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Hidden Markov models assume a sequence of random variables to be conditionally independent given 

a sequence of state variables which forms a Markov chain. Maximum-likelihood estimation for these 

models can be performed using the EM algorithm. In this paper the consistency of a sequence of 

maximum-likelihood estimators is proved. Also, the conclusion of the Shannon-McMillan-Breiman 

theorem on entropy convergence is established for hidden Markov models. 
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1. Introduction 

Hidden Markov models form a large and useful class of stochastic process models, 

in which series of counts, proportions, or multivariate observations are described 

with equal ease. These models are based on a Markov chain {Xi} which describes 

the evolution of the state of a system. Given a realized sequence of state variables 

{xi}, observed variables { Yi} are conditionally independent, with the distribution of 

each Yi depending on the corresponding state xi. In estimation problems the 

distribution of Y, is assumed to belong to a parametric family and the state space 

is assumed finite. The special case of the hidden Markov model in which the observed 

variables have only finitely many values is referred to as a probabilistic function of 

a Markov chain; this model was introduced by Baum and Petrie (1966). 

There is a clear analogy between hidden Markov models and state-space models, 

for example the linear state-space model: 

xi = Fxi_,+ x, 

y, = HX,+ W,, 

described by sequences of unobserved state variables {Xi}, observations {Y}, and 

noise variables {V;} and { Wi}. In many applications of state-space models, the goal 

is reconstruction of a value Xi based on an observation set Y1 , . . . , Y,,, i.e., filtering 

if i = n, smoothing if i < n, or prediction if i > n. In the classical model with normal 

errors reconstruction is performed using the Kalman filter. The analysis of non- 

normal and non-linear state-space models has also been considered; for example, 
. 
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Kitagawa (1987) gives recursive equations for filtering, smoothing, and prediction 

which are valid quite generally (see also Kohn and Ansley, 1987). The key elements 

seem to be a state process which is Markov and an observation sequence constructed 

from a conditionally independent sequence, given the state process. Thus we find 

overlap with hidden Markov models. 

Reconstruction has also been a prime concern in the study of hidden Markov 

models. The forward-backward algorithm contained in the iterative likelihood- 

maximization algorithm of Baum et al. (1970) can be used for reconstruction of the 

underlying Markov chain. Also, versions of the smoothing and filtering equations 

of Kitagawa (1987) were derived in Askar and Derin (1981) and Lindgren (1978) 

for hidden Markov models. 

Recent applications of hidden Markov models include those of Churchill (1989) 

to sequences of bases of a DNA molecule, Smith (1987) to the occurrence of rainfall, 

and Levinson, Rabiner, and Sondhi (1983) to the modelling of a speech generating 

source for automatic speech recognition. 

Estimation of the parameters of a hidden Markov model has most often been 

performed using maximum-likelihood estimation. Baum and Eagon (1967) gave an 

algorithm (a special case of the EM algorithm; Dempster, Laird and Rubin, 1977) 

for locating a local maximum of the likelihood function for a probabilistic function 

of a Markov chain. Baum et al. (1970) developed the EM algorithm and applied it 

to general hidden Markov models. The large-sample behaviour of a sequence of 

maximum-likelihood estimators for a probabilistic function of a Markov chain was 

studied in Baum and Petrie (1966) and Petrie (1969). Lindgren (1978) proved a 

consistency property of maximum-likelihood estimators obtained for the model 

which assumes that { Yi} is an independent sequence from a finite mixture distribu- 

tion. Lindgren’s result states that, in case { Yt} actually follows a hidden Markov 

model, the maximum-likelihood estimators obtained under the independence model 

are consistent for the stationary distribution of { Yi}. 

In this paper the consistency of maximum-likelihood estimators is proved for 

general hidden Markov models. The next section displays the notation and required 

regularity conditions and establishes an ergodicity property. Section 3 examines the 

identifiability of hidden Markov models. The Shannon-McMillan-Breiman theorem 

on entropy convergence is proved for hidden Markov models in Section 4, and 

Section 5 contains a more general result which provides a generalization of Kullback- 

Leibler divergence. The consistency proof given in the final section follows the 

method of Wald (1949). 

2. Notation and preliminary results 

Let {Xi}Em be a stationary Markov chain with state space { 1, . . . , m} and transition 

probability matrix [a+]. Let {f( ., 0): 13 E O} be a family of densities on a Euclidean 

space with respect to a measure CL, and 0,). . . , 0, elements of 0. { Yi}$ is a 
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sequence of conditionally independent random variables, given a realization {xi} 

of {Xi}, with Y having conditional density f( . , &). 

The characteristics of the model are parameterized by 4 which belongs to a 

parameter space @, a subset of a Euclidean space, i.e., we have cyik(4),j, k = 1, . . . , m, 
and /3,(4)~O,j=l,..., m. The usual case is 4 = (LY,, , (Y,~, . . . , a,,, 01, . . . , O,), 

and aik( .) and 0,(. ) equal to coordinate projections. The true parameter value will 

be denoted #,,. 

The likelihood function for observations y, , . . . , y, is 

and a maximum-likelihood estimate is defined to be a point & at which p,, achieves 

its maximum value over @. The initial probability distribution used in the definition 

of likelihood is not necessarily the stationary probability distribution for the stochas- 

tic matrix [LQ(~)], but any probability vector {(Y;‘)} with strictly positive elements. 

It turns out that consistency of maximum-likelihood estimators does not depend 

on the choice of (positive) al*‘. 

The mild regularity conditions to be used are stated below for future reference. 

Condition 1. The stochastic matrix [cI~~(&J] is irreducible. 

Condition 2. The family of mixtures of at most m elements of {f(y, 0): f3 E 0) is 

identifiable (see Remark 1 below). 

Condition 3. For each y,f(y, . ) is continuous and vanishes at infinity. 

Condition 4. For each j, k, alk(. ) and t?,( ’ ) are continuous. 

Condition5 E,[Jlogf(Y,,B,(~,))I]<co,j=l,...,m. 

Condition 6. For every 0 E 0, E,,[sup,,e._s,lcs(logf( Yr , O’))‘] <co, for some S > 0, 

(I/.)) is Euclidean distance and x+ = max{x, 0)). 

Remark 1. Condition 2 means that a finite mixture with m or fewer components 

determines a unique mixing distribution, i.e., 

jg, a$(y, 4) = jgI a:f(v, 0:) a.e. dp(y) * f a$, = ? aI%;, (1) 
j=1 j=l 

where SB denotes the distribution function of a point mass at 0. Notice that the 

parameters (Y,, . . . , a,, el,. . . , 8, are not themselves uniquely defined. Many 

families, including the Poisson, normal with fixed variance, and exponential, satisfy 

(1) for any m (and in fact the family of arbitrary mixtures is identifiable in these 

cases). The binomial family with fixed index k satisfies (1) if k 3 2m - 1. 
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Remark 2. Condition 1 seems necessary to exclude the possibility that {Xi} enters 

a transient state, in which case information on certain parameters would stop 

accumulating. By the following lemma, the stationarity of {Xi} and condition 1 

together imply that { Yi} is ergodic, an essential property for the limit theorems to 

be presented. 

Lemma 1. If {Xi} is stationary and irreducible, then { Yi}?= is ergodic. 

Proof. Let & be a shift invariant set of sequences {Y,}?~ (possible realizations of 

{Y}). This means that y E d if and only if Ty E & for the shift operator T which 

shifts each element of a sequence back one position, i.e., Ty = y’ where yi = Y,+~. 

We must show that P{ Y E &} is either zero or one. 

According to the Kolmogorov extension theorem, there is a subsequence {k’} and 

cylinder sets &, depending on (Y_~‘, . . . , yk’) such that, for every k b 1, 

P{YEs~A.&,}<~~~, (2) 

where Y stands for { Yi}Tm and A is the symmetric difference operator (E A A = 

(E n A”) u (EC n A)). But, since Y is stationary and d is invariant, 

= P{ YE ti A T-2k’&} 

=P{YE&Adp}, (3) 

where &&’ = T-2k’ &&‘= {y: Tzk’y E &‘} depends On (yk’, . . . , Y3k’). Now let 2 = 

{&&, i.o.}=n,_, Ujzk &. Th en ~c~~‘=~c~{~k~,~.O.}~{~c~~k~,~.O.} and 

& n 2’~ &n {SC& 
,’ 

i.o.} = {&’ n &., i.o.}, so (2), (3), and the Borel-Cantelli lemma I 
imply P{ YE d A ti} = 0. Thus it suffices to show P{ Y E &} is either zero or one. 

Now 2 is in the tail a-field, i.e., for every k it depends only on (yk, yktl, . . .). 

Since the Y, are conditionally independent given a realization x = {xi} of the _ 
underlying Markov chain, the zero-one law implies that P{ Y E Op (x} is either zero 

or one. Let E={x:P{YE~[x}=I}, so P{YE~}=E[P{YE~~X}]=P{X~E}. 

Now E is an invariant set, since 

P{YE~~~}=P{TYE~~T~}=P{Y&?‘IT~} 

(2 is invariant). But a finite irreducible Markov chain is ergodic and therefore 

P{X E E} is either zero or one; this completes the proof. 0 

Before developing the required probabilistic tools for the proof of consistency, 

we compactify the parameter space @ by adding to it limits of Cauchy sequences 

and denote the resulting space @’ (see Kiefer and Wolfowitz, 1956, where this 

device was first used in the context of maximum-likelihood estimation). TO explain 

this concept, we explicitly describe the new parameter space in the case that 

(a11,(Y12 ,..., ff,,,,,@l ,..., ern):aik~O,Cffjk=l,BjEO . 
k 



B.C. Leroux / MLE for hidden Mnrkov 131 

Denote by 0’ the one-point compactification of 0, obtained by attaching to 0 a 

point denoted ~0, and extend f(y, *) to 0’ by defining f(y, CO) = 0 (for example, if 

f(y, .) is the Poisson density with mean 8, then O’= [0, CO]). The compactified space 

@” is then 

1 (Q: 11, ~12,.~.,Qrnrn, I,*.., I3 Rn): ajj( ao,c CYJk = 1, e, E 0’ . 
k I 

For the general parameterization, (a,,(4), (u,,(4), . . . , a,,,,(~$), O,(qb), . . . , O,(+)) 
will still belong to the set in (4) for all parameter values after compactification. 

Condition 3 ensures that f(y, *) is continuous on all of 0’; also, the continuity of 

fI(. ) and cyjh-(. ) extends to CD”. 

3. Identifiability 

The parameters of a hidden Markov model are not strictly identifiable. For instance, 

as with finite mixture distributions, the indices of the states of the Markov chain 

can be permuted without changing the law of the process (0,) and hence also the 

law of {x}. 

Define an equivalence relation - on W, whereby 4, -#J? if and only if 4, and 

& define the same law for {&}. Let 6 denote the equivalence class to which 4 

belongs. Notice that the law of { 0,) is determined by the initial distribution of {X,} 

and there may be more than one initial distribution for which the process {Xi} is 

stationary. To accommodate such parameters, we extend the definition of 

equivalence to allow somewhat arbitrary choices of initial distributions for X; more 

precisely, 4, - & if and only if there are initial probability distributions (~~1 and 

CY’” such that the following holds: 

(i) for I = 1,2, {&($,)} is a stationary process, where {Xi1 has transition prob- 

abilities ajk(#!) and initial distribution cr’~; 

(ii) the processes {&(&)} and {&,(#,)} have the same laws. 

For example, all parameters 4, with e(+,) = (A, A)’ are in the same equivalence 

class, and also in this class is the parameter & with 

If e,(4), . . . , e,(4) are distinct and [ajk( &)] is irreducible and aperiodic, so has a 

unique stationary distribution (Karlin and Taylor, 1975, Chapter 3), then 6 only 

contains points obtained by permutations of the indices of the states of {Xi}; this 

corresponds to a finite mixture distribution with distinct support points and positive 

mixing proportions. Baum and Petrie (1966) and Petrie (1969) consider the iden- 

tifiability question for probabilistic functions of a Markov chain. 
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The following lemma shows that the equivalence classes are identifiable, in the 

sense that two parameter values in different equivalence classes produce different 

stationary laws for the process { Yi}. We will later establish the consistency of the 

equivalence class of the maximum-likelihood estimator. 

Lemma 2. If Condition 2 holds, then 4, and & define the same stationary law for 

the process { Yi} if and only if 4, - &, 

Proof. If 4, and #I* define the same stationary law for the process { Yi}, then, in 

particular, the joint distribution of Y, and Y2 is the same under 4, and &. Now 

these joint distributions have densities of the following form: 

,if iif afa;k(4)f(Yl~ ej(4)lf(Y25 ek(4))~ 
;=, k=l 

namely, finite mixtures of products of two densities from the family {f(y, 0): 0 E 0). 

We would like to conclude that 4, and 42 define the same mixing distribution, but 

Condition 2 states only the identifiability of mixtures from the family {f(y, 0): 0 E 0) 

itself. However, Teicher (1967) showed how the identifiability of mixtures carries 

over to products of densities from a specific family; this result holds also for finite 

mixtures with a fixed number of components. Therefore we have that 41 and & 

define the same distribution for (OX,, Ox2), and hence the same law for {OX,}. 0 

4. Entropy 

In this section we define the entropy for stationary hidden Markov models and 

show that the conclusion of the Shannon-McMillan-Breiman Theorem, which 

concerns finite-state processes, also holds for the general hidden Markov model. 

This result is relatively simple to prove and anticipates the more general result of 

the next section, but none of the development in this section is necessary for anything 

in the sequel. 

The entropy of the stationary process {Y,} under the parameter & is defined by 

the following expression: 

H(&) = -E,[logp(Y,I Y-l, Y-z,. . . ; 4”)l. (5) 

In order for this definition to have meaning, the conditional density 

P(YOl Y-l, Y-2,. f.; 63) must be shown to exist. We will construct the conditional 

density by considering limits of the conditional densities which depend on a finite 

number of past values of the process, and then allow this number to grow arbitrarily 

large. The term entropy is used because the above definition of H( I$,,) is a generaliz- 

ation of the well known entropy for a random variable Y with density p, namely 

EL-log P( VI. 
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In order to define the conditional density of Y,, given the infinite past, consider 

the following representation for the conditional densities which depend on only a 

finite number of past observations: 

A classical martingale convergence result says that, if 2 is an integrable random 

variable and { 9?;} is an increasing sequence of a-fields, then lim,,, E[ZI 9$] = 

E[Z ( Y&1, with probability one, where F& is the v-field generated by IJ, gi. Applying 

this result with Z equal to the indicator of the event {X,,=j} and 9, equal to the 

o-field generated by Y_, , . . . , Y-,+, gives 

lim P+,,{X, =jl Y_,, . . . , Y_,+,>= P<,,,(X,Fjl Y_,, Y-2,. . .I, (6) 1-F 

with probability one. Therefore we can define the conditional density depending 

on the infinite past by 

PwoIL y-2,...; 40) = 5 F,+,,{X,,=j/ Y.-,, Y-2,. . .]f( YO, e,(M), (7) 
,=I 

and we have 

limp,( Y,/ Y_ _,,. . . , Y_,+,; ~“)=PvoIL, Y-2,...;&), (8) 2-m 

with probability one. 

Theorem 1. Zf Conditions 1 and 5 hold, then 

H(&) = E,,(,[-log p( YJ y-, , y-2, . . . ; ddl 

is jinite and 

(i) lim, n-‘K,+,Uogp,( Y,, . . . , Y,; hJl= -H(dd; 
(ii) lim, 6’ log p,,( Y,, . . , Y,,; &) = -H(&), with probability one, under 4,). 

Proof. (i) By Condition 5, {log p,( Y,,\ Y_, , . . , Y-,+, ; &,,)} is a uniformly integrable 

sequence of random variables, since 

minf(Yo,8,(~,,))~p,(Y,,IY_,,..., Y~,+,;~,,)~maxf(Yo,e,(~,,)), I I 

and hence (8) implies 

H(&,) = lim E&log pi( Y,I Y_, , . . . , L, ! ; &)I; 

therefore, H(&,) is finite. Using 

Pn(Y,,..., Y&n)=fi P,(Y,IK, 1..., Y,;dd ,=, 
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we conclude that 

; &“b% Pn( y, 3 1. . , yrl; 4dl=f .i, J%“bgP,wI K-1,. .., y, ; 4011 
I 

=f i, ~,[logp,(YoI y-1,. . . , y-,+I; 4o)l 
I 

(ii) The ergodic theorem implies 

liml i lOgJIi(Y,( K-1, ~~7,...;~o)=E~~,,[lOgPi(Y”(y_,, Y-2~~~~;40)1~ 
n ;=, 

with probability one, under &, and (ii) follows from approximating 

logp,(Y,,..., Yti;+o)/n by 

i i log P( Y I Y-1 7 Y, -2,. . ; 40) 
I 1 

as in Karlin and Taylor (1975, pp. 498-502). 0 

5. Generalized Kullback-Leibler divergence 

Here we prove a limit theorem for the log-likelihood function, similar to Theorem 

1, with the important difference that the limit of the log-likelihood at points other 

than &, is identified. This limit leads to a definition of generalized Kullback-Leibler 

divergence; the remainder of this section is devoted to proving that this divergence 

distinguishes parameter points in different equivalence classes. 

Theorem 2. Assume Conditions 1, 3 and 6 hold. Then, for 4 E @‘, there is a constant 

H(&, 4) < a~ (possibly equal to -CO), such that 

(i) lim, n-‘-&Jogp,( Y,, . . . , Y,; 4)1= H(h, 4); 
(ii) lim, n-’ log p,>( Y,, . . . , Y,,; 4) = H(&,, 4), with probability one, under &. 

These conclusions hold for any choice of positive initial probabilities ai”, and 

H( do, 4) has the same value,for any choice. 

Proof. Fix the value of 4 E @; where no other indication is given, the parameters 

(Y/I, and fI, (and joint densities defined using them) will be assumed to be evaluated 

at this point. Define 

P,(Y,,...,Y,Ij)=f(Y,,ei)C. 
x2 

* ’ C Q;_.r2f(Y*> er,) ,i3 ax,_l,x,f(Yit Ox,) (9) 
X,8 

(with P,(Y, b) =f(y,, 0,)) and 

%(Y, >. . . , yn) = max pe(yl, . . , Y,? Id. 
I 
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Then the likelihood satisfies p,(Y,, . . . , y,) G q,(y,, . . . , y,,) and 

Pn(Y,, . . .,Yn)=C(y:‘)Pn(Y,,..‘,Ynlj) 
J 

~qn(Y,,...,yn)minaj”; 
i 

hence 

log min czj” Slog 
( > 

P.(Y,,...,YA<O 

I 4AY,,...,YX . 
(10) 

Therefore log p,,( Y, , . . , Y,,)/n and &[log pn ( Y, , . . . , Y,,)]/ n have the same limit- 

ing values as log qn ( Y, , . . . , Yn)/ n and E,,,[log qn ( Y, , . . . , Y,>)]/ n, respectively, and 

so the conclusions of the theorem will follow from the corresponding conclusions 

applied to qn. Notice that q,, does not depend on the initial probabilities, provided 

they are positive, so that the limit of the log-likelihood is valid for any choice. The 

advantage in working with q,, rather than P,, is provided by the property given in 

the following lemma. 

Lemma 3. For any sequence {y,}, 

%+r(Y,, . . .,Y.,+,)~q.,(Y,,...,Y,)q,(Y,+,,...,Y,+t), s,ta1. 

Proof. By definition, 

IA+,(Y,, . . , Ye+, Ii) 

=f(y,, 0;) c . . 
T1 

. c %J-(YZ, 6,) lj ~v,_l.J(Yi, 6,) 
r\ 

~f(Y,, 0,) c . . 
x2 

. c ~,,J(Y~, Q v a,, .,,. ,,f(~~, e.r,h3,(Y,+, , . . , Y.,+,) 
x\ 

s %(Yl,.. . > Y,)%(Y,+, 9 . . . ,Y,+r>. 0 

Proof of Theorem 2 (continued). Now define the doubly indexed sequence of random 

variables { W,,} by W,, = log(q,_,( Y,,, , . . , Y,)), s < t. The above lemma says 

w,, d w,, + WU,, s<u<t. (11) 
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Ergodic theorems for processes satisfying this subadditivity property are given in 

Kingman (1976), so we consider next the other properties which were used to obtain 

these theorems. By the stationarity of { I’,,}, 

{ W,,} is stationary relative to the shift transformation W,,- W,,,,,,,; 

(12) 

for example, W’,, and W,,,,,,, have the same distribution. Also, the integrability 

condition 

Q,[ w:, 1 < 00 (13) 

is satisfied under condition 6, since log q,(y,) G log(max,f(y,, 0,)). 

Kingman (1976, Theorems 1.5 and 1.8) proved that a process { W,,) satisfying 

(1 I), (12), and (13) also satisfies the conclusions of the ergodic theorem, namely, 

(i) lim, Won/n = W < 00 exists with probability one; (ii) E[ W] = lim, E[ Wo,/n]; 

and (iii) W is degenerate if the process is ergodic, i.e., the u-field of events invariant 

under the shift transformation in (12) is trivial. (These results generalize the classical 

ergodic theorem, which deals with additive rather than subadditive processes.) An 

application to Won = log qn( Y, , . . , Y,,) gives (the ergodicity carries over from the 

ergodicity of { Y,}) 

limi &$og q,(Y,, . . , Y,)l= H(#,,, 4)<m 

exists and 

limllogq,(Y,,..., Y,) = H(&,, 4), (14) 
n n 

with probability one, under do. As demonstrated above, log p,/n and log q,/n have 

the same limiting behaviour; thus the proof of the theorem is complete. 0 

The divergence between c$,, and C#J is now defined as K(&,; 4) = H(&, &) 

- H(&, d), where H(&, 4,)) and H(&,, 4) are defined in Theorem 2 (H(&, &I) 
is the negative entropy, where the entropy H(&,) is defined in Section 4). The 

function K provides a measure of distance between parameter points; the definition 

of H( $J,,, c$) in Theorem 2 shows that K (&,, 4) is the large-sample average 

Kullback-Leibler divergence per observation between p,)(y,, . . , y,,; &,) and 

P,, (Vl , . . , y,,; 4). Juang and Rabiner (1985) use this measure of distance between 

hidden Markov models in a numerical study of the effects of starting values and 

observation sequence length on maximum-likelihood estimates. 

Next we prove a result needed for the large sample analysis of maximum-likelihood 

estimators, namely that the divergence between two different points is positive. 

Obtaining this result is surprisingly difficult and will lead to another study of the 

asymptotic behaviour of the log-likelihood. Kingman’s subadditive ergodic theorem 

which was used above does not include a representation of the limit as the expected 
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value of some random variable, as does the classical ergodic theorem. We will 

directly establish the convergence of the normalized log-likelihood and, using the 

previous results to identify the limit random variable with the constant H(c,&, #J), 

obtain such a representation for H(c$,, 4). 

As in Section 4, we will study the log-likelihood using the relation 

However, instead of approximating p,( Y, 1 y_, , . . , Y, ; 4) by a stationary process, 

we define a new probability measure (on an augmented probability space), under 

which {p,( Y, 1 I’_, , . . . , Y,; 4)) is itself stationary. The quantities derived under 

this new probability space will then be related back to quantities defined in terms 

of the original probability space. The motivation for using this approach came from 

Furstenburg and Kesten (1960), who studied the convergence of products of random 

matrices and also from Petrie (1969) who used results from the latter study to obtain 

the convergence of the log-likelihood for a probabilistic function of a Markov chain. 

There is a connection with Kingman’s theorems, namely that Kingman applied his 

results to obtain those of Furstenburg and Kesten (1960); on the other hand, the 

limit results for {q,,} obtained using Kingman’s theorems could be proved using 

arguments similar to those of Furstenburg and Kesten (1960). 

The approach to be followed requires a careful accounting of the probability 

spaces and measures involved. We begin with the probability measure P+, defined 

on the measure space (3, %‘), i.e., the set 3 of sequences {y,} augmented by its 

Bore1 q-field. Let 0 be the set of sequences {(y,,, u(‘))}, where the u(“) are m- 

dimensional vectors. Let P$,,+ be the probability measure on 0 defined as the image 

of P+, on the subset where uj” = a;-(&-,), the stationary probabilities of the stochastic 

matrix [ crjk( &,)I, and 

(n+l) _cj U:n)f(Yn, Ojlajk 
uk - 

k = 1 

,...,m, n-L&..., (15) 

(O/O is taken to be 0); {u’“‘} is determined by {y,} on this subset, so this definition 

is meaningful. (Notice that PLO,+ depends on C$ through its support, which is 

determined by (15).) Let Y,, and lJ (n) be the coordinate mappings on 0. 

The goal is to define a probability measure on 0, under which {U’“‘} is a stationary 

sequence, while {Y,} has the same distribution as it does under P+,. Let Tn be the 

shift transformation on 0, i.e., Tfl{(y,, u(“))} = {(y,+,, u(“+‘))}. Let Pko,,TGk be the 

probability measure on 0 which is the inverse image of P&,+ under the kth iterate 

of Ta, i.e., 

P;,,+ Tgk(A) = P;,,,b{w E 0; T;w E A}, A E Br2, 

(2, is the Bore1 u-field of 0). Define new probability measures F$i,, = 

Cfli P&+T,‘/l, for I= 1,2,. _ . . The following lemma is essentially proved in 

Furstenburg and Kesten (1960). 
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Lemma 4. There is a subsequence {lk} and a probability measure p4(,,+ such that 

(i) r7&$ converges weakly to PsO,c (in particular, for every p, the joint distribution 

of(Y U”‘) “(‘h) 1, . . 9 (Y,, U”“) under Pho,4 

distribution udder p+,,,,,,); 

converges weakly to the corresponding joint 

(ii) {(Y,,, lJcn’)} is a stationary process under ~4~,,4; and 

(iii) {Y,,} has the same distribution under p+,,,4 as under P+,,. 0 

For the case 4 = &, the meaning of the random vector U’” under p+,,+,, will 

now be explained. The recursion relations (15) for u(“) and the initial condition 
.i” = a,(&) give u, (‘I = Pd,,{Xi = j 1 Y,_, , . . . , Y,} under PL,,,,,,; hence, the operation 

of shifting the time scale and taking the limit to obtain pd,,,,,,(, has the effect of 

converting U, “I into a conditional probability depending on infinitely many past 

values of { Y;}. More precisely, Uj” represents P,+,,{X, = j 1 Yo, Y_, , . . .} in the sense 

(to be proved in Lemma 6 below) that the conditional density of Y, , . . . , Y, given 

U”‘, under pd,),h,i, is xi U)“p,(y,, . . , y, Ij; &). Therefore, the entropy H(4,), 

defined in Section 4 by H(&) = I&,,[-log{C, P+,,{X, =jl Y,, Y-,, . . .].I”( Y,, O,)Il, is 
seen to be equal to I?g,,,J,,,[-log{C, Uj”f( Y,, Oj)}], with the consequence that this 

representation can be extended to parameters otherthan &,, as in the following result. 

Lemma 5. Assume Conditions 1, 3 and 6 hold. Then, for every 4 E @‘, 

H(411, 4) = E&,,+h[log{Cj u)“f( ‘12 ei(4))Il. 

Proof. The ergodic theorem implies 

where 2 is a random variable with J!?+~,,~[Z] = &,C,,+[log{C, LTj”f( YI, e,(4))}]. 

First we show g CpC,,b[Z] s H(&, 4). The recursion relations (15) imply 

k 
")ajkf( yl 3 e,(4)lf( Y2, e,(4)) C I I 

(16) 

(see (9)) and iterating gives 

c u.;?-( Y, e,(4)) 
J 

=F, lJ;“p,(Y ,,..., Yilj; 4) I C ~j')Pi-l(Yly..., K-Jj; 4). (17) 
I 

Therefore, 

i log 
i=l 

I i 

{C Uj’YC YI, ej(+))] = log{ f uj’)Pn( 6,. . . , Yn IA 4) 
i 

~logqn(Y,,..., Y,;@), 
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and, since { Yi} has the same distribution under P40 as under p+,,,+, the proof of 

Theorem 2 gives E,,,,,[Z] s H(&, 4). 

Next we show E,,,,,[Z]z H(c#J,,, 4). Assume, without loss of generality, 

H(&,, 4) > --co. Using the fact that the joint distribution of ( YI, U”‘) under p$‘a,$ 

converges weakly to the corresponding distribution under pCbo,rb, we get 

lim sup 
k I 1 

log C U:“f( Y,, O,(4)) d%!$~ 
A i I 

52 j 
A 

log {C u:“f( Yt 9 H,(4))) d’c/qi,+> 
i 

where A = {log{C, CJ:‘)f( Y,, 0,($))}~0}. Also, since (log{C, f_Ji’f( Y,, O,(c+b))})’ is 

uniformly integrable with respect to &$,!, by condition 6, 

= C u;“f( Y,, e,(4))) 
I 

Therefore, 

= limzup t ,i EL,,,,, c W’f( x, O,(4)) 
kr I I 

II 
the second last equality follows from (17) and CJj” = aj(&) on the support of P&,.+, 

and the last from Theorem 2 (using crj( &) > 0, which follows from the irreducibility 

Of lY(YJk(4O)l~~ 0 

The representation in the lemma is used next to prove that the divergence between 

two different parameter points is positive. 

Lemma 6. Assume Conditions 1-3, 5 and 6 hold. For every 4 E DC, K (&, 4) 2 0. If 

cb?I.&, then K(&,cP)>O. 
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Proof. The first step is a verification of the property (described following Lemma 

4) of the joint distribution of Y, , . . . , Yi, U’” under p+,,,+,,, namely that ( Y, , . . . , Yi) 

has the conditional density Cj Uj’)pi(y,, . . , yi Ij; &), given U’“. The case i = 2 

will be considered; the general case is verified similarly. Let Q be the distribution 

of U”’ under p+,l,+o; then, if B is a continuity set of Q, 

p,,,,,,{( Y, > YJ E 4 UC’) E Bl 

= II C wdy,, y2 Ij; dd dF.(y,) +L(y2) dQ(u), 
I3 Ai 

where Q, and Q”’ are the distributions of UCi) under P&do and If=, P&,,cb,,Tni/l, 

respectively; the second equality follows from .!_I;” = Pd,,{Xi = j 1 Yi_, , . . . , Y,} under 

G,I.&. 
Now stationarity, (16), and the above property imply 

2H(&, 4”) 

= G”.+” [ 1 log C f4”~2( K , Y2l.k 40) 

I II 

= 

lls 
C ujp2(Y I, h IA 40) i 

~1% C u,PAY,, y2b; 40) G(yl) dp(yJ dQ(u). 
I i I 

Next we extend the construction in Lemma 4 to simultaneously include two 

sequences, {U”‘} which satisfies (15) with the parameter value &, and { V”‘} which 

satisfies (15) with the parameter value 4. Then, as above, 

2H(&, 4) 

= GO,9 
[ 1 

log C V~“p2(Yl, Y21j; 4) 
I II 

= C uip2(YL, Y2 IL 40) .I 
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where Q’(. , .) is the distribution of (U’“, V”‘) under @+“,+,. Since the marginal 

distribution of Q’ corresponding to the first coordinate is Q, we have 

x4 
c, qJZ(YI 3 Yz 1% 40) 
c, v,p,~_~, , y2,j; 4) I dll.(Yl) MY,) dQ’(ua 0). 

Since the inner integral, for fixed u, ZI, is the Kullback-Leibler divergence between 

two mixture densities, K (&, 4) 2 0 and, if K (&, , 4) = 0, then this Kullback- Leibler 

divergence is zero for almost every pair U, u (with respect to Q’). However m- 

component mixtures of products of densities from the family {f(. , 0): 0 E O} are 

identifiable by Condition 1 and the result of Teicher (1967) (see Section 3). Therefore 

(using Jensen’s inequality), we conclude 

for almost every pair u, u (with respect to Q’), where 6 denotes a distribution 

function of a point mass. Since U, (I) has the distribution of P,“{X, =jl YO, Y_, , . . .}, 

I&,,+[ UI”] = aj( 4”). Therefore, K (&, 4) = 0 implies 

hence 4 and & define the same symmetric law for (ox,, Ox,) and so 4 - &. q 

6. Consistency of the maximum-likelihood estimator 

We can now present the main result, which concerns the consistency ofthe maximum- 

likelihood estimator. The results of the previous sections allow the application of 

the basic strategy invented by Wald (1949) and further developed by Kiefer and 

Wolfowitz (1956). 

Consistency must be stated in terms of convergence of the equivalence class of 

the maximum-likelihood estimate &, (see Section 3). We will obtain convergence 

in the quotient topology defined relative to the equivalence relation -. Redner 

(1981) used convergence in this sense for estimators of the parameters of a finite 

mixture distribution. Consistency in the sense of the quotient topology simply means 

that any open subset of the parameter space @’ which contains the equivalence 

class &, of the true parameter must, for large n, contain the equivalence class of &. 

Theorem 3. Assume conditions 1-6 hold. Let C& be the true parameter value and let 

&, be a maximum-likelihood estimator. Then 4, converges to & in the quotient topology, 

with probability one. 
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Proof. Let q,,( 4) denote q,, ( Y, , . . . , Y,,; 4), and similarly for P,,. For #J + &, 

we have lim, E,Jlog q,(+)]/n = H(&, 4)~ H(&, &Jr by Lemma 6 and (14); 

hence there is an F > 0 and integer n, such that E,Jlog q,J+)]/n_ < H(&,, 4”) 

-.z. Now, q,,, is continuous, and, using the integrability condition 6, 

-qbo,,[Uog(~uP,~c,, qn, (4’))1’1< 00, f or a small enough neighborhood 0+ of 4; there- 

fore, there is an open neighbourhood 0+ for which E,,,,,[log(sup,,,,d q,,, (+‘))]/n, < 

E,,,[log q,,(+)]/nf ++F < H(&, 4”) -is It follows from (10) that 

hence log(sup+,tc>d Pn (4’))/ n and log(sup,bb’er,g q,,( 4’))/ n have the same limiting 

behaviour as n +a. Also, W,, = log(sup 9,ir,, q,-,(4’)) satisfies the conditions of 

Kingman’s subadditive ergodic theorem (see (II), (12) and (13)), and hence 

exists and 

with probability one. By a property of subadditive processes (Kingman, 1976, 

Theorem l.l), 

so that 

Thus we have proved that, with probability one, 

Let C be a closed subset of @‘, not containing any points of the equivalence 

class &. Since W is compact, C is compact and so is covered by the union lJf=, 4, 

where {4,, . . . ,h) is a finite set of C and O,, = 0+,, . Therefore, with probability one, 

sup logP,(+)-logP,(&) = 
4tC ( 

) m;x{ log( ;u;, P.(g)) -log p,,(M) + -CQY 

which implies that, for any open subset 6 of @’ which contains the equivalence I A 
class &,, +,, E 0 for large n. It follows that the maximum-likelihood estimator 

converges to & in the quotient topology, with probability one. 0 
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