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Abstract 

Let /I be a positive number: we consider a particle performing a one-dimensional Brownian 
motion with drift -,!?, diffusion coefficient 1, and a reflecting barrier at 0. We prove that the 
time R, needed by the particle to reach a random level X, has the same distribution tails as 
T(x + l)““eZPX/2/12, provided that one of these tails is regularly varying with negative index 
--rl. As a consequence, we discuss the asymptotic behaviour of a Brownian motion with 

random reflecting barriers, extending some results given by Solomon when X is exponential 
and x belongs to [f, 1). 

Keywords: Regular variation; Reflected Brownian motion; Random media; Homogenization; 
Local time 

0. Introduction 

Let p be a positive number: we consider a particle performing a one-dimensional 
Brownian motion (I?,), z 0 on [0, + co [, with drift -p, diffusion coefficient 1, and an 
instantaneously reflecting barrier at 0. In Section 2, we prove that the time R, needed 
by the particle to reach a random positive level X, independent of (B,),. ,,, has 
a regularly varying distribution tail with negative index --r if and only if ezax has 
a regularly varying distribution tail with the same index, while Section 1 is devoted to 
preliminary results. Our tools are the theorem of Ray and Knight (Jeulin and Yor, 
1978) concerning the local time of a diffusion, and a representation of the local time of 
the Brownian motion with drift that can be found in Section 6 of Pitman and Yor 
(1982). 

The study of R’s tail is motivated by a problem about random walks in random 
media connected with semi-conductor problems (Molchanov, 1994) and liquid 
spreading (Collet et al., 1993). This problem was first studied in a paper by Solomon 
(1975), and will be described in Section 4. Homogenization or slow diffusion for this 
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random walk is discussed in Section 5. In his paper, Solomon obtained a slow 
diffusion behaviour in the case where X is exponential and e2gx has a regularly 
varying distribution tail with index CI between -3 and - 1 (i.e. when the mean of X is 
between l/Z/I and l/p). We extend his results to a < 0, not assuming anymore that 
X has an exponential law. 

1. Preliminary results 

In this paper L and L’ are slowly varying functions, and a is a nonnegative number. 
The equivalence of functions f and g is denoted by f(x) N” g(x) (x + a). We recall (cf. 
Bingham et al., 1987, p. 38, Theorem 1.7.1’) that: 

Feller’s Theorem. Let X be any positive random variable. Thefollowing are equivalent: 

P(X < x) % x “L(l/x) (x + O+), 

and 

E(e-““) M r(l + a)A-‘L(A) (A -+ + co). 

Here is an easy consequence that will be useful in Section 3: 

Corollary 1. Let V and U be two positive and independent Y.v., and assume that U has 
density ;leeAX Q[O;+co[ (x). Then relations (a) and (b), below, are equivalent 

(a) lim PL(t)P(V 2 t) = II/, 
t++CC 

(b) lim t”L(t)P(UV 2 t) = r(a + l)A-all/. 
t++CC 

Proof. We have 

!P(UV 2 t) = P[U > t/x]P”(dx) = 
s 

e-“““P,(dx) 

which is the Laplace transform F* of the random variable Y = A/V. From Feller’s 
theorem, 

F*(t) M T(a + l)A-“+t-“/L(t) = Ct-‘L’(t) (t -P + co) 

is equivalent to 

1 
P(Y <x) E Cx”----- 

r(l + a) 
L’(l/x) (x + o+), 
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which can in turn be rephrased: 

P(V 3 l/x) z cxa & L’W (x --*o+j 
or 

WV 3 Y) = 4w”lUY) (.Y -+ + @Jo). ??

Finally, we have: 

Proposition 1. Let the random variables X and Y, and the function L, satisfy 

lim t”L(t)P(JX - YJ > t) = 0, 
r++m 

and let 4 be a non-negative real number. Then we have 

lim t’L(t)P(X > t) = 4 
t++CC 

if 

lim t’L(t)P(Y > t) = 4. 
f’-tCC 

The assumption concerning X - Y is satisfied, for instance, when X - Y belongs to 
some Lp with p greater than IX. 

2. Regular variation of R and X’s tails 

Set 

6(a) = 
T(or + ,)I’, 

2p . 

Theorem 1. The following relations are equivalent: 

(i) 3 C$ 2 0 such that lim,,,, t’L(t)P(R > t) = 4, 
(ii) 3 II/ 2 0 such that lim,,,, taL(t)P(6(~)e28X z t) = II/, 

and g(i) or (ii) holds true, then C#I = I/I. 

In Section 3, I will give two simple proofs of Theorem 1, both relying on properties 
of the paths of B, and I hope, both are of intrinsic interest. The study of the Laplace 
transform of R was often suggested to me, for the proof of this theorem, and I will 
explain shortly why I was unable to follow this suggestion. It is well known that 

Wu)ewCx(-P + h(u))1 
(ECexp(--R)~X = xl = h(u) + /j + (h(u) _ jj)e2h(u,x' 
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where 

so that 

E [exp( -uR)] = 
s 

+a 2h(u)exp[x(-P + h(u))] 

0 h(u) + p + (h(u) - p)ezhx Px(dx) 

and is to be compared with 

s +CC 

E [exp( -u@cl)ezax)] = exp[ -us(a)e2px]~x(dx). 
0 

(2.1) 

(2.2) 

Thus, we can hope to deduce Theorem 1 from the fact that the behaviour of 
the distribution tails of R and 6(a)e20x are connected to the behaviour of their 
Laplace transforms at O+. That was the approach of Solomon, but his task was 
greatly facilitated by the explicit knowledge of Px (the exponential law), and by 
the fact that CY was less than one. When CI is an integer this approach fails (cf. 
Bingham et al., 1987, Theorem 8.1.6), and if the integer part, say n, of E, is positive, 
one has to study, not the behaviour at O+ of the Laplace transforms appearing 
in (2.1) and (2.2), but the behaviour at O+ of their nth derivatives, or, alternatively, 
the rest of the Taylor formula of this Laplace transform at 0. In order to do so, 
one has, of course, to compute the y1 first moments of R in terms of the moments 
of X. For the results of these computations when n = 1,2, see Propositions 2 and 
3 below. 

Proposition 2. R belongs to L’ ifSe2Px belongs to L1, and 

iE[R] = (1/2p2)lE[eZBX - 2fiX - 11. 

Proposition 3. R belongs to L* ifs ezPx belongs to L2, and 

IE [R”] = ( 1/2p4) E [e4ax + e2Dx - 2 - 6PXezDX + 2p2X2]. 

For the - tedious - proof, see Section 6. I did not even try to find a general 
expression of the nth moment. Furthermore, this, together with Theorem 8.1.6 of 
Bingham et al., would only give, very likely, the (ii) * (i) part of Theorem 1. Instead 
of the Laplace transform, I would rather suggest to study directly the tail of the 
distribution of R. 

In Section 5, Theorem 1 is mainly useful through its immediate consequence: 

Corollary 2. R belongs to the attraction domain of the stable law with index c( 
(0 < CI -K 2) ifle2/rx does. 

For the normal law, Proposition 3 yields a similar result. 
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3. Proofs of Theorem 1 

Let Z’(t, x) be the local time of a reflected Brownian motion (II,), z 0, with drift - 0, 
and reflection at 0, starting from 0. Let Ty be the first time at which B, reaches y > 0. 
Clearly, 

Z(T,, x) dx = 
s 

Y 
T, = _Y( TY, y - x) dx. 

0 

Let 

Ziy) = JZ(T,, y - t) and Z(I) = (Ziy’)o $ f<y. 

According to the Ray and Knight theorem (Jeulin and Yor, 1978), Z@) is a diffusion, 
starting from 0, with an infinitesimal generator, 2x(a2/dx2) + 2(1 + fix)a/ax, that 
does not depend on y. This is the key to our first proof, through the following remark: 

let Z = (Z,), a 0 be a diffusion with the same infinitesimal generator, starting from 
0 too, and independent of X; then 

R2 

s 

X 

Z, dt. 
0 

As mentioned in Pitman and Yor (1982, Section 6), Z, can be seen as the sum of 
squares of 2 independent copies of the standard Ornstein Uhlenbeck process starting 
from 0, and can thus be written as 

(3.1) 

where WI,, and W,,, are independent standard Brownian motions, with p(t) defined as 

p(t) = l - e-2Bt 
2P 

Let U f = Z e-2Br. We have: t 

Theorem 2. U, is a positive submartingale converging as. and in any Lp towards 
a random variable U with exponential law and mean l/p. Furthermore, 

E[(U - Ut)p]lIp < C(P, p)eeB’. (3.2) 

Proof. Since 

lim p(t) = 1/2p, 
f++CX 

the first part of Theorem 2 follows at once from (3.1). Straightforward computations 
show that for a standard Brownian motion Bt, and for any p 2 0, 

II B:+h -B,2JlpXCpfi, 

leading us to (3.2). Finally, the distribution of Z, being exponential with mean 

(e 2bt - 1)/B, the distribution of U is exponential with mean l//I 0 
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From these properties of Zt, we can deduce that: 

Lemma 1. Zfe *@* belongs to some Lp, p > 0, then R - (1/2~)UeZPX belongs to Lq for 
any q < 2p. 

Lemma 2. If R belongs to some Lp, p > 0, then ezPx belongs to Lp, too. 

Proof of Lemma 1. Indifferently, we prove that R - (1/2/I) U(e2BX - 1) belongs to 
L2? 

iE[jR - (l/2/?)U(ezPx - l)12plX = y] = E 
[IS 

(Z, - Ue2BX) dx ” . 
0 II 

With the help of (3.2), we obtain that, if 2p > 1, 

E[lR - (1/2p)U(e2BX - 1)(2plX = y] <Yap-’ 
s 

’ E[lZ, - Ue28x(2p] dx 
0 

< cly2P-le*BPY 

for some number C’ depending only on p and j3, and if 2p < 1, 

[S 
’ IZ, - UeZBxl dx 1 *P 

E[lR -(1/2b)U(e2BX - 1)12plX = y] <lE 
0 

(s 

Y 

> 

*P 

< lE[lZ, - Ue*@j] dx 
0 

< Crre28PY. 0 

Proof of Lemma 2. From the relation 

E[R’lX=x]=E[([;Z,dr~], 

we deduce, if p > 1, that 

And, if p < 1, 

RIRPIX=x] .E[xp-j;Z,Pdt] 

so that 

> c,xp-’ 
s 

x (e2Bt - l)p dt, 
0 

ezgPx = o(EIRP( X = x]) (x .-, + co). 
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For the last inequality, we notice that, according to (3.1), 2 is stochastically greater 
than an Ornstein Uhlenbeck process, and use the explicit expressions of moments of 
a standard Gaussian random variable. •i 

From Corollary 1 we know that (ii) is equivalent to 

(iii) ,l_iml taL( t)P(1/2~)UeZ”X >, t) = 4, 

so (iii) entails that e 2Bx belongs to L* for any p < c(, but this last fact is a consequence 
of(i), as well, through Lemma 2. Thus, assuming indifferently (i) or (iii), it follows from 
Lemma 1 that Wi = R - (1/2b) Ue 2sx belongs to Lq for some q > a, and, actually, for 
any q < 2cr[. Finally, Proposition 1 then entails that (i) and (iii) are equivalents. This is 
the end of the first proof of Theorem 1. 

The first version of this proof was initially derived from the proof of analogous 
results in the discrete case (see Alili and Chassaing, 1993), using the approximation of 
the local time by the number of downcrossings, following the lines of Kawazu and 
Watanabe (1971) Walsh (1978) and Le Gall (1986). In particular, we have a perfect 
analogy between Theorem 2 and the results of Section 7 in Alili et al. 

The second proof was suggested by Jean Bertoin: Let IV, be the standard Brownian 
motion associated with B,, and let L, be the local time of B, at 0, i.e. set 

B, = W, - fit + fL,. 

We then have: 

(3.3) 

Proposition 4. 

Proof. The proposition is a consequence of 

- Pt P(L, > t) = exp e’Bx . 
( > 

(3.4) 

Let us denote L, by L. It is well known that L has an exponential law, due to the 
Markov property, but it also follows at once from (3.1). Then the computation of L’s 
mean yields (3.5): applying the optional sampling theorem to relation (3.3) with 
t replaced by TX, we obtain 

e23x - 1 

E(L) = 2(x + BE(T,)) = ___. 
B 

0 

Dividing (3.3) by fit, we obtain directly 

(l/2j?)Lt = t (t -+ + co), a.s., 

since B, and W, are both o(t) a.s. Thus, we can expect the distribution tails of (1/2jI)L, 
and R to have the same behaviour at + GO. 
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Theorem 3. The following relations are equivalent: 

(i) 3 q5 3 0 such that lim,,,, fL(t)P(R 3 t) = I$, 
(ii) 3 tj 3 0 such that lim,, + m taL(t)P((1/2P)LR 3 t) = Ic/, 

and if(i) or (ii) holds true, then 4 = Ic/. 

On the other hand, (3.4) can be written as 

where V can be any exponential random variable with mean 1, and independent of X, 
leading us, through Corollary 1, to 

Proposition 5. The following relations are equivalent 

(i) 3 4 > 0 such that lim,,,, t”L,,P(6(a)e2Px 2 t) = 4, 
(ii) 3 $ > 0 such that lim,,,, t”L,,,P((1/2P)L, b t) = tj, 

and if(i) or (ii) holds true, then C+!I = $. 

This ends the second proof of Theorem 1, provided we prove Theorem 3. 

Proof of Theorem 3. We have 

P((1/2fi)L, 3 t) < P(R > t(1 - E)) + P(R G t(1 - E) and (1/2p)L, > t) 

6 w > t(l - 4) + ~((w3W,,, -E) 2 t) 

and, assuming (i), we deduce that 

lim ~“-W)P((l/2P)LR 3 t) < ( 1  _  E)a ~ + hm t”L(t)P((1/2B)L,,,_,, L t). (3.6) 
t++CC t++CC 

But now 

P((lpp)L,,, -E) 3 t) = P&t,, -E) - 2PtU - E) 2 2pw 

6 (2BwP~(lL(1-E) - VW - W) (3.7) 

for any positive p. We have thus to study L, - 2/b, or more conveniently, B, - W,. 
On the one hand, we have 

II w, IIp = C,& 

On the other hand, the distribution of B, is stochastically increasing (cf. Asmussen, 
1987, p. 83) and converges, as t goes to + co, towards an exponential law with mean 
l/Z/J, so that 
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Finally, for any positive p, and for t greater than 1, 

79 

(3.8) 

Thus, for p > 2a, we deduce from (3.6)-(3.8) that 

for any positive 8. 
The proof is completed by considering similar inequalities: 

P((lWW, 2 t) 3 P(R < W + d) - P((1/2~)L,, +c) d t) 

for (i) * (ii), and 

P(R >, t) >, P((1/2fi)L, > t(l + E)) - P((l/28)& 3 t(l + d), 

P(R > t) < P((1/2p)L, > t(1 - E)) + P((l/%/I)L, d t(1 - c)) 

for (ii) - (i). 0 

4. Application: A diffusion with random reflecting barriers 

Let x, denote the position at time t of a particle performing a one-dimensional 
Brownian motion (B,), a 0 on [0, + cc [, with drift --/I, diffusion coefficient 1, and 
with an instantaneously reflecting barrier at 0. Before this particle starts moving, we 
have placed randomly on [0, + cc [ a set of barriers in such a way that the distances 
between two consecutive barriers form a sequence (X,), a 1 of i.i.d. positive random 
variables. Let S, denote the position of the nth barrier: S, is given by 

s, = x1 + x2 + ‘.. + x,. 

We assume that when a particle reaches a barrier S,, it moves necessarily up and will 
remain thenceforward in [S,, + a [ forever: the barrier has a reflecting upper side and 
a perfectly porous lower side. The S, are some kind of random media for the random 
motion xt. 

According to Molchanov (1994), the knowledge of the asymptotic behavior of x, is 
quite relevant for the study of semi-conductor problems. Let us also mention the 
connection with liquid spreading (Collet et al., 1993). As in the discrete case, the 
assumptions that come up the most naturally to insure the weak convergence of x,, 
properly normalized, are assumptions about the tail of the time Rk that elapses 
between the first passage at &_ 1 and the first passage at &, RI being the first passage 
time at the first barrier. This is not satisfactory, since the law of Rk is not initial data of 
our problem. Of course, the ((X,, R )) k k 3 , are i.i.d. and the study of the Rk’s tail 
reduces to the study of R’s tail as in Sections 2 and 3. 
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Section 2 allows us to state fairly complete results of weak convergence for x,: we 
prove that there is homogenization for xt iff e 2Bx1 has a finite second moment, and that 
there is slow diffusion iff e28x1 belongs to the domain of attraction of a stable law with 
index CY < 2. With Alili, we realized that for random walks with random reflecting 
barriers, a slow diffusion behaviour was impossible: the tail of Ri cannot be regularly 
varying for the simple reason that the exponential of a lattice T.v., such as Xi, cannot 
have a regularly varying tail. This unexpected phenomenon led Bougerol to ask us 
naturally the question of what happens in the continuous case. 

One can wonder about the behaviour of xt when the drift is positive. The case with 
negative drift seemed more interesting to us, since it is the case where the presence of 
random barriers induces the more significant change in the behaviour of the diffusion: 
without the random barriers it would be recurrent, but with these barriers 
limx, = + co a.s. We believe that in the positive drift case, there is homogenization 
independently of the distribution of the Xis. 

5. Fluctuations of x, 

Let F, be the distribution function of the stable law with index CI and let its Fourier 
transform be denoted by 

YE(x) = exp - {(xlar(l - a)(cos(w/2) - isgn(x)sin(rra/2))), 

and let @ be the Gaussian distribution function. Furthermore, let: 

P = E(X), /A’ = lE(R) 

and 

v = PIP’, d = l/$ Var(X - vR). 

Then we have: 

Theorem 4. If e2Dx1 is integrable, then 

lim (l/t)x, = v, as. 
f’+CC 

Theorem 5. (a) If eZBX1 belongs to L2, then 

lim P((l/J&)(x, - vt) < y) = Q(y). 
t-r+‘X 

(b) If e 2ax1 belongs to the attraction domain of F,, 1 < CI < 2, then 

lim P((l/t”“h(t))(x, - vt) G y) = 1 - F#( -y), 
r++cO 

in which t”“h(t) z inf{x) P(6(a)e2Px1 > x) < l/t}. 
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(4 Ife 2pxl belongs to the attraction domain of F,, 0 < CI < 1, then 

lim P((L(t)/t”)(x* - vt) 6 y) = 1 - F,(y-‘I”), 
t-t+CE 

in which L(t) z taP(o(a)ezs”l > t), and u = 0. 

Theorem 6 claims that, as in the discrete case, the assumptions in (b) and (c) are not 
only sufficient, but also, in a way, necessary. 

Theorem 6. (a) Zf the Xi are integrable, and if there exists f (t) such that x,/f(t) weakly 
converges towards a nondegenerate limit law, then e 2Bxk belongs to the attraction domain 
of F,, for an index CI < 1. 

(b) If the e2BXk are integrable, and if being given an index CI in ] 1,2[ and a slowly 
varying function L, (x, - ut)/tl”L(t) weakly converges towards a nondegenerate limit 
law, then ezBxk belongs to the attraction domain of F,. 

(c) If the e2Bxt are integrable, and if(xt - ut)/t”’ weakly converges towards a non- 
degenerate limit law, then e ‘Oxk has a jnite second moment. 

The proofs of these theorems are quite similar to the proofs for the discrete case. 
As in the discrete case, if the Xi’s are lattice and if the tail of ezSxi is weakly regular, 
x, will show a partial attraction phenomenon. Note that the assumption in (a) is rather 
weak, since it holds true as soon as RI belongs to some Lp, p > 0 (cf. Lemma 2). 
Finally, Propositions 2 and 3 allow one to give expressions for u and d in term of 
X alone. 

Proposition 6. When they are defined, the speed, v, and the d@ision coefficient, d, are 
given by 

0 = ~CxliEERl, 

and 

d = Var(X - vR),AE[R], 

where 

Var(X - vR) = E[X”] - u/flZE[Xe2BX - 2/3X2 - X] + v’E[R’]. 

6. Computations of speed and diffusion coefficients 

Proposition 2 follows from 

E[R(X=x] = 
s 

x lE(Z,) dt = (1/2f12)(ez8” - 2px - l), 
0 
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using (3.1), and gives v: 

W~L-Xl 
v = [ECe28X - 2px - l] 

Computation of the dijffiision coeficient d 

From Section 5 we have that 

d = (l/p’) Var (X - vR), 

where 

p’ = E[R] = (1/2j12)E[e2PX - 2BX - l] 

and 

Var(X - uR) = E[X2] - v/P21E[Xe28X - 2/3X2 - X] + v2E[R2]. 

Let us compute E[R’]: 

so we see at once that 

U.(x)=2tE[Z,j;Zidt] 

and 

1/2u”(X) = E[2,2] + E 2, dt x ,,liy+ (l/h) lE(Z,+, - Z, I FJ 1 . 

Using the infinitesimal generator of (Z,), a o, we get that x u"(X) = 2E[z:] + 4E 
[I 1 Z, dt + 2/W(x). 

0 

Finally, 

E[R2 ( X] = (1/2P4)(e48” + e28x - 2 - 6pXe2PX + 2B2X2), 

and Proposition 3 follows. 0 
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