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Abstract

For the solution Y of a multivariate random recurrence model Yn = AnYn−1 + ζn in Rq we investigate
the extremal behaviour of the process yn = z′

∗Yn , n ∈ N, for z∗ ∈ Rq with |z∗| = 1. This extends results for
positive matrices An . Moreover, we obtain explicit representations of the compound Poisson limit of point
processes of exceedances over high thresholds in terms of its Poisson intensity and its jump distribution,
which represents the cluster behaviour of such models on high levels. As a principal example we investigate
a random coefficient autoregressive process.
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1. Introduction

We consider a q-dimensional stochastic recurrence equation

Yn = AnYn−1 + ζn, n ∈ N, (1.1)

for some iid sequence {(An, ζn)}n∈N of random q × q-matrices An and q-dimensional vectors
ζn . Let z∗ ∈ Rq be some fixed nonrandom vector with Euclidean norm |z∗| = 1. Our goal is to
describe the extremal behaviour of the process yn = z′

∗Yn , n ∈ N, where ′ denotes transposition,
and throughout the paper all vectors are column vectors. The extremal behaviour includes besides
the asymptotic behaviour of the running maxima

Mn = max
1≤ j≤n

y j , n ∈ N,

also a precise description of the limit behaviour of the point processes of exceedances over high
thresholds.

Our principal example is the random coefficient autoregressive process

yn = α1n yn−1 + · · · + αqn yn−q + ξn, n ∈ N, (1.2)

with random variables (rvs) αin = ai + σiηin , where ai ∈ R and σi ≥ 0 for i = 1, . . . , q. Set

αn = (α1n, . . . , αqn)′ and ηn = (η1n, . . . , ηqn)′.

We suppose that the sequences of coefficient vectors {ηn}n∈N and noise variables {ξn}n∈N are
independent and that both sequences are iid with

Eξ1 = Eηi1 = 0 and Eξ2
1 = Eη2

i1 = 1, i = 1, . . . , q. (1.3)

Setting Yn = (yn, . . . , yn−q+1)
′ it follows immediately from (1.2) that the multivariate process

{Yn}n∈N satisfies the random recurrence equation (1.1) with

An =

(
α1n · · · αqn
Iq−1 0

)
and ζn = (ξn, 0, . . . , 0)′, (1.4)

where Iq−1 denotes the identity matrix of order q − 1. In this case yn = z′
∗Yn for z∗ =

(1, 0, . . . , 0)′.
Solutions to random recurrence equations have usually Pareto-like tails, a fact which is based

on seminal work by Kesten [12] and was further developed by Goldie [7] for the one-dimensional
case, and by Le Page [18] and, more recently, by Klüppelberg and Pergamenchtchikov [13], and
De Sapporta, Guivarc’h and Le Page [22] for the multivariate case. Applications of such results
appear in various areas; see e.g. Diaconis and Freedman [4] for an overview. Prominent examples
in the area of financial time series include the GARCH(1,1) model, which was investigated by
Mikosch and Starica [17]. In Klüppelberg and Pergamenchtchikov [14] we investigated model
(1.2). We presented conditions such that the process {yn}n∈N allows for a stationary version,
represented by a rv y∞. We also proved that y∞ has, under natural conditions, a Pareto-like tail.

The extremal behaviour of solutions to random recurrence equations has been investigated in
the one-dimensional case for positive rvs An and ζn in de Haan et al. [9]. The multivariate case
has been studied in Basrak et al. [2] and Mikosch and Starica [17]. A prominent condition in all
these papers is that the matrix An in (1.1) has a.s. positive entries.

Our paper can be considered as an extension of results of de Haan et al. [9] and Basrak et al. [2]
to arbitrary matrices in Rq . De Haan et al. [9] considered the univariate model (1.1) with positive
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random variables An and gave a precise account of the extremal behaviour. In [2] the multivariate
model (1.1) is considered with positive entry matrices An and its extremal behaviour is studied. In
that paper the authors show the existence of a limit process for the point processes of exceedances
and existence of an extremal index. In the present paper we give a precise description of this limit
process for model (1.1) with general matrices An . The limit is a compound Poisson process, and
besides the Poisson intensity we also give a complete account of the jump distribution, where
jump sizes of the process correspond to the cluster sizes of extremes. We also present an explicit
form of the extremal index.

Our paper is organized as follows. In Section 2 we present results on the existence of a
stationary solution of the process {yn}n∈N. Stationarity is a usual prerequisite in extreme value
theory and we shall work with the stationary model. We also prove strong mixing of the process
defined in (1.1), which implies the weaker mixing conditions needed for our results on the
extremal behaviour of {yn}n∈N. In Section 3 we state our main results. Starting from the fact
that solutions to stochastic recurrence equations have usually Pareto-like tails, we embed our
model into the context of multivariate regular variation. We describe the limit distribution of
properly normalized running maxima. Furthermore, results on the extremal behaviour of the
stationary model include an explicit representation of the limit process of the point processes of
exceedances over high thresholds.

In Section 4 we present a new proof of the fact that for such models regular variation of every
linear combination of marginals implies multivariate regular variation. This new approach also
extends results from Basrak et al. [1] to symmetric distributions, which will prove useful for our
principal example (1.2). In Section 5 we prove our main result from Section 3 and present in
Section 6 its consequences for the random coefficient autoregressive model. Technical details are
summarized in the Appendix.

2. Existence of a stationary solution and the strong mixing property

We consider the model (1.1) and use the following notation to formulate our assumptions. The
symbol ⊗ denotes the Kronecker product of matrices. Furthermore, | · | denotes the Euclidean
norm in Rq and |A|

2
= trAA′ is the corresponding matrix norm.

We make the following assumptions:

(A1) The sequences {An}n∈N and {ζn}n∈N are both iid and independent of each other, satisfying

E|A1|
2 < ∞, Eζ1 = 0 and E|ζ1|

2 < ∞.

(A2) The Markov chain {Yn}n∈N defined in (1.1) is aperiodic and irreducible with respect to
some nontrivial measure in Rq .

Sufficient conditions on {(An, ζn)}n∈N to ensure A2 are well known in Markov chain theory
and, for instance, given in Feigin and Tweedie [6]. For example, it suffices in the general
model (1.1) that the random vectors ζn have a positive Lebesgue density in Rq on the set
{x ∈ Rq

: |x | < R} for some R ∈ (0, ∞].
In the context of random recurrence equations there exist necessary and sufficient conditions

for stationarity, going back to Kesten’s seminal work on the subject; see Kesten [12], also Goldie
and Maller [8]. Such conditions involve a negative Lyapunov exponent, a condition which is
in general difficult to verify. Because of the structure of our model we can give an equivalent
condition based on the eigenvalues of a certain matrix.

Assume that the following condition holds:
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(A3) The eigenvalues of the matrix

EA1 ⊗ A1 (2.1)

have moduli less than one.

As stated in Remark 2.2(ii) of [14], since E((A1 · · · An) ⊗ (A1 · · · An)) = (E(A1 ⊗ A1))
n ,

condition A3 guarantees that for some constants c∗, γ > 0,

E|A1 · · · An|
2

≤ c∗e−γ n . (2.2)

Classical Markov chain theory ensures that under A1 and A3 the Yn converge in distribution
to its stationary distribution given by the random vector

Y∞ = ζ1 +

∞∑
k=2

A1 · · · Ak−1ζk (2.3)

satisfying E|Y∞|
2 < ∞. We denote by π the distribution of Y∞ in Rq and by Pn(x, ·) the

transition probability

Pn(x,Γ ) = P(Yn ∈ Γ | Y0 = x), x ∈ Rq ,

for every measurable Γ ⊆ Rq .
Moreover, for some function v : Rq

→ [1, ∞) we define (see p. 383 in Meyn and
Tweedie [16])

|||Pn
− π |||v = sup

x∈Rq

‖Pn(x, ·) − π(·)‖v

v(x)
,

where

‖Pn(x, ·) − π(·)‖v = sup
0≤ f ≤v

∣∣∣∣∫
Rq

f (z)Pn(x, dz) −

∫
Rq

f (z)π(dz)
∣∣∣∣ .

We need the following definitions.

Definition 2.1. (a) A Markov chain {Yn}n∈N is called v-uniformly geometric ergodic if there
exist R > 0 and 0 < ρ < 1 such that for every n ∈ N

|||Pn
− π |||v ≤ Rρn .

(b) For the stationary process {Yn}n∈N the mixing coefficient is for k ∈ N defined as

α∗

k = sup
f,h

|E f (. . . , Y−1, Y0)h(Yk, Yk+1, . . .) − E f (. . . , Y−1, Y0)Eh(Yk, Yk+1, . . .)|, (2.4)

where the supremum is taken over all measurable functions f and h satisfying | f |, |h| ≤ 1.

Note that Theorem 3 in Feigin and Tweedie [6] and Theorem 16.1.2 in Meyn and Tweedie [16]
imply part (a) of the following result; part (b) is proved in the Appendix.

Theorem 2.2. Let {Yn}n∈N be as defined in (1.3) such that A1–A3 hold.

(a) {Yn}n∈N is v-uniformly geometric ergodic with v(x) = 1 + x ′T x, x ∈ Rq , for some fixed
positive definite q × q-matrix T .
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(b) The stationary process (1.1) is strongly mixing with geometric rate, i.e. for some positive
constant C∗,

α∗

k ≤ C∗ρk, k ∈ N. (2.5)

Remark 2.3. Consider two sequences {Yn(Y∞)}n≥0 and {Yn(Y )}n≥0 given by the same recursion
(1.1), but with different initial vectors Y∞ and Y , where Y∞ is supposed to have the stationary
distribution and E|Y |

2 < ∞. Both vectors Y∞ and Y are supposed to be independent of the
future values {(An, ζn)}n∈N. For the initial vector Y we have the recursion

Yn(Y ) = An · · · A1Y +

n∑
k=1

An · · · Ak+1ζk, n ∈ N,

where An An+1 = Iq , and analogously for initial vector Y∞. By independence of the matrices An
for all n ∈ N and the vectors Y, Y∞ we obtain, invoking inequality (2.2),

E|Yn(Y ) − Yn(Y∞)|2 ≤ E
n∏

j=1

|A j |
2E|Y − Y∞|

2
≤ c∗E|Y − Y∞|

2e−γ n . (2.6)

Therefore, E|Yn(Y ) − Yn(Y∞)|2 tends to 0 exponentially fast as n → ∞ for any initial vector Y
with E|Y |

2 < ∞. �

3. Extremal behaviour

The main goal of this paper is the investigation of the extremal behaviour of model (1.1). We
introduce the unit sphere S in Rq , i.e. S = {x ∈ Rq

: |x | = 1}. We assume that the vector (2.3)
satisfies the following condition
(H0) There exists λ > 0 such that

lim
t→∞

tλ P(z′Y∞ > t) = h(z), z ∈ S,

for some strictly positive continuous function h on S.

Remark 3.1. We call condition H0 regular variation of the vector Y∞ in the Kesten sense; see for
example, [12], Remark 4 on p. 245. Indeed, it means that every linear combination of Y∞ is one-
dimensional regularly varying, where the slowly varying function is a positive constant. Regular
variation in the Kesten sense is not necessarily equivalent to multivariate regular variation, which
is defined as follows (see Resnick [19,20] for details). The q-dimensional random vector Y is
called regularly varying with index α ≥ 0 if there exists a random vector Θ with values on the
unit sphere S in Rq such that for all t > 0

P(|Y | > t x, Y/|Y | ∈ ·)

P(|Y | > x)

v
→ t−αP(Θ ∈ ·), x → ∞, (3.1)

where
v

→ means vague convergence of measures. We shall show in Section 4 that under weak
conditions the finite dimensional distributions of {yn}n∈N are multivariate regularly varying in
the sense of Eq. (3.1). �

Condition H0 implies that for y∞ = z′
∗Y∞

lim
n→∞

nP(y∞ > un) = h∗x−λ, x > 0, (3.2)

where un = n1/λx and h∗ = h(z∗).
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This Poisson condition implies for the so-called associated iid sequence {ŷk}k∈N with the
same distribution as y∞ that the partial maxima M̂n = max1≤k≤n ŷk , n ∈ N, satisfy

lim
n→∞

P(n−1/λM̂n ≤ x) = exp(−h∗x−λ), x > 0. (3.3)

This is classical extreme value theory and can be found in any textbook on this topic; see
e.g. Embrechts, Klüppelberg and Mikosch [5].

For the extremal behaviour of model (1.1) we expect that the running maxima of {yn}n∈N have
a limit of the same type as (3.3), but with different norming constants. Loosely speaking, large
values of {yn}n∈N have a tendency to cluster, which implies that the maximum of Mn behaves
as the maximum of θn iid rvs with the same distribution. The constant θ ∈ (0, 1] is called
extremal index of {yk}k∈N. It is a measure of local dependence amongst the exceedances over
a high threshold by the process {yk}k∈N and has a natural interpretation as the reciprocal of the
mean cluster size.

To describe the extremal behaviour in more detail we shall also study the point processes of
exceedances of {yn}n∈N over high thresholds. We denote by ε the Dirac measure and define for
n ∈ N and appropriate thresholds un the time normalized point process of exceedances on the
Borel sets of [0, ∞)

Nn(·) =

n∑
j=1

ε j/n(·)1{y j >un}. (3.4)

We show that the sequences Nn converge for n → ∞ and un ↑ ∞ weakly to a compound
Poisson process N . Moreover, we derive for the limit process N the intensity and cluster size
distribution, which is a discrete distribution, denoted by {ν j } j∈N. Whereas the intensity describes
the frequency of threshold exceedances, the cluster size distribution gives the distribution of the
cluster sizes over thresholds. For further background we refer the reader to Leadbetter, Lindgren
and Rootzén [15], Section 3.7, and Rootzén [21]; see also Embrechts et al. [5], Chapter 5 and
Section 8.1.

Before stating our main results, we prove an analogue of Remark 2.3 for partial maxima.

Remark 3.2. (a) Recall that Mn = max{y1, . . . , yn} = max{z′
∗Y1, . . . , z′

∗Yn}, where the vector
(Y1, . . . , Yn) depends on the initial vector Y and we indicate this by writing Mn(Y ). Taking into
account that | max ak − max bk | ≤ max |ak − bk | we obtain for every δ > 0

P
(
|Mn(Y ) − Mn(Y∞)| > δn1/λ

)
≤ P

(
max

1≤k≤n
|z′

∗Yk(Y ) − z′
∗Yk(Y∞)| > δn1/λ

)
≤ P

(
max

1≤k≤n
|Yk(Y ) − Yk(Y∞)| > δn1/λ

)
≤

1
δn1/λ

n∑
k=1

E|Yk(Y ) − Yk(Y∞)|.

Now inequality (2.6) implies that the right hand side tends to 0, i.e.

n−1/λ(Mn(Y ) − Mn(Y∞))
P
→ 0, n → ∞,

for any initial vector Y with E|Y |
2 < ∞. Therefore the weak limit of partial maxima Mn is

independent of the initial vector Y .
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(b) To show that the point process convergence is independent of the initial vector Y we need to
assume condition H0. For n ∈ N we set un = xn1/λ for some x > 0 and denote by

N Y
n (·) =

n∑
j=1

ε j/n(·)1{z′
∗Y j (Y )>un}

the point process of exceedances over un corresponding to the process {Y j } j∈N with initial vector
Y . For arbitrary 0 < ε < 1 we define Γn,ε = {max1≤ j≤n |z′

∗Y j (Y ) − z′
∗Y j (Y∞)| ≤ εun}, and

then

P(|N Y
n (·) − N Y∞

n (·)| > 0) ≤ P

(
n∑

j=1

|1{z′
∗Y j (Y )>un} − 1{z′

∗Y j (Y∞)>un}| > 0

)

≤ P

(
n∑

j=1

|1{z′
∗Y j (Y )>un} − 1{z′

∗Y j (Y∞)>un}| > 0,Γn,ε

)
+ P(Γ c

n,ε)

≤

n∑
j=1

P(un(1 − ε) ≤ z′
∗Y j (Y∞) ≤ (1 + ε)un) + P(Γ c

n,ε)

= nP(un(1 − ε) ≤ z′
∗Y∞ ≤ (1 + ε)un) + P(Γ c

n,ε).

By definition, limn→∞ P(Γ c
n,ε) = 0 and condition H0 implies that

N Y
n (·) − N Y∞

n (·)
P
→ 0, n → ∞,

for any initial vector Y with E|Y |
2 < ∞. Thus the weak limit of Nn(·) is independent of the

initial vector Y . �

The extremal index θ and the cluster size distribution {ν j } j∈N can be represented by the limit
measure Q of the following measures on Rq :

Qt (Γ ) = P(t−1Y∞ ∈ Γ | t−1Y∞ ∈ Wz∗
) =

P(t−1Y∞ ∈ Γ ∩ Wz∗
)

P(t−1Y∞ ∈ Wz∗
)

, (3.5)

for t → ∞, where Wz = {y ∈ Rq
: z′y > 1} for z ∈ Rq .

Theorem 3.3. Assume that condition H0 holds. If the positive exponent λ in this condition is
non-integer, then there exists a weak limit Q of the family {Qt }t≥1 of measures (3.5) as t → ∞.
It satisfies for measurable Γ ⊂ Rq

Q(Γ ) = µ(Γ ∩ Wz∗
), (3.6)

where µ is some positive σ -finite measure on Rq
\ {0} with µ(Wz∗

) = 1.

In our principal example (1.2) with Gaussian rvs {ξn}n∈N the stationary distribution given by
the vector (2.3) is symmetric. For such cases we can prove a stronger result.

Theorem 3.4. Assume that condition H0 holds and Y∞ has a symmetric distribution on Rq ;

i.e. that Y d
= −Y . If the positive exponent λ in condition H0 is non-even, then the assertion of

Theorem 3.3 holds.

We shall prove this result in Section 4. The measure Q plays an important role in the
description of the joint distribution of the stationary vector (y1, . . . , yk) for every k ∈ N on
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high levels. In this sense it is not surprising that Q describes the partial maxima of {yn}n∈N and
the limit behaviour of point processes of exceedances.

We set

ς(y) =

∞∑
j=1

1{z′
∗Π j y>1} with Π j = A j · · · A1. (3.7)

and define the following technical conditions:

(H1) P(ς(y) = 0) > 0 for every y ∈ Wz∗
.

(H2) P(z′
∗Π j y = 1) = 0 for every y ∈ Wz∗

and j ∈ N.

H1 and H2 are conditions on the distribution of the sequence (An)n∈N. Condition H1 implies
that max j∈N z′

∗Π j y falls with positive probability in the interval [−1, 1]. Condition H2 is for
example satisfied if the random variables z′

∗Π j y have a density in R for every y ∈ Wz∗
and every

j ∈ N. In Lemma 6.5 with proof in Section 6.2 we shall check these conditions for the random
coefficient autoregressive model (1.2).

The following result describes the extremal behaviour of any process with multivariate
random recurrence state space representation under natural conditions.

Theorem 3.5. Assume that the conditions A1–A3 and H0–H2 hold. Moreover, let the exponent
λ in condition H0 be non-even if Y∞ is symmetric, and non-integer otherwise.
(a) Then

lim
n→∞

P(n−1/λMn ≤ x) = e−θh∗x−λ

, x > 0,

where h∗ = h(z∗) and the extremal index θ is defined as

θ =

∫
Rq

g(y)Q(dy) > 0. (3.8)

The probability measure Q(·) is the weak limit of the family (3.5) as t → ∞ and

g(y) = P(ς(y) = 0), y ∈ Wz∗
, (3.9)

with the function ς(·) defined in (3.7).
(b) For n ∈ N let Nn be the point process of exceedances over the threshold un = n1/λx for
x > 0 given by (3.4). Then

Nn
d

−→ N , n → ∞,

where N is a compound Poisson process with intensity θτ (τ = h∗x−λ) and the cluster size
probabilities

νk = θ−1(θk − θk+1), k ∈ N,

satisfying θ1 = θ ≥ θ2 ≥ θ3 ≥ · · · ≥ 0 with

θk =

∫
Rq

gk(y)Q(dy) and gk(y) = P(ς(y) = k − 1), y ∈ Wz∗
, (3.10)

for k ∈ N with g1(y) = g(y) as defined in (3.9).
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Remark 3.6. (a) In Appendix B we shall show that H2 implies that all gk are continuous.
(b) For q = 1 the limit measure Q has a Lebesgue density; more precisely,

Q(dy) = λy−λ−11{y≥1}dy.

In this case the extremal index has representation

θ = λ

∫
∞

1
P
(

max
k∈N

Ak · · · A1 ≤ y−1
)

y−λ−1dy.

This result has been obtained in Borkovec [3]. �

4. Properties of the measures Q t — multivariate regular variation

In this section we come back to Remark 3.1. Basrak et al. [1] investigate the various notions of
regular variation and their relationships, in particular the relationship between regular variation
in the Kesten sense and in the sense of (3.1). They proved in their Theorem 1.1 that for non-
integer λ > 0 regular variation in the Kesten sense implies (3.1). They also proved this result for
λ an odd integer and vectors Y in Rq

+. As an important class of models is symmetric – also our
principal model (1.2) is in the important Gaussian case symmetric – we reconsider the problem
in this context. We present a new proof of Theorem 1.1 of [1], together with an extension of this
result for symmetric models.

We follow the point process theory as presented in Kallenberg [11]. Set R = R ∪ {−∞, +∞}

and consider in what follows E = Rq
\ {0} as the state space of the point processes.

We study the properties of the family of measures defined in (3.5). Define

mt (Γ ) =
P(Y∞ ∈ tΓ )

P(Y∞ ∈ tWz∗
)
, t ≥ 1, (4.1)

for any measurable Γ ⊆ Rq and notice that Qt (Γ ) = mt (Γ ∩ Wz1).

Remark 4.1. (a) Regular variation in the Kesten sense as given in H0 can be rewritten as

lim
t→∞

P(z′Y∞ > t)
P(z′

∗Y∞ > t)
= h̃(z), z ∈ S, (4.2)

where h̃(·) = h(·)/h∗. Moreover, the function h̃ satisfies for every t > 0,

h̃(t z) = tλh̃(z), z ∈ S,

where λ is defined in H0. This means that for all z 6= 0 the rv z′Y∞ is regularly varying with
index λ.
(b) The limit relation (4.2) is equivalent to

lim
t→∞

P(Y∞ ∈ tWz)

P(Y∞ ∈ tWz∗
)

= h̃(z), z ∈ S. � (4.3)

Now define

ρ0(x, y) =

∣∣∣∣ 1
x+ + 1

−
1

y+ + 1

∣∣∣∣+ ∣∣∣∣ 1
x− + 1

−
1

y− + 1

∣∣∣∣ , x, y ∈ R,
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were we used the notation x+ = max(x, 0) and x− = − min(x, 0). With this notation we
introduce the following metric on E

ρ(x, y) =

q∑
j=1

ρ0(x j , y j ) +

∣∣∣∣ 1
|x |

−
1
|y|

∣∣∣∣ , x, y ∈ E .

Then (E, ρ) is a separable and complete metric space. Moreover, for every δ > 0 the set
{x ∈ E : |x | ≥ δ} is compact in this space, and bounded sets are those that are bounded away
from 0 ∈ Rq . The topology on E is discussed in more detail in Resnick [20].

We are interested in vague convergence of measures (4.1) in (E, ρ), i.e. conditions for which
there exists a measure m in E such that mt

v
→ m as t → ∞. We recall that mt

v
→ m means

vague convergence of mt to m; i.e.

lim
t→∞

∫
E

f (y)mt (dy) =

∫
E

f (y)m(dy)

for all continuous functions f with compact support in (E, ρ). We shall use the following results.

Theorem 4.2 (Basrak, Davis and Mikosch [1], Theorem 1.1(ii)). Let condition H0 hold for non-
integer λ > 0. Then the family (4.1) of measures has a vague limit in (E, ρ). Moreover, Y∞ is
multivariate regularly varying in the sense of Eq. (3.1).

The following result is essential for this investigation, in particular, for our principal example
(1.2).

Theorem 4.3. Assume that Y∞ has a symmetric distribution on Rq . Let condition H0 hold for
non-even λ > 0. Then the family (4.1) of measures has a vague limit in (E, ρ). Moreover, Y∞ is
multivariate regularly varying in the sense of (3.1).

Remark 4.4. Note that this theorem does not hold in general for even integers λ. This follows
directly from the counterexample given in Hult and Lindskog [10]: take on p. 136 above
e.g. fθ = 1/(2π).

We shall use the following lemma, whose proof is given in Appendix C. To formulate the result
we recall the definition of a subsequential vague limit. The measure µ is called a subsequential
vague limit of mt if there exists a sequence tn → ∞ such that mtn

v
→ µ.

Lemma 4.5. Assume that condition H0 holds. If µ is a subsequential vague limit of {mt }t≥1,
then for every u > 0 we have

µ(y ∈ Rq
: z′y > u) = u−λh̃(z), z ∈ S. (4.4)

Moreover, setting ĥ(z) = h̃(z) + h̃(−z), we obtain for u > 0 and 0 < ν < λ∫
|z′ y|>u

|z′y|
νµ(dy) =

λ

λ − ν
uν−λĥ(z), z ∈ S, (4.5)

and for ν > λ∫
|z′ y|<u

|z′y|
νµ(dy) =

λ

ν − λ
uν−λĥ(z), z ∈ S. (4.6)
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Proof of Theorem 4.3. We first show that the family (4.1) is relatively compact; i.e. that
supt≥1 mt (B) < ∞ for all bounded Borel sets B in E (see Kallenberg [11], Theorem 15.7.5). To
see this recall that in the space E bounded sets are those that are bounded away from 0 ∈ Rq ,
i.e. for every bounded B there exist non-zero vectors x1, . . . , xk in Rq

\ {0} such that

B ⊆

k⋃
j=1

Wx j ∪ (Rq
\ Rq)

and, hence, by (4.3)

sup
t≥1

mt (B) ≤ sup
t≥1

k∑
j=1

P(Y∞ ∈ tWx j )

P(Y∞ ∈ tWz∗
)

< ∞.

This implies that the family {mt }t≥1 has a subsequential vague limit.
To complete the proof it suffices to show that any two such limits, µ1 and µ2, are identical.

First we suppose that λ is non-integer, i.e. λ ∈ (l − 1, l) for some l ∈ N. Let µ1 and µ2 be two
subsequential vague limits.

First note now that (4.4) implies that

µ1(x ∈ E : |x | = ∞) = µ2(x ∈ E : |x | = ∞) = 0.

Therefore, for the identity of the measures µ1 and µ2 it suffices to show that∫
Rq

f (x)µ1(dx) =

∫
Rq

f (x)µ2(dx) (4.7)

for every continuous bounded function f satisfying

f (x) = 0 if |x | ≤ r (4.8)

for some positive r . W.l.o.g. we can assume that f is infinitely often differentiable and periodic
(with period 2L) in every component of x . Hence, f has a representation as Fourier series

f (x) =

∑
k∈Nq

ckei(zk ,x), x ∈ Rq , (4.9)

where zk = πk/L and (zk, x) = z′

k x . Now note that condition (4.8) implies for all d ∈ N0∑
k∈Nq

ck(zk, y)d
= 0, y ∈ Rq , (4.10)

which implies that f has representation

f (x) =

∑
k∈Nq

ck∆l−1((zk, x)), x ∈ Rq ,

where

∆l((zk, x)) = ei(zk ,x)
−

l∑
j=0

(i(zk, x)) j

j !
, x ∈ Rq .

Recall from standard analysis that

|∆l(x)| ≤ min
(

|x |
l+1

(l + 1)!
,

2|x |
l

l!

)
, x ∈ Rq . (4.11)
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Moreover, we can represent the function f as

f (x) = Hl−1(x) + Ĥl−1(x), x ∈ Rq ,

where, setting z = z/|z|,

Hl(x) =

∑
k∈Nq

ck∆l((zk, x))1{|(zk ,x)|≥1}, Ĥl(x) =

∑
k∈Nq

ck∆l((zk, x))1{|(zk ,x)|<1}.

Taking (4.5) and (4.11) into account we obtain∫
Rq

Hl−1(x)µ1(dx) =

∑
k∈Nq

ck

∫
{|(zk ,x)|≥1}

∆l−1((zk, x))µ1(dx)

=

∑
k∈Nq

ck

∫
{|(zk ,x)|≥1}

∆l−1((zk, x))µ2(dx)

=

∫
Rq

Hl−1(x)µ2(dx).

We have used that the integrals on the right hand side are finite by Lemma 4.5, which also
justifies the interchange of summation and integral. Equality of the two integrals follows from
the integrands’ dependence on the inner products (zk, x) only. Analogously, from (4.6) and (4.11)
we obtain∫

Rq
Ĥl−1(x)µ1(dx) =

∫
Rq

Ĥl−1(x)µ2(dx).

We show now equality of µ1 and µ2 for odd integers l = λ = 2p + 1 for some p ∈ N0. For such
l we represent the function (4.9) as

f (x) = Hl−1(x) + Ĥl(x) −
i l

l!
Pl(x), x ∈ Rq ,

where Pl(x) =
∑

k∈Nq ck(zk, x)l1{|(zk ,x)|<1}. From the calculations above it follows that (4.7)
holds if∫

Rq
Pl(x)µ1(dx) =

∫
Rq

Pl(x)µ2(dx).

From the definition of the measures µ1 and µ2 there follows the existence of sequences {r1n}n∈N
and {r2n}n∈N such that mrin → µi as n → ∞ for i = 1, 2. Let DPl be the set of discontinuity
points of the function Pl , which is given by

DPl =

⋃
k∈Nq

{x ∈ Rq
: |(zk, x)| = 1}.

In Appendix C we prove that µi (DPl ) = 0 for i = 1, 2. Moreover, for every x ∈ Rq

|Pl(x)| ≤

∑
k∈Nq

|ck | < ∞,

i.e. Pl is bounded, since the function (4.9) is infinitely often differentiable. Furthermore, if
x ∈ Rq with |x | < 1 then |(zk, x)| ≤ |zk ||x | < 1 for every k ∈ Nq . Thus (4.10) implies

Pl(x) =

∑
k∈Nq

ck(zk, x)l1{|(zk ,x)|<1} =

∑
k∈Nq

ck(zk, x)l
= 0, |x | < 1,
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i.e. this function has bounded support {x ∈ Rq
: |x | ≥ 1}. Therefore, by Theorem 15.7.3 of

Kallenberg [11] we can write∫
Rq

Pl(x)µ1(dx) = lim
n→∞

∫
Rq

Pl(x)mr1n (dx)

= lim
n→∞

1
P(Y∞ ∈ r1nWz∗

)
EPl(Y∞/r1n)

= lim
n→∞

1
r l

1nP(z′

1Y∞ > r1n)

∑
k∈Nq

ck |zk |
lE(zk, Y∞)l1{|(zk ,Y∞)|<r1n}

= 0,

by symmetry of Y∞. Analogously we obtain
∫
Rq Pl(x)µ2(dx) = 0. Hence, (4.1) converges to a

limit µ. �

Proof of Theorems 3.3 and 3.4. We denote by µ the vague limit of the measures (4.1). From
(4.4) it follows directly that µ(∂Wz1) = 0. Therefore, the family (3.5) has also a vague limit Q
(see Kallenberg [11], Theorem 15.7.3), which satisfies (3.6). Moreover, by definition, for every
t ≥ 1,

Qt (Rq) = Qt (Wz1) = 1 = Q(Wz1) = Q(Rq).

Thus, Theorem 15.7.6 of [11] guarantees weak convergence of the family (3.5) to Q. �

5. The existence of an extremal index and point process convergence

5.1. Definitions and existing results

We consider a stationary process {yk}k∈N such that for every τ > 0 there exists a sequence
{un(τ )}n∈N for which

lim
n→∞

n P(y1 > un(τ )) = τ. (5.1)

The conditions D(un(τ )) and ∆(un(τ )) are extreme mixing conditions (for the definitions see
for example Rootzén [21], p. 379), which are both implied by strong mixing; i.e. they follow
immediately from Theorem 2.2 for every appropriate sequence {un}n∈N.

Definition 5.1 (Extremal Index). Assume that there exists a constant 0 < θ ≤ 1 such that for
every τ > 0

lim
n→∞

P
(

max
1≤k≤n

yk ≤ un(τ )

)
= e−θτ .

Then θ is called the extremal index of the sequence {yk}k∈N.

Theorem 5.2 (Rootzén [21], Theorem 4.1(i)). Suppose that condition D(un(τ )) holds for each
τ > 0. Then {yk}k∈N has extremal index θ > 0 if and only if

lim
ε→0

lim sup
n→∞

|P(M[εn] ≤ un | y0 > un) − θ | = 0 (5.2)

for un = un(τ0) for some τ0 > 0.
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We consider now the point process of exceedances for the process {yk}k∈N defined as

Nn,τ (·) =

n∑
j=1

ε j/n(·)1{y j >un(τ )},

where the sequence {un(τ )} is given in (5.1).
To study the asymptotic properties of these processes we apply the following criterion.

Theorem 5.3 (Rootzén [21], Theorem 4.1(ii)). Suppose that {yk}k∈N has extremal index 0 <

θ ≤ 1 and the condition ∆(un(τ )) holds for each τ > 0. If for every k ≥ 2 and some τ0 > 0

lim
ε→0

lim sup
n→∞

|P(Nn,τ0((0, ε]) = k − 1 | y0 > un) − θk | = 0, (5.3)

then the sequence {θk}k∈N is decreasing, i.e. θ1 = θ ≥ θ2 ≥ θ3 ≥ . . ., and for every τ > 0 the
point processes Nn,τ converge weakly to a compound Poisson process N with intensity θτ and
cluster size probabilities νk = θ−1(θk − θk+1), k ∈ N.

5.2. Proof of Theorem 3.5

In view of Remarks 2.3 and 3.2 we prove this theorem for the stationary process (1.1), i.e. the

process starts with initial vector Y0
d
= Y∞ as in (2.3).

5.2.1. Extremal index
In this section we prove Theorem 3.5(a). We apply Rootzén’s criterion (Theorem 5.2) based

on mixing properties of the process (1.1) which immediately follow from Theorem 2.2(b). The
most important issue will be representation (3.8) for the extremal index.

First of all, note that condition H1 implies that θ as defined in (3.8) is strictly positive.
We verify property (5.2) for {yk}k∈N with un = n1/λx for arbitrary x > 0. Defining again
Πk = Ak · · · A1 we define the auxiliary process

Ỹ0 = Y0, Ỹk = ΠkY0, k ∈ N,

which obviously satisfies

Ỹk = Ak Ỹk−1.

Hence the difference process Vk = Yk − Ỹk , k ∈ N, satisfies Eq. (1.1) with initial value zero.
Define ỹ j = z′

∗Ỹ j , m = [εn] for some ε > 0, and V ∗
m = sup1≤k≤m |Vk |. To check condition (5.2)

notice that for every 0 < δ < 1

P(Mm ≤ un | y0 > un) = P
(

max
1≤k≤m

(ỹk + z′
∗Vk) ≤ un | y0 > un

)
≤ P

(
max

1≤k≤m
ỹk ≤ (1 + δ)un | y0 > un

)
+ P(V ∗

m > δun)

≤

∫
Rq

g
(

y
1 + δ

)
Qun (dy) + ∆1(n) + ∆2(n),

where g is as in (3.9), the measure Qt (·) is defined in (3.5) and

∆1(n) = P
(

max
k>m

ỹk > (1 + δ)un | y0 > un

)
and ∆2(n) = P(V ∗

m > δun). (5.4)
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By Lemma B.1 the function g(·) = g1(·) is continuous. Moreover, Theorems 3.3–3.4 imply that
there exists a weak limit Q for the family {Qt }t≥1. Therefore,

lim
t→∞

∫
Rq

g
(

y
1 + δ

)
Qt (dy) =

∫
Rq

g
(

y
1 + δ

)
Q(dy).

Next we show

lim
n→∞

∆1(n) = 0. (5.5)

Indeed, for every L > 0 we have

∆1(n) =

P
(

max
k>m

z′
∗ΠkY0 > (1 + δ)un, z′

∗Y0 > un

)
P(z′

∗Y0 > un)

≤ P
(

max
k>m

|Πk | >
1 + δ

L

)
+

P(|Y0| > Lun, z′
∗Y0 > un)

P(z′

1Y0 > un)

≤

∑
k>m

P
(

|Πk | >
1 + δ

L

)
+

P(|Y0| > Lun)

P(z′
∗Y0 > un)

.

From (2.2) and Chebyshev’s inequality we conclude

P
(

|Πk | >
1 + δ

L

)
≤

L2

(1 + δ)2 E|Πk |
2

≤
L2

(1 + δ)2 c∗e−γ k .

Therefore, condition H0 yields for every L > 0

lim sup
n→∞

∆1(n) ≤ const L−λ.

Taking now L → ∞ implies (5.5).
Next we consider the second term in (5.4). We shall show that

∆∗

2 = lim sup
n→∞

∆2(n) ≤ const ε. (5.6)

Indeed, we have

∆2(n) ≤

∑
1≤k≤m

P(|Vk | > δun)

≤

∑
1≤k≤m

P(|Yk | > δun/2) +

∑
1≤k≤m

P(|Ỹk | > δun/2)

≤ mP(|Y1| > δun/2) +
4E|Y0|

2

δ2u2
n

∞∑
k=1

E|Πk |
2

≤ εnP(|Y1| > δun/2) + 4c∗

E|Y0|
2

δ2u2
n

∞∑
k=1

e−γ k .

The last inequality implies (5.6). Taking into account that g(r y) → g(y) as r → 1 for each
y ∈ Rq , we obtain the following upper bound

lim sup
n→∞

P(Mm ≤ un | y0 > un) ≤ θ + const ε
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for every ε > 0. Analogously, we obtain the lower bound

P(Mm ≤ un|y0 > un) = P
(

max
1≤k≤m

(ỹk + z′
∗Vk) ≤ un | y0 > un

)
≥ P

(
max

1≤k≤m
ỹk ≤ (1 − δ)un, V ∗

m ≤ δun | y0 > un

)
≥ P

(
max

1≤k≤m
z′
∗ΠkY0 ≤ (1 − δ)un | y0 > un

)
− ∆2(n)

≥ P
(

max
k∈N

z′
∗ΠkY0 ≤ (1 − δ)un | z′

∗Y0 > un

)
− ∆2(n)

=

∫
Rq

g
(

y
1 − δ

)
Qun (dy) − ∆2(n).

This implies for every ε > 0

lim inf
n→∞

P(Mm ≤ un | y0 > un) ≥ θ − const ε.

These bounds imply (5.2), i.e. Theorem 3.5(a). �

5.2.2. Point process convergence
In this section we prove Theorem 3.5(b). We invoke Theorem 5.3, which characterizes point

process convergence of Nn to a compound Poisson process. As mentioned above the mixing
condition ∆(un) immediately follows from Theorem 2.2(b). We verify property (5.3) for {yk}k∈N.
As in the proof of Theorem 3.5(a) we set m = [εn] for some ε > 0 and ỹ j = z′

∗Ỹ j for j ∈ N.
For every 0 < δ < 1 we get

P(Nn((0, ε]) = k − 1 | y0 > un) = P

(
m∑

j=1

1{y j >un} = k − 1

∣∣∣∣∣ y0 > un

)

≤ P

(
m∑

j=1

1{y j >un} = k − 1, V ∗
m ≤ δun

∣∣∣∣∣ y0 > un

)
+ ∆2(n)

≤ In,δ + Dn,δ + ∆2(n), (5.7)

where

In,δ = P

(
m∑

j=1

1{ỹ j >(1−δ)un} = k − 1

∣∣∣∣∣ y0 > un

)
,

Dn,δ = P

(
m∑

j=1

(
1{ỹ j >(1−δ)un} − 1{y j >un}

)
≥ 1, V ∗

m ≤ δun

∣∣∣∣∣ y0 > un

)
and ∆2(n) is defined in (5.4). We estimate In,δ first.

In,δ ≤ P

(
m∑

j=1

1{ỹ j >(1−δ)un} = k − 1, max
j>m

ỹ j ≤ (1 − δ)un

∣∣∣∣∣ y0 > un

)

+ P
(

max
j>m

ỹ j > (1 − δ)un

∣∣∣∣ y0 > un

)
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≤ P

(
∞∑
j=1

1{z′
∗Π j Y0>(1−δ)un} = k − 1

∣∣∣∣∣ z′
∗Y0 > un

)

+ P
(

max
j>m

ỹ j > (1 − δ)un

∣∣∣∣ y0 > un

)
=

∫
Rq

gk

(
y

1 − δ

)
Qun (dy) + ∆′

1(n),

where

∆′

1(n) = P
(

max
j>m

ỹ j > (1 − δ)un

∣∣∣∣ y0 > un

)
.

Notice that like for (5.5) we obtain limn→∞ ∆′

1(n) = 0. Next we estimate Dn,δ . For fixed l ∈ N,
1 ≤ l ≤ m, we can write

Dn,δ = P

(
m∑

j=1

1{y j ≤un ,̃y j >(1−δ)un} ≥ 1, V ∗
m ≤ δun

∣∣∣∣∣ y0 > un

)

= P

(
m⋃

j=1

{y j ≤ un, ỹ j > (1 − δ)un}, V ∗
m ≤ δun

∣∣∣∣∣ y0 > un

)

≤

l∑
j=1

P
(

y j ≤ un, ỹ j > (1 − δ)un, V ∗
m ≤ δun

∣∣ y0 > un
)

+ P

(
m⋃

j=l+1

{y j ≤ un, ỹ j > (1 − δ)un}, V ∗
m ≤ δun

∣∣∣∣∣ y0 > un

)
.

Moreover, setting Γn =
⋃m

j=l+1 {ỹ j > (1 − δ)un} we obtain

Dn,δ ≤

l∑
j=1

P((1 − 2δ)un < y j ≤ un)

P(y0 > un)
+ P (Γn|y0 > un)

= l
P((1 − 2δ)un < y0 ≤ un)

P(y0 > un)
+ P (Γn|y0 > un) .

Taking into account that for every fixed L > 0

Γn ∩ {|Y0| ≤ Lun} ⊆

m⋃
j=l+1

{|Π j | > L−1(1 − δ)}

and that {A j } j∈N is independent of Y0, we deduce

P (Γn| y0 > un) ≤ P (Γn, |Y0| ≤ Lun| y0 > un) + P ( |Y0| > Lun| y0 > un)

≤

m∑
j=l+1

P
(

|Π j | >
1 − δ

L

)
+

P(|Y0| > Lun)

P(y0 > un)

≤
L

1 − δ

∞∑
j=l+1

E|Π j | +
P(|Y0| > Lun)

P(y0 > un)
.
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Hence inequality (2.2) yields

P (Γn| y0 > un) ≤
Lc∗

1 − δ

∞∑
j=l+1

e−γ j
+

P(|Y0| > Lun)

P(y0 > un)
.

Thus we obtain the following upper bound:

Dn,δ ≤ l
P((1 − 2δ)un < y0 ≤ un)

P(y0 > un)
+

Lc∗

1 − δ

∞∑
j=l+1

e−γ j
+

P(|Y0| > Lun)

P(y0 > un)
.

By condition H0 there exists some universal constant c > 0 such that for every δ > 0, l ≥ 1 and
L > 0

lim sup
n→∞

Dn,δ ≤ l
(

1
(1 − 2δ)λ

− 1
)

+
Lc∗

1 − δ

∞∑
j=l+1

e−γ j
+ cL−λ.

Taking in this inequality the limits limL→∞ liml→∞ limδ→0 implies

lim
δ→0

lim sup
n→∞

Dn,δ = 0.

Therefore, by (5.7) we get the following upper bound

P(Nn((0, ε]) = k − 1 | y0 > un) ≤

∫
Rq

gk

(
y

1 − δ

)
Qun (dy) + ∆′

1(n) + ∆2(n) + Dn,δ.

Analogously, we obtain a lower bound

P(Nn((0, ε]) = k − 1 | y0 > un) ≥

∫
Rq

gk

(
y

1 − δ

)
Qun (dy) − ∆′

1(n) − ∆2(n) − Dn,δ.

This concludes the proof of Theorem 3.5(b). �

6. The random coefficient autoregressive model

6.1. Extreme behaviour

In this section we consider model (1.2) satisfying (1.3). We can represent this process in the
form (1.1) with the sequences {An}n∈N and {ζn}n∈N defined in (1.4). We suppose that {An}n∈N
satisfies condition A3.

Example 6.1. We start with an example satisfying A3. Consider model (1.2) for q = 2 with
a1 = 0 and σ2 = 0. In this case the corresponding matrix (1.4) has the following form:

An =

(
σ1η1n a2
1 0

)
and EA1 ⊗ A1 =


σ 2

1 0 0 a2
2

0 0 a2 0
0 a2 0 0
1 0 0 0

 .

The eigenvalues of this matrix can be calculated as

z1 = a2, z2 = −a2, z3 =
σ 2

1
2

+

√
σ 4

1
4

+ a2
2, z4 =

σ 2
1
2

−

√
σ 4

1
4

+ a2
2 .

Hence, condition A3 holds if σ 2
1 + a2

2 < 1. �
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Theorem 3 in Feigin and Tweedie [6] in combination with Theorem 2.2(a) and (b) implies
immediately the following result.

Theorem 6.2. Consider model (1.2)–(1.3). We assume that ξ1 has a positive Lebesgue density
on (−R, R) for some R ∈ (0, ∞]. If A3 holds, then Yn = (yn, . . . , yn−q+1) converges in
distribution to the random vector Y∞ in (2.3) for which E|Y∞|

2 < ∞. The process {Yn}n∈N
is v-uniformly geometric ergodic, where v(x) = 1 + x ′T x, x ∈ Rq , for some positive definite
matrix T . Moreover, {Yn}n∈N is strongly mixing with geometric rate.

To derive the tail behaviour of the stationary rv y∞ = z′
∗Y∞ for z∗ = (1, 0, . . . , 0)′ we require

the following additional conditions for the distributions of the coefficient vectors {ηin}n∈N and
the noise variables {ξn}n∈N in model (1.2).

(D1) The rvs {ηin, 1 ≤ i ≤ q, n ∈ N} are iid with symmetric continuous positive density φ(·)

which is non-increasing on R+ and moments of all order exist.
(D2) For some m ∈ N we assume that E(α11 − a1)

2m
= σ 2m

1 Eη2m
11 ∈ (1, ∞). In particular,

σ1 > 0.
(D3) E|ξ1|

m < ∞ for all m ≥ 2.
(D4) For every real sequence {ck}k∈N with 0 <

∑
∞

k=1 |ck | < ∞, the rv τ =
∑

∞

k=1 ckξk has a
symmetric density, which is non-increasing on R+.

As stated in Proposition 2.3 of [14] condition D4 is satisfied if the following simpler condition
holds:
(D′

4) The rv ξ1 has bounded symmetric density f , which is continuously differentiable with
bounded derivative f ′

≤ 0 on [0, ∞).
An important example is the following.

Example 6.3 (Gaussian Model). Recall from Proposition 2.6 of [14] that for ηi1, i = 1, . . . , q,
and ξ1 Gaussian rvs and σ1 > 0 the conditions D1 − D4 hold. We call this model the Gaussian
linear random coefficient model or simply Gaussian model. As was shown in Lemma 2.7 of [14],
this model is equivalent in distribution to an autoregressive model (with deterministic coefficients
ai ) and ARCH(q) error term. �

A first step in studying the extremal behaviour of any stationary time series model is the tail
behaviour of the stationary distribution.

Theorem 6.4 (Klüppelberg and Pergamenchtchikov [14], Theorem 2.4). Consider model (1.1)
and (1.4). We assume that the sequences {ηin, 1 ≤ i ≤ q}n∈N and {ξn}n∈N are independent, that
conditions A3 and D1–D4 hold, and that a2

q + σ 2
q > 0. Then the distribution of the vector (2.3)

satisfies

lim
t→∞

tλP(z′Y∞ > t) = h(z), z ∈ S.

The function h(·) is strictly positive and continuous on S and the parameter λ is given as the
unique positive solution of

κ(λ) = 1, (6.1)

where for some probability measure ν on S

κ(λ) := lim
n→∞

(
E|A1 · · · An|

λ
)1/n

=

∫
S

E|x ′ A1|
λν(dx),

and the solution of (6.1) satisfies λ > 2.
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For the stationary process (1.1) this means that for every marginal rv yk = z′
∗Yk with

z∗ = (1, 0, . . . , 0)′

lim
t→∞

tλP(yk > t) = h(z∗) =: h∗.

Thus Theorem 6.4 implies condition H0 for the model (1.2). The following Lemma guarantees
H1 and H2; its proof can be found in Section 6.2.

Lemma 6.5. Assume that condition D1 holds and that σ 2
1 > 0. Then the sequence of matrices

{An}n∈N given in (1.4) satisfies H1 and H2.

Thus Theorem 3.4 implies immediately the following result.

Theorem 6.6. Consider model (1.2)–(1.3). Assume that conditions A3 and D1 − D4 hold and
that σ 2

1 > 0 and a2
q + σ 2

q > 0. Assume, furthermore, that the positive solution λ of (6.1) is
non-even. Then Theorem 3.4 holds for the process (1.2).

Example 6.7 (Continuation of Example 6.3). We derive sufficient conditions for the coefficients
in the Gaussian model (1.1) such that the solution λ of Eq. (6.1) is non-even. To this end we
calculate κ(4). For every matrix we denote its elements by 〈·〉. This yields Πn = An · · · A1 =

(〈Πn〉i j )1≤i, j≤q . We represent the (1, 1)-element of this matrix by its recurrence form

〈Πn〉11 = σ1η1n〈Πn−1〉11 + mn−1,

where mn−1 = a1〈Πn−1〉11 +
∑q

j=2 α jn〈Πn−1〉 j1 is independent of η1n . Therefore, from the
Newton formula we get for n ∈ N

E(〈Πn〉11)
4

= E(σ1η1n〈Πn−1〉11 + mn−1)
4

≥ σ 4
1 E(η1n)4E(〈Πn−1〉11)

4

= 3σ 4
1 E(〈Πn−1〉11)

4.

This implies that E(〈Πn〉11)
4

≥ (3σ 4
1 )n for all n ∈ N. Then it is easy to show that κ(4) ≥ 3σ 4

1 >

1 for all σ1 > σ∗ = 3−1/4
≈ 0.76. From Theorem 6.4 we know that λ > 2; therefore, for

σ1 > 3−1/4 the value λ is non-even. �

6.2. Distributional properties of the random coefficient autoregressive model

In this section we prove Lemma 6.5. Condition D1 ensures that the rv η11 has symmetric
positive density φ with certain additional properties. In the following lemma we show that this
implies that ρq(y) = Πq y has also a density, which can be given explicitly in terms of φ. As
before we denote by 〈·〉 the components of the corresponding vector.

Lemma 6.8. Assume that condition D1 holds and σ1 > 0. Then for y = (y1, . . . , yq) ∈ Γ0 =

{y ∈ Rq
: y1 6= 0} the vector ρq(y) = (〈Πq y〉1, . . . , 〈Πq y〉q)′ has a density given by

p(x, y) = p(x1, . . . , xq , y)

= ϕ(xq , y)

q−1∏
j=1

1{x j+1 6=0}ϕ(x j , m j+1(x, y)), x ∈ Rq , (6.2)
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where m j (x, y) = (x j , . . . , xq , y1, . . . , y j−1)
′ and

ϕ(v, y) =
1

σ1|y1|
Eφ


v − a1 y1 −

q∑
i=2

α j1 y j

σ1|y1|

 , v ∈ R, y = (y1, . . . , yq) ∈ Rq .

Proof. The special form (1.4) of the matrices A j implies that for j = 1, . . . , q the vector
ρ j (y) ∈ Rq has the following components:

ρ j (y) = (〈A j · · · A1 y〉1, . . . , 〈A1 y〉1, y1, . . . , yq− j )
′.

In particular,

ρq(y) = (〈Aq · · · A1 y〉1, . . . , 〈A1 y〉1)
′. (6.3)

Notice now that for k ∈ N every linear combination
∑q

j=1 α jk y j with y1 6= 0 has the density
ϕ(v, y). Moreover, for j ≥ 2 the rv 〈Π j y〉1 has a conditional (conditioned on A1, . . . , A j−1)
density

1{〈Π j−1 y〉1 6=0}ϕ(v, ρ j−1(y)).

Here we took into account that P(〈Π j−1 y〉1 = 0) = 0 for j ≥ 2. Now it is easy to show by
induction on j that the random vector (〈A1 y〉1, . . . , 〈Π j y〉1)

′ has for every y ∈ Γ0 the following
density on R j

f j (z1, . . . , z j , y) = ϕ(z1, y)

j∏
i=2

1{z j−1 6=0}ϕ(z j , ϑ j−1(z, y)),

where

ϑ j (z, y) = (z j , . . . , z1, y1, . . . , yq− j )
′.

Therefore,

p(x1, . . . , xq , y) = fq(xq , . . . , x1, y)

and we obtain (6.2). �

Next we prove H1: Notice that for z∗ = (1, 0, . . . , 0)′ we have Wz∗
⊂ Γ0, where Γ0 is defined

in Lemma 6.8. Define Π ∗(y) = sup j∈N z′
∗Π j y. We shall show by contradiction that for every

y ∈ Γ0

P(ς(y) = 0) = P(Π ∗(y) ≤ 1) > 0. (6.4)

So assume that P(ς(y) = 0) = 0 for some y ∈ Γ0. Then, immediately, P(Π ∗(y) > 1) = 1.
Now note that for the matrices {An}n∈N of type (1.4) the vector ρq(y) = Πq y has the form (6.3),
i.e. ρq(y) = (z′

∗Πq y, . . . , z′
∗Π1 y)′. Therefore,

P(Π ∗(y) > 1) = EP(Π ∗(y) > 1 | ρq(y)) = EF(ρq(y)),

where the function F is defined as

F(x) = P
((

max
1≤ j≤q

x j

)
∨ Π ∗(x) > 1

)
, x = (x1, . . . , xq)′ ∈ Rq ,
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with a ∨ b = max(a, b). Moreover, for |x | ≤ 1 by (2.2)

F(x) = P(Π ∗(x) > 1) ≤

∞∑
j=1

P(z′

1Π j x > 1)

≤

∞∑
j=1

E|Π j x |
2

≤ c∗

∞∑
j=1

e−γ j
|x |

2.

This implies that there exists 0 < r < 1 such that F(x) ≤ 1/2 on the set Br = {x ∈ Rq
: |x | ≤

r}. But by our assumption above we get

1 = P(Π ∗(y) > 1) = EF(ρq(y)) =

∫
Rq

F(x)p(x, y)dx, (6.5)

where the density p(x, y) is defined in (6.2) and, therefore,∫
Br

p(x, y)dx > 0.

Hence, the right hand side of equality (6.5) is strictly less than 1. This contradiction proves for
all y ∈ Γ0 inequality (6.4), which implies condition H1.
Finally, we check condition H2. By condition D1 and σ 2

1 > 0 the rv z′
∗ A1 y has a density for all

y ∈ Γ0, and thus P(z′
∗ A1 y = a) = 0 for a ∈ R. Suppose for some j ∈ N that P(z′

∗Π j y = a) = 0
for every a ∈ R. Then for a ∈ R,

P(z′
∗Π j+1 y = a) ≤ P(z′

∗ A j+1Π j y = a, z′
∗Π j y = 0) + P(z′

∗ A j+1Π j y = a, z′
∗Π j y 6= 0)

≤ P(z′
∗Π j y = 0) +

∫
Γ0

P(z′
∗ A j+1x = a)P(Π j y ∈ dx)

= P(z′
∗Π j y = 0) +

∫
Γ0

P(z′
∗ A1x = a)P(Π j y ∈ dx).

The first probability is equal to zero by assumption. The second term is equal to zero as the rv
z′
∗ A1x has a density for every x ∈ Γ0. This means that for all j ∈ N and all a ∈ R we have

P(z′
∗Π j y = a) = 0. This implies H2.

This concludes the proof of Lemma 6.5. �

Appendix A. Proof of Theorem 2.2(b)

For a stationary Markov process we have for functions f and h as in Definition 2.1,

E[ f (. . . , Y−1, Y0)h(Yk, Yk+1, . . .)]

= E
[

f (. . . , Y−1, Y0)E[h(Yk, Yk+1, . . .) | Y j , j ≤ k]
]

= E[ f (. . . , Y−1, Y0)H(Yk)]

= E
[

f (. . . , Y−1, Y0)EY0 H(Yk)
]
,

where Ex denotes the expectation, given the process starts in x , and

Eh(Yk, Yk+1, . . .) = EH(Yk) = EH(Y∞),

where H(y) = Eyh(y, Y1, . . .). Thus

|E f (. . . , Y−1, Y0)h(Yk, Yk+1, . . .) − E f (. . . , Y−1, Y0)Eh(Yk, Yk+1, . . .)|
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= |E[ f (. . . , Y−1, Y0)(EY0 H(Yk) − EH(Y∞))]|

≤ E|EY0 H(Yk) − EH(Y∞)|

≤ RρkEv(Y0) = RρkEv(Y∞) ≤ Rρk(1 + |T |E|Y∞|
2),

and this implies inequality (2.5) with C∗
= R(1 + |T |E|Y∞|

2) < ∞. �

Appendix B. Properties of the functions gk

Recall the functions gk from (3.10).

Lemma B.1. Under condition H2 the functions gk(·) are continuous for all k ∈ N.

Proof. By the definition of ς in (3.7) we have for every k ∈ N

|gk(y) − gk(y0)| ≤ 2P(ν(y, y0) ≥ 1), y, y0 ∈ Wz∗,

where ν(y, y0) =
∑

∞

j=1 |1{ξ j (y)>1} − 1{ξ j (y0)≥1}| and ξ j (y) = z′
∗Π j y. Therefore, it suffices to

show that

lim
y→y0

P(ν(y, y0) ≥ 1) = 0. (B.1)

For every fixed 0 < ε < 1/2 we set Γε =
⋂

∞

j=1{|ξ j (y) − ξ j (y0)| ≤ ε}. Taking into account that

{ν(y, y0) ≥ 1} ∩ Γε ⊆

∞⋃
j=1

{1 − ε ≤ ξ j (y0) ≤ 1 + ε}

we get

P(ν(y, y0) ≥ 1) ≤ P(ν(y, y0) ≥ 1,Γε) + P(Γ c
ε )

≤ P

(
∞⋃
j=1

{1 − ε ≤ ξ j (y0) ≤ 1 + ε}

)
+ P(Γ c

ε )

≤

l∑
j=1

P(1 − ε ≤ ξ j (y0) ≤ 1 + ε) +

∞∑
j=l+1

P(ξ j (y0) ≥ 1/2) + P(Γ c
ε )

≤

l∑
j=1

P(1 − ε ≤ ξ j (y0) ≤ 1 + ε) + 4
∞∑

j=l+1

E|ξ j (y0)|
2
+ P(Γ c

ε ).

Moreover, by Chebyshev’s inequality and (2.2) we can estimate the last probability as

P(Γ c
ε ) ≤

∞∑
j=1

P(|ξ j (y) − ξ j (y0)| > ε) ≤
1
ε2

∞∑
j=1

E|ξ j (y) − ξ j (y0)|
2

≤
1
ε2 |y − y0|

2
∞∑
j=1

E|Π j |
2

≤
c∗

ε2 |y − y0|
2

∞∑
j=1

e−γ j .

Therefore,

P(ν(y, y0) ≥ 1) ≤

l∑
j=1

P(1 − ε ≤ ξ j (y0) ≤ 1 + ε)
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+ 4c∗|y0|
2

∞∑
j=l+1

e−γ j
+

c∗

ε2 |y − y0|
2

∞∑
j=1

e−γ j .

By condition H2 and taking here limits y → y0, ε → 0 and l → ∞ we obtain (B.1). �

Appendix C. Proof of Lemma 4.5

Let µ be a subsequential vague limit, i.e. if there exists a sequence tn → ∞ such that
mtn

v
→ µ, then µ(∂ Bu,x ) = 0 for the set Bu,x = uWx for every u > 0 and x ∈ Rq

\ {0}.
Indeed, in this case

∂ Bu,x = {y ∈ E : (x, y) = u} ⊂ {y ∈ E : (1 − δ)u < (x, y) < (1 + δ)u} =: Gδ

for all 0 < δ < 1. Therefore, by the property of vague convergence (see Kallenberg [11],
Theorem 15.7.2(iii)) and the limiting relationship (4.3) we have for every 0 < δ < u and Gδ as
above,

µ(∂ Bu,x ) ≤ µ(Gδ) ≤ lim inf
n→∞

mtn (Gδ)

= lim
tn→∞

P(x ′Y∞ > tn(1 − δ)u) − P(x ′Y∞ ≥ tn(1 + δ)u)

P(z′
∗Y∞ > tn)

= lim
tn→∞

P(x ′Y∞ > (1 − δ)utn) − P(x ′Y∞ ≥ (1 + δ)utn)

P(z′
∗Y∞ > tn)

= h̃(x)u−λ
(
(1 − δ)−λ

− (1 + δ)−λ
)
.

Taking the limit for δ → 0 implies that µ(∂ Bu,x ) = 0. By Theorem 15.7.2(ii) of Kallenberg [11]
and condition H0 we get (4.4). Next we show (4.5). An application of (4.4) yields∫

|z′ y|>u
|z′y|

νµ(dy) = ν

∫
∞

0
tν−1µ(y ∈ Rq

: |z′y| > max(u, t))dt

= uνµ(y ∈ Rq
: |z′y| > u) + ν

∫
∞

u
tν−1µ(y ∈ Rq

: |z′y| > t)dt

= ĥ(z)uν−λ
+ ĥ(z)ν

∫
∞

u
tν−λ−1dt.

This implies (4.5). Analogous reasoning yields (4.6). �
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[14] C. Klüppelberg, S. Pergamenchtchikov, The tail of the stationary distribution of a random coefficient AR(q) model,

Ann. Appl. Probab. 14 (2004) 971–1005.
[15] M.R. Leadbetter, G. Lindgren, H. Rootzén, Extremes and Related Properties of Random Sequences and Processes,

Springer, New York, 1983.
[16] S. Meyn, R. Tweedie, Markov Chains and Stochastic Stability, Springer, New York, 1993.
[17] T. Mikosch, C. Starica, Limit theory for the sample autocorrelations and extremes of a GARCH(1,1) process, Ann.

Statist. 28 (2000) 1427–1451. An extended version is available at www.math.ku.dk/˜mikosch.
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