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Abstract

A weighted embedding for the generalized pontogram {Kn(t): 06t61} corresponding point-
wise to a renewal process {N (s): 06s¡∞} via Kn(t)=n−1=2(N (nt)− tN (n)) is studied in this
paper. After proper normalization, weak convergence results for the processes {Kn(t): 06t61}
are derived both in sup-norm as well as in Lp-norm. These results are suggested to serve as
asymptotic testing devices for detecting changes in the intensity of the underlying renewal pro-
cess. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let {Xk : k¿1} be a sequence of independent and identically distributed (i.i.d)
random variables with

EX1 = 1=�¿ 0;

and

0¡Var(X1) = �2¡∞:
A renewal process based on {Xk : k¿1} is de�ned for s¿ 0 in the following way:

N (s) + 1 = min{k: Sk ¿ s};
where Sk = X1 + · · ·+ Xk (k = 1; 2; : : :). The pontogram process is de�ned by

Kn(t) =
N (nt)− tN (n)√

n
; 06t61 (1)

(n=1; 2; : : :). The notion of pontograms was introduced and developed by Kendall and
Kendall (1980) for re-analyzing the (so-called) “Land’s End data set”. The statisti-
cal problem is whether or not an empirical set of n given data points in the plane
could be considered to contain “too many straight line con�gurations”. Kendall and
Kendall introduced a Poisson model for the number of “�-blunt triangles” constructed
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from the data points, and they then suggested testing the null hypothesis of “no change
in intensity” against the alternative of “an early decrease in intensity” of the homo-
geneous Poisson process given by N (t) with {Xk : k¿1} being an i.i.d sequence of
exp(�)-random variables. The Kendall–Kendall pontogram test is based upon the weak
limiting behavior(

n
N (n)

)1=2
sup

�16t61−�2

|Kn(t)|√
t(1− t) ⇒ sup

06s6(1=2) log[((1−�1)=�1)((1−�2)=�2)]
|V (s)|; (2)

as n→ ∞, where ⇒ denotes convergence in distribution and {V (s): 06s¡∞} is an
Ornstein–Uhlenbeck process with covariance function Cov(V (s); V (t))= exp(−|t− s|).
Here it is necessary that 0¡�1¡ 1− �2¡ 1 is �xed. Being interested in detecting

early changes of the unknown intensity parameter � (changepoint estimation), Kendall
posed the question whether it is possible to replace �i in (2) be sequences �i(n)→ 0 as
n→ ∞ for i=1; 2. Cs�org�o and Horv�ath (1987) gave a su�cient answer concerning this
question. They constructed a weighted embedding for Poisson pontograms by showing
that, on a rich enough probability space, there exists a sequence {Bn(t): 06t61} (n=
1; 2; : : :) of Brownian bridges such that

sup
�=n6t61−�=n

n

|Kn(t)− �1=2Bn(t)|
(t(1− t))1=2−
 =OP(1) (3)

as n→ ∞, for all �¿ 0 and 06
¡ 1
2 . Their proof makes essential use of the Poisson

assumption in constructing two independent embeddings of {N (s): 06s6n} into two
independent Wiener processes, the �rst embedding over [0; 12 ] starting from 0, the
second one over [ 12 ; 1] starting from 1.
Huse (1988) (cf. also Eastwood, 1990) extended the work of Kendall and Kendall

(1980) and Cs�org�o and Horv�ath (1987) to pontograms based on general renewal pro-
cesses. She provided a weighted embedding like that of (3), but with the sup-range
restricted to [�=n; 1− �(n)], where �(n)/�=n (�¿ 0), the order of magnitude depend-
ing upon moment assumptions on the underlying distribution. Recently, Steinebach and
Zhang (1993) proved that if {Xk : k¿1} is a sequence of nonnegative i.i.d. r.v.’s, then

sup
�=n6t61−�=n

n
|Kn(t)− �3=2�Bn(t)|
(t(1− t))1=2−
 =OP(1): (4)

The aim of this paper is to establish a full extension of the weighted embedding (3)
to generalized pontograms as introduced in (1). The latter is given under �nite moment
generating function of X1 and under �nite rth moment (r ¿ 2). Similarly to Cs�org�o
and Horv�ath (1987, 1988a), a number of weak asymptotics for {Kn(t): 06t61} (n=
1; 2; : : :) are immediate from such an embedding, both in sup-norms as well as LP-norm.
In setting of changepoint estimations, these asymptotics are suggested to serve as

asymptotic testing devices for detecting “changes in the intensity” of a general renewal
counting process (for further details see Brodsky and Darkhovsky, 1993; Steinebach,
1993; Szyszkowicz, 1994). Similar asymptotics have been used by Cs�org�o and Horv�ath
(1988b) to deal with change point problems based on U -statistics. Furthermore,
Ferger (1994, 1995) extended results in Cs�org�o and Horv�ath (1988b) to more general
U -statistical processes. For a recent comprehensive survey of changepoint analysis, the
readers are referred to Cs�org�o and Horv�ath (1998).
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The remainder of the paper is organized as follows: Section 2 is devoted to es-
tablish the weighted embedding for generalized pontograms given in (1) under �nite
moment generating function of X1 and under �nite rth moment, respectively. In Sec-
tion 3 we brie
y discuss the sup-norm and Lp-norm asymptotics for the pontogram
{Kn(t): 06t61}.

2. The weighted embedding for {Kn(t): 06t61}

In this section we shall establish the weighted embedding for the process {Kn(t):
06t61}. By Lemma 4:4:4 in Cs�org�o and R�ev�esz (1981), we can assume, without loss
of generality, that our probability space (
;F; P) is so rich that all random variables
and stochastic processes introduced so far and later on can be de�ned on it. First, we
establish the weighted embedding of the process {Kn(t): 06t61} under the condition
in which the moment generating function of X1 is �nite.

Theorem 2.1. If Eet0|X1|¡∞ for some t0¿ 0; then there exists a sequence of
Brownian bridges {Bn(t): 06t61} such that

sup
�=n6t61−�=n

n
|Kn(t)− �3=2�Bn(t)|
(t(1− t))1=2−
 =OP(1)

as n→ ∞ for all �¿ 0 and 06
¡ 1
2 .

Proof. The general idea of the proof is similar to that one of Steinebach and Zhang
(1993) who constructed weighted embeddings for the processes {N (s): �6s6 1

2n} and
{N (s): 12n6s6n−�}. They used the renewal process starting at the �rst renewal point
after 12n to obtain embedding to {N (s): 12n6s6n− �}. This provides independence of
what has happened on [�; 12 ], and consequently, this result makes it possible to obtain
small approximation rates near the endpoints � and n− �, respectively.
In the general case (when the renewal process {N (s): 06s¡∞} is based on a

sequence of i.i.d. r.v.’s with positive mean, but possibly with negative values), com-
paring with Steinebach and Zhang’s nonnegative case, the di�culty is how to deal with
the construction on [ 12n; n− �]. The main idea is to introduce another counting process
and to establish the strong approximation for this counting process. Then we use this
approximation to obtain small approximation rates near n− �. For sake of clarity, the
proof will be given in several steps.
Step 1: Similarly to Step 1 in Steinebach and Zhang (1993), from Theorem 3.1 of

Cs�org�o et al. (1987), we get, as n→ ∞,
sup

�6t6n=2
t
−1=2|N (t)− �t − �3=2��(1)n (t)|=OP(1) (5)

with a suitably chosen sequence of standard Wiener processes {�(1)n (t): t¿0} (n =
1; 2; : : :). Later on, (5) will be used to deal with {Kn(t)} on the interval [�=n; 12 ].
Now we consider the construction on [ 12 ; 1− �=n].
Step 2: Consider

Nn=2(t) + 1 = min{k: XN (n=2)+2 + · · ·+ XN (n=2)+1+k ¿ t}:
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Let

Z̃
(n)
1 = XN (n=2)+1+Nn=2(n=2)I{Nn=2(n=2)¿1} + XN (n=2)+1+1I{Nn=2(n=2)=0};

Z̃
(n)
2 = XN (n=2)+1+Nn=2(n=2)−1I{Nn=2(n=2)¿2} + XN (n=2)+1+2I{Nn=2(n=2)=1};

: : : : : :

Z̃
(n)
k = XN (n=2)+1+Nn=2(n=2)−k+1I{Nn=2(n=2)¿k} + XN (n=2)+1+k I{Nn=2(n=2)=k−1};

: : : : : :

From the proof of Theorem 2.1 in Steinebach and Zhang (1993), we know that there
exists a sequence of suitably chosen standard Wiener processes {�(2)n (t): 06t ¡∞}
such that

max
16t6Nn=2(n=2)+1

t
−1=2
∣∣∣∣∣
[t]∑
i=1

Z̃
(n)
i − �−1t − ��(2)n (t)

∣∣∣∣∣=OP(1); (6)

where [t] is the integer part of t. Furthermore, from the proof of Theorem 2.1 in
Steinebach and Zhang (1993) we know that {�(2)n (t): 06t ¡∞} is independent of
{�(1)n (t): t¿0}. Now let

Z (n)1 = XN (n=2)+1+Nn=2(n=2)+1I{Nn=2(n=2)¿0};

Z (n)2 = XN (n=2)+1+Nn=2(n=2)I{Nn=2(n=2)¿1};

: : : : : :

Z (n)k = XN (n=2)+1+Nn=2(n=2)+1−k+1I{Nn=2(n=2)¿k−1};

: : : : : :

Thus, we have that for t ¡Nn=2(n=2) + 1

[t]+1∑
k=1

Z (n)k = XNn=2(n=2)+1 +
[t]∑
k=1

Z̃
(n)
k :

From et0|X1|¡∞ and (6), we get that

max
16t6Nn=2(n=2)+1

t
−1=2
∣∣∣∣∣
[t]∑
i=1

Z (n)i − �−1t − ��(2)n (t)
∣∣∣∣∣=OP(1): (7)

Step 3: De�ne

Ñ n=2(s) = max{k: Z (n)1 + · · ·+ Z (n)k 6s}; s¿0: (8)

The latter renewal process will be used to establish an approximation for {N (n) −
N (s): n=26s6n− �}. For this reason, we �rst derive an approximation of the process
{Ñ n=2(s): 06s6n=2}. To do this, we show that for any �¿ 0,

sup
�6s6n=2

Ñ n=2(s)
s

=OP(1): (9)
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Let

An(K) =

{
! : max

16s6Nn=2(n=2)+1
s
−1=2

∣∣∣∣∣
[s]∑
k=1

Z (n)k − �−1s− ��(2)n (s)
∣∣∣∣∣6K

}
;

Bn(K) =

{
! : sup

16s6Nn=2(n=2)+1

�|�(2)(s)|√
s log log s

6K

}

and

Cn(K) =

{
! : sup

�6s6n=2

Ñ n=2(s)
s

6K

}
:

Using Theorem 1:2:1 of Cs�org�o and R�ev�esz (1981) and (5), for any �¿ 0, there exist
K1 and n0 such that for n¿n0

P(An(K1))¿1− �; (10)

and

P(Bn(K1))¿1− �: (11)

Therefore, there exist s0 and �1¡�−1 such that for ! ∈ An(K1) ∩ Bn(K1) and
s06s6Nn=2(n=2) + 1,∣∣∣∣∣

[s]∑
k=1

Z (n)k − �−1s
∣∣∣∣∣6K1s1=2−
 + K1

√
s log log s¡�1s:

This means that for ! ∈ An(K1) ∩Bn(K1) and s06s6t6Nn=2(n=2) + 1,

(�−1 − �1)s6(�−1 − �1)t6
[t]∑
k=1

Z (n)k : (12)

From the de�nition of the sequence of {Z (n)k : k¿1},
[t]∑
k=1

Z (n)k =
Nn=2(n=2)+1∑

k=1

Z (n)k for t¿Nn=2(n=2) + 1: (13)

Consequently, from (12) and (13) we get that for ! ∈ An(K1) ∩ Bn(K1) and
s06s6Nn=2(n=2) + 1,

Ñ n=2(s(�−1 − �1))6s:
Thus, for s0(�−1 − �1)6s6(�−1 − �1)(Nn=2(n=2) + 1) and ! ∈ An(K1) ∩Bn(K1),

Ñ n=2(s)6(�−1 − �1)−1s: (14)

From the de�nition of Nn=2(s) and the renewal theorem, we know that there exist
�2¡� and n1 such that for n¿n1

P
(
Nn=2

(n
2

)
¿(�− �2)n

)
¿1− �: (15)

Using (10)–(11) and (14)–(15), we know that there is 0¡�¡ 1 such that

sup
�6s6�n=2

Ñ n=2(s)
s

=OP(1): (16)
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Similar to the Step 4 in the proof of Theorem 2.1 in Steinebach and Zhang (1993),
we have

sup
�n=26s6n=2

Ñ n=2(s)
s

=OP(1): (17)

On combining now (16) and (17) we get (9).
Step 4: We are in the position to establish the weighted embedding of {Ñ n=2(s):

�6s6n=2}. Here the de�nition of Ñ n=2(s) is di�erent from the one given in the proof of
Theorem 2.1 in Steinebach and Zhang (1993). Thus we can not use Theorem 3.1 in
Cs�org�o et al. (1987) to get the weighted approximation for Ñ n=2(s) as what Steinebach
and Zhang (1993) gave.
From Step 3, for ! ∈ An(K) and 16s6Nn=2(n=2) + 1,

− Ks1=2−
 + �−1s+ ��(2)n (s)6
[s]∑
k=1

Z (n)k 6Ks
1=2−
 + �−1s+ ��(2)n (s) (18)

and for ! ∈ Cn(K) and 16s6n=2,

Ñ n=2(s)6Ks: (19)

Hence, (18) and (19) ensure that for ! ∈ An(K) ∩ Cn(K) and s6n=2,

Ñ n=2(s) = max

{
k:

k∑
i=1

Z (n)i 6s

}

6 sup

{
t:

[t]∑
i=1

Z (n)i 6s and t6Ks

}

6 sup{t: − Kt1=2−
 + �−1t + ��(2)n (t)6s and t6Ks}
6 sup{t: �−1t + ��(2)n (t)6s+ K(Ks)1=2−
}: (20)

From the de�nitions of Nn=2(s) and {Z (n)k ; k¿1}, we have
Nn=2(n=2)+1∑

k=1

Z (n)k ¿
n
2
:

Thus, by (18) and (19), we have that for ! ∈ An(K) ∩ Cn(K) and s6n=2,

Ñ n=2(s) = max

{
k:

k∑
i=1

Z (n)i 6s

}

¿min

{
k:

k∑
i=1

Z (n)i ¿s

}
− 1

¿ inf

{
t − 1:

[t]∑
i=1

Z (n)i ¿s and t6Ks

}
− 1

¿ inf{t − 1: �−1t + ��(2)n (t)¿s− K(Ks)1=2−
 and t6Ks} − 1
¿ inf{t − 1: �−1t + ��(2)n (t)¿s− K(Ks)1=2−
} − 1: (21)
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Now let

M̃ n(s) = sup{t: ��(2)n (t) + �−1t = s}
and

Mn(s) = inf{t: ��(2)n (t) + �−1t = s}:
Then (20) and (21) give

Mn(s− K(Ks)1=2−
)6Ñ n=2(s)6M̃ n(s+ K(Ks)1=2−
): (22)

Clearly, we know that Mn(s) is a Markov time and

Mn(s)6M̃ n(s):

Thus, for any A¿ 0,

P(M̃ n(s)−Mn(s)¿A log s)

=P
(
��(2)n (M̃ n(s)) + �−1M̃ n(s) = s;

��(2)n (Mn(s)) + �
−1Mn(s) = s and M̃ n(s)−Mn(s)¿A log s

)
6P

(
inf

t¿A log s
{��(2)n (t) + �−1t}60

)

6P
(

sup
t¿A log s

{−��(2)n (t)− �−1t}¿0
)

6P
(

sup
t¿A log s

{−��(2)n (t)− (�−1=2)t}¿A(�−1=2) log s
)

6P
(

sup
06t¡∞

{−��(2)n (t)− (�−1=2)t}¿A(�−1=2) log s
)
: (23)

By assertion (9:21) on p. 112 in Karatzas and Shreve (1988), (23) implies that

P(M̃ n(s)−Mn(s)¿A log s)6s−A�
−1=4:

Consequently,

|M̃ n([s])−Mn([s])|=a:s: O(log s): (24)

From Theorem 2.1 in Cs�org�o et al. (1987), we have that there is a sequence of
suitably chosen standard Wiener process {�(3)n (t): t ¿0}, which is independent of
{�(1)n (t): t¿0}, such that

sup
06t6s

|Mn(t)− �t − �3=2��(3)n (t)|=OP(log s): (25)

Note that from Theorem 1:2:1 in Cs�org�o and R�ev�esz (1981),

sup
06t6s; 06v61

|�(3)n (t + v)− �(3)n (t)|=a:s: O(log s): (26)

From the de�nition of M̃ n(s);

(M̃ n([t])−Mn([t])) +Mn([t])6M̃ n(t)

6(M̃ n([t] + 1)−Mn([t] + 1)) +Mn([t] + 1): (27)
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Combining (24)–(27) yields that

sup
06t6s

|M̃ n(t)− �t − �3=2��(3)n (t)|=OP(log s): (28)

Similar to argument (3:7) in the proof of Theorem 3.1 in Cs�org�o et al. (1987), from
(22) we have

|Ñ n=2(s)− �s− �3=2��(3)n (s)|
6a:s|M̃ n(s+ K(Ks)1=2−
)− �(s+ K(Ks)1=2−
)− �3=2��(3)n (s+ K(Ks)1=2−
)|
+ |Mn(s− K(Ks)1=2−
)− �(s− K(Ks)1=2−
)− �3=2��(3)n (s− K(Ks)1=2−
)|
+ �3=2�|�(3)n (s+ K(Ks)1=2−
)− �(3)n (s)|
+ �3=2�|�(3)n (s− K(Ks)1=2−
)− �(3)n (s)|
+2�K(Ks)1=2−
:

By Theorem 1:2:1 in Cs�org�o and R�ev�esz (1981), (25) and (28) we get that

sup
�6s6n=2

s
−1=2|Ñ n=2(s)− �s− �3=2��(3)n (s)|=OP(1): (29)

Step 5: In this step we give the strong approximation for {N (n)−N (s): n=26s6n}.
Let

Rn=2 = X1 + · · ·+ XN (n=2)+1 − n
2
:

Rn=2 is called the residual waiting time relative to the renewal process generated by
the sequence {Xk : k¿1}. By Theorem 6:2 on p. 58 in Gut (1988), we know that

Rn=2 = OP(1): (30)

Let

Nn(s) + 1 = min{k: XN (n)+1+1 + · · ·+ XN (n)+1+k ¿ s}:
From

P(Nn(Rn=2)¿M)6P(Rn=2¿s) + P(X1 + · · ·+ XM6s)
and the law of large numbers for the sequence {Xk : k¿1}, we have

Nn(Rn=2) = OP(1): (31)

Note that

N (n+ Rn=2)− N (n)6Nn(Rn=2) + 1: (32)

On the other hand, from the de�nitions of N (s) and Ñ n=2(s), for s ∈ (n=2; n)
N (n+ Rn=2)− N (s) = Ñ n=2(n− s+ Rn=2 + R̃n); (33)

where R̃n = X1 + · · ·+ XN (n+Rn=2)+1 − (n+ Rn=2). Similar to (30), we have
R̃n =OP(1): (34)
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Using (31), (32) and (33), we get that

sup
n=26s6n−�

(n− s)
−1=2|N (n)− N (s)− Ñ n=2(n− s+ Rn=2 + R̃n)|

6 sup
n=26s6n−�

(n− s)
−1=2|N (n+ Rn=2)− N (s)− Ñ n=2(n− s+ Rn=2 + R̃n)|

+ |N (n+ Rn=2)− N (n)|
=OP(1): (35)

Furthermore, by (29) and (34),

sup
�6s6n=2

s
−1=2|Ñ n=2(s+ Rn=2 + R̃n)− �s− �3=2��(4)n (s)|=OP(1): (36)

Consequently, (35) and (36) ensure that

sup
n=26s6n−�

(n− s)
−1=2|N (n)− N (s)− �(n− s)− �3=2��(4)n (n− s)|=OP(1): (37)

Step 6: In this step we combine the two independent embeddings of (5) and (37).
De�ne

�n(s) =

{
�(1)n (s) for 06s6 1

2n;

�(1)n (
1
2n) + �

(4)
n (

1
2n)− �(4)n (n− s) for 12n6s6n:

By the independence of {�(1)n (s): 06s¡∞} and {�(4)n (s): 06s¡∞}, it is easy to
check for the covariance function �n(s) and conclude that {�n(s): 06s¡∞} is Wiener
process.
Now by (5) and (37),

sup
�=n6s61−�=n

n
−1=2(t(1− t))
−1=2|N (nt)− tN (n)− �3=2�(�n(nt)− t�n(n))|

6 sup
�=n6s61=2

n
−1=2(t(1− t))
−1=2|N (nt)− �nt − �3=2��(1)n (nt)|

+ sup
�=n6s61=2

n
−1=2t(t(1− t))
−1=2|N ( 12n)− 1
2�n− �3=2��(1)n ( 12n)|

+ sup
�=n6s61=2

n
−1=2t(t(1− t))
−1=2|N (n)− N ( 12n)− 1
2�n − �3=2��(4)n (

1
2n)|

+ sup
�=n6s61−�=n

n
−1=2(t(1− t))
−1=2|N (n)− N (nt)− �n(1− t)

− �3=2��(4)n (n− nt)|
+ sup

�=n6s61=2
n
−1=2(1− t)(t(1− t))
−1=2|N ( 12n)− 1

2�n− �3=2��(1)n ( 12n)|

+ sup
�=n6s61=2

n
−1=2(1− t)(t(1− t))
−1=2|N (n)− N ( 12n)

− 1
2�n− �3=2��(4)n ( 12n)|

=OP(1):

Noticing that Bn(t)= n−1=2(�n(nt) − t�n(n)) is a Brownian bridge for each n¿1,
Theorem 2.1 is proved.
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Finally, we give the weighted embedding of the process {Kn(t): 06t61} when only
rth moment of X1 exists.

Theorem 2.2. Assuming that E|X1|r ¡∞ ( for some r ¿ 2); we can de�ne a sequence
of Brownian bridges {Bn(s): 06s61} such that

sup
�=n6t61−�=n

n
|Kn(t)− �3=2�Bn(t)|
(t(1− t))1=2−
 =OP(1)

for all �¿ 0 and 06
¡ 1
2 − 1=r.

The proof of this theorem is similar to the proof of Theorem 2.1, so the details are
omitted.

3. Supremum of the pontograms

The sup-norm and Lp-norm asymptotics for pontograms given in Cs�org�o and Horv�ath
(1987) for the Poisson pontograms and Steinebach and Zhang (1993) for the pon-
tograms with the nonnegative assumption Xk¿0 can be extended to the case of general
pontograms and general p; 16p¡∞, using the same technique. Let

a(x) = (2 log x)1=2;

b(x) = 2 log x + 1
2 log log x − 1

2 log �;

c(x) = log
1− x
x
;

and let Y be a random variable with distribution function exp{−2 exp(−y)};−∞¡y
¡∞. Then, we have

Theorem 3.1. Assume that the distribution of X1 is non-arithmetic and E|X1|r ¡∞
( for some r ¿ 2). If kn → ∞; kn=n→ 0 (n→ ∞); then;

a(log n)(�3=2�)−1 sup
0¡t¡1

|Kn(t)|=(t(1− t))1=2 − b(log n)⇒ Y;

a( 12 log kn)(�
3=2�)−1 sup

0¡t6kn=n
|Kn(t)|=(t(1− t))1=2 − b( 12 log kn)⇒ Y;

a( 12 log kn)(�
3=2�)−1 sup

1−kn=n6t¡n
|Kn(t)|=(t(1− t))1=2 − b( 12 log kn)⇒ Y

and

a(c(log kn=n))(�3=2�)−1 sup
kn=n6t61−kn=n

|Kn(t)|=(t(1− t))1=2 − b(c(log kn))⇒ Y

as n→ ∞.

Proof. See the proof of Theorem 3.1 in Steinebach and Zhang (1993).
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Now we consider Lp-norm asymptotics for pontograms. Note that from Theorem 2.2,∫ |X1|=n

0
|Kn(t)|p=(t(1− t))p=2+1 dt =OP((N (n)=n)p|X1|p=2) = OP(1); (38)

∫ 1

|SN (n)|=n
|Kn(t)|p=(t(1− t))p=2+1 dt =OP((N (n)=n)p(n− SN (n))p=2) = OP(1):

(39)

Similarly to the L2-case in Cs�org�o and Horv�ath (1987), Theorem 3:1. Instead of
Lemma 3:1 there, using Theorem 3:4 and assertion (4:27) of Cs�org�o and Horv�ath
(1988a), here, from (38) to (39), we get

Theorem 3.2. Assume that the distribution of X1 is non-arithmetic and E|X1|r ¡∞
( for some r ¿ 2). If kn → ∞; kn=n→ 0 (n→ ∞); then

(4D log n)−1=2
{
(�3=2�)−p

∫ 1

0
|Kn(t)|p=(t(1− t))p=2+1 dt − 2m log n

}
⇒ N(0; 1);

(2D log kn)−1=2
{
(�3=2�)−p

∫ kn=n

0
|Kn(t)|p=(t(1− t))p=2+1 dt − m log kn

}

⇒ N(0; 1);

(2D log kn)−1=2
{
(�3=2�)−p

∫ 1

1−kn=n
|Kn(t)|p=(t(1− t))p=2+1 dt − m log kn

}

⇒ N(0; 1)

and

(4D log n=kn)−1=2
{
(�3=2�)−p

∫ 1−kn=n

kn=n
|Kn(t)|p=(t(1− t))p=2+1 dt − m log(n=kn)

}

⇒ N(0; 1);

as n→ ∞, where D = D(p) is a positive constant,

m= m(p) = (2�)−1=2
∫ ∞

−∞
|x|p exp(− 1

2x
2) dx;

and N(0; 1) stands for the standard normal variable.

Remark. Here the assumption that the distribution of X1 is non-arithmetic is necessary
in Theorems 3.1 and 3.2, otherwise the sup-norm and Lp-norm asymptotics of Cs�org�o
and Horv�ath (1988a) cannot be obtained, see Landau (1993).
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