
Stochastic Processes and their Applications 47 ( 1993) 17-35 

North-Holland 

17 

Splitting at the infimum and excursions in 
half-lines for random walks and L&y 
processes 

Jean Bertoin 
Uniuersith Pierre et Marie Curie, Pari.r, Frrrnce 

Received 10 September 1991 

Revised 21 July 1992 

The central result of this paper is that, for a process X with independent and stationary increments, 

splitting at the infimum on a compact time interval amounts (in law) to the juxtaposition of the excursions 

of X in half-lines according to their signs. This identity yields a pathwise construction of X conditioned 

(in the sense of harmonic transform) to stay positive or negative, from which we recover the extension 

of Pitman’s theorem for downwards-skip-free processes. We also extend for L&y processes an identity 

that Karatzas and Shreve obtained for the Brownian motion, In the special case of stable processes, the 

sample path is studied near a local infimum. 
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1. Introduction 

Fluctuation theory of processes with stationary independent increments is concerned 

with the behaviour of the supremum or/and infimum process(es). It has been 

developed for real valued random walks in the 50’s and 60’s, we refer to the classical 

books of Spitzer [19] and Feller [7]. Splitting at an extremum provides the most 

natural and efficient approach for numerous results in this field. One of the nice 

examples is provided by the celebrated Theorem of Sparre-Andersen [18] (which 

yields the arcsine laws for random walks): if X is a chain with exchangeable 

increments with a fixed finite number of steps, then the index of the ultimate infimum 

and the total number of indices i > 0 such that X, < 0 have the same law. Sparre- 

Andersen theorem is enlightened and strengthened by the following pictorial identity 

due to Feller [7]: the pair of processes obtained by splitting the chain X at the last 
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instant when it attains its infimum has the same law as the pair of processes obtained 

by the juxtaposition of the excursions of X respectively in (-Z, 0] and in (0, cc). 

Here, an excursion in (0, ~3) (respectively in (-CO, 01) includes the initial positive 

(negative) jump of X across 0, and excludes the ultimate negative (positive) jump 

across 0; the meanings of splitting and juxtaposition are made precise in Subsection 

2.1. In this framework, Sparre-Andersen theorem follows by comparing the lifetimes 

of the various processes. 

Fluctuation theory can be extended to continuous time, either by approximation 

based on discrete time skeletons, or directly by excursion theory. See in particular 

the papers of Bingham [4], Greenwood and Pitman [8] and Silverstein [16]. Here, 

we deduce by approximation an analogue of the above identity for Levy processes. 

The convergence relies crucially on stochastic calculus, and specifically on the 

Meyer-Tanaka formula for the semimartingale local time. The case of a Brownian 

motion with drift was previously treated in [3] by excursion theory. Karatzas and 

Shreve [lo] also obtained a related result for Brownian motion, which can be 

extended to Levy processes by application of the key identity. 

Our interest in this identity is that it provides a simple pathwise construction of 

the law of the initial Levy process X conditioned to stay positive (respectively 

negative). More precisely, Millar [13] established that, when X drifts to +a (that 

is lim ,TmXI = +GO a.s.), then the post-infimum process obtained after shifting the path 

at the instant of its last infimum, has the same law as X conditioned to stay positive. 

where this a priori heuristic conditioning has to be taken in the sense of a harmonic 

transform. In the case when ,I’ oscillates (that is lim sup,,,X, = +cc and lim inf,+,.Y, 
=- co a.s.). one can still consider the law of x’ conditioned to stay positiv-c/negative 

in the sense of harmonic transforms; but in general, no pathwise construction of these 

laws is known. Here, we show that when X oscillates, the processes obtained after the 

juxtaposition of the excursions of X respectively in (0. a) and in ( -cc, 0] arc two 

independent processes whose distributions are respectively those of X conditioned to 

stay positive and negative. 

Williams [21] first stressed the deep connections between the three-dimensional 

Bessel process (that is Brownian motion conditioned to stay positive) and the 

Brownian motion. We hope that our construction will be useful to deduce some 

analogous relations in the Levy setting. When we specify this construction for the 

simple random walk and for the Brownian motion, we recover a famous theorem 

due to Pitman [14]: in these cases, if X stands for the past-supremum process of 

X, then X -2X has the same law as X conditioned to stay negative. Here, the key 

identity yields an extension of Pitman’s Theorem for downwards-skip-free random 

walks and for spectrally positive Levy processes, that is with no negative jumps. (A 

slightly more general extension of Pitman’s Theorem for spectrally positive Levy 

processes was previously obtained in [I], however, the present proof is much 

simpler). 

This paper is organized as follows: Section 2 is devoted to discrete time. Subsection 

2.1 introduces the notation, the main identity is proved in 2.2,2.3 presents a pathwise 
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construction of randoms walks conditioned to stay positive/negative, and the 

extension of Pitman’s Theorem for downwards-skip-free random walks is presented 

in 2.4. Subsections 3.1-4 follow the same pattern in continuous time, and the extension 

of the Karatzas-Shreve decomposition is treated in Subsection 3.5. 

2. Discrete time 

2.1. Notation 

Throughout this section, we will use the following notation. Denote by R the set 

of the sequences w : M + R u { 6) starting from 0, where 6 is a cemetery point, and 

by i = l(w) = sup{ i: w(i) # S}, the lifetime of w. Let X be the coordinate chain, 

X,(W) = w(i). Introduce for every i s<, .y,=inf{X,:jsi}, ??,=sup{X,:jsi}, and 

put 7 = sup{ i c <: X, = X,}, the index of the ultimate infimum, and 1 = X,, the value 

of this infimum. On {T < CO}, we consider the post-infimum chain ?$, 

X(i)= 2-l 
i 

-I foris<-r, 

fori>c-7, 

and the reversed pre-infimum chain 6, 

X(i)= 
1 

X7__, - I for i G r, 

6 for i > T. 

We associate now two new chains, X* and X”, with X: X’ is obtained by the 

juxtaposition of the excursions of X in (0, CC), and X1 arises similarly from excur- 

sions in (-CC, 01. That is to say that the jumps of XT correspond to the jumps of X 

which end in (0, CO), arranged according to their order of appearance, and similarly 

that the jumps of X’ correspond to those of X which end in (-CC, 01. Specifically, 

we introduce the number of indices less than or equal to i at which X is positive: 

and n: = inf{j: A,’ = i} the index of the ith visit to (0, a). Pictorially, the index 

substitution by a+ consists of erasing the positive indices at which X < 0, and then 

closing up the gaps. Denote the jth increment of X by AX, = X, -X,_ , The chain 

XT is given by 

X’(i) = 1 l,,y, .,,,AX, when is A:, 
1-I 

and X’(i) = 6 otherwise. Similarly, put 

X’(i) = ‘? 1 jx,-oiAX, when i<Ai, 
,=-I 
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where A, =Cl _, l,,yt. ,)), a, = inf{j: A,~ = i}, and X’(i) = 6 for i > A, We emphasize 

the optional but not predictable nature of the sums which appear in the definition 

of XT and X”. Also notice that, by construction, XT is positive on (1, . . , A: ) and 

that X’ is non-positive on (1,. . , Ai). 

2.2. Splitting ut the iqfimum andjuxtaposition of excursions,for chains with exchange- 

able increments 

Consider now a probability measure P on R such that X has exchangeable incre- 

ments, that is P’([ = ~3) = 1 and for every positive integer n and every permutation 

cr on { 1,. . . , n}, the n-tuples (AX,, . . . , AX,,) and (3X,,, ,), . . , dX ,,,,,,) are equally 

distributed under P. Denote by IF’” the law under P of the chain (X,,, , X,,, 3,. .) 

with lifetime n, obtained from X by killing at the index n + I. The following identity 

is implicit in Lemma 3 of Section X11.8 in Feller [7]. Since it plays a crucial role 

in this paper and since the present formulation and notation are different from 

Feller’s, a proof is given. 

Theorem 2.1 (Feller). For every n SO, the pairs of chains (5, -3) and (X”, XL) 

have the same law under P’“. 

Proof. Fix x, G . s x,,, and let .4 be the subset of the sequences o with lifetime 

&‘= n such that the increasing rearrangement of (dw( l), . , Am(n)) is (x,, . ,x,,), 

where Am(j) = w(j) - w(,i - l), j = 1 to n. Since X has exchangeable increments, 

the law P” conditioned on the event {(X,,, . . . , X,) E .4} is the equi-probability on 

A, say P,. 

Let M be the set of pairs (w’, w”) E R x 0, with [(w’) = n’, c(w”) = n”, n’+ n”= 

n, w’(i’) > 0 for 1s i’s n’, w”( i”) c 0 for 1 G i”c n”, and such that the increasing 

rearrangement of (dw’ (l), . . , dw’( n’), Aw” (I), . , Aw”( n”)) is (x, , . . , x,,). The 

map ON (q, - y) being clearly a bijection from n to M, the law of (T, - ,Y) under P,, 

is the equi-probability on M, say P,,,. 

Note that X, = Xt (.4 : ) + X1 (,,I ,- ) for every i. Consider a fixed pair (cc)‘, w”) t M. and 

set o(i) =w’(.l;) +w”(.l;‘). where J’ and <d” are specified by the reversed induction: 

A’,=n’, A~=n“, and for O<i<n. 

A;_,=A;-1, A:‘,=A:‘, ifw(i)>O, 

A;_, = A:, A:_,=A:‘-1, if w(i)sO. 

Then clearly, w E ‘1, A’= A’, A”= A-, and (wi, w”) = (w’, w”). This shows that the 

mapping w H (w’, w’) is a bijection from A to M, and the law of (XT, X”) under 

P, is P,. Thus (8, -5) and (XT, Xl) have the same distribution under P” condi- 

tioned on {(X,,, . . , X,,) E n}. Integrating with respect to the law of the increasing 

rearrangement of (AX,, . . . , AX,,) under P”, we get that under P”, (X, -3) and 

(XT, X”) have the same law. 0 
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Remark. It is clear from the proof that the theorem holds for a fixed n whenever 

under P, the first n increments are exchangeable. 

An immediate consequence of Theorem 2.1 is: 

Corollary 2.2. Denote Ig, .F,, thr c-i-ulgdvu gcnrrutcd by, (A’,,. . 1 X,,) I.i)r ervyy l~o~rnded 

F,,O .F%,-mt~asurabl~ ,functional @, 

!,i; E”‘( @($ 5)) = E( qx’, -Xl)). 0 

That the above limit exits is obvious when (X, P’) drifts to +CC (i.e. lim,,, x X,, = +W 

P-a.s.) and, by time reversal, when (X, P) drifts to -w; so the main interest of 

Corollary 2.2 is when (X, P) oscillates. Note also that this convergence is much 

stronger than the usual convergence in law. 

2.3. Harmonic tran.sjbrms in random walks 

As stressed by Feller [ 7, Chapter Xl], renewal theory provides a very efficient tool for 

studying the infimum of a random walk on a finite interval. Below. we briefly recall the 

arguments for completeness. 

Assume that (X, P) is a real-valued random walk, and to avoid triviality, that 

P(X, > 0) and P’(X, <O) are both positive. Introduce for c> 0, 

,? =o 

that is P”” is the law of the random walk killed at rate 1 -em’. By the lack of memory 

property, (X, P”“) satisfies the strong Markov property: if T is a stopping time, 

then under P”“, the shifted chain X 0 or- - X, is independent of .9,, and its law 

conditionally on T < ~0 is again P” ‘. Applying the strong Markov property at the 

descending weak ladder epochs (that are the cuccessive indices at which X attains 

(’ ) its infimum), we see that under ,P , ; Y and .Y are independent. and that $ has the same 1_ 
law as X conditioned on (,Y,>O for i= I to <). It is a Markov chain whose transition 

function can be expressed for x3 0 as 

P!(x, d.v) = I(, .O)(h:(.v)lh!(.u)) e ‘p(x, dy) (1) 

where p(x, dy) = P(X, +x E d??) is the transition function of the random walk and 

hJ(x)=P”“(X,>-x fori=lto~)/P”‘(X,>Ofori=lto~). 

Now, we want to take the limit as c goes to 0 and apply 

direction, the above formula for h! is not very convenient to 

re-express it as 

Corollary 2.2. In this 

work with, so we first 

(2) 
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Indeed, by time reversal, we have 

$“‘(X,>-x fori=lto<)=(l-e ‘) l+ % e 
( 

T( X,, , -X,,<x) . 
,1 ~I 1 

Denote by Y = (0, 9, , . .} the ascending strict ladder epoch set, that is the set of 

indices when X attains a new supremum. Cutting up N into the partition generated 

by Y, we get 

i em”“P(X,, , -X,, <x) 
,1 -I 

= E i exp(-0,) ‘2’ 
( 

exp -c(n-.y,)lj~,, , .y,, ,J 
I =o II ‘l,i I > 

Note that X,, , = x(9,) for every Y< < II <Y’,,, , and apply the strong Markov 

property. We re-write the above quantity as 

( 

<L ; 
=E C em”“li,x,, .-,) (1 -E(exp -c~;)) 

,! I > 

(recall that cy i = Y, is the first positive index when 

together, we find 

$(“‘(Xi > -x for i = 1 to 5) 

=(1-e-‘) 
( ( 

l+E 3 ee”‘II,,,_,: (I- 
n=l > 

I 

X hits (0, CO)). Putting the pieces 

-E(exp-co!:))-’ , 
> 

which yields (2). 

Notice that hJ. is an increasing function, h!.(O) = 1, and h:(x) increases as c goes to 

0, to 

h’(x)= 1 +E 1 l{-,<,I 
( 

ru:-1 

,=I > 

Moreover, one checks easily that h t (x) is finite for every s> 0 (see for instance [ 201) 

and coincides with the renewal function associated with the negative of the first de- 

scending ladder height (by the duality lemma). By time-reversal and with obvious no- 

tation, we see that hj.(h-) increases as c goes to 0, to the finite quantity 

( 

lur-1 
hL(x)=l+lE 1 l{,y,<->; . 

,=I > 

Recall that X and X are independent under $“” and apply Corollary 2.2. We finally 

obtain: 

Theorem 2.3. Under P, X’ and X1 are two independent Markov chains with respective 

transition functions pl(x, dy) and p’(x, dy), where 

pr(x> dy) = I,, .o,(h’(y)lh’(x))p(x, dy) (.x 201, 

p’(x, dy) = 1, ,- o,(h%Wh))p(x, dy) (xc0). 0 



In the case when (X, p) drifts to +s, that is lim,,, , X,, = +3c $-a.s., it can be 

checked that 

hr(x)=const.x$(X,,>-xforall n). 

Thus, $* is simply the law of the random walk conditioned to stay positive in the 

usual sense. Observe also that the transition kernel p’ is Markovian and not just 

sub-Markovian, since the lifetime is infinite pT-a.s. That is to say that the function 

h’ is invariant for the random walk killed as it reaches (-W, 01. On the other hand, 

the lifetime is finite $‘-a.~., so h’ is not invariant, and we shall not refer to P’ as 

the law of the random walk conditioned to stay negative. 

In the case when (X, p) oscillates, that is drifts neither to +m nor to -m, the 

lifetime is infinite pT-a.s. So again the transition kernel p. is Markovian and the 

function h’ is invariant. Analogous assertions hold of course for p’ and h”. Moreover, 

the arguments for Theorem 2.3 show that the law p7 is the limit as c goes to 0 of 

the law of the original random walk killed at rate c and then conditioned to stay 

positive. Thus, we shall refer to [FDT” as the law of the random walk conditioned to 

stay positive/negative. In particular, Theorem 2.3 provides a pathwise construction 

of these two laws. 

Remark. Previously, Tanaka [20] obtained a different construction of the law $^, 

based on an infinite number of time reversal at the ladder time set of the dual 

random walk ( -.Y, P). However. he does not relate his construction with conditioning 

to stay positive. The fact that the process that he obtains has the same law as the post- 

infimum process in the case when (A’. P) drifts to +m is plain from Doney [ 5. Theo- 

rem I 1. 

2.4. An extension qf‘ Pitman’s Theorem ,for downwards-skipfree random walks 

In the special case when (X, p) is a simple symmetric random walk, that is IFD(X, = 

1) = p(X, = -1) = 1, Pitman [ 141 obtained the following representation of $‘: if we 

put R =2x ~ X, then -R has law P’. Noting that the future-infimum chain g of R 

coincides with X, he deduced that conversely, 28 - R is a simple symmetric random 

walk. In this sub-section, we obtain from Theorem 2.1 an analogous identity when 

(X, p) is more generally a downwards-skip-free random walk (dsfrw), that is when 

X, E{-l,O, 1,. .} as. 

First, we introduce the following notation: Let Y be the chain 

that is Y is obtained from X after replacing every jump of X above its previous 

maximum by a jump of amplitude -1 (in the case when all the jumps of X have 

amplitude 1 or -1, Y = X-22). Similarly, denote by X(n) = inf{X, : ia n}, the 



future infimum of X, and consider the chain 

-z,=x,,- f l{.,,,, \,, ,,,(l+Jx8). 
,-I 

That is 2 is obtained from X after replacing every jump of X across its future 

infimum by a jump of amplitude -1. Recall that P’,” stands for the law of X 

conditioned to stay positive/negative under P. We claim: 

Theorem 2.4. Assume that (X, P) is a d$rw. 

(i) Jf’ E(X,) G 0, then the law of Y under P is P”. 

(ii) [f lE(X,) = 0, then the law qf Z under PT is P. 

Remarks. 1. Of course, there is an analogous statement for upwards-skip-free ran- 

dom walks. 

2. When P( X, 2 2) > 0, one cannot reconstruct X from Y, and (ii) does not merely 

follow from (i) as in the case of the simple random walk. 

Proof of Theorem 2.4. (i) Consider the stochastic integral with predictable integrand 

X’(i)= C liyg- ol(X,+1 -X,) for irN. 
, =o 

The proof amounts to showing that X1 coincides with Y evaluated for the chain 

(0, X’(a;), . . .) which has the same distribution as X under P. 

One checks easily, applying the hypothesis that (X, P) is a dsfrw, that the indices 

i for which X, , s 0 <X,, are precisely those for which X’ jumps over its previous 

maximum, i.e. sup{X:: j < i} < X:. Moreover, if i is such an index, and if j is the 

first index after i when X visits (-X, 01, then X,~_, = 1 and X, = 0. Recall that index 

change 6 is given by cr,=inf{i:Ci_, 1, \,. ,,) = n}. It is clear from above (or from 

a picture) that X” is obtained from the chain (0, X’((Y,~), . . .) after replacing every 

jump across its previous maximum by a jump of amplitude -1. On the other hand, 

since E(X,) s 0, N is a.s. finite (see for instance Feller [7, Section X11-2]), and the 

chain (0, X’(cwl), . . .) resulting from index change in the stochastic integral, is a 

random walk with law P. This establishes (i). 

(ii) The proof of (ii) is similar. Here, the hypothesis that (X,P) is centered is 

needed to ensure that the indices i at which X, ~, c 0 < X,, are precisely those for 

which X’oA+(i)=x: , I,,, ,),(X, -X, ,) jumps over its future infimum. C 

Remark. Assume that (X, P) is an oscillating random walk (without any further 

assumption on the distribution of X,). It is easily seen that under P, the two chains 

(O,X’(a,) ,...) and (O,X”(a:) ,...) are independent and have the same law as X. 

Here, the definition for X’ is the one in the proof of Theorem 2.4(i), and the 

definition for X” is similar, but with 1 jk, ,,) instead of l/ ,,. ,,). 
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3. Continuous time 

3.1. Preliminaries 

Throughout this section, we will use the following notation. Denote by 0 the space 

of cadlag paths w : [0, CC) + [w u { 6) with lifetime { = i(w) = inf{ t: w(t) = C’S}. Let X 

be the coordinate process, X,(w) = w(t). Introduce for every t<{, X, = 

inf{X, : s S t}, X, = sup{X, : s c t}, and put T = sup{r < c: X, A X, = X,}, the instant 

of the ultimate infimum and I = X(i-), the absolute infimum of the path. On 

{r < x}, we consider the post-infimum process X, 

i 

X7,,-I fort<c-5; 
X(t)= fi 

fortZ<-7, 

and the reversed pre-infimum process X, 

1 X 
X(t)= St; ‘I+ 

-I forf<r, 

for t b 7. 

In order to introduce XT and X1, we briefly recall the notion of local time for 

semimartingales, and refer to Meyer [12] and Protter [15] for a complete account. 

Endow R with a probability measure P and a filtration (C!?,), .,, which fulfills the 

usual conditions, and consider Y = ( Y, : t 2 0), a (f, 9)-semimartingale. The (semi- 

martingale) local time L of Y at the level 0 is the continuous increasing process 

specified by the Meyer-Tanaka formula 

where x ’ ’ stands for the positive/negative part of x. Moreover, the following 

approximation holds: 

where [ Y, Y]’ is the continuous part of the bracket of Y (or equivalently the bracket 

of the continuous local martingale part of Y), and where the limit is uniform over 

compact intervals, in probability (this is an easy consequence of I& formula and 

of the stochastic theorem of dominated convergence, see for instance [15]). 

Consider now a probability measure $ on fl under which X is a Levy process; 

that is X has independent homogeneous increments and $(X,, = 0) = 1. We denote 

by (3,) I .(, the natural filtration of X after the usual completion. As well-known, X 

is a (p, 4)-semimartingale, and we denote by L its (semimartingale) local time at 

0. Recall that either the continuous local martingale part of X vanishes (one says 

that X has no Gaussian component) or it is proportional to a standard Brownian 

motion. In particular L = 0 when X has no Gaussian component, and otherwise, L 

is a Markov local time at 0. Also consider 

A: = 
I’ 

I{.,\ 0) ds and A, = 1: y,- 01 ds, 
0 



the time spent by X respectively in (0, X) and in (-CO, 01, and their right-continuous 

inverses CY+’ (r) = inf(s: A,’ ‘- > t}. The time substitution by CY+’ consists of erasing 

the intervals of negative/positive excursion of X and then closing up the gaps. 

For every positive fixed T, we denote by $ ‘, the law of X killed at time T under 

$ (so pT(&’ = T) = 1). Since Levy processes have no fixed jump time, in order to 

simplify the notation, we will write f’(l) instead of .f(l-) whenever ,f admits a 

left-limit at 6. Working under $ or under $ ‘, we introduce now the process X* by 

(observe that in the sum, left and right limits are inverted in comparison with the 

Meyer-Tanaka formula) when A ’ ([) > t, and X’(t) = 6 otherwise. Pictorially, when 

(X, p) has no Gaussian component, L = 0, and X’ is obtained from X after the 

juxtaposition of its excursions in (0, ~0) (just as in the discrete case, an excursion 

in (0, ~0) includes the-possible-initial positive jump across 0 and excludes the- 

possible-ultimate negative jump across 0). When (X, P) has non-zero Gaussian 

component, the construction is the same, except that there appears a shift due to 

the non-vanishing local time. Similarly, we introduce 

when A (6) > t, and X’(r) = 6 otherwise. Again, 5’. and $’ will denote the law of 

XT and of X” under $. 

3.2. Splitting at the injimum andjuxtaposition of excursions for L&y processes 

The main result of this section is: 

Theorem 3.1. For every T 3 0, the pairs ofprocesses (3, -X) and (X^, Xl) have the 

same law under PT. 

Remarks. 1. Taking the limit as T goes to infinity, we see that the same identity 

also holds under $ whenever (X, $) drifts to +CO (that is lim,,, X, = +a~ $-a.s.). 

2. Karatzas and Shreve [lo] get a related identity (concerning the pre-infimum 

process and the reversed post-infimum process) for Brownian motion killed at its 

last zero before time 1. This will be extended for Levy processes in Section 3.5. 

3. In the special case of a Brownian motion with drift, the author proved this 

result previously in [3]. 

4. It would be interesting to decide whether X can be recovered from (XT, Xl). 

The answer is positive when (X, $) is a Brownian motion with possible drift, see [3]. 

5. Observing that, with obvious notation, X(l) = X”(&“) + X”(l”) = X(l) - X(l) 

pT-a.s., we see that the identity in law of Theorem 3.1 also holds conditionally on 

X(i). 
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Proof of Theorem 3.1. The case when (X, p) is a compound Poisson process (that 

is finite Levy measure, no drift and zero Gaussian component) is just a continuous- 

time version of Theorem 2.1. Henceforth, we assume that (X, P) is not a compound 

Poisson process, and for simplicity, we take T= 1 and we work under $‘. Recall 

that a.s., the zero-set of X has null Lebesgue measure, that there is no jump of X 

which starts or ends at 0, that X does not jump at time 1, and that for every 

t # 7, X, > I (i.e. r is the unique instant at which X attains its infimum, possibly as 

left-limit). 

Let X be the time-reversed process .?, = X (, ,,_ forevery rt[O, l] and X,=S for 

t> 1, and (.@,I, ,,,,,, its (completed) natural filtration. Then .% -X,, has law p’, and 

by a result of Kurtz (see Jacod and Protter 19, Theorem 1.8]), 2 is a (p’, &- 

semimartingale. Let f stand for its local time at level 0. By the stochastic theorem 

of dominated convergence, the Riemann sums 

(where [nt] stands for the integer part of nr), converge uniformly for t E [0, 11, in 

probability as n~cc to the (%)-stochastic integral 

By the Meyer-Tanaka formula, this quantity is re-expressed as 

-X:- t: (l{Y, . (),2:+1,~\ .,,,2,,-g&L,) 
,. t- I 

where the identity L”, -L”, = L, , follows from the approximation result (3). 

For every positive integer n, consider the chain X” given by X”(i) = X(i/n). Let 

XnT and X”’ be the two chains obtained from X” as in Section 2. Applying the property 

that {t: X,=0) has zero Lebesgue measure a.s., we have 

We make the convention that 6 x a = +OO for a > 0 and S x 0 = 0. We deduce from 

above, that for every nonnegative continuous functions J‘ and g, 

where the limits are in probability. On the other hand, let X” and 5” be the two 

chains obtained from X” by splitting at the index of the last infimum. One checks 
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easily (since X attains its infimum only once as.) that a.s., for every continuous 

functions f; g, 

I 
PC(s)g(s) ds. 

But, according to Theorem 2.1, (X”‘, X”‘) and (X”, -X”) have the same law. So 

(I’ I 

1 
X’(s).f(s) ds, X”(s)g(s) ds 

0 0 > 

and 

(I’ X(slf(s) ds, - I’ X(s)g(s) ds 
0 I, 

have the same laws. Since the processes X, 5, X’ and X” have chdlag paths, this 

yields the theorem. 0 

Remark. It should be clear from the proof that Theorem 3.1 holds more generally 

if (X, P’) is a semimartingale with exchangeable increments, which remains a 

semimartingale in the filtration expanded by X,. For instance, one can take X, = 

Y, -(t/T) Y7, where Y is a Levy process. 

We deduce immediately the following strong convergence result, which again is 

mostly interesting when (X, P) oscillates: 

Corollary 3.2. Fix T > 0, and denote by Sr the u-algebra generated by (X, : t s T). 

For every bounded g7 0 9,-measurable .functional @, 

l,ilt:O‘(~(,~,.~))=[i(~(XT. -XL)). 0 

In the special case when (X, P) is a non-monotone stable process of index 

p E (0,2], then (X, P) oscillates, and one can also apply Theorem 3.1 to study the 

path near its infimum on [0, 11, conditionally on X, and on the infimum I. One can 

also get asymptotic descriptions conditionally on other variables. The choice of X, 

and I here has a special interest because it gives access to laws obtained by killing 

and superharmonic transforms. 

For every F > 0, put X’ (1) = e-“tiX( Et) and X’(t) = C”“X( Ft). Keeping the 

notation of Corollary 3.2, we have: 

Corollary 3.3. For every bounded ST @ S7-measurable ,functional 4, and for every 

bounded Bore1 function f: [w’+ f~!, 

‘jg U@(X’, ~P)f(4 X,)1 =E(@,(XT, -X’))E(f(I, X,)). 
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Proof. By Theorem 3.1 and Remark 5, we have with obvious notation 

Let S, = inf{t: A: > FT and A,- > ET}. Since (X, ln’) oscillates, the family of stopping 

times S, decreases to 0 as F goes to 0 a.s. Observe that @((XT)‘, -(X’)‘) is 

ss,-adapted, and rewrite the right-hand side of the above equality as 

E’[@((Xr)‘, -(Xl)’ )M, 1, where M, = E’[f( I, X,)(9,5t]. By inverse martingale con- 

vergence and the Blumenthal O-1 law, A4, converges to E’[f( 1, X,)] a.s. as F goes 

to 0. On the other hand, by the scaling property, we obtain 

limE’[@((XT)“, -(Xr)‘)]=E[@(XT, --X1)], 
e,” 

and thus 

l>i; E’[@((X’)‘, -(X”)‘)M,]=E[@(X’, -X”)]lE’[f(Z, XI)]. 0 

3.3. Harmonic transforms in L&y processes 

Just as in the discrete case, we can describe the law of (XT, X1) under $ in terms 

of superharmonic transforms. The key is now excursion theory, and specifically 

Maisonneuve’s exit-system formula [ 111. The arguments are left to the reader: they 

are continuous-time analogues of the ones developed in Theorem 2.3, and are merely 

adapted from Silverstein [16] and Greenwood and Pitman [8]. The special case 

when (X, p) is a compound Poisson process reduces to a reformulation of the 

random walk analogue stated in Theorem 2.3, so we shall exclude this case in this 

subsection (the reason for this is that we do not want to distinguish between hitting 

of (-CO, 0] and of (-CO, 0)). 

Let L (resp. L) be a Markov local time at 0 for the reflected process X -X (resp. 

X -X), and ti (resp. n), the corresponding excursion measure. The inverse local 

time is a subordinator, we denote by C (resp. _c) its drift coefficient. That is C (resp. 

_c) is the delay coefficient at 0 for the reflected process, and it is known that C>O 

iff 0 is irregular for (-a, 0) (see for instance [16]). Introduce the functions 

Silverstein [16] specifies these functions in terms of ladder processes (the classical 

time-reversal argument shows that his expressions and ours are the same), and 

relates them with Fristedt’s identity. Denote by q,(x, dJ1) and qT(x, dJ1) the semi- 

groups of the Levy process killed respectively in (-a, 0] and in [0, ~0). Then h’ 

and h” are superharmonic respectively for q, and qf, and the kernels 

~!(x, dy) = (h'(y)lh'(.x))q,(.~,dp) 
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define two sub-Markovian semigroups. We state: 

Theorem 3.4. Under $, X& and X” are two independent Markov processes with 

respective semigroups pl(x, dJ*) and pj(x, dy). 0 

Again h’ (resp. h”) is invariant as soon as (X, IP) does not drift to -cc (resp. +o). 

In this case, we will refer to $I (resp. aP1) as the law of the original Levy process 

conditioned to stay positive (resp. negative). In particular, when (X, P) oscillates, 

Theorem 3.4 gives a pathwise construction of two independent processes having 

the law of the initial Levy process conditioned respectively to stay positive and 

negative. In the case when (X, IP) drifts to -CO, h’ is not invariant because the 

lifetime is finite $‘-a.s., and we shall not refer to 5” as the law of the Levy process 

conditioned to stay positive. 

Examples. 1. When $ is the Wiener measure, then for x20, hi(x) ==x, hl(-x) = 

-x, Pr is the law of the 3-dimensional Bessel process starting from 0, and P1 is the 

image of pT by the mapping x H -x. 

2. When (X, lP) is a spectrally positive Levy process, that is when it has no negative 

jumps, the superharmonic functions hT and h’ can be expressed in terms of the 

characteristic exponent and the so-called scale function of the Levy process, see [I] 

and [4]. When moreover (X, p) does not drift to +co, then law $” of the Levy 

process conditioned to stay negative coincides with the law denoted by P in [l], 

which is the limit as Krco of the measure corresponding to conditioning X to leave the 

interval [ -K, 0] at the lower boundary (this identity is seen from the explicit exprcs- 

sion of hi). On the other hand, the limit law P exists even when (X, p) drifts to -i-m. 

Nevertheless in this case, Pf pL (because the lifetime is finite $I-a.s. and infinite P-as.). 

More precisely, there exists a new Levy law $* obtained by conditioning X to drift to 

--GO (see [2] and the references therein), and it holds that P= (p*)‘. 

3.4. An extension cf Pitman’s Theorem for spectrally negative L&y processes 

Pitman [14] deduced from his representation of the law of the simple random walk 

conditioned to stay positive, the following famous construction of the 3-dimensional 

Bessel process: if B is a standard one-dimensional Brownian motion and B its 

supremum process, then R = 2l? - B is a 3-dimensional Bessel process. Since the 

future-infimum process 8 of R coincides with B, conversely 2R - R = B is a standard 

Brownian motion. The first identity of Pitman has been recently extended to spec- 

trally positive (that is with no negative jumps) Levy processes in [l]. We will see 

here that Theorem 3.1 yields a simple proof of this extension, and also provides an 

extension of the second identity of Pitman. The key for this is an analogue of Paul 

Levy Theorem (Lemma 3.5 below), which permits, just as in the discrete case, to 
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re-express X^ and X” in terms of time-changes of a stochastic integral with a 

predictable integrand. However, it is simpler in our framework to work with processes 

with no positive jumps, so the present statements concern spectrally negative Levy 

processes. 

Lemma 3.5. Assume that the L&y process (X, P) has no positive jumps and that 

E(X,) s 0. Denote b_y X’, the continuous part qf the decreasing process X. Then the 

trivaria te processes 

( x, -$L., - 1 l{,_,“,x; ocv+ 
o<s< > 

and 

(x-3,,x’,x-x’) 

have the same law under P’. 

Proof. We work under P. Since E(X,) 2 0, X does not drift to --CC and CY+ < ~3 a.s. 

Since X has no positive jump, we can re-write the Meyer-Tanaka formula as 

x: = J’ 1,x_ o,dX,+ C 1,x> ,,,X,+% 0 0 \-, 
Keep in mind that the time-substitution based on a+ consists of erasing the intervals 

on which X is negative and then closing up the gaps. In particular, X 0 cy ’ = X’ 0 at 

has no positive jumps. Put 

J 
Cl : 8, 1 - l,,ys_ .,,) dX, and 2?‘, =sup{Z,: ss t}. 
0 

Then one verifies easily that Z has the same law as -X (see e.g. Doney [6]). 

Moreover, we deduce from the classical arguments of Skorohod [17] that P-a.s., 

for every t 3 0, 

Indeed, the inequality < is obvious from the Meyer-Tanaka formula. On the other 

hand, consider g(t) = sup{s < t: X 0 cy: = 0}, the last zero of X 0 cy + before t. Since 

X 0 N- has no positive jumps, it does not jump at g(t). Moreover, one deduces 

easily from the absence of positive jumps of X that (I,, ,. 1, Y, ,,,X, +iL .) 0 a ’ 
only increases when X 0 cy ’ visits 0, so 

which proves (4). 

Observe now that when tF has non-vanishing Gaussian component, Lo at is a 

continuous positive process. Indeed, L is then a Markov local time at 0 for X, 0 is 
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regular for (0, CO). Thus the measure of the excursions of X from 0 which spend a 

positive time in (0, ~0) is infinite and L 0 ct ’ is continuous. When $ has no Gaussian 

component, L 0 (Y+ vanishes. Hence, in both cases, (4) is the canonical decomposition 

of @ as the sum of its discontinuous part and of its continuous part p, and the 

Meyer-Tanaka formula is a representation of the reflected process ,g - %’ as X 0 CY’. 

This is an analogue of P. Levy’s theorem for the reflected Brownian motion which is 

stated in the Lemma 3.5. 0 

We will use the following notation: let k(t) = sup{X, : s 2 t} be the future- 

supremum process of X, X’ and XC respectively the continuous part of the decreasing 

processes X and X. Finally, put 

I(r)= c (X,-X,_)l(x.(,)<Y(~-_)j > 
o- \- I 

(recall the convention XC,._ = 0), that is _J is the sum of the jumps of X across its 

previous infimum, and 5 is the sum of the jumps of X across its future supremum. 

Observe that X’, kc, _J and iC are all decreasing processes. We have: 

Theorem 3.6. Assume that the L&y process (X, P) has no positive jumps. 

(i) If lE(X,)aO, then under P, X-2&‘-J has law PT. 

(ii) [f lE(X,) = 0, then under IPI, X - 2gC - _f has law P. 

Remarks. 1. The analogue of statements (i) is obtained in [l] for Levy processes 

with no negative jumps without any assumption on the first moment. A result related 

to (ii) is proved in [2] for Levy processes with no negative jumps and lE(X,) > 0. 

2. When X possesses negative jumps, the transformation X H X -2X’- J cannot 

be inverted, so (ii) does not follow from (i) as in the Brownian case. 

Proof of Theorem 3.6. (i) Keeping the notation and the arguments of the proof of 

Lemma 3.5, we have furthermore that the pure-jump process 

( c Ii\\ .,),(X,-X,-) oa+=J 
0 \. > 

is the sum of the jumps of % across its previous supremum. So, finally, we can write 

X’ as -Z’+2p+$, and (i) follows from Theorem 3.1. 

(ii) The proof of (ii) follows the same lines. 0 

3.5. A path decomposition of the type qf Karatzas and Shreve 

We conclude this work with an extension for Levy processes of a result that Karatzas 

and Shreve [IO] obtained for Brownian motion. Introduce g = inf{s < 1: X, = 0}, the 

last zero of X before time 1, and denote by V, the $-law of X killed at time g. To 



J. Berroin / Splifting at /he i~fimum 33 

avoid triviality, we shall assume in this sub-section that 0 is not polar and that P 

is not the law of a compound Poisson process. First, we observe that Theorem 3.1 

still holds when we replace [FD’ by p”: 

Lemma 3.7. (8, X) and (X , T -Xl) have the Same law under P”. 

Proof. Under pL’, X is an inhomogeneous Markov process with transition probability 

givenforO~s~tt1 by 

$‘(X,Edy)X,=x)=$(x+X,+,Edlj)x$(a(-x-+1-t), 

where g(a) = inf{s: X, = a}. In particular, pK is an inhomogeneous superharmonic 

transform of $‘. Applying Theorem 3.1 and remark 5 below it, we deduce that 

(5, X) and (XT, -X”) have the same law under $‘, conditionally on t sg. Thus, 

for any positive E, the same identity holds conditionally on t c g < t + E. Denoting 

by k,, the operator killing at time 2-“[2”. g], where [ .] stands for the integer part, 

we get that (5, X) and (X , r -X3) have the same law under lF’(. 0 k,,), which proves 

the Lemma by taking the limit 

Now we construct from the 

denoted by Y as follows: 

r,= X.- c (l{S, 
( I,- \- 

for t < A+(g), 

as n goes to infinity. 0 

path of X on the time interval [0, 11, a new path 

for t<.C(g). and Y,=X, for TV [g, I]. Note that (by the Meyer-Tanaka formula) the 

above quantities can also be expressed as stochastic integrals. In particular, g is the last 

zero of Y before time I, and .-I +(g) is the instant of the ultimate infimum of Y before 

time g. Karatzas and Shreve proved the following result in the Brownian case: 

Corollary 3.8. The law of Y under P’ is P’. 

Remark. There is of course an analogue of this identity for random walks. The 

proof can easily be performed by arguments close to the ones of Subsection 2.2. 

Proof of Corollary 3.8. We know from excursion theory that the pre-g process 

(X, : t s g) and the post-g process (XV +, : 0~ t s 1 -g) are independent conditionally 

on g under $‘, so all what we need is to check that the processes (X, : t 5 g) and 

( Y, : t s g) have the same distribution under P. 

Recall that the processes (X,: s,ct) and (,x( -X/Cr_b,)_: s,<t) are equally distributed 

under [Fp and have the same final value. Since p” is an inhomogencous super-harmonic 
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transform of P, it follows from the arguments of Lemma 3.7 above that (X,: f <g) and 

(f,=,:= -X+,)_: kg) have the same law under P (because X,=0 and X is continuous 

at time gP-a.%). In particular, with obvious notation, it holds that 

(X’, X’) and (A’, 2’) have the same law under P”. (5) 

Moreover, it can be checked (after some lengthy but simple calculation) that 

8”(A+(g))-T?=“(A’(g)-r) 

=(X.- c (l{.X, ’ ,,,x:+l,x\_ .,,,x,)-fL)~~+(d 
0, 5. 

=Y, (forrG;l+(g)) 

and 

= - Yc,_,i_ (for t =G A (8)). 

That is to say that 2’ and -2” are respectively the post-infimum process and the 

reversed pre-infimum process of Y. Applying (5) and then Lemma 3.7, this shows 

that Y has the same law as (X, : t < g) under P. q 
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