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Abstract

A risk process with delay in claim settlement is usually described in terms of a Poisson
shot-noise process (see Kl/uppelberg and Mikosch (Bernoulli 1 (1995) 125) and Br2emaud (Appl.
Probab. 37 (2000) 914)). In particular, Br2emaud proves that under suitable conditions the corre-
sponding ruin probability goes to zero not slower than an exponential rate. This yields problems
if we want to estimate the ruin probability by a Monte Carlo simulation. In this paper we
overcome these di9culties deriving the asymptotically e9cient simulation law.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A Poisson shot-noise is a stochastic process of the form

X (t) =
∑
n¿1

h(t − Tn; Zn)1(0; t](Tn);

where {Tn}n¿1 is the sequence of times of a homogeneous Poisson process with in-
tensity �, {Zn}n¿1 is a sequence of i.i.d. (independent and identically distributed)
non-negative random variables, independent of the Poisson process, and h : R× [0;∞)
→ [0;∞) is a measurable function such that h(t; z) = 0 for non-positive times.

We deBne in a natural way the integrated Poisson shot-noise process by

S(t) =
∫ t

0
X (s) ds=

∑
n¿1

H (t − Tn; Zn)1(0; t](Tn);
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where

H (t; z) =
∫ t

0
h(s; z) ds:

The interpretation of this model in terms of non-life insurance is the following (see
Kl/uppelberg and Mikosch, 1995; Br2emaud, 2000). Let us suppose that a claim occurs
at time Tn, and the insurance company honours this claim at the rate h(t − Tn; Zn).
The total amount paid in the time interval (0; t] is therefore S(t). Assuming that the
insurance company starts with an initial fortune u¿ 0, and letting c¿ 0 denote the
gross premium risk, the corresponding ruin probability is

 (u) = P(Tu ¡∞);

where

Tu = inf{t¿ 0 : S(t) − ct¿ u}
and inf ∅ =+∞ by convention.
In Br2emaud (2000) it is proved that under the following assumptions:

E[e�H (∞;Z1)]¡∞ for all � in a neighbourhood of 0; (1.1)

c¿�E[H (∞; Z1)] (1.2)

and

there exists w¿ 0 such that �(E[ewH (∞;Z1)] − 1) − cw = 0 (1.3)

it holds

 (u)6 e−wu for all u¿ 0 (1.4)

and

lim
u→∞

1
u
ln  (u) = −w: (1.5)

Throughout this paper we make the following further assumptions on the model:

H (∞; z) = z (1.6)

and

P(0¡Z1 ¡∞) = 1: (1.7)

As far as assumption (1.6) is concerned we notice that it holds in many cases interesting
for applications. For instance, when h(t; z)=1(0; z](t) the Poisson shot-noise process can
be interpreted as a teletra9c model (see Section 5).
In this work we consider the estimation of the ruin probability  (u) by an e9cient

Monte Carlo simulation. We observe that the direct estimation by the relative frequency

r̂ =
1
n

n∑
k=1

1t(k)u ¡∞;

where t(1)u ; : : : ; t(n)u are n independent simulations under P of the random variable Tu,
is ine9cient. Indeed, for a good relative accuracy, it is required a great number of
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replications n because, under assumptions (1.1)–(1.3),  (u) goes to zero not slower
than an exponential rate as u → ∞. Moreover, in our case a direct simulation is even
impossible because each realization of the event {Tu =+∞} requires an inBnite time
in simulation.
To overcome these di9culties we use importance sampling (the reader is referred

to the paper by Glynn and Iglehart (1989) and the book by Bucklew (1990) for a
thorough treatment on the importance sampling). The idea is to consider independent
simulations of the event {Tu ¡∞} under another suitable law Q which belongs to
a class of admissible laws. Allowing a wide class of simulation laws, we derive the
unique asymptotically e9cient simulation law (as u → ∞) in a sense closely related
to large deviations theory.
An early related paper on importance sampling techniques is Siegmund (1976), where

it is considered the simulation of probabilities that occur in sequential tests, and opti-
mality results are proved for an exponential family of possible simulation distributions.
Similar ideas have been applied by Asmussen (1985) within the framework of insur-
ance risk for the simulation of ruin probabilities. Lehtonen and Nyrhinen (1992) use
importance sampling for the simulation of level-crossing probabilities of discrete time
random walks. Their techniques involve again exponentially twisted distributions, but
while in Siegmund (1976) and Asmussen (1985) the e9ciency of a possible simula-
tion distribution is measured directly by the variance of the estimator, in Lehtonen and
Nyrhinen (1992) a new criterion is used, based on large deviations theory. A related
work is Macci (2001). In this article, we adapt the techniques developed by Lehtonen
and Nyrhinen (1992) to the simulation’s problem described before. In the particular
case of a compound Poisson risk model, the asymptotically e9cient simulation law
given in this paper coincides with the one given in Asmussen (2000, Chapter X) by
importance sampling via Lundberg conjugation.
The paper is organized as follows. In Section 2, we give some preliminaries on the

importance sampling technique, introducing the class of admissible laws. An asymptot-
ically e9cient law for simulations will be derived in Section 3. In Section 4 we show
the uniqueness (or optimality) of such a law. In Section 5, we apply our result to a
teletra9c model described in Kostantopoulos and Lin (1998) and Br2emaud (2000).

2. Preliminaries

In this section, we describe the importance sampling technique in our speciBc case.
For this we start introducing the following class of probability measures. We say that
a probability measure Q belongs to the class D if and only if:
(A1) Q is absolutely continuous with respect to P on the �-Beld FC

t , for each t¿ 0,
where {FC

t }t¿0 is the Bltration generated by the compound Poisson process

C(t) =
∑
n¿1

Zn1(0; t](Tn):

(A2) Under Q the stochastic process {Tn}n¿1 is a homogeneous Poisson process with
intensity �(Q), independent of the i.i.d. sequence of random variables {Zn}n¿1, whose
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common law Q(Z) under Q is absolutely continuous with respect to their common law
P(Z) under P, with

EQ(Z)

[(
dP(Z)

dQ(Z) (Z1)
)2]

¡∞: (2.1)

To avoid the case of inBnite time in simulation, we deBne the class of admissible
laws as

C = {Q ∈D : Q(Tu ¡∞) = 1 for all u¿ 0}:

Remark 2.1. We notice that if Q ∈D then, for each t ¿ 0,

�Q;P
t =

dQ(Z)

dP(Z) (Z1) · · · dQ
(Z)

dP(Z) (ZNt )
(
�(Q)

�

)Nt

exp{−(�(Q) − �)t}; (2.2)

where �Q;P
t denotes the density of Q with respect to P on the �-Beld FC

t and

Nt =
∑
n¿1

1(0; t](Tn): (2.3)

Moreover, letting �P;Qt denote the density of P with respect to Q on the �-Beld FC
t

then

�P;Qt = (�Q;P
t )−1: (2.4)

Remark 2.2. We observe that an unbiased estimator of the ruin probability  (u) when
we consider n independent simulations t(1)u ; : : : ; t(n)u of Tu under Q ∈C is

r̂Q =
1
n

n∑
k=1

�P;Q
t(k)u

1t(k)u ¡∞: (2.5)

Indeed, Tu is an FC
t -stopping time (as can be easily realized noticing that S(t) has

continuous trajectories), therefore it is FC
Tu
-measurable, and

EQ[�P;QTu
1Tu¡∞] =  (u):

After straightforward computations it is easily seen that the variance of the estimator
r̂Q deBned by (2.5) is

varQ(r̂Q) =
EQ[(�P;QTu

)21Tu¡∞] − [P(Tu ¡∞)]2

n
:

To get an asymptotically e9cient simulation law, the idea is to minimize in some
sense, for u large, the quantity varQ(r̂Q), varying Q ∈C. For this we can concentrate
our attention on the only part depending on Q, that is

EQ[(�P;QTu
)21Tu¡∞] = EQ[(�P;QTu

)2];



G.L. Torrisi / Stochastic Processes and their Applications 112 (2004) 225–244 229

where the equality follows since

Q(Tu ¡∞) = 1 for all Q ∈C:

Following the criterion described by Lehtonen and Nyrhinen (1992) (see also Macci,
2001) we say that an admissible law Q∗ ∈C is asymptotically e9cient for simulations
if

lim inf
u→∞

1
u
ln EQ[(�P;QTu

)2]¿− 2w;

for all admissible laws Q ∈C, and
lim
u→∞

1
u
ln EQ∗ [(�P;Q

∗
Tu

)2] = −2w:

In words, this means that for a given number n of replications to obtain the best possible
accuracy of the estimate we should perform the simulation of the random variable Tu

under the law Q∗. Such a law will be derived in Section 3. The asymptotically e9cient
simulation law Q∗ is unique (or optimal) if

lim inf
u→∞

1
u
ln EQ[(�P;QTu

)2]¿−2w

for all Q ∈C, Q 
= Q∗. In Section 4 we show the uniqueness of the asymptotically
e9cient simulation law determined in Section 3.

3. Asymptotically e�cient simulation law

In a way similar to the paper by Lehtonen and Nyrhinen (1992) (see also Macci,
2001), we introduce a suitable family of conjugate laws

{P�}�:�(�)¡∞

of the original law P where, for all �∈R,
�(�) = E[e�Z1 ]:

Such a family is deBned as follows: the probability measure P� is absolutely con-
tinuous with respect to P on the �-Beld FC

t , for each t ¿ 0, and the corresponding
density is

�P�;P
t =

e�C(t)

E[e�C(t)] = exp{�C(t) − �t(�(�) − 1)}:

As it is well-known (see, for instance, Asmussen, 1987, pp. 262–263), under P� the
process {Tn}n¿1 is a Poisson process with intensity �(P�) = ��(�), independent of the
sequence {Zn}n¿1 of i.i.d. random variables, whose common law P(Z)

� is absolutely
continuous with respect to their common law P(Z) under P, with density

dP(Z)
�

dP(Z) (z) =
e�z

�(�)
: (3.1)
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As announced in the introduction, in this section we derive an asymptotically e9cient
law for simulation. More precisely, we show the following Proposition 3.1.

Proposition 3.1. Let us assume

�(�)¡∞ for all � in a neighbourhood of 0; say (0; �) (3.2)

and

there exists w∈ (0; �) such that �(�(w) − 1) − cw = 0
and �E[Z1ewZ1 ] − c¿ 0: (3.3)

Then Pw is an asymptotically e6cient law for simulations.

The proof of Proposition 3.1 is based on the following preliminary lemma.

Lemma 3.2. Let us assume (3.2), then P� ∈C for all �∈ (0; �) such that

�E[Z1e�Z1 ] − c¿ 0: (3.4)

Proof. Let �∈ (0; �) be such that (3.2) and (3.4) hold. After a straightforward compu-
tation it is easily checked that (3.2) implies P� ∈D. Therefore, the conclusion follows
if we prove

P�(Tu ¡∞) = 1 for all u¿ 0:

In particular, this follows if we show

lim
t→∞

S(t) − ct
t

= $� P�-a:s:; (3.5)

for some positive constant $�.
By the deBnition of P� and formulas in Kl/uppelberg and Mikosch (1995, p. 127)

we have, for each t ¿ 0,

EP� [S(t)] = ��(�)
∫ t

0
EP� [H (s; Z1)] ds

and

varP�(S(t)) = ��(�)
∫ t

0
EP� [H

2(s; Z1)] ds:

In order to show (3.5) we start proving

lim
t→∞

S(t)
EP� [S(t)]

= 1 P�-a:s: (3.6)

This follows by Proposition 3.1 in Kl/uppelberg and Mikosch (1995) if we show∑
n¿1

varP�(S(n
2))

E2P�
[S(n2)]

¡∞

i.e.

∑
n¿1

∫ n2

0 EP� [H
2(s; Z1)] ds

(
∫ n2

0 EP� [H (s; Z1)] ds)2
¡∞ (3.7)
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and

lim
n→∞

∫ n2

0 EP� [H (s; Z1)] ds∫ (n−1)2

0 EP� [H (s; Z1)] ds
= 1: (3.8)

For (3.7) it su9ces to show

lim
n→∞

∫ n2

0 EP� [H
2(s; Z1)] ds=(

∫ n2

0 EP� [H (s; Z1)] ds)2

1=n2
= &� (3.9)

for some positive constant &�. We start observing that by assumption (1.6) we have

lim
s→∞ EP� [H

2(s; Z1)] = EP� [Z
2
1 ]

and

lim
s→∞ EP� [H (s; Z1)] = EP� [Z1]:

Employing (3.1) we obtain

EP� [Z
2
1 ] =

E[Z2
1 e

�Z1 ]
�(�)

and

EP� [Z1] =
E[Z1e�Z1 ]

�(�)
(3.10)

and these quantities are Bnite by (3.2). By assumption (1.7) these quantities are also
positive. Thus

lim
n→∞

1
n2

∫ n2

0
EP� [H

2(s; Z1)] ds= EP� [Z
2
1 ]

and

lim
n→∞

1
n2

∫ n2

0
EP� [H (s; Z1)] ds= EP� [Z1]:

Therefore

lim
n→∞

∫ n2

0 EP� [H
2(s; Z1)] ds=(

∫ n2

0 EP� [H (s; Z1)] ds)2

1=n2
=
EP� [Z

2
1 ]

E2P�
[Z1]

¿ 0

and

lim
n→∞

∫ n2

0 EP� [H (s; Z1)] ds∫ (n−1)2

0 EP� [H (s; Z1)] ds
=
EP� [Z1]
EP� [Z1]

= 1

which correspond, respectively, to (3.9) and (3.8).
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We now observe that

lim
t→∞

EP� [S(t)]
t

= ��(�)EP� [Z1]

and therefore by (3.6) and (3.10) we have

lim
t→∞

S(t) − ct
t

= lim
t→∞

S(t)
EP� [S(t)]

EP� [S(t)]
t

− c = �E[Z1e�Z1 ] − c:

Relation (3.5) follows by assumption (3.4) setting

$� = �E[Z1e�Z1 ] − c:

Finally we show Proposition 3.1.

Proof. In view of Lemma 3.2 we have just to show

lim inf
u→∞

1
u
ln EQ[(�P;QTu

)2]¿−2w (3.11)

for all admissible laws Q ∈C, and

lim
u→∞

1
u
ln EPw [(�

P;Pw
Tu

)2] = −2w: (3.12)

We start proving (3.11). By Jensen’s inequality, for all Q ∈C,

lim inf
u→∞

1
u
ln EQ[(�P;QTu

)2]¿ lim inf
u→∞

1
u
ln E2Q[�

P;Q
Tu

] = 2 lim inf
u→∞

1
u
ln EQ[�P;QTu

]: (3.13)

Since EQ[�P;QTu
]=  (u), by (3.13) and (1.5) we have (3.11). We now show (3.12). For

this, by virtue of (3.11), it su9ces to prove

lim sup
u→∞

1
u
ln EPw [(�

P;Pw
Tu

)2]6−2w: (3.14)

By the deBnition of the density �P�;P
t it follows, for all �∈ (0; �),

�P;P�
t = exp{−�(C(t) − ct) + �t(�(�) − 1) − c�t}: (3.15)

Setting �= w and t = Tu in (3.15), by assumption (3.3) it follows

�P;Pw
Tu

= exp{−w(C(Tu) − cTu)}: (3.16)

Since, for all t ¿ 0, S(t)6C(t) a.s., by the deBnition of Tu, we have

C(Tu) − cTu¿ u a:s:; (3.17)

for all u¿ 0. Relation (3.14) it follows by (3.16) and (3.17).
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4. Uniqueness of the asymptotically e�cient simulation law

In this section, we prove the uniqueness (or optimality) of the asymptotically e9cient
simulation law Pw. More precisely, we show the following result.

Proposition 4.1. Let us assume (3.2) and (3.3). Then Pw is the unique asymptotically
e6cient simulation law.

To prove this proposition we need some preliminaries.
Given Q ∈D, let us consider a law L∈D such that under L the process {Tn}n¿1 is

a Poisson process with intensity

�(L) =
�2

�(Q) ;

independent of the i.i.d. sequence of random variables {Zn}n¿1, whose common law
L(Z) is absolutely continuous with respect to Q(Z) with density

dL(Z)

dQ(Z) (z) = K−1
A(*)

[
dP(Z)

dQ(Z) (z)
]2

1A(*)(z): (4.1)

In the above expression

A(*) =
{
z ∈R+ : z6 *;

dP(Z)

dQ(Z) (z)6 *
}

for *∈ (0;∞) large enough so that

KA(*) =
∫
A(*)

[
dP(Z)

dQ(Z) (z)
]2

dQ(Z)(z)¿ 0:

Proposition 4.1 above is consequence of two basic preliminary results: Lemmas 4.2
and 4.6 to be given. In our framework, they correspond, respectively, to Lemmas 3
and 4 in Lehtonen and Nyrhinen (1992). We start stating Lemma 4.2.

Lemma 4.2. Let d¿ 0 be arbitrarily 8xed, then

lim inf
u→∞

1
u
ln EQ[(�P;QTu

)2]¿− d+(L)∗
(
1
d

)
; (4.2)

where

+(L)∗(x) = sup
�∈R

(�x − +(L)(�))

is the Fenchel–Legendre transform of the function

+(L)(�) = −�c + �(L)KA(*)�L(�) + �(Q) − 2�; (4.3)

being

�L(�) = EL[e�Z1 ]:

The proof of this result is based on Lemmas 4.3–4.5 below.
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Lemma 4.3. The probability measure L is absolutely continuous with respect to Q on
the �-8eld FC

t , for each t ¿ 0, with density

�L;Qt = (�P;Qt )2exp{−(�(Q) + �(L) − 2�)t − Nt lnKA(*)}
Nt∏
i=1

1{Zi ∈A(*)};

where �P;Qt is given by (2.4), and Nt is de8ned by (2.3).

Proof. The conclusion is a straightforward consequence of the deBnition of L.

Before stating Lemmas 4.4 and 4.5 we introduce another family {L�}�∈R of laws,
deBned as follows: the probability measure L� is absolutely continuous with respect to
L on the �-Beld FC

t , for each t ¿ 0, with density

�L�;L
t =

e�C(t)+Nt ln KA(*)

EL[e�C(t)+Nt ln KA(*) ]
:

By the deBnition of L it is easily seen that �L�;L
t can be rewritten as

�L�;L
t = exp{�C(t) + Nt lnKA(*) − �(L)t(KA(*)�L(�) − 1)}: (4.4)

Lemmas 4.4 and 4.5 give the almost sure convergence (as t → ∞) of the processes
(C(t) − ct)=t and (S(t) − ct)=t under the law L�. The proof of Lemma 4.4 is similar
to the proof of Lemma 3.6 in Macci (2001), and therefore omitted.

Lemma 4.4. For all �∈R

lim
t→∞

C(t) − ct
t

= +(L)′(�) L�-a:s:;

where the function +(L)(·) is de8ned by (4.3) and +(L)′(�) denotes the derivative of
+(L)(�).

The analogous result for the (integrated) Poisson shot-noise process S(t) is the
following.

Lemma 4.5. For all �∈R

lim
t→∞

S(t) − ct
t

= +(L)′(�) L�-a:s:

Proof. Let �∈R be arbitrarily Bxed. By (4.4) and the result in Asmussen (1987,
pp. 262–263) it follows that under L�S(t) is a Poisson shot-noise process where the
underlying Poisson process {Tn}n¿1 has intensity �(L)KA(*)�L(�). In particular (see
Kl/uppelberg and Mikosch, 1995, p. 127), for each t ¿ 0,

EL� [S(t)] = �(L)KA(*)�L(�)
∫ t

0
EL� [H (s; Z1)] ds:
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Arguing as in the proof of Lemma 3.2, replacing P� by L�, it can be shown

lim
t→∞

S(t)
EL� [S(t)]

= 1 L�-a:s: (4.5)

We now observe that

lim
t→∞

EL� [S(t)]
t

= �(L)KA(*)�L(�)EL� [Z1]

and moreover

EL� [Z1] =
EL[Z1e�Z1 ]

�L(�)
(4.6)

as we shall show later. Therefore by (4.5) and (4.6) it follows

lim
t→∞

S(t) − ct
t

= �(L)KA(*)EL[Z1e�Z1 ] − c = +(L)′(�) L�-a:s:

It remains to show (4.6). By the strong law of the large numbers

lim
t→∞

C(t) − ct
t

= �(L)KA(*)�L(�)EL� [Z1] − c L�-a:s:;

and therefore (4.6) follows by Lemma 4.4 and the uniqueness of the limit.

We now show the announced Lemma 4.2.

Proof. The proof can be divided in four steps. Let d¿ 0 be arbitrarily Bxed. As Brst
step we show that there exists b∈R such that

+(L)′(b) =
1
d
¿ 0: (4.7)

For this we start noticing that by assumption (1.7) and L(Z)�P(Z) it follows L(Z1 ¿ 0)
=1, and therefore +(L)′′(�)¿ 0 for each �∈R. Thus +(L)′(�) is an increasing function
of �. Since

+(L)′(�) = −c + �(L)KA(*)EL[Z1e�Z1 ]

we have

lim
�→−∞

+(L)′(�) = −c¡ 0

and

lim
�→+∞

+(L)′(�) = +∞:

Therefore +(L)′(�) assumes all the values larger than −c, and (4.7) is proved.
The second step consists in proving

lim
u→∞

C(Tu) − cTu

C(Vu) − cVu
= 1 Lb-a:s:; (4.8)
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where

Vu = inf{t¿ 0 : C(t) − ct¿ u}:
As can be easily realized using Lemma 4.4 and (4.7), relation (4.8) follows if we
show

lim
u→∞

Tu

u
= d Lb-a:s: (4.9)

and

lim
u→∞

Vu

u
= d Lb-a:s: (4.10)

We now prove (4.9). By Lemma 4.5 and (4.7) Lb(Tu ¡∞)=1 for all u¿ 0. Since
the process S(t) − ct has continuous trajectories, by the deBnition of Tu we have

S(Tu) − cTu = u Lb-a:s:

We observe that

lim
u→∞Tu =+∞ Lb-a:s:

and therefore dividing by Tu and letting u tend to +∞, by Lemma 4.5 and (4.7) we
have

lim
u→∞

u
Tu

= +(L)′(b) =
1
d

Lb-a:s:;

which yields (4.9).
We now show (4.10). By Lemma 4.4 and (4.7) Lb(Vu ¡∞) = 1 for all u¿ 0.

Since Lb is absolutely continuous with respect to L, and L(Z1 ∈ (0; *]) = 1 we get
Lb(Z1 ∈ (0; *]) = 1, and therefore

u6C(Vu) − cVu6 u+ * Lb-a:s: (4.11)

We observe that

lim
u→∞Vu =+∞ Lb-a:s:

and then dividing all the terms in inequality (4.11) by Vu and letting u tend to +∞,
Lemma 4.4 and (4.7) give (4.10).
The third step consists in the following application of Egorov’s theorem. By (4.8)

and Egorov’s theorem we have, for any sequence {un} such that un → ∞ as n → ∞,

lim
n→∞

C(Tun) − cTun

C(Vun) − cVun
= 1

almost uniformly with respect to the probability measure Lb, that is for all $∈ (0; 1)
there exists a measurable set E$ such that Lb(E$)¡$ and

lim
n→∞

C(Tun(!)) − cTun(!)
C(Vun(!)) − cVun(!)

= 1

uniformly on 0 − E$. Thus, employing (4.11) we have that for any 1¿ 0 there exists
On= On(1) such that for all n¿ On

un(1 − 1)¡C(Tun(!)) − cTun(!)¡ (un + *)(1 + 1); (4.12)

for almost all !∈0 − E$, with respect to the probability measure Lb.
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Now we perform the Bnal step proving (4.2). By Lemma 4.3 and (4.4) we obtain
for any sequence {un} such that un → ∞ as n → ∞

EQ[(�P;QTun
)2]¿ EQ


(�P;QTun

)21{Tun 6 und}
NTun∏
i=1

1{Zi ∈A(*)}



= EL[exp{(�(Q) + �(L) − 2�)Tun + NTun
lnKA(*)}1{Tun 6 und}]

= ELb [exp{−b(C(Tun) − cTun) + +(L)(b)Tun}1{Tun 6 und}]: (4.13)

Now let 2∈ (0; d=2) be arbitrarily Bxed. By (4.13) we obtain

EQ[(�P;QTun
)2]

¿ ELb [exp{−b(C(Tun) − cTun) + +(L)(b)Tun}
×1{un(d − 22)6Tun 6 und}]: (4.14)

By (4.12) it follows, for all n¿ On,

ELb [exp{−b(C(Tun) − cTun) + +(L)(b)Tun}1{un(d − 22)6Tun 6 und}]

¿
∫
0−E$

exp{−b(C(Tun(!)) − cTun(!)) + +(L)(b)Tun(!)}

×1{un(d − 22)6Tun(!)6 und} dLb(!)

¿ exp{−b(un + *)(1 + 1) + +(L)(b)und − 2un2|+(L)(b)|}

×
∫
0−E$

1{un(d − 22)un(!)6 und} dLb(!); (4.15)

where in the latter inequality we use also that, for any u¿ 0 and !, if

u(d − 22)6Tu(!)6 ud

then

+(L)(b)Tu(!)¿+(L)(b)ud − 2u2|+(L)(b)|:
We now observe that the latter term in (4.15) is bigger than or equal to

exp{−b(un + *)(1 + 1) + +(L)(b)und − 2un2|+(L)(b)|}
×[Lb(un(d − 22)6Tun 6 und) − $]:

Therefore, for all 1∈ (0; 1) there exists On= On(1) such that for all n¿ On

EQ[(�P;QTun
)2]

¿ exp{−b(un + *)(1 + 1) + +(L)(b)und − 2un2|+(L)(b)|}
×[Lb(un(d − 22)6Tun 6 und) − $]:
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Since 2 and 1 are arbitrary, by this latter inequality, (4.9) and (4.7) we have

lim inf
n→∞

1
un

ln EQ[(�P;QTun
)2]¿−b+ +(L)(b)d= −d

(
b
d

− +(L)(b)
)

= −d+(L)∗
(
1
d

)
:

The conclusion follows recalling that the sequence {un} is arbitrary.

Before stating Lemma 4.6, we introduce another law R∈D such that under R the
process {Tn}n¿1 is a Poisson process with intensity �(L), independent of the i.i.d. se-
quence of random variables {Zn}n¿1, whose common law R(Z) is absolutely continuous
with respect to Q(Z) with density

dR(Z)

dQ(Z) (z) = K−1
[
dP(Z)

dQ(Z) (z)
]2

;

where

K = EQ(Z)

[(
dP(Z)

dQ(Z) (Z1)
)2]

:

In the following we explicit the dependence of +(L)(·) from * writing +(L)
* (·) in

place of +(L)(·).

Lemma 4.6. For all d¿ 0

lim
*→∞

+(L)∗
* (d) = +(Q)∗(d); (4.16)

where +(L)∗
* (·) and +(Q)∗(·) are, respectively, the Fenchel–Legendre transforms of

+(L)
* (·) and +(Q)(·), +(L)

* (·) is de8ned by (4.3) and, for all �∈R,
+(Q)(�) = −�c + �(L)K�R(�) + �(Q) − 2� (4.17)

being

�R(�) = ER[e�Z1 ]:

Proof. We preliminarly notice that

DR = {�∈R : �R(�)¡∞}
is an interval of the following form: DR=(−∞; a) for some a∈ (0;∞] or DR=(−∞; a]
for some a∈ [0;∞). Indeed, R(0¡Z1 ¡∞) = 1 since R(Z) is absolutely continuous
with respect to P(Z) and P(0¡Z1 ¡∞) = 1 by assumption (1.7).
We now observe that the proof can be divided in two steps.
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Letting d¿ 0 denote an arbitrarily Bxed positive constant, the Brst step consists in
showing that only the following two cases are possible:

(i) there exists b∈ (−∞; a) so that +(Q)′(b) = d and then

+(Q)∗(d) = bd − +(Q)(b); (4.18)

(ii) +(Q)∗(d) = ad − +(Q)(a).

Now we are going to prove that (i) holds if DR = (−∞; a) for some a∈ (0;∞]. Let
us Brst take 0¡a¡+ ∞. By (4.17) it is easily realized that, for all d¿ 0,

lim
�→a

(�d − +(Q)(�)) = −∞ (4.19)

and

lim
�→−∞

(�d − +(Q)(�)) = −∞: (4.20)

Therefore, the supremum +(Q)∗(d) is necessarily attained on (−∞; a), and this gives
(4.18). Let us now show (4.18) taking a=+∞. Arguing as above, for this it su9ces
to prove (4.19) with a=+∞. We Brst notice that, for all �∈R and for all *,

�d − +(Q)(�)6 �(d+ c) − �(L)KA(*)�L(�) − �(Q) + 2�: (4.21)

Since L(Z1 ¿ 0) = 1, there exists $¿ 0 such that L(Z1 ¿$)¿ 0. Therefore by (4.21)
it follows, for all �¿ 0 and for all *,

�d − +(Q)(�)6 �(d+ c) − �(L)KA(*)e�$L(Z1 ¿$) − �(Q) + 2�: (4.22)

Indeed, �L(�)¿ e�$L(Z1 ¿$). Passing to the limit as � → +∞ in inequality (4.22) we
get (4.19) with a=+∞. Similar arguments show that (i) or (ii) hold if DR =(−∞; a]
for some a∈ [0;+∞).
The Bnal step consists in proving (4.16). We give the details just in the case when

(i) holds (the proof of (4.16) under (ii) is similar). For each *, let �∗
L(*) be such that

+(L)′

* (�∗
L(*)) = d

(the existence of �∗
L(*), for each *, can be proved as at the beginning of the proof of

Lemma 4.2). We now show that

�∗
L(*) ↓ b (4.23)

as * ↑ +∞. Reasoning by contradiction let us suppose that �∗
L(*1)¡�∗

L(*2) if *1 ¡*2.
Then since the functions

* → +(L)′

* (�) = −c + �(L)KA(*)EL[Z1e�Z1 ] (4.24)

and

� → +(L)′

* (�) (4.25)

are increasing we have

d= +(L)′

*1
(�∗

L(*1))¡+(L)′

*2
(�∗

L(*2)) = d
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which is impossible. Therefore

�∗
L(*) ↓ � ∗ = inf

*
�∗
L(*)

as * ↑ +∞.
We now observe that, for all �∈ (−∞; a), the function (4.25) converges monotoni-

cally increasing, as * ↑ ∞, to the function

+(Q)′(�) = −c + �(L)KER[Z1e�Z1 ]:

Reasoning by contradiction, let us assume that there exists O* such that �∗
L( O*)¡b, then

d= +(L)′
O*

(�∗
L( O*))¡+(Q)′(b) = d

which is impossible. Therefore � ∗¿ b. It remains to show � ∗ = b. Reasoning again
by contradiction, let us assume � ∗ ¿b. We notice that

lim
*→∞

[� ∗d − +(L)
* (� ∗)] = � ∗d − +(Q)(� ∗)¡bd − +(Q)(b):

Moreover, since �∗
L(*)¿ � ∗ ¿b for each *, and the function � → �d − +(L)

* (�) is
increasing on (−∞; �∗

L(*)] we get

� ∗d − +(L)
* (� ∗)¿bd − +(L)

* (b):

Taking the limit as * ↑ ∞, it follows

� ∗d − +(Q)(� ∗)¿ bd − +(Q)(b)

which is impossible. Thus, we have (4.23).
We now notice that, as �∗

L(*) ↓ b,

+(L)
* (�∗

L(*)) − +(L)
* (b) = +(L)′

* (b)(�∗
L(*) − b) + o(�∗

L(*) − b):

Therefore

+(L)∗
* (d) = �∗

L(*)d − +(L)
* (�∗

L(*)) = �∗
L(*)d − +(L)

* (b) − +(L)′

* (b)(�∗
L(*) − b)

+ o(�∗
L(*) − b);

and this latter quantity converges to bd − +(Q)(b) = +(Q)∗(d) as * ↑ ∞.

Next Lemma 4.7, whose proof can be found in Macci (2001), is also needed to
show Proposition 4.1.

Lemma 4.7. For all �∈R and Q ∈D
+(Q)(2�)¿ 2+(P)(�); (4.26)

where the function +(Q)(·) is de8ned by (4.17) and

+(P)(�) = −�c + �(�(�) − 1): (4.27)

Moreover, if there exists �̂∈R such that

+(Q)(2�̂) = 2+(P)(�̂)¡∞;

then Q = P�̂.
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Now we prove Proposition 4.1.

Proof. Arguing as in the proof of Proposition 3.1 it follows that for all Q ∈C

lim inf
u→∞

1
u
ln EQ[(�P;QTu

)2]¿− 2w

and therefore the result follows if we show that for any Q ∈C such that

lim inf
u→∞

1
u
ln EQ[(�P;QTu

)2] = −2w (4.28)

then Q = Pw. We Brst show that the following inequalities hold:

lim inf
u→∞

1
u
ln EQ[(�P;QTu

)2]¿− g+(Q)∗
(
1
g

)
¿− 2g+(P)∗

(
1
g

)
= −2w; (4.29)

where

g= (−c + �E[Z1ewZ1 ])−1:

By Lemma 4.7

+(Q)(2�)¿ 2+(P)(�);

for all Q ∈C and �∈R. Therefore, for all x∈R,
+(Q)∗(x)6 2+(P)∗(x):

In particular,

+(Q)∗
(
1
d

)
6 2+(P)∗

(
1
d

)
;

for all d¿ 0. Thus, by Lemmas 4.2 and 4.6 we have

lim inf
u→∞

1
u
ln EQ[(�P;QTu

)2]¿−d+(Q)∗
(
1
d

)
¿− 2d+(P)∗

(
1
d

)
: (4.30)

Since for all �∈ (−∞; �)

+(P)′(�) = −c + �E[Z1e�Z1 ];

we have +(P)′(w) = g−1, thus

+(P)∗
(
1
g

)
=

w
g

− +(P)(w) =
w
g
;

where the latter equality follows by (3.3). Therefore, setting d= g in (4.30) we obtain
(4.29).
As can be easily realized after an elementary study of the function � → �g−1 −

+(Q)(�), there exists �̃∈R such that

+(Q)∗
(
1
g

)
=

�̃
g

− +(Q)(�̃): (4.31)
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By Lemma 4.7 again it follows

+(Q)∗
(
1
g

)
=

�̃
g

− +(Q)(�̃)6
�̃
g

− 2+(P)

(
�̃
2

)
6 2+(P)∗

(
1
g

)
: (4.32)

We now observe that if Q ∈C is such that (4.28) holds, then all the inequalities in
(4.29) turn into equalities, and therefore

+(Q)∗
(
1
g

)
= 2+(P)∗

(
1
g

)
:

In particular, by (4.32) it follows

+(Q)∗
(
1
g

)
=

�̃
g

− +(Q)(�̃) = 2

[
�̃
2g

− +(P)

(
�̃
2

)]
= 2+(P)∗

(
1
g

)
: (4.33)

Since the supremum +(P)∗ (g−1
)
is attained for �= w, (4.33) yields

�̃= 2w: (4.34)

Therefore by (4.33) and (4.34) we have
2w
g

− +(Q)(2w) = 2
[
w
g

− +(P)(w)
]
;

that is

+(Q)(2w) = 2+(P)(w)(= 0):

The conclusion follows by Lemma 4.7.

5. Application to a teletra�c model

We now apply Proposition 4.1 to the teletra9c model described in Kostantopoulos
and Lin (1998) and Br2emaud (2000). In this model the points of a Poisson process
{Tn}n¿0 with intensity �¿ 0 are the times when a new ON-period of an individual
source in a computer network starts. The i.i.d. lengths {Zn}n¿1 of the ON-periods are
independent of the Poisson process. During an ON-period the source sends a signal at
unit rate. At time t the number of active computers in the network is given by the
Poisson shot-noise process

X (t) =
∑
n¿1

1(0;Zn](t − Tn)1(0; t](Tn) =
∑
n¿1

1(Tn;Tn+Zn](t):

Now let us consider a single server queue with service rate c¿ 0 and Poisson shot-noise
tra9c intensity X (t). The corresponding workload process in the time interval (0; t] is
then given by the process

S(t) − ct;

where S(t) is the integrated Poisson shot-noise process

S(t) =
∫ t

0
X (s) ds=

∑
n¿1

min{t − Tn; Zn}1(0; t](Tn):
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Table 1
Simulation results

� 105 r̂P� 1010s(r̂P� ) p�

0.8 1.18 3.69 1.62
0.9 1.17 1.37 1
1 1.29 0.95 0.75
1.1 1.22 2.83 1.37
1.2 0.89 2.50 1.77

We observe that if Tn + Zn6 t, then the full period Zn contributes to the workload.
Otherwise, only the length of the unBnished ON-period t − Tn is taken into account.
When the buRer is not Bnite the queue length is

sup
t¿0

{S(t) − ct};

and therefore for a Bnite buRer with capacity u¿ 0 the overSow probability is over-
estimated by

 (u) = P
(
sup
t¿0

{S(t) − ct}¿u
)
= P(Tu ¡∞):

Assuming that the random variables Zn are exponentially distributed with mean *−1

such that *¿�c−1, by Proposition 4.1 it follows that P*−�c−1 is the unique asymptot-
ically e9cient simulation law. Indeed, for the model described above assumption (1.6)
is satisBed since h(t; z) = 1(0; z](t). Moreover, since Z1 has an exponential distribution
with mean *−1, (1.7) is trivially satisBed and (3.2) holds with �= *. Finally, as it is
easily realized after straightforward calculations, setting w = * − �c−1 we have

�(�(w) − 1) − cw = 0

and

�E[Z1ewZ1 ] − c¿ 0;

and therefore (3.3) is satisBed.
Below we give a numerical illustration. We consider the estimation of the probability

 (u) by using diRerent importance sampling estimators r̂P� , where P� are admissible
laws for simulation, and we compute their sample variances s(r̂P�) and their estimated
precisions p� = [s(r̂P�)]

1=2=r̂P� . In Table 1 we summarize our simulation results in the
case when n = 200 is the number of replications in each simulation, u = 10, * = 3,
� = 2, c = 1, and the parameter � is varied in the set {0:8; 0:9; 1; 1:1; 1:2}. Simulation
results are in accordance with the theoretical ones, indeed the asymptotically e9cient
importance sampling estimator r̂P1 has the lowest sample variance and estimated pre-
cision. We also notice that the importance sampling estimators considered in Table 1
lead to interesting simulated values, in that they are all less than 4:54 × 10−5, which
corresponds to the upper bound on  (10) given in Br2emaud (2000) (see inequality
(1.4)). It is worthwhile to point out that this is not a general property of the impor-
tance sampling estimators, as the following numerical argument shows. If Z1 has a
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gamma distribution with shape parameter 2 and inverse scale parameter 5, � = 2, and
c=1, a straightforward computation gives w=0:68. Therefore, by inequality (1.4), for
u=10 we have  (10)6 1:11×10−3. However, setting n=2 and �=0:5, we found that
for diRerent computer simulations 103r̂P0:5 assumes the values {1:4; 1:6; 1:8; 1:9; 2:4}.
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