ball for the pairing urn is given by a
ernoulli r.v. of parameter X j = (k−R j )/(n−2 j) and the corresponding probability for the urn
ithout replacement will also be a Bernoulli r.v. of parameter X̃ j (l) = (k−l− R̃ j (l))/(n−l− j).
e can then couple both selection probabilities by the usual coupling for two Bernoulli

ariables. Defining T := inf{i ≥ 1 : X ≤ X̃ (l)}, we will then have that, for every i ≤ T ,
l i i l
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Ri − i ≥ R̃i (l). Now, suppose that Tl > l, then at step l we will have that Rl − l ≥ R̃l(l) which
mplies that the proportion of vertices obeys

Xl =
k − Rl

n − 2l
≤

k − l − R̃l(l)
n − 2l

= X̃l(l), (23)

hich contradicts the hypothesis that Tl > l. We will then have that Tl ≤ l a.s. At each step
≥ 1, the corresponding value of X̃ i (l) will be distributed according to

P(R̃i (l) = n − l − m) =

( k−i
(k−i)−m

)( n−k
m−(k−2i)

)(n−i
i

) . (24)

If l(n)/n is bounded away from 1, then by Theorem 2.4 in [2] we will then have that

P

(
max
i≤l

X̃ i − X̃0 ≥ δ

)
n→∞
−−−→ 0. (25)

Because Tl ≤ l, by fixing l = 2k + δ′
− n (where δ′ > 0 small enough), gives X̃0(l) < 1/2;

hich implies that the proportion of red balls for the first process will drop in a finite time
elow 1/2. Then, if there exists a δ′ such that 2l < n, the number of remaining balls in the urn
t time l will be a positive proportion of n (i.e., T < n/2) as in each step exactly two balls
re removed. It is easy to check that there will exist such δ′ whenever X0 < 3/4.

Let us see that when the initial proportion of red vertices is higher than 3/4 our claim
s still true. To prove this, we will work inductively. Call a1 := 1/2 and (for every i ≥ 2)
i := 1 − (2/3)i . We will suppose that initially X0 ∈ [a j , a j+1). We will prove that the
rocess arrives at the interval [a j−1, a j ) in a finite time and with a positive proportion of

of balls left in the urn. This will follow from the same argument as above by fixing
(n) = ((X0 − a j )/(1 − a j ) + δ′′)n, for some δ′′ > 0 small enough. This value of l(n) will
hen give that X̃0(l) < a j and l(n) < (1/3 + δ′′)n, assuring that the same reasoning as before
an be used. Because these intervals are a partition of (1/2, 1), if the pairing urn starts with
ny initial proportion of red balls higher than 1/2, it will eventually (after going through a
nite number of intervals) drop below 1/2 at a time where there are still a positive proportion
f balls in the urn. Which is equivalent to say that T < n/2. □

ppendix B. Probability of a connected component being a tree

The proof here follows the coupling described in the proof of Lemma 4.2 of [25]. In fact,
he argument presented is a slight modification of a part of the proof of this lemma. The idea
s to couple the exploration of the component with a branching process that has for the root

number of children given by the degree distribution (p(n)
k )k≥1 and for the other individuals,

he associated size-biased distribution. As explained in further detail in [25], the construction
f this branching process can be thought of as exploring13 the component without removing
he vertices already explored or the half-edges already matched. Then, the exploration of the
omponent and the branching process can be coupled to coincide as long as in the whole
xploration, no vertex is visited more than once by the branching process and no half-edge is
hosen for matching multiple times.

Here we will upper bound the probability that any of these two events happen. If none of
hem do, then the component will match the tree constructed by the branching process and it
ill therefore be a tree.

13 The exploration process here described goes as follows, in each step an unexplored vertex (which is a neighbour
of an already explored one) is explored and the number of unexplored neighbours it has is revealed. The process
goes on until there are no more vertices available to explore.
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Probability of a half-edge reuse. At time m − 1 of the exploration, there are at most 2m − 1
alf-edges already matched. Then, the probability that the half-edge selected to be matched
t step m is one of the already matched ones is at most (2m − 1)/ ln; where, as before, ln is

the number of half-edges in the graph. Thus, the probability that a half-edge is selected to be
matched more than once up to step mn of the exploration can be upper bounded according to

mn∑
i=1

2i − 1
ln

=
mn(mn − 2)

ln
≤

m2
n

ln
.

robability of a vertex revisit. For the branching process, the probability of visiting vertex v

t step m does not depend on m and is equal to dv/ ln . Then, the probability that vertex v is
isited twice before the step mn is upper bounded by mn(mn − 1)d2

v/ l2
n . Then, the probability

hat some vertex is visited more than once up to the step mn of the exploration is at most

mn(mn − 1)
2l2

n

∑
v∈[n]

d2
v =

mn(mn − 1)
2ln

∑
v∈[n] d2

v∑
v∈[n] dv

=
mn(mn − 1)

2ln
(ν(n)

+ 1) ≤
m2

n

2ln
(ν(n)

+ 1).

Finally. summing these two upper bounds gives the bound used in the proof of
roposition 3.1.
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