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Abstract

We consider the logarithm of the characteristic polynomial of random permutation matrices, evaluated
on a finite set of different points. The permutations are chosen with respect to the Ewens distribution on
the symmetric group. We show that the behavior at different points is independent in the limit and are
asymptotically normal. Our methods enable us to study also the wreath product of permutation matrices
and diagonal matrices with i.i.d. entries and more general class functions on the symmetric group with a
multiplicative structure.
© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

The characteristic polynomial of a random matrix is a well studied object in Random Matrix
Theory (RMT) (see for example [5,6,13,11,15,12,26,27]). An important result due to Keating
and Snaith [15] on n x n CUE matrices is that the imaginary and the real part of the logarithm of
the characteristic polynomial converge jointly in law to independent standard normal distributed
random variables, after normalizing by /(1/2) log n. Hughes, Keating and O’Connell refined
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this result in [13]: evaluating the logarithm of the characteristic polynomial, normalized by
v (1/2)logn, for a discrete set of points on the unit circle, this leads to a collection of i.i.d.
standard (complex) normal random variables.

In [11], Hambly, Keevash, O’Connell and Stark give a Gaussian limit for the logarithm of the
characteristic polynomial of random permutation matrices under uniform measure on the sym-
metric group. This result has been extended by Zeindler in [27] to the Ewens distribution on the
symmetric group and to the logarithm of multiplicative class functions, introduced in [7].

In this paper, we will generalize the results in [11,27] in two ways. First, we follow the
spirit of [13] by considering the behavior of the logarithm of the characteristic polynomial
of a random permutation matrix at different points x1, ..., x4. Second, we state CLTs for the
logarithm of characteristic polynomials for matrix groups related to permutation matrices, such
as some Weyl groups [7, Section 7] and of the wreath product T : S, [25], where T = {z € C;
|z] = 1}.

In particular, we consider n x n-matrices M = (M;j)1<i,j<n Of the following form: for a
permutation o € S, and a complex valued random variable z,

M;j(o,2) = zi6io(j) (1.1)

. . .. . d . .
where z; is a family of i.i.d. random variables such that z; = z, z; independent of o. Here, o is
chosen with respect to the Ewens distribution, i.e.

olo
S TS VR T (1.2

for fixed parameter 6 > 0 and /, being the total number of cycles of o. The Ewens measure or
Ewens distribution is a well-known measure on the symmetric group S,,, appearing for example
in population genetics [10]. It can be viewed as a generalization of the uniform distribution
(.e. P[A] = %) and has an additional weight depending on the total number of cycles. The
case § = 1 corresponds to the uniform measure. Matrices M (o, z) of the form (1.1) can be
viewed as generalized permutation matrices M (o) = M (o, 1), where the 1-entries are replaced
by i.i.d. random variables. Also, it is easy to see that elements of the wreath product T » S, with
T = {z € C; |z| = 1} (see [25] and [7, Section 4.2]) or elements of some Weyl groups (treated
in [7, Section 7]) are of the form (1.1). In this paper, we will not give any more details about
wreath products and Weyl groups, since we do not use group structures.

We define the function Z, ;(x) by

Zy(x) i=det(I —x"'M(0,2)), xeC*. (1.3)

Then, the characteristic polynomial of M (o, z) has the same zeros as Z, ;(x). We will study
the characteristic polynomial by identifying it with Z,, ;(x), following the convention of [7,26]
or [27].

By using that the random variables z;, 1 < i < n are i.i.d., a simple computation shows the
following equality in law (see [7, Lemma 4.2]):

n Cp
Z:@) £ T T =" T, (1.4)

m=1 k=1
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where C,, denotes the number of cycles of length m in o and (T k)mk>1 is a family of
independent random variables, independent of o € §,;, such that

m
d
Tk = | | Zj. (1.5)
j=1

Note that the characteristic polynomial Z, ;(x) of M (o, z) depends strongly on the random
variables C,,, (1 < m < n). The distribution of (Cy, C», ..., C,) with respect to the Ewens
distribution with parameter 6 was first derived by Ewens (1972), [10]. It can be computed, using
the inclusion—exclusion formula, [2, Chapter 4, (4.7)].

We are interested in the asymptotic behavior of the logarithm of (1.3) and therefore, we will
study the characteristic polynomial of M (o, z) in terms of (1.4), by choosing the branch of log-
arithm in a suitable way. In view of (1.4), it is natural to choose it as follows:

Definition 1.1. Let x = ¢2™¢ € T be a fixed number and z a T-valued random variable. Fur-
thermore, let (Zm,k)?,i v—; and (Tm,k)f;i r—] be two sequences of independent random variables,
independent of o € S, with

m
kL2 and Tx £ ]z (1.6)
j=l1
‘We then set
n Cin
10g(Zn(x)) =Y Y log(l = x " Ty 1), 1.7)
m=1 k=1

where we use for log(.) the principal branch of logarithm. We will deal with negative values as
follows: log(—y) =logy +im, y € Ry.

Note, that it is not necessary to specify the logarithm at O since our assumptions in the cases
studied always ensure that this occurs only with probability O (see Theorems 4.2 and 4.3).

In this paper, we show that under various conditions, log Z, .(x) converges to a complex
standard Gaussian distributed random variable after normalization and the behavior at different
points is independent in the limit. Moreover, the normalization by /(;r2/12)6 log n is indepen-
dent of the random variable z. This covers the result in [11] for & = 1 and z being deterministic
equal to 1. We state this more precisely:

Proposition 1.1. Let S,, be endowed with the Ewens distribution with parameter 9, z a T-valued
random variable and x € T be not a root of unity, i.e. x # 1 for allm € Z.
Suppose that z is uniformly distributed. Then, as n — oo,

Re (log(Zn,Z (x))) d,

2
\V 150 logn

Im (log(Z,,-(x)))

= —> Njp, (1.9)
\V 1560 logn

with Nr, N N/\/(O, ).

Ngr and (1.8)
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In Proposition 1.1 Re (log(Zy,;(x))) and Im (log(Z,,- (x))) are converging to normal random

variables without centering. This is due to that the expectation is o(y/logn). This will become
more clear in the proof (see Section 4.1).

Furthermore, we state a CLT for log Z, ;(x), evaluated on a finite set of different points {x1,
e, X4}

Proposition 1.2. Let S, be endowed with the Ewens distribution with parameter 0,7 =

(Z1,...,24) bea T valued random variable and x| = €*™%1, ... x; = e*™% ¢ T be such
that 1, @1, ..., @q are linearly independent over Z.
Suppose that 71, . . ., zq are uniformly distributed and independent. Then we have, as n — 00,

IOg(Zn,zl(xl)) Ny
. i)

1 .
> : :
v Tz0logn log(Zn,,(xa)) Ny

with Re(N1), ..., Re(Ng), Im(Ny), ..., Im(Ny) independent standard normal distributed ran-
dom variables.

Note that zp, ..., zg are not equal to the family (z;)1<;<, of i.i.d. random variables in (1.1).
In fact, we deal here with d different families of i.i.d. random variables, where the distributions
are given by z1, ..., zg and we thus deal also with d different matrices, all based on the same

permutation matrix. We will treat this more carefully in Section 4.2. A remaining open question
is the joint behavior at different points of log(Zn, z (x)) with z uniform, but we expect also in this
case a central limit theorem.

Proposition 1.2 shows that the characteristic polynomial of the random matrices M (o, z)
follows the tradition of matrices in the CUE, if evaluated at different points, due to the result
by [13]. Moreover, the proof of Proposition 1.2 can also be used for regular random permutation
matrices, i.e. M(o, 1), but requires further assumptions on the points xp, ..., x;. We state this
more precisely:

Proposition 1.3. Let S, be endowed with the Ewens distribution with parameter 6 and x| =
2o xg = e*™% ¢ T be pairwise of finite type (see Definition 2.18).
We then have for 71 = --- =z4 = 1, as n — 09,

log(Zn,1(x1)) Ny
d

1 ) )

- : N

- : :
V1201027 \log(Z, 1 (xa)) Ny

with Re(N1), ..., Re(Ng), Im(Ny), ..., Im(Ny) independent standard normal distributed ran-
dom variables.

In fact, our methods allow us to prove much more. First, we are able to relax the conditions
in Propositions 1.1-1.3 above. Also, these results on log Z,, ;(x) follow as corollaries of much
more general statements (see Section 4). Indeed, the methods allow us to prove CLTs for
multiplicative class functions. Multiplicative class functions have been studied by Dehaye and
Dehaye—Zeindler, [7,27].
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Following [7], we present here two different types of multiplicative class functions. The first
multiplicative class function is defined as follows.

Definition 1.2. Let z be a complex valued random variable and f : C — C be given. We then
define the first multiplicative class function associated to f as the random variable W!(f)(x) on
S, with

C

W () =W H@©) =TT T]f @mx), (1.10)

m=1 k=1
d .. .
where o € S, z = z, iy 1.1.d. and independent of o.

The second multiplicative class function is directly motivated by the expression (1.4) and is a
slightly modified form of (1.10).

Definition 1.3. Let z be a complex valued random variable and f : C — C be given. We then
define the second multiplicative class function associated to f as the random variable W2( f)(x)
on S, with

n Cp
W) (x) = W2 (H)©0) =[] [T/ &"Tnx). (L.11)

m=1 k=1

. . . . d d
where 0 € S, Ty & 18 a family of independent random variables, Tp, = H?’zl zjand z; = z,
forany 1 < j <n.

It is obvious from (1.4) and (1.11) that Z,, . (x) is the special case f(x) = 1 —x~' of W2(f)(x).
This explains, why results on the second multiplicative class function cover in general results on
log Z,, ;(x).

We postpone the statements of the more general theorems on multiplicative class functions to
Section 4.

At this point it is natural to ask if there are any other important examples of multiplicative
class function than f(x) = 1 — x~!. For instance, consider the matrices S = (S; ) with

Sij (@) = 8io(j) + 8i0-1(j)- (1.12)

The matrix %S is the symmetric part of M (o, 1) and can be interpreted as the adjacency matrix of
a 2-regular graph. It follows from (1.1) that S = M (o, 1) + M (o, l)T. Since M (o, 1) is a unitary
matrix with reel entries, we see that M(o, 1)™! = M(o, 1)T and thus M (o, 1) and M (o, 1)T
commute. Therefore %S has the same eigenbasis as M (o, 1) but the eigenvalues are projected to
the real axis. If o is a cycle of length n, then the eigenvalues of the corresponding permutation
matrix are exp(2wim/n) with 0 < m < n (see [4] or [26]). Thus the eigenvalues of S(o) are

(2711') (2m'(n — 1))
2cos(0), 2cos{ — },...,2cos| ———— | . (1.13)
n n

Using the Chebyshev polynomials 7, (x) with the trigonometric definition 7}, (cos(y)) = cos(ny),
one immediately sees that the zeros of 7,,(x/2) — 1 are given by (1.13). Furthermore, 7;,(x/2) — 1
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is polynomial of degree n with leading coefficient 1/2. We write x = 2 cos(«) for x € [-2,2]
and y = ¢'“. This gives

det(S, —x0) = [] (201 = Tu(x/2)) = [] (201 = cosma)))”
m=1 m=1
n ) Cm
— 2 _ plma +e imo
T ( )
=JIC-y"+y™ =wi"(fH) (1.14)
m=1

with fs(y) =2 — y™ 4+ y~"™. Similarly for the anti-symmetric part A of M (o, 1)

detQA —x1I) = le’”(fA)(y), with fa(y) =2 —y™ —y™™. (1.15)

For the proofs we will make use of similar tools as in [11,27]. These tools include the Feller
Coupling, uniformly distributed sequences and Diophantine approximations.

The structure of this paper is as follows. In Section 2, we will give some background of the
Feller Coupling. Moreover, we recall some basic facts on uniformly distributed sequences and
Diophantine approximations. In Section 3, we state some auxiliary CLTs on the symmetric group,
which we will use in Section 4 to prove our main results for the characteristic polynomials and
more generally, for multiplicative class functions.

2. Preliminaries
2.1. The Feller coupling

The reason why we expand the characteristic polynomial of M (o, z) in terms of the cycle
counts of ¢ as given in (1.4) is the fact that the asymptotic behavior of the numbers of cycles
with length m in o, denoted by (Cy;)1<m<n, has been well-studied, for example by [2] or [10].
In particular, the random variables C,, converge as n — oo to independent Poisson random
variables Y, with mean 6/m, m > 1. We use in this paper the Feller coupling, which is an
important probabilistic tool and allows to define all random variables C,, and Y,, on the same
space. We give here only a very brief overview. Details can be found for instance in [2,10,24].

Definition 2.1. Let &; be independent Bernoulli random variables for i > 1 with

0 i—1
G=l=g—7 o Pl =01=517

Define C,(n")(é) to be the number of m-spacings in 1& ---&,1 and Y}, (§) to be the number of
m-spacings in the limit sequence, i.e.

CE =Y &0 =& (I = &ixm)Eitm

i=1

+&n—mt1(l — Epomy2) - - (1 = &) 2.0
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and

Yn(§) = Z%‘i(l —&iv) (L= &im—D&irm- (2.2
i=1

Then the following theorem holds (see [2, Chapter 4, p. 87] and [1, Theorem 2]).

Theorem 2.2. Under the Ewens distribution, we have that

e The above-constructed C, (")(E ) has the same distribution as the variable C,gf ) — Cp, the
number of cycles of length m in o.

e Y, (&) is a.s. finite and Poisson distributed with E[Y,,(§)] = %

e All Y,, (&) are independent.

e For any fixed b € N,

Pl ®)..... ¢ ) # (N©).... 1E)] > 0 (1= o0).

Furthermore, the distance between C,(y?)(é ) and Y, (§) can be bounded from above (see for
example [1, p. 525]). We will give here the following bound (see [4, p. 15]):

Lemma 2.3. For any 0 > 0 there exists a constant K (0) depending on 0, such that for every
1 <m<n,

B [Jc @ — @[] = 2+ Layom, 23

where

-1
%:=<n—m+9—l>(n+0—l) ' 24
n—m n

Note that ¥, satisfies the following equality:

Lemma 2.4. For each 6 > 0, there exist some constants K1 = K{(0) and K, = K»(0) such
that

m\0—1
K (1——) form < n,

n
K2n179 m = n.

Wy (m) < 2.5)

The proof of this lemma is straightforward and we thus omit it.
2.2. Uniformly distributed sequences

We introduce in this section uniformly distributed sequences and some of their properties.
Most of this section is well-known. The only new result is Theorem 2.13, which is an extension of
the Koksma—Hlawka inequality. For the other proofs (and statements), see the books by Drmota
and Tichy [8] and by Kuipers and Niederreiter [16].

We begin by giving the definition of uniformly distributed sequences.
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Definition 2.5. Let ¢ = ((p(’”)):le be a sequence in [0, 119. Fora = (ag,...,aq) €10, 114, we
set

An(@) = Ap(a, @) :=#{l <m <n;¢n €[0,a1] x -+ x [0, 4]} . (2.6)
The sequence ¢ is called uniformly distributed in [0, 1]¢ if we have

— d
M@

n j=1

lim =0 foranya € [0, 1]%. 2.7
n—0oo

The following theorem shows that the name uniformly distributed is well chosen.

Theorem 2.6. Let h : [0, 11¢ — C be a Riemann integrable function and ¢ = (go(’”) )m oy bea
uniformly distributed sequence in [0, 1]d. Then
1 < —
tim Y he™) = [ @) ds. 2.58)
n—-oon d
m=1 [0,1]

where d¢ is the d-dimensional Lebesgue measure.
Proof. See [16, Theorem 6.1]. [

Theorem 2.6 excludes all improper Riemann integrable functions like log(¢) or ¢ =¥ with 0 <
y < l.Indeed if h(¢) = log(¢) and ¢ contains O or a subsequence converging very fast to 0, then
the sum on the right hand side of (2.8) becomes infinite or fast growing respectively. However,
under some additional assumptions on the sequence ¢, one can show that Theorem 2.6 also holds
for the logarithm. This is the main topic of this section.

Next, we introduce the discrepancy of a sequence ¢.

Definition 2.7. Let ¢ = ((p(’”))oo be a sequence in [0, 1]¢. The x-discrepancy is defined as

m=1

— d
M@—H%. (2.9)

Dy = Dj;(¢) = sup
n j=1

@el0,1]¢4

By the following lemma, Theorem 2.6, the discrepancy and uniformly distributed sequences
are closely related.

Lemma 2.8. Let ¢ = ((p(’"))sf:l be a sequence in [0, 11%. The following statements are
equivalent:

1. @ is uniformly distributed in [0, 11%.
2. lim,—, D}l (@) = 0.
3. Let h : [0, 1] — C be a proper Riemann integrable function. Then

l Z h((p(m)) — / h(¢) dp forn — oo.
n el [le]a’
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The discrepancy allows us to estimate the rate of convergence in Theorem 2.6.

We need as next functions of bounded variation. The definition of bounded variation in the
sense of Vitali can be found for instance in [16, Chapter 2.5]. This definition is slightly technical,
but if a function /4 : [0, 1]d — R is enough differentiable, then this reduces to

.
V(h)=/ 047 (9)
(0,114

A1 -+ 0a
Our argumentation requires that the function 4 behaves well on boundary of 4 : [0, 1] — R.
We thus introduce the following.

dg.

Definition 2.9. Let 4 : [0, 1]Y — C be a function. We call 4 of bounded variation in the sense
of Hardy and Krause, if / is of bounded variation in the sense of Vitali and 4 restricted to each
face F of dimension 1, ...,d — 1 of [0, 1]¢ is also of bounded variation in the sense of Vitali.
We write V (h|F) for the variation of & restricted to face F.

Definition 2.10. Let F be a face of [0, 1]. We call a face F positive if there exists a sequence
Jis--s jein {l,...,d} st. F = mﬁz:l {Sjm = 1}, with s;,1 < j < d, being the canonical
coordinates in [0, 1]¢.

Definition 2.11. Let F be a face of [0, 1]¢ and ¢ be sequence in [0, 114, Let 7r(@) be the
projection of the sequence ¢ to the face F. We then write D} (F, ¢) for the discrepancy of the
projected sequence computed in the face F.

We are now ready to state the following theorem:

Theorem 2.12 (Koksma—Hlawka Inequality). Let h : [0, 119 — C be a function of bounded
variation in the sense of Hardy and Krause. Let ¢ = (‘p(m))meN be an arbitrary sequence in

[0, 119. Then

1 n
! h(¢<m>>_/ h(@) dg| < (F. @)V (h| F) 2.10)
‘n mZ=1 [Ovl] Zl F;we

dim(F)=k

Proof. See [16, Theorem 5.5]. O

We will consider in this paper only functions of the form

d
h(@) =h(pr, ... ¢a) = [ [ log(f;(e™))), @.11)
j=1
with f; being piecewise real analytic. In the context of the characteristic polynomial, we will
choose fj(¢;) = |1 — ¢?™i%j|. Unfortunately, we cannot apply Theorem 2.12 in this case, since
10g|1 — emid; | is not of bounded variation. We thus reformulate Theorem 2.12. In order to do
this, we follow the idea in [11,26] and replace [0, 14 by a slightly smaller set Q such that ¢ C Q
and /| Q is of bounded variation in the sense of Hardy and Krause.
We begin with the choice of Q. Considering (2.11), it is clear that the zeros of f; cause
problems. Thus, we choose Q such that f; stays away from the zeros (1 < j < d).
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Fig. 1. Illustration of Q, positive faces are bold.

Letaj; < --- < ak;, j be the zeros of f; and define ap ; := 0 and ag;+1,j = 1 (for
1 < j <d). We then set for sufficiently small § > 0

d
0:=|J 07 with 0z =[] lay.j +8.ag,+1,;— 8] and
geNd j=1
- d
Q7 = 1_[ [ag;.j+ ag+1.7]-
j=l1

Note thatg = (g1, ...,94) € {0, ..., k1 +1} x{0,..., ko + 1} x --- x {0, ..., kg + 1} and we
consider Q7 as empty if we have g; > k; + 1 for some j. An illustration of possible Q is given
in Fig. 1.

We will now adjust Definitions 2.9-2.11. The modification of Definition 2.9 is obvious. One
simply takes & to be of bounded variation in the sense of Hardy and Krause in each Qz. The
modification of Definition 2.10 is also straightforward. We call a face F of Q positive if there
existsagqg € N? and a sequence ji, ..., jyin{l, ..., d} such that, for s; (1 < j < d) being the
canonical coordinates in [0, l]d,

k
F= ﬂ ({Sjm = A yt1.m — 6} N Qﬁ) :
m=1

The modification of Definition 2.11 is slightly more tricky. Let F' be a face of some Qg. Let
@ N Q7 be the subsequence of ¢ contained in Q7 and 7 (¢ N OF) be the projection of ¢ N Q7 to
the face F. Unfortunately we cannot directly compute the discrepancy in the face F. We will see
in the proof of Theorem 2.13 that we have to “extend F to the boundary of Qq” More precisely
this means to following: We set F=1Ln Qq, where L is the linear subspace generated by F
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| L -

me

Fig. 2. Illustration of F.

such that dim(L) = dim(F) (see Fig. 2 for an 111ustrat10n) The discrepancy D;i(F, @) is then
defined as the discrepancy of 7 ¢ (¢ N Q7) computed in F.
We are now ready to state an extended version of Theorem 2.12.

Theorem 2.13. Let § > 0 be fixed and ¢ = (gp(m))zzl be a sequencein Q. Leth : Q — Cbea
function of bounded variation in the sense of Hardy and Krause. We then have

1 L d—1 _
—Zh«o('"))—/ h(@)dp| <y 5% > fh(¢) dF
o= Q k=0 F F

dim(F)=k

+
k

Z D}(F, @)V (h|F) (2.12)
1 F positive
dim(F)=k

d

where dF = dF (¢) denotes the Lebesgue measure on the face F.

Proof for d = 1 and d = 2. We assume that Q = [§,1 — 814. The more general case can be
proven in the same way.

The idea is to modify the proof of Theorem 2.12 in [16]. There are indeed only minor mod-
ifications necessary. We present here only the cases d = 1 and d = 2 since we only need these
two cases.

d = 1: We consider the integral I1 = I, (h) = 51_5(# — @) dh(¢) with A,(¢) given as in
Definition 2.5.
It is clear from the definition of D} (¢) that

=3 7 A, (9)
/5 (T‘¢> dh(¢)

On the other hand, one can use partial integration and partial summation to show that

1-6
=< D:(w)/ﬁ |dh($)| = Dy (@)V (hl[5, 1 —8]). (2.13)

1-6
= (8h(1 —8) + 8h(®) + / h(¢) d¢ — — Z (™). (2.14)
8

ml

This proves the theorem for d = 1.
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d = 2: In this case we consider the integral

A
L= / ( @) —¢1¢2) dh(d1. $).
[8,1-5]2

n

The argumentation is similar to the case d = 1. As above, it is immediate that I, is bounded by
D (@)V(h|[s,1— 81%). On the other hand, we get after consecutive partial integration

/[5,1_a]z¢1¢2dh(¢1’¢2) Z Z 8% k/hdF— 3 /hdF

F positive
dlm(F) k dim(F)=1
+h(l1—-68,1-68)—25h(1—-6,1-9)
—6h(6,1—=38) —8h(1 —4,6) (2.15)
and with two times partial summation
1 1
—/ An(@1, §2) dh(g1, o) = h(1 =8, 1—8) — > = Z h(mr(@™))
n [5»1_5]2 F positive n m=1
dim(F)=1
L
+ - h(p"™). (2.16)

We now subtract (2.15) from (2.16) and expand the sum over the positive faces (with (p(’”) =

@™, ™). We get

1

L= (% > hie™) —th(q_s) d$> -2 2 52_kth F @17
m=1

k=0 F

dim(F)=k
1-6
+ f hu, 1—3)du——2h(¢§’"> 1—9)
8 m=1
+8h(8,1—8) +8h(1—8,1— 5)) (2.18)

1-6
+(/ h(l -8, v)dv——Zh(l—(S o)
)

+8h(1—8,6)+8h(1—8,1—8)>. (2.19)

The brackets (2.18) and (2.19) agree with (2.14) if we set “h(s) = h(s, 1 — §)” in (2.18),
respectively “h(s) = h(1 — §,5)” in (2.19). We thus can interpret the brackets (2.18) and (2.19)
as integrals over the positive faces of Q and apply the induction hypothesis (d = 1). A simple
application of the triangle inequality proves the theorem for d = 2.

It is important to point out that the discrepancy of ((pfm))” _, and ((pém))” _; is computed in
[0, 1] and not in [8, 1 — §]. This observation is the origin for the definition of D} (F, ¢) before

Theorem 2.13. O
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In Section 4.2, we will consider sums of the form

2 2ot (1 (¢ )) g (1 (7)) 220

(m)\oo

We are thus primarily interested in (d-dimensional) sequences @, = (@g ) ;- fOr given @ =
(p1,...,9q) € R4, defined as follows:

oin = (Img1} . ... {mga)), 2.21)
where {s} = s — [s] and [s] = max{n € Z,n < s}. The sequence ¢ = @y, is called

Kronecker-sequence of @. The next lemma shows that the Kronecker-sequence is for almost
all € R? uniformly distributed.

Lemma 2.14. Let ¢ = (¢1, ..., ¢q) € R? be given. The Kronecker-sequence of ¢ is uniformly
distributed in [0, l]d ifand only if 1, @1, ..., @4 are linearly independent over Z.

Proof. See [8, Theorem 1.76]. [

Our aim is to apply Theorems 2.12 and 2.13 for Kronecker sequences. We thus have to esti-
mate the discrepancy in this case and find a suitable § > 0. We start by giving an upper bound
for the discrepancy.

Lemma 2.15. Let @ = (@1, ..., 9q) € [0, 114 be given with 1, @1, ..., @4 linearly independent
over 7. Let ¢ be the Kronecker sequence of @. We then have for each H € N

2 1 1
Dig) <39 ——— 4~ —_ (2.22)
" H+1 n M%OSH r@Ig - ol

with ||.|lco being the maximum norm, ||a| = inf,ez la — n| and r(q) = H?:l max {1, g;} for
7=1(q1.....q4) € N.

Proof. The proof is a direct application of the Erdos—Turan—Koksma inequality (see [8, Theorem
1.21). O

It is clear that we can use Lemma 2.15 to give an upper bound for the discrepancy, if we can
find a lower bound for ||g - @||. The most natural is thus to assume that @ fulfills some diophantine
inequality. In order to state this more precise, we give the following definition:

Definition 2.16. Let g € [0, 1]¢ be given. We call @ of finite type if there exist constants K > 0
and y > 1 such that

K
7@l > ——— forallg € 24\ {0}. (2.23)
(Igllec)”
If o = (¢1, ..., @y) is of finite type, then it follows immediately from the definition that each
@; is also of finite type and the sequence 1, ¢y, ..., ¢ is linearly independent over Z.

One can now show the following:

Theorem 2.17. Let ¢ € [0, 11¢ be of finite type and ¢ be the Kronecker sequence of @. Then
D;(p) = O0(n™%) for some a > 0. (2.24)
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Proof. This theorem is a direct consequence of Lemma 2.15 and a simple computation. Further
details can be found in [8, Theorem 1.80] orin [28]. [

As already mentioned above, we will consider in Section 4.2 sums of the form (2.20). Surpris-
ingly, it is not necessary to consider summands with more than two factors, even when we study
the joint behavior at more than two points. We thus give the following definition:

Definition 2.18. Let x; = 2791 ... x; = €27i% be given. We call both sequences (xj)‘;:1

and (goj)‘;Z] pairwise of finite type, if we have for all j # £ that (¢;, @) € [0, 112 is of finite
type in the sense of Definition 2.16.

3. Central limit theorems for the symmetric group

In this section, we state general Central Limit Theorems (CLTs) on the symmetric group.
These theorems will allow us to prove CLTs for the logarithm of the characteristic polynomial
and for multiplicative class functions.

For a permutation o € S,,, chosen with respect to the Ewens distribution with parameter 6, let
C,, be the random variable corresponding to the number of cycles of length m of ¢. In order to
state the CLTs on the symmetric group, we introduce random variables

n_ Cn

A=) Xk (3.1)

m=1 k=1

where we consider X, x to be independent real valued random variables with X, x < Xm.1
forall 1 < m < n and k > 1. Furthermore, all X,, ; are independent of o. Of course, if
Xmk = Re(log(1 —x"T,,.)) (or Im(log(1 —x~"T,, %)), then A, is equal in law to the real (or
imaginary) part of log Z,, ;(x), which is the logarithm of the characteristic polynomial of M, ..
This will be treated in Section 4.

3.1. Degenerate case

We give in this subsection an overview over degenerate case X, x = a, with a,, € R. The
second author has proven for this situation in [27] a central limit theorem for A, with a Lyapunov
condition using the Feller-coupling. A more modern approach is based on generating functions
and complex analysis. This method has been used by Manstavicius in [17] to prove a central limit
theorem for A, with a Lindeberg—Feller condition. Furthermore Manstavicius has given in [18]
sufficient and necessary conditions for the weak convergence of a sightly more general random
variables and Babu and Manstavicius have extended in [3] the CLT to a functional limit theorem.
An overview can be found in [19] and in the references therein.

3.2. One dimensional CLT

The argumentation by Manstavicius can also be used in the situation for non degenerate X, i
and to extend the CLT to weighted measure recently studied by Ercolani and Ueltschi [9] (Details
about the weighted measure on the symmetric group can be found for instance in [14,20-22].)
These computations are quite involved. We thus postpone them to a further paper and use instead
the following CLT proven in [20].
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Theorem 3.1 (Hughes et al. [14]). Assume that

Vo= ) ;E[(xm,l)z] — 00 (11— 00). (3.2)

Assume further that there exists a p > max {% 2} such that

1 Py (pl2
’;;Eﬂxmﬂ J=o (V7). (3.3)
Then
<An _E[An]) (3 4)
VOVN n>1 .

converges in distribution to a standard Gaussian random variable.

Proof. This theorem can be obtained immediately from Theorem 6.2 in [20] by setting X, x =
k A. For completeness, we give a short overview over the proof. The proof is based on the Feller
coupling (see Section 2.1). This ensures that the random variables C,, and Y, are defined on the
same space and can be compared with Lemma 2.3. The strategy of the proof is the following:
define

n Yn
By=> Y X 3.5)

m=1 k=1

and show that A, and B, have the same asymptotic behavior after normalization. This can be
done for instance by showing that E[|A, — B,|] = O(1). We have

n Cn Y
E[|A, — Bl = E [ <Z Xk — me,k) ]
=1 \k=1 k=1
n CuVYy
<38 B [ s ]
m=1

m=1 k=(Cypy AYp)+1
n
< Y E[IXm1l]E[Cwn = Yull. (3.6)
m=1

CnVYm

mk

k=(Cu AYp)+1

By Lemma 2.3, there exists for any 6 > 0 a constant K (6), such that

- 0
D E[Xmal]ELC, — Ym|]<LZE [1Xm11] + Z%(m)Eﬂxmn] 3.7)

m=1

One now can show with the Holder inequality, Lemma 2.4 and the assumptions of the theorem
that this quantity is indeed O(1). It is thus enough to consider only B,, but B, is just a sum of
independent random variables and the theorem follows from the Lyapunov CLT. [
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3.3. Multi dimensional central limit theorems

In this section, we replace the random variables X,, x in Theorem 3.1 by R4-valued random

variables Ym,k = (Xmk1s---» Xmka) and prove a CLT for
— n Cm —
And =YY Xk (3.8)
m=1 k=1

As before, we assume that Ym, « 1s a sequence of independent random variables such that Ym, k

4 Ym,l and all Ym,k and o € §, are independent. We will prove the following theorem:

Theorem 3.2. Assume there exist constants V, with V, — 00 as n — o0 and there exists
constants 0j g such that forall 1 < j, £ <d

n

1
Z EE [Xm,l,ij,l,l] ~0j¢-Vy (n— 00). 3.9)

m=1
Assume further that there exists a p > max {é 2} such that foreach 1 < j <d

n

> %E (X151 = 0 ((va)""). (3.10)

m=1
Then the distribution of
Zn,a’ —E [Zn,d]
NS

converges in law to the normal distribution N (0, X), where X is the covariance matrix
(07, 1<, j<d-

3.11)

Proof. The theorem follows from the Cramer—Wold theorem if we can show for each 7 = (#q,

...,td)E]Rd
_ A, —E[A)] 4 —
f-——— — N(0,6:X1"). 3.12
A ( ) (3.12)

A simple computation shows that

C,
1A, = iZH,;‘{,)( (3.13)

with

H,E,lf])( =Hpi = thXm,k,j~ (3.14)
j=1
We now show that H,, ; fulfills the conditions of Theorem 3.1. Clearly, H,, x is a sequence of

independent random variables, H,, x 4 H,, 1 and H,, \ is independent of Cj, for all m, k, b. We
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get
E —] ]EI:[‘I2 :I = E —1 Ed Z‘E ]
m m, 1 m 4 m,1,j le

~V, Z titeoj o = Vy 15T (3.15)
jre=1
with X' = (0 ¢)1<j,¢<q. This shows that (3.2) is fulfilled. We now look at (3.3). We use that
lx + y|? <277 (1x|P 4 |y|P) for p > 1 and get

n

> Bl <K E{ermxml,w}—o((v)P/2)

m=1 m=1

where K, depends only on p and d. This concludes the proof of Theorem 3.2. [

Remark. It is clear that Theorem 3.2 can be used for complex random variables, by identifying
C by R2.

4. Results on the characteristic polynomial and multiplicative class functions

In this section we apply the theorems in Section 3 to the characteristic polynomial and
multiplicative class functions. We start by considering in Section 4.1 the real and imaginary parts
separately and give results on the joint behavior and the behavior at different points in Section 4.2.

Recall that we study the characteristic polynomial in terms of Z,, ;(x) and recall the definitions
for the multiplicative class functions Wzl’" (f) and WZ2 " (f), given by Definitions 1.2 and 1.3. As
in Definition 1.1, it is natural to choose the branch of logarithm as follows:

Definition 4.1. Let x = ¢2™% € T be a fixed number, z a T-valued random variable and
f : T — C a real analytic function. Furthermore, let (Zm,k)fno,k=1 and (T,,,,k)fno,k=1 be two
sequences of independent random variables, independent of o € S, with

i Lz and T2 ﬁ Zjk. @1
i
We then set J
l0g(Zn, . (x)) : i”;log(l —x "), 4.2)
W (£)(@) = log (W () = ;;log SOz ). 43)
W (f) = log (W2"(f)(x) ) = > ijlog(f(x'" Tni)). (4.4)

m=1 k=1
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4.1. Limit behavior at 1 point

The following results are important cases for which the conditions in Theorem 3.1 are
satisfied. We will show the following central limit theorem results for multiplicative class
functions.

Theorem 4.2. Let S, be endowed with the Ewens distribution with parameter 0, f be a non zero
real analytic function, z a T-valued random variable and x = ¢*™'% € T be not a root of unity,
i.e. x™ £ 1 forallm € Z.

Suppose that one of the following conditions is satisfied,

e 7 is uniformly distributed,

e 7 is absolutely continuous with bounded, Riemann integrable density,

e 7 is discrete, there exists a p > 0 with z° = 1, all zeros of [ are roots of unity and x is of
finite type (see Definition 2.16).

Then,
1,n
M—e-mR(f),/logni> Nz, (4.5)
logn
1,n
Im(u;—(f))—9~m1(f)w/logn—d> N (4.6)
ogn

with Ng ~ N (0, 0VR(£)), N; ~ N (0,0V;(f)) and

mr(f) = Re ( /O log(f (e*™%)) d¢), VR(f) = /0 log?| f(e*™9)| dg, 4.7)

1 ) 1 )
mz(f)=lm< /0 log(f<e2”'¢))d¢>, Vi(f) = /0 a(f( @) dp.  (48)

Theorem 4.3. Let S, be endowed with the Ewens distribution with parameter 0, f be a non zero
real analytic function, z a T-valued random variable and x € T be not a root of unity.
Suppose that one of the following conditions is satisfied,

e 7 is uniformly distributed,
e 7 is absolutely continuous with density g : [0, 1] — Ry, such that

g(p) = cheZNij¢ with |cj| < 1 for j # 0 and Z cj| < oo. 4.9)
JEL JEZL

e z is discrete, there exists a p > 0 with z° = 1, all zeros of f are roots of unity, x is of finite
type (see Definition 2.16) and for each 1 <k < p,

‘ 121 y
p [z _ eZ”lk/P] = = Y ¢ with |e;| < 1 for j #0. (4.10)
X
Jj=0
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Then,
2.n
M—9~mlg(f)w/logni> Nz, @.11)
logn
2.n
Im(u;—(f))—e-m,(f),/logni> Ny, (4.12)
ogn

withmp(f),m;(f), Ng and Ny as in Theorem 4.2.

Note that the uniform case is included in the absolutely continuous case. Furthermore, Z,, ; (x)
is the special case f(x) = 1 —x~! of W2. Thus, a direct consequence of Theorem 4.3 is the
following corollary, which, after a short computation, covers Proposition 1.1:

Corollary 4.4. Let S,, be endowed with the Ewens distribution with parameter 0, z a T-valued
random variable and x € T be not a root of unity, i.e. x™ # 1 forallm € Z.
Suppose that one of the conditions in Theorem 4.3 holds, then

Re (log(Zy.:@))) 4

N 4 4.13
e o an (4.13)
Im (log(Zy,; (x))) N (4.14)

J1ogn

with Ng, Np ~ N (0,67 ).

In Corollary 4.4, Re (log(Z,,, Z(x))) and Im (log(Zn, Z()c))) are converging to normal random
variables without centering. We will see that this is due to the expectation being o(,/logn).

Remark. The case x a root of unity can be treated similarly. The computations are indeed much
simpler, see for instance [27] for z = 1.

Proof of Theorem 4.2. It is clear from Definition 4.1 that the real and imaginary parts of the
random variables log(Z,,,Z(x)), wl*”(f) (x) and w2*"(f) have the form (3.1). We thus can use
Theorem 3.1 to study their behavior as n — o0o. We show that the assumptions of Theorem 3.1
are fulfilled with V,, ~ const. log(n) in each case considered in Theorem 4.2. For this, we use the
following observation: if (a,;)meN 1 a sequence of complex numbers, then

1 n n anm
—Zam—>E:> Z—:Elog(n)+0(1) (n — o). (4.15)
nm:l m=1 m

This statement follows with partial summation and a direct computation. It is thus enough to
show that we have for p = 2 and some p > 2

l n
=2 E[Xni|"] — E, (4.16)

m=1

asn — oo with E,, € R depending on p and the case studied.
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Uniform measure on the unit circle.
We start with the simple case where z is uniformly distributed. We begin with the real part

and put X, x = log | f(x"zm k)|. We use that x" z,, 4 Zm,1 for m fix and get

1 .
E[I1Xm117] = E[|log | f " zm,DI|"] = fo |log| £ (¥ )||” dgp. (4.17)

We have to justify that the integral in (4.17) exists. Since f is a non-zero real analytic function,
we have for xo = e2mido being a zero of f,

log | f(e*™9)| ~ K log |¢ — oo, (4.18)

as ¢ — ¢o and a K > 0. The integral in (4.17) now exists for each p > 1 since log |¢p — ¢p|? is
integrable in a neighborhood of ¢q for each p > 1 and f has at most finitely many zeros.
We thus have obviously for each p > 1

1 n 1 )
;Z]E[|Xm,1|”]=/0 |log| £ (> )||” dgp. (4.19)
m=1

The observation in (4.15) together with (4.19) for p = 2 and any p > 2 implies that the
assumptions Theorem 3.1 are fulfilled with V,, ~ Vr(f)log(n). It remains to compute the
asymptotic behavior of the expectation. We use the Feller-coupling (see Section 2.1) and get

E[Re (w”’(f))] = Xn:E[Cm]E[lOg‘f(mem,l)H
m=1

= (ZE[Ym]E[log|f(x’"zm,1)|])
m=1

+ (ZE[Cm - Ym]E[log|f(mem,l)|]>
m=1

- ( / Lol @719 d¢) (Z %)

m=1
+0 (Z(E [Cn] —E [Ym])>
m=1
=0 -mgr(f)logn+ 0(). (4.20)

We have used in last equality the inequalities in Lemmas 2.3 and 2.4 to obtain the O (1) term.
The computations are straightforward and we thus omit them. This completes the computations
for the real part.

Consider now the imaginary part with

Xm,k S Im(IOg(f(mem,k))) = arg(f(xmzm,k))~

Obviously, arg(f(e*™'?)) is bounded and piecewise real analytic with at most finitely many
discontinuity points as function in ¢. Thus all moments of X,, x exist. We therefore can use
precisely the same argumentation as for the real part and thus omit this computation.
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Absolute continuous case.

We start again with the real part and use as before X, x := 10g| f (zm,kx’")‘ with x = 27i%.
For simplicity, we write h(¢) = 10g| ¥ i¢)|. We first show that all moments of X, ; exist.
We write g for the density of z,, x and obtain for all p > 1,

E [1Xm.l"] f og] £ (x| g ¢) dgp = f k(@ +m)"g(@) dg.  (421)

We extend the function g(¢) periodically to R and get

1

E[1Xmil”] = /0 |h(@)Pg(¢p —my) d§p < S?p |8 ()] / |h(P)|” dp < o0.  (422)

ael0

This is finite since g is by assumption bounded. We now show that the assumptions of Theo-
rem 3.1 are satisfied by computing the asymptotic behavior of the expression (4.16) in this case.
By assumption, x = ¢%7% is not a root of unity and ¢ is thus irrational. Therefore, ({moh)o_,
is uniformly distributed in [0, 1]. Since g is Riemann integrable, we can apply Theorem 2.6 for
fixed ¢ and obtain as n — 00

1 <& 1
LS e —mp =LY e o — / W) dy =1, (4.23)
n m=1

m=1

Since g is bounded and A7 is integrable, we can use dominated convergence and get

n

% D E[1Xmil?] / h($)|” ( Z g(¢— mgo)) dp — / (@) dp.  (4.24)
m=1 m=1

Thus the assumptions of Theorem 3.1 are fulfilled with V,, = Vg(f) log(n). It remains to show

that the real part of E [wl’" (f )] can be replaced by 6 - mg(f) logn. This computation is similar

and we thus omit it. Also the computations for the imaginary part are almost the same as for the

real part and can be omitted as well.

Discrete 7.
We have z° = 1 for some p > 1 and thus

o ) )
E[|log] f zmax™||"] = > P [z = 62’”1‘/”] <|log|f(e2”’k/”x’")||”)
k=1
p .
=) P [ 62’”””] b (k/p +m@)|”. (4.25)
k=1

This sum is well defined since x = ¢>*'¢ is by assumption not a root of unity and all zeros of f

are roots of unity. The computation of the expression (4.16) is in this case slightly more difficult.
We use that the sequence (x™),,en is uniformly distributed and show here foreach 1 < k < p

1 & !
= Ihk/p+me)l” — fo Ih(@)I” d¢. (4.26)
m=1

The function /(¢) is not of bounded variation (except when f is zero-free) and we thus use
Theorem 2.13 for d = 1. We omit the details of this computation since they can be found in
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[27, pp. 14-15] and since we use in Section 4.2 the same argumentation for d = 2. It follows
with (4.25) and (4.26) that

1 & !
> Ef[log] £ am1x™)||] e/o @I do. (427)
m=1

The remaining argumentation is the same as in the previous cases and will be thus omitted.

Proof of Theorem 4.3. We will use here the same argumentation as in the proof of Theorem 4.2
and thus verify only (4.16) for each case considered. We will use again the notation i (¢) =
log| f(e*™1?)| and x = €*™1¥.

z uniform.

Since T,  is uniformly distributed, we have T < z, ¢ and thus ! () £ w2 (f). This
case is therefore already proven.

z absolutely continuous.
We first consider the real part of w>"(f), i.e.

Xk = log| f (" T )| (4.28)

The density of T,, x is g*", where g*" is the m-times convolution of g with itself and g is the
density of z. We first show that all moments of X, x exist. By assumption,

g(@) = Zc,-e2”ff¢ with |cj| < 1 for j # 0 and Z lcj| < oo. (4.29)
JEZ JEZ
The properties of the Fourier transform immediately imply
*m _ m 2mwij¢
g (P) = chj e, (4.30)
je

As before, we first show that all moments of X, ; are finite. We have

1 1
E[1Xmkl”] =/0 h($ +me)|” g™ (¢) d¢SZ|CjIm'/O |h(@)|” dg

J€Z
1
< Zlcxlf |h(@)|7 dp < oc. (4.31)
jez 0
This shows that all moments exist and can be bounded independently of m.
We now show that for each p > 1

1 n 1
- Z]E[|Xm,k|P] —>/ lh(®)I7 de. (4.32)
nm:l 0
We have
1 n l n 1
SN E[1Xnal?] = - Zf Ih(§ +m)|Pg™" (¢) do
nm:] nm:] 0

1 1 &
fo |h(¢)|” (; D "¢ - m<p)> do. (4.33)
m=1
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Consider now % Y1 & (¢ — my) for ¢ fix. We use assumption (4.29) together with (4.30)
and get

1 - *m 1 - m 2mij
_ _ - _ 7 J(p—me)
nmEzlg (@ —me) = - E § cje

m=1 jeZ
(1 & .
=) o - > c;"e_szm‘p) : (4.34)
JEZ m=1
We thus have to compute the behavior of
1 n
=Y e mime, (4.35)
n J
m=1

For j = 0, this expression is always 1, since ¢y = fol g(¢d) d¢p = 1. For j # 0, we use the
assumption |c;| < 1 and get

n

§ :cme—ijm(p
J

m=1

It is thus to expect that the expression in (4.34) converges for almost all ¢ to 1. To verify this, we
use dominated convergence. We have % o1 |c;"| < |cj| and thus

1
< —
T n

1— cr{+162inj<p(n+l)
J

1 1 2
— — < - 0 . 4.36
- —"—T = Tl -0 (n— 00). (4.36)

1< o1 & .
— Z &M (P — mg) < Zehtm (_ Z C/jne—Zmetﬂ> < Z lcj| < o0. (4.37)
o= ez o= ez
Therefore, as n — oo and for almost all ¢,
1 - km
~2 &M@ —mp) — 1 (1> 00). (4.38)
m=1

Furthermore, > jlejl is also an upper bound for rll o1 8" (¢ — mg). So again, we can use in
(4.33) dominated convergence and obtain

1 !
= S E[1Xmal”] »f h(@)IP dep. (4.39)
n m=1 0
Similarly one can show
1 n 1
=Y E[Xmi] > / h($) dé. (4.40)
n - — 0
m=1
Applying these arguments to the imaginary part of w?” ( f) completes the proof for absolutely

continuous z.

Discrete 7.
Recall that for discrete z with z° = 1, there exists always a sequence (c;)o<j<p—1 such that

. 12-1 .
P [Z - ezf”k/P] = = ik, (4.41)
0 4
j=0
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(See for more details [23, Chapter 7].) It follows immediately

. 1 °-1
P [T = k7] = = e, 4.42)

For any p > 1, we have

Iy 1 & C : y
; 2:: E [|10g|f(mem,1)|| — ; XZ: XZ:O 10g|f(xm82mk/p)||l’]P> I:Tm’1 — e27‘[ljk/p:|

S(i2(

Since ¢y = 1, we have that the summands corresponding to j = 0 give

1S [14 1 &
-3 (— > lhtk/p + mgow’) ==Y |h(k/p+mp)”. (4.44)
=1 \P k=0 o=

We already mentioned in the proof of Theorem 4.3 that this expression converges to

1 =] g
e K h(k/p +m¢)|f'>> . (4.43)

pko‘

fol |h(¢)|” d¢p. We now show that the remaining sum is o(1). Since by assumption |c;| < 1
for j # 0, we can find a mq such that |c;|" < € form > mg and all j # 0. We thus get for all
m = mo,

[ [tog] £ (e e274/0) 7] < € [tog] £ e M| (4.45)

Since € was arbitrary and p is finite, we see that the sum over all terms with j # 0is o(1). The
remaining argumentations are the same as in the previous cases and we thus omit them. [

Proof of Corollary 4.4. We use that Z, .(x) = Wf’"(f) with f(x) = 1 — x~L. Then
Corollary 4.4 is a direct application of Theorem 4.3. One only has to compute Vg (f), Vi(f)
and m(f). A simple computation and Jensen’s formula give in this case

2
VR(f) =Vi(f) = % and  m(f)=0. (4.46)

This completes the proof. [
4.2. Behavior at different points

In this section, we study the joint behavior of the real and the imaginary parts of the char-
acteristic polynomial of M (o, z) and of multiplicative class functions. Furthermore, we consider

the behavior at a finite set of different points x; = 2oL xg = ¥ d e N fixed.
Before we state the results of this section, it is important to emphasize that we will allow
different random variables z1, ..., z4 at the different points x1, ..., x4. Of course, we need to

specify the joint behavior at the different points. The idea is to define it in such a way that the
behavior in disjoint cycles is still independent and the behavior in given cycle depends only on
the cycle length. For the multiplicative class function w!"(f 1)(x;), we define the following
joint behavior. Let 7 = (z1,...,24) be a random variable with values in T9. Let further

Zmk) — (zim’k) zc(]m D be a sequence of i.i.d. random variables with "% 4= (in m
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and k, for 1 <m <nandl < k < Cp,, where C,, denotes the number of cycles of m in o).

Then, for functions fi, ..., fy and for any fixed 1 < j <d,
n Cp ‘
() = wh (e = 30 3 tog (£ (20xr)). 4.47)
m=1 k=1

As requested, we get with this definition that the behavior in disjoint cycles of ¢ is indepen-
dent. But the behavior in a given cycle at different points is determined by z.

For the logarithm of the characteristic polynomial log(Zn,Z(x j)) and for the multiplicative
class function w2"( fi)(xj), we do something similar. Intuitively, we construct for each point
x; a matrix M, ; ; as in (1.1), where we choose for M, ;, n i.i.d. random variables, which are
equal in distribution to zj. At point xp, we choose again n i.i.d random variables, which are
equal in distribution to zo and so on. Formally, we define for (the same sequence as above)

— . . —(m,k
Zmk) — (zim‘k), e zfim’k)) another sequence (in m and in k) TR (Tl(m’k), el Td(m’k)) of
independent random variables, so that for any fixed | < j <d and fixed 1 <m <n,
k oy d [T _m.e L
@O O ST T ) (4.48)
=1 =1
which implies
) d T .m0
m,k) d m,
Tj = H z;
(=1
This gives for fixed j’s and function f;:
n Cp .
W (f)@)) = wE () =YD log ( £ (Tj('"’ )x;-")) . (4.49)
m=1 k=1
We now state the results of this section:
Theorem 4.5. Let S, be endowed with the Ewens distribution with parameter 0, fi, ..., fa
be non zero real analytic_ functions, 7 = (z1,...,24) a T valued random variable and
x| = ¥ xy = X% e T be such that 1, @1, - .., @q are linearly independent over 7.

Suppose that one of the following conditions is satisfied:

® 71, ...,2q are uniformly distributed and independent.

o forall1 < j, £ < dand j # ¢, the joint law of (2}, z¢) is absolutely continuous. The joint
density of zj and zy is bounded and Riemann integrable for all j # (.

o foralll < j <d,zjistrivial, i.e. z; = 1, and all zeros of [} are roots of unity. Furthermore,
X1, ..., Xq are pairwise of finite type (see Definition 2.18).

o Forall1 < j < d, there exists a p; > 0 with (z;)/ = 1, all zeros of f; are roots of unity
and x1, ..., Xq are pairwise of finite type.

We then have, as n — o0,
w" ™ (f1)(x1) m(f1) Ny
: —6y/logn LN N=|:].

wl’n(];d)(xd) m(fa) Ny

1

J]ogn
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where N is a d-variate complex normal distributed random variable with, for j # ¢,

Cov(Re(N;), Re(Ny)) = 6 /[0 . log| f;(€*™)| log| fe(e*™™)| dudv, (4.50)

Cov(Re(N;), Im(Ny)) = 6 /[0 . log| f;(e™™™)| arg(fe(e*™")) dudv, (4.51)

Cov(Im(N;), Im(Ny)) = 6 /[O . arg(fj(e*)) arg( fo (€™ ™)) dudv (4.52)
and for j = ¢, |

Cov(Re(N,), Re(N;)) = Var (Re(N;)) =6 /[0 ; log?| f;(e*™)| du, (4.53)

Cov(Re(N;), Im(N;)) = Var (Im(N;)) = 0 /[0 : arg®(f;(€*™™™)) dv. (4.54)

Note that, in Theorem 4.5, the first condition implies the second and the third condition
implies the fourth. For the multiplicative function w>", we have the following result:

Theorem 4.6. Let S, be endowed with the Ewens distribution with parameter 0, fi, ..., f4

be non zero real analytic functions, 7 = (21,...,24) a T9-valued random variable and

x| = ¥ xy = X% e T be such that 1, @1, - - ., @q are linearly independent over 7.
Suppose that one of the following conditions is satisfied:

® 71, ..., 24 are uniformly distributed and independent.
o foralll < j, £ < dand j # {, the joint law of (zj, z¢) is absolutely continuous. For each
J # L, the joint density g; ¢ of zj and zy satisfies

gj.t(j. o) = Z Cape®™ @Ot gpg Z lca.p] < 00. (4.55)
a,beZ a,beZ
o foralll < j <d,zjistrivial, i.e. zj = 1, and all zeros of [} are roots of unity. Furthermore,
X1, ..., X4 are pairwise of finite type (see Definition 2.18),
e forall 1 < j < d,z;j is discrete, there exists a p; > 0 with (z;)?/ = 1, all zeros of f;
are roots of unity. Furthermore, assume that x1, . .., x4 are pairwise of finite type (see Defi-

nition 2.18) and that for j # £

0=l pg—1
P [Zj = 2miki/e) 4, — eZnikz/pg:I _ 1 ’2: Y g pe?mitakirbk) (4.56)
PjPe 220 b=0
pi—1 pe—1
with Y " |capl <1, forb#0 and Y |capl <1, fora#0. (4.57)
a=0 b=0
We then have, as n — oo,
| w" (f1) (1) m(f1) N
: —04/logn : LN N=]":
Jlogn I ) ’
w™ (fa) (xa) m(fa) Ny

with m(f;) and N as in Theorem 4.5.
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As before, we get as simple corollary, which covers Proposition 1.2:

Corollary 4.7. Let S, be endowed with the Ewens distribution with parameter 6,7 = (z1,
.., z4) be a T4-valued random variable and x; = €21, ... xg = e*™% ¢ T be such that
1, @1, ..., @q are linearly independent over Z.
Suppose that one of the conditions in Theorem 4.6 is satisfied: we then have, as n — 0o,

10g(Zp,z, (x1)) Ny
. _d)

1 .
V12f10gn \log(Z, ., (x)) Ny

with Re(N1), ..., Re(Ng), Im(Ny), ..., Im(Ny) independent standard normal distributed ran-
dom variables.

Proof of Theorems 4.5 and 4.6. We consider w'”(f) and w?"(f) as R2-valued random
variables and argue with Theorem 3.2. Using the verified conditions (3.2) and (3.3) from
Theorem 3.1, all conditions of Theorem 3.2 are satisfied if the following equation is true:

L E
lim — E[Xm,l,jxm,l,g] =0j¢- (4.58)
n—-oon
m=1
The computations for uniformly distributed and for absolute continuous z1, ..., z4 are for both,

w!" and w*", the same as in the proof of Theorem 4.2 and the proof of Theorem 4.3 and we thus
omit them. The trivial and the discrete case (the third and the fourth condition in Theorem 4.5)
is slightly more difficult and we thus have a closer look at them. The behavior in one point,
where z = 1 has been treated by [11]. For the behavior at different points, we need the following
lemma:

Lemma4.8. Let f1, /> : T — C be real analytic with only roots of unity as zeros and let
x1 = €™ and xy = €292 be such that (x1, x2) € T? be of finite type (see Definition 2.16).
We then have 10g|fj (x;-’)‘ = 0(10g n)forj € {1, 2}. Moreover, as n — 00

] n . .
- > log|fi ()| log | f2 (31)| — /[0 . log| f1(€*™™)| log| f2(e*™™)| dudv, (4.59)
m=1 )

1 : :
- > arg (fi (x7)) log| f2 (x5')] — /[0 . arg(f1(e*™")) log| f2(e”™)| dudv  (4.60)
m=1 s

and
1 & ; ;
- Z arg (f1 (x]")) arg (/> (x3')) — /[0 . arg(f1(e*™™)) arg(f2(e*™")) dudv. (4.61)
m=1 s
By using Lemma 4.8, the proof for z1, .. ., zg being discrete is the same as the discrete case

in the proof of Theorem 4.2 and the proof of Theorem 4.3. Thus, in order to conclude the proofs
for Theorems 4.5 and 4.6, we will proceed by giving the proof of Lemma 4.8:

Proof. We start by considering (4.59). Since x; and x, are not roots of unity, we expect for
n— oo

1 : :
;Zlog|f1 (x")| log | f2 (x3")| —>f[0”2 log| f1 (€| log| f2(e*™)| dudv. (4.62)
m=1 ,
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Unfortunately this is not automatically true since log(f;) is not of bounded variation if f;
has zeros and we thus cannot apply Theorem 2.6. We show here that (4.62) is true by using
Theorem 2.13 and the assumption that (x1, x2) is of finite type.

We use the notations:

hi@) =log|fiE™ )], o™ ={(mei}, @ = ("),
ha(@) ==log | ()], @i = (mp}, @ = (93",
T=@ne), o™= ") e= (™). (4.63)

We thus can reformulate the LHS of (4.59) as

1 n
= ey, (4.64)
m=1

If f1 and f> are zero free, then /| and h; are Riemann integrable and of bounded variation.
Furthermore, 1, ¢y, ¢ are by assumption linearly independent over Z, and thus ¢ is a uniformly
distributed sequence by Lemma 2.14. Eq. (4.62) now follows immediately with Theorem 2.6.

If f1 and f> are not zero free, we have to be more careful. We use in this case Theorem 2.13
for d = 2. We assume for simplicity that 0 and 1 are to the only singularities of 41 and /5. The
general case with other roots of unity as zeros of 41 and %, is completely similar.

We first have to choose a suitable § = §(n) such that (p(m) €[8,1—8]*for1 <m < n. Since
by assumption ¢ is of finite type, there exists K > 0, ¥ > 1 such that

17 -9l > ——— forallg € Z*\ {0} (4.65)
(lIglloc)”
with ||a|| := inf,,cz |a — m|. We thus can chose § = nﬁy

Next, we have to estimate the discrepancies of the sequences ¢, ¢, and ¢. Since @, ¢1, ¢

are of finite type, we can use Theorem 2.17 and get

Dy(¢p) = 0(n™™), D;(py) = O(n™*) and Dj(p)=0(m™") (4.66)

for some o, ap, @ > 0.

We can show now with Theorem 2.13 that the error made by the approximation in (4.62)
goes to 0 by showing that all summands on the RHS of (2.12) go to 0. This computation
is straightforward and very similar for each summand. We restrict ourselves to illustrate the
computations only on the summands corresponding to the face F of [8, 1 — §]* with ¢; = 1 — §.

We get with i (g1, ¢2) = h1(P1)h2(¢2),

1-3
8lh1(1 —8)] /8 |h2(u)| du + Dy (@)~ (1 = §)|V (h2][8, 1 — 81), (4.67)

where V (h2|[8, 1 — §]) is the variation of h3|[8, 1 — §]. It is easy to see that, for ¢ — 0 and
some K1 > 0, h1(¢) ~ Kqlog(¢) ~ h1(1 — ¢). Thus, the first summand in (4.67) goes to O for
n — 00. On the other hand we have

DX (@)|hi(1 = 8)|V(ha|[8, 1 — 8]) ~ K2D(g,) log? 8 < K3n~* log®n (4.68)

for constants K>, K3 > 0. This shows that also the second term in (4.67) goes to 0. So, we
proved (4.59). Eqgs. (4.60) and (4.61) are straightforward, with the given computations above and
we conclude Lemma 4.8. [

This completes the proofs of Theorems 4.5 and 4.6. [
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