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Abstract

We consider a system of diffusing particles on the real line in a quadratic external potential and
with a logarithmic interaction potential. The empirical measure process is known to converge weakly to
a deterministic measure-valued process as the number of particles tends to infinity. Provided the initial
fluctuations are small, the rescaled linear statistics of the empirical measure process converge in distribution
to a Gaussian limit for sufficiently smooth test functions. For a large class of analytic test functions, we
derive explicit general formulae for the mean and covariance in this central limit theorem by analyzing a
partial differential equation characterizing the limiting fluctuations.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

We consider the following system of n Itô equations:

dλi
t =

2σ
√

nβ
dBi

t − λi
t dt +

2σ 2

n

∑
j 6=i

dt

λi
t − λ

j
t

, for i = 1, . . . , n. (1)

Here {Bi
t }

n
i=1 are independent, standard Brownian motions and σ and β > 0 are real parameters.

These equations model the dynamics of n diffusing particles on the real line with a logarithmic
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interaction potential u(x) = −
1
2 log |x |, constrained by a quadratic external potential vn(x) =

nx2

4σ 2 , at inverse temperature β. Cépa and Lépingle [7] prove that the order of the particles is almost
surely preserved for all times t ≥ 0. The distribution of the stationary solution to (1) is given by
the associated Gibbs measure

dρβ
n (λ) =

1

Z(β)
n

exp

{
−β

(
n∑

j=1

vn(λ j ) +

∑
i 6= j

u(λi − λ j )

)}
n∏

i=1

dλi

=
1

Z(β)
n

∏
1≤i< j≤n

|λi − λ j |
β exp

{
−

βn

4σ 2

n∑
j=1

λ2
j

}
n∏

i=1

dλi , (2)

where Z(β)
n is a normalizing constant (the partition function) and dλ denotes the Lebesgue

measure.
For the specific parameter values β = 1, 2 and 4 this model can also be interpreted in terms

of matrix-valued stochastic processes (Dyson’s Brownian motion). Let Mn(β) be the set of all
n × n real (β = 1), complex (β = 2) and quaternion (β = 4) matrices respectively and Sn(β)

the set of self-dual (with respect to conjugate transposition) elements in Mn(β). The Gaussian
orthogonal (β = 1), unitary (β = 2) and symplectic (β = 4) ensembles, denoted GOEn(σ 2

0 ),
GUEn(σ 2

0 ) and GSEn(σ 2
0 ) respectively, are the probability distributions

dµβ
n (M) =

1

Z(β)
n

exp

{
−

βn

4σ 2
0

Tr M2

}
dM

on Sn(β), where dM =
∏n

i=1 dMi i
∏

1≤i< j≤n dM (1)
i j · · · dM (β)

i j is the product Lebesgue measure

on the essentially different elements of M = (M (1)
i j , . . . , M (β)

i j )i j . Let Mt = (M i j
t )i j be an

Sn(β)-valued Ornstein–Uhlenbeck process, meaning that Mt satisfies the SDE

dMt = −Mt dt +
σ

√
βn

d(Bt + B∗
t ), (3)

where Bt is an n × n matrix, the elements of which are independent standard real (β = 1),
complex (β = 2) or quaternion (β = 4) Brownian motions and B∗

t is the conjugate transpose of
Bt . Then the eigenvalues {λi

t }
n
i=1 of Mt satisfy (1) (see [8]). For instance, in the case β = 2 (and

similarly for β = 1, 4), if M0 ∈ Sn(2) is fixed, Eq. (3) has solution Mt = e−t M0 + Nt , where
Nt ∈ GUEn(σ 2(1−e−2t )) and if M0 ∈ GUEn(σ 2

0 ) we will have Mt ∈ GUEn(e−2t (σ 2
0 −σ 2)+σ 2)

for all t ≥ 0.
We define the empirical measure process

Xn
t =

1
n

n∑
i=1

δλi
t
.

To capture the asymptotic properties of the model on a global scale as n → ∞, one is interested in
studying the limiting behaviour of the linear statistics 〈Xn

t , f 〉 =
1
n

∑n
i=1 f (λi

t ), for test functions
f from a suitable class.

Example 1.1. Define a deformed GUE to be an ensemble of Hermitian matrices M2n
a =

M2n
+ D2n

a where M2n is distributed according to the GUE2n(1) and D2n
a = (di j )

2n
i, j=1 is a
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fixed 2n × 2n diagonal matrix with

di i =

{
a for 1 ≤ i ≤ n
−a for n + 1 ≤ i ≤ 2n.

Then the eigenvalues of the rescaled matrix M2n
a /

√
a2 + σ−2 correspond to the particles in our

model with initial distribution X0 = X2n
0 =

1
2 (δ−1 + δ1) at time t = log

√
1 + (aσ)−2. The local

behaviour of the eigenvalues in this model have been studied in [5,2] and it is known that the
limiting eigenvalue density of M2n

a as n → ∞ is supported on two disjoint intervals if 0 < a < 1
and on one single interval if a ≥ 1. In other words, supp X t grows from the two starting points
{−1, 1} at time t = 0 into two disjoint intervals that merge at time t = log

√
1 + σ−2.

In the stationary case, it is a classical result that for every bounded continuous function f ,
〈Xn, f 〉 converges in distribution to

∫
f dµ, where

dµ(x) =
1

2πσ 2

√
4σ 2 − x2χ{|x |<2σ }dx

is the Wigner semi-circle law. More generally, for any initial asymptotic distribution of particles,
X0, the asymptotic particle distribution X t at each time t ≥ 0 is uniquely determined by X0 and
converges weakly to µ as t → ∞ (see Theorem 2.1 for a more precise statement).

A natural question is that of whether there is a limiting distribution of the rescaled linear
statistics. For ease of notation, we introduce the fluctuation process Y n

t = n(Xn
t − X t ), which

takes signed Borel measures on R as values. We are interested in the limiting distribution of the
random variables

〈Y n
t , f 〉 =

n∑
i=1

f (λi
t ) − n

∫
R

f (x)dX t (x),

where f is a test function from an appropriate class, as n → ∞. Note that there is no 1
√

n
normalization of the linear statistics here; this reflects the very regular spacing of the particles
and is typical of related models.

Israelsson [11] shows that Y n
t converges weakly in the space of distributions acting on a class

of C6 test functions to a Gaussian process Yt , provided the initial distributions Xn
0 converge

sufficiently fast to X0 (the full statement is given in Theorem 3.1). Although establishing the
existence and uniqueness of Yt , he does not characterize it very explicitly. In this work we derive
explicit general formulae for the mean and covariance of the finite dimensional distributions of Yt
acting on a family of analytic test functions by analyzing the partial differential equation arising
in Israelsson’s proof. These formulae generalize many similar results obtained for various special
cases of our model by completely different methods; some of these are briefly discussed below.
In particular it is worth noting that our results hold for all values of the inverse temperature β

and in the non-equilibrium case with arbitrary initial particle distribution X0.
Most of the previous related results pertain to specific matrix models and are restricted to the

cases β = 1 or β = 2. The asymptotic global fluctuations for various ensembles of Hermitian
and real symmetric matrices have been extensively studied; see e.g. [3,6,10,13,15,17]. In a recent
paper [4], Bai and Yao consider N × N matrices with zero mean, independent, not necessarily
identically distributed entries such that the diagonal elements all have the same variance σ 2/N
and the off-diagonal elements have variance 1/N (real symmetric case) or uncorrelated real and
imaginary parts each of variance 1/2N (Hermitian case). Such models are known as Wigner
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ensembles. Under some fourth-moment conditions, they provide a central limit theorem and give
explicit mean and covariance formulae, which agree with those of Corollary 2.6 with β = 2 and
1t = 0. Under the assumption of finite moments of all orders of all matrix elements, a more
general class of ensembles of symmetric matrices is considered by Anderson and Zeitouni in [1].
Here the variances of all matrix elements, and the means of the diagonal entries, are allowed
to depend on position. Spohn [18] derives an expression for the covariance of the Gaussian
fluctuations of our model in the hydrodynamic limit, but deals only with the case β = 2 and
(time-dependent) equilibrium fluctuations.

The few previous results available on the general β case are restricted to a stationary situation.
For the corresponding model on the circle, Spohn [19] is able to handle the general β case,
again in the hydrodynamic limit at equilibrium. By expressing the equilibrium model in terms
of ensembles of tridiagonal real matrices, Dumitriu and Edelman [9] manage to find the general
β global fluctuations for polynomial test functions; there is work in progress by Dumitriu and
Zeitouni extending this to C1 test functions. Johansson [12] considers a more general model
corresponding to the equilibrium measure (2) but with the quadratic external potential vn replaced
by a general polynomial of even degree and with positive leading coefficient. For the case of
quadratic vn his mean and covariance formulae agree with the fixed t equilibrium case of the
model we discuss. In Johansson’s model the variance is universal in the sense that it does not
depend on the details of the potential, provided the support of the equilibrium measure is a single
interval. In our model however, the variance at every finite t depends on the initial conditions.
For instance, even though the eigenvalue density in Example 1.1 will in finite time be supported
on a single interval, the fluctuations remember the initial particle distribution for all t ≥ 0.
Thus the time evolution of the variance is determined by the geometry of the initial distribution;
this structure is reminiscent of the role played by the boundary conditions in determining the
fluctuations of the height function in discrete plane tiling models such as Kenyon’s [14]. There
the fluctuations converge to a Gaussian free field for a conformal structure determined by the
boundary.

2. Main results

In order to formulate our results we need the following theorem, referred to in the introduction:

Theorem 2.1 (Rogers and Shi [16], Cépa and Lépingle [7]). Suppose that Xn
0 converges weakly

inM, the space of Borel probability measures on R with the weak topology, to a point mass X0
at an arbitrary element of M. Then there is a family {X t }t≥0 ⊂ M, depending only on X0 and
converging weakly as t → ∞ to the Wigner semi-circle law, µ, such that for each t ≥ 0, Xn

t
converges weakly to X t in M as n → ∞. X t is uniquely characterized by the property that its
Stieltjes transform,

M = M(t, z) =

∫
dX t (x)

x − z
, (t, z) ∈ [0, ∞) × (C \ R),

solves the initial value problemMt = (2σ 2 M + z)Mz + M, t > 0

M(0, z) =

∫
dX0(x)

x − z
.

(4)

We fix some terminology that will be used throughout the rest of this paper. Let X0 be a given
Borel probability measure on R and define Ω = C \ R. Put f (z) =

∫ dX0(x)
x−z , z ∈ Ω ; f will be a
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holomorphic function. It follows from Theorem 2.1 that for every t ≥ 0, M(t, ·) =
∫ dX t (x)

x−·
is a

well defined holomorphic function in Ω , so we can define a family {ht }t≥0 of holomorphic maps
in Ω by the equation

ht (z) = zet
+ σ 2(et

− e−t )M(t, z). (5)

Proposition 2.2. For every t ≥ 0, ht (Ω) ⊆ Ω and the relation gt ◦ ht = id holds, where

gt (w) = e−tw − σ 2(et
− e−t ) f (w). (6)

Define ht2
t1 = gt2 ◦ ht1 for t1 ≥ t2 ≥ 0. Then ht1 = ht2 ◦ ht2

t1 .

Proof. This is a step in the proof of Lemma 3.4. �

Recall the definition of the Schwarzian derivative: Let v be a univalent function in some
domain of the complex plane. The Schwarzian derivative Sv of v is the analytic function

(Sv)(z) =
v′′′(z)

v′(z)
−

3
2

(
v′′(z)

v′(z)

)2

.

We introduce the generalized Schwarzian derivative, also denoted as Sv, as the function of two
complex variables defined by

1
6
(Sv)(z1, z2)

=


∂2

∂z1∂z2
log

(
v(z1) − v(z2)

z1 − z2

)
=

v′(z1)v
′(z2)

(v(z1) − v(z2))2 −
1

(z1 − z2)2 (z1 6= z2)

lim
z→z1

v′(z1)v
′(z)

(v(z1) − v(z))2 −
1

(z1 − z)2 =
1
6
(Sv)(z1) (z1 = z2).

We can now state the main result, to be proven in Section 3, giving expressions for the mean
and covariance of the finite dimensional distributions of the Stieltjes transform of the limiting
fluctuation process Yt .

Theorem 2.3. Suppose that Y n
0 = n(Xn

0 − X0) satisfies the conditions of Theorem 3.1 so that
the sequence {Y n

t }
∞

n=1 converges weakly to a Gaussian process Yt . Let 0 ≤ tk ≤ tk−1 . . . ≤ t1
and z = (z1, . . . , zk) ∈ (C \ R)k . Then the normal random vector

U = (U1, . . . , Uk), where U j =

〈
Yt j ,

1
· − z j

〉
,

has mean

µ j = EU j =
1
2

(
2
β

− 1
) h′′

t j
(z j )

h′
t j
(z j )

+

〈
Y0,

h′
t j
(z j )

· − ht j (z j )

〉
(7)

and covariance matrix

Λl j = Λ jl = Cov(U j , Ul) =
2
β

∂2

∂z j∂zl
log

(
ht j (z j ) − htl (zl)

htl
t j
(z j ) − zl

)

=
1

3β
htl

t j

′
(z j )

(
Shtl

)
(htl

t j
(z j ), zl), if l ≥ j. (8)
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In particular,

Var(U j ) =
1

3β

(
Sht j

)
(z j ). (9)

Remark 2.4. An interesting consequence of Eq. (9) is that, for any fixed time t ≥ 0, the
fluctuations contain all the information about the initial conditions, in the sense that the variance
of the Stieltjes transform of Yt as a function of z will uniquely determine the initial particle
distribution X0: By (9) this function is the Schwarzian derivative of some analytic function,
which is unique up to composition with an arbitrary Möbius transformation. It is easy to see that
this determines ht (and therefore also M(t, ·)) uniquely. Note that by finding the inverse gt of ht
we are immediately provided with the Stieltjes transform f of the initial particle distribution X0
without having to solve Eq. (4) explicitly for the initial condition.

Remark 2.5. Another model, concerning eigenvalues of non-Hermitian complex matrices,
where a similar variance formula involving the Schwarzian derivative occurs is studied in [20].

As an immediate consequence of Theorem 2.3 we can derive expressions for the mean and
covariance of the (time-dependent) equilibrium fluctuations. Let

fµ(z) =
1

2πσ 2

∫ 2σ

−2σ

√
4σ 2 − x2

x − z
dx =

z

2σ 2

√1 −

(
2σ

z

)2

− 1


denote the Stieltjes transform of the Wigner semi-circle law, µ. (Here

√
· means the branch of

the square root for which =(
√

z) ≥ 0 iff =z ≥ 0, defined for z ∈ C \ (−∞, 0).)

Corollary 2.6. Let z1, z2 ∈ Ω and 1t ≥ 0 be given. Put t1 = t + 1t and t2 = t and let
U j = 〈Yt j ,

1
·−z j

〉 for j = 1, 2. Then

lim
t→∞

µ j = lim
t→∞

EU j =

(
2
β

− 1
)

σ 2 fµ(z j )

4σ 2 − z2
j

, (10)

and

lim
t→∞

Λ12 = lim
t→∞

Cov(U1, U2)

= e−1t

8σ 2

 1√
1−

(
2σ
z1

)2
+ 1

 1√
1−

(
2σ
z2

)2
+ 1


β

(
4σ 2e−1t − z1z2

(√
1 −

(
2σ
z1

)2
+ 1

)(√
1 −

(
2σ
z2

)2
+ 1

))2

= e−1t 2σ 2 f ′
µ(z1) f ′

µ(z2)

β(1 − σ 2 fµ(z1) fµ(z2)e−1t )2 . (11)

Proof. This is just a calculation using Theorem 2.3 and the fact that X t converges weakly to the
semi-circle law (Theorem 2.1). �

The previous results can be expressed in terms of integral formulae for the fluctuation process
acting on more general analytic test functions. By Theorem 3.1, convergence of the fluctuation
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process Y n
t is only guaranteed for a class of bounded C6 test functions, so we will consider

analytic functions which are bounded in a domain containing the real line.

Theorem 2.7. Suppose that F1 and F2 are analytic and bounded in a strip Ωδ = {z : |=(z)| < δ}

for some δ > 0. Let t1 ≥ t2 ≥ 0 and define the random variables Z1 = 〈Yt1 , F1〉 and
Z2 = 〈Yt2 , F2〉. Then

Cov(Z1, Z2) =
−1

24π2β

∮
Γ1

∮
Γ2

(
Sgt2

)
(w1, w2)

(
F1(gt1(w1)) − F2(gt2(w2))

)2 dw2dw1,

(12)

where Γi = hti (γ ), γ = γ− ∪ γ+ and the oriented lines γ− and γ+ in Ωδ are given by the
parameterizations R 3 s 7→ s − iδ′ and R 3 s 7→ −s + iδ′ respectively, for any positive δ′ < δ.
For Z1 = Z2 this reduces further to

Var(〈Yt1 , F1〉) =
1

4π2β

∮
Γ1

∮
Γ1

(
F1(gt1(w1)) − F1(gt1(w2))

w1 − w2

)2

dw2dw1. (13)

Proof. Since F1 and F2 are bounded in Ωδ they may be represented by the Cauchy integral
formula as contour integrals along γ . We can then use the linearity of Yt and Fubini’s theorem to
obtain

Cov(Z1, Z2) = E(Z1 Z2) − EZ1EZ2

= E
[〈

Yt1 ,
1

2π i

∮
γ

F1(z)dz

x − z

〉 〈
Yt2 ,

1
2π i

∮
γ

F2(z)dz

x − z

〉]
− E

[〈
Yt1 ,

1
2π i

∮
γ

F1(z1)dz

x − z

〉]
E
[〈

Yt2 ,
1

2π i

∮
γ

F2(z)dz

x − z

〉]
=

∮
γ

∮
γ

F1(z1)F2(z2)

(2π i)2

(
E
[〈

Yt1 ,
1

z1 − ·

〉 〈
Yt2 ,

1
z2 − ·

〉]
− E

[〈
Yt1 ,

1
z1 − ·

〉]
E
[〈

Yt2 ,
1

z2 − ·

〉])
dz2dz1

=

∮
γ

∮
γ

F1(z1)F2(z2)

(2π i)2 Λ12dz2dz1, (14)

where

Λ12 =
2
β

∂2

∂z1∂z2
log

(
ht1(z1) − ht2(z2)

ht2
t1(z1) − z2

)
by Theorem 2.3. Since, for fixed z2, Λ12 is the derivative of an analytic function of z1 in a domain
containing γ , we note that∮

γ

∮
γ

(F2(z2))
2Λ12dz2dz1

=

∮
γ

(F2(z2))
2
∮

γ

d
dz1

(
−h′

t2(z2)

ht1(z1) − ht2(z2)
+

1

ht2
t1(z1) − z2

)
dz1dz2 = 0.
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Similarly,∮
γ

∮
γ

(F1(z1))
2Λ12dz1dz2 = 0,

so we may substitute −
1
2 (F1(z1) − F2(z2))

2 for the factor F1(z1)F2(z2) in Eq. (14), which gives

Cov(Z1, Z2) =
1

4π2β

∮
γ

∮
γ

(F1(z1) − F2(z2))
2

×

(
h′

t1(z1)h′
t2(z2)

(ht1(z1) − ht2(z2))2 −
ht2

t1
′
(z1)

(z2 − ht2
t1(z1))2

)
dz2dz1. (15)

In the variance case, Z1 = Z2, this reduces further since the second term of the integral becomes∮
γ

∮
γ

(
F1(z1) − F1(z2)

z2 − z1

)2

dz2dz1,

which vanishes by the analyticity of F1. Since gti ◦ hti = id in Ω , the change of variables
w1 = ht1(z1), w2 = ht2(z2) transforms formula (15) into (12). �

We note that if in addition F1 and F2 are entire functions, the integrand in (12) is analytic
in each variable everywhere outside the support of X0, so the contours of integration Γi can be
suitably deformed as long as they avoid supp X0. More specifically, if X0 has compact support,
Γi can be replaced by a positively oriented circle {z : |z| = R} the interior of which contains
supp X0; outside this circle the integrand is a meromorphic function in each variable with a
simple pole at infinity.

Theorem 2.8. Suppose X0 is compactly supported and let F be an entire function, bounded in
a strip Ωδ = {z : |=(z)| < δ} for some δ > 0, with power series expansion F(z) =

∑
∞

n=0 cnzn .
Then

Var(〈Yt , F〉) =
1
β

∞∑
n=1

(
c2

n

n∑
s=−n

|s|A−s,n As,n + 2
n−1∑
m=0

cncm

m∑
s=−m

|s|A−s,n As,m

)
, (16)

where

As,n =

∑
(k1,...,kn)∈Isn

n∏
i=1

aki ,

Isn =

{
(k1, . . . , kn) ∈ Zn

:

n∑
i=1

ki = s, ki ≥ −1

}
,

a−1 = 1, a0 = 0 and ak = σ 2(1 − e−2t )e−(k−1)t
∫

xk−1dX0(x) for k ≥ 1.

Proof. After the change of variables zi = et/wi , and putting

Ψn(z1, z2) =
(gt (et/z1))

n
− (gt (et/z2))

n

z1 − z2
,

formula (13) reads
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Var(〈Yt , F〉) =
1

4π2β

∮
|z1|=r

∮
|z2|=r

(
∞∑

n=0

cnΨn(z1, z2)

)2

dz1dz2

=
1

4π2β

∞∑
n=0

∞∑
m=0

cncm

∮
|z1|=r

∮
|z2|=r

Ψn(z1, z2)Ψm(z1, z2)dz1dz2, (17)

for any r > 0 such that supp X0 ⊂ (−et/r, et/r). Integrating term by term is justified since the
integrand is meromorphic in both variables. By definition of gt , the Laurent series expansion of
gt (et/z) about z = 0 is given by

gt (et/z) =

∞∑
k=−1

ak zk,

which converges for 0 < |z| < r . Therefore we can write

Ψn(z1, z2) =

(
∞∑

k=−1
ak zk

1

)n

−

(
∞∑

k=−1
ak zk

2

)n

z1 − z2

=

∑
k1,k2,...,kn≥−1

ak1 · · · akn

(
zk1+···+kn

1 − zk1+···+kn
2

z1 − z2

)
.

For given integers K and J a simple combinatorial argument and the residue theorem show that

1

4π2

∮
|z1|=r

∮
|z2|=r

(
zK

1 − zK
2

z1 − z2

)(
z J

1 − z J
2

z1 − z2

)
dz1dz2 =

{
|K | if K = −J
0 otherwise.

This means that we can express the integrals in Eq. (17) in the form

1

4π2

∮
|z1|=r

∮
|z2|=r

Ψn(z1, z2)Ψm(z1, z2)dz1dz2 =

∑
|s|≤n∧m

|s|A−s,n As,m,

with As,n as defined in the statement of the theorem. �

Remark 2.9. Theorem 2.8 gives an explicit expression for the variance in terms of moments of
the initial distribution X0 and of the Taylor coefficients of F . To see how the dependence on the
initial conditions decays in time and compare with previously known results on the stationary
model we consider the limit of formula (16) as t tends to infinity.

First note that each As,n is a finite sum, all contributing terms of which tend to 0 exponentially
in t unless ki = ±1 for i = 1, . . . , n. If n + s is odd there are no such terms, and if n + s is even
there are

(
n

n+s
2

)
choices of (k1, . . . , kn). Using this we get

ρnm := lim
t→∞

1
β

∑
|s|≤n∧m

|s|A−s,n As,m
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=



2σ n+m

β

(n∧m)/2∑
s=0

2s

(
n

n/2 − s

)(
m

m/2 − s

)
m, n even

2σ n+m

β

(n∧m)−1
2∑

s=0

(2s + 1)

(
n

n/2 − 1/2 − s

)(
m

m/2 − 1/2 − s

)
m, n odd

0 otherwise.

(18)

We turn to a crude estimate of the remainder term,

Rnm(t, X0) =
1
β

∑
|s|≤n∧m

|s|A−s,n As,m − ρnm .

For n ≥ 1 and |s| ≤ n the total number of terms contributing to As,n is

|Isn| =

(
(s + n) + (n − 1)

n − 1

)
≤

(
3n − 1
n − 1

)
≤ 23n−1,

and each term,
∏n

i=1 aki , is bounded by (1 + σ)2n(1 + R)2n , so we have a bound

|Rnm(t, X0)| =

∣∣∣∣∣ ∑
|s|≤n∧m

|s|A−s,n As,m − ρnm

∣∣∣∣∣
≤ e−t (n + m + 1)(m + n)23(n+m)−2(1 + σ)2(n+m)(1 + R)2(n+m)

≤ C1e−t (C2(1 + R))2(m+n)

for constants C1 and C2 independent of n, m and X0. Now∣∣∣∣∣ ∞∑
n=0

∞∑
m=0

cncm Rnm(t, X0)

∣∣∣∣∣ ≤ C1e−t

(
∞∑

n=0

|cn|(C2(1 + R))2n

)2

= CRe−t

for some constant CR since the power series expansion of F is absolutely convergent everywhere,
so

lim
t→∞

Var(〈Yt , F〉) =

∞∑
n=1

∞∑
m=1

cncmρnm, (19)

with ρnm given by Eq. (18). Formula (19) agrees with the variance formula of Dumitriu and
Edelman [9] (if we formally let F be a polynomial) and that of Johansson [12] which asserts
that, in the stationary case,

Var(〈Yt , h〉) =
1

2β

∞∑
k=1

k

(
2
π

∫ π

0
h(2σ cos(θ)) cos(kθ)dθ

)2

for an appropriate class of real test functions h. Indeed, rewriting the power series expansion of
F in terms of Chebyshev polynomials, the asymptotic variance is recovered from Johansson’s
result.

3. Proof of Theorem 2.3

The proof of Theorem 2.3 relies on the characterization of Yt provided in [11] to prove
existence and uniqueness of this process. For convenient reference we restate this result.
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For each k ≥ 0, endow Ck(T) with the inner product

( f, g)k =

k∑
i=0

∫ π

−π

f (i)(x)g(i)(x)dx,

making it a Hilbert space. The linear operator T : Ck(T) → Ck(R) defined by (T f )(x) =

f (2 arctan(x)) is one-to-one so

Hk = T (Ck(T)) ⊂ Ck(R)

is a Hilbert space with the inner product induced from Ck(T). Let

S =

∞⋂
k=0

Hk

be the projective limit of the sequence {Hk}
∞

k=0.

Theorem 3.1 (Israelsson [11]). Suppose that the sequence {Y n
0 }

∞

n=1 converges weakly in S ′ to a
fixed Y0 ∈ S ′. Suppose further that there is a constant C such that for every n and z = a + bi ,
b 6= 0, the inequality

E
∣∣∣∣∫ dY n

0 (x)

x − z

∣∣∣∣2 ≤
C

b2

holds.
Then {Y n

t }
∞

n=1 converges weakly to a Gaussian H ′

6-valued process Yt , i.e. for any test functions
f j ∈ H6 and t j ≥ 0, j = 1, . . . , k, the random vector (

∫
f1(x)dY n

t1(x), . . . ,
∫

fk(x)dY n
tk (x))

converges in distribution to the Gaussian vector (〈Yt1 , f1〉, . . . , 〈Ytk , fk〉). Furthermore, Yt is
uniquely characterized by its action on test functions of the form 1

·−z , z ∈ Ω = C \ R, by
the following property: Let 0 ≤ tm+k ≤ tm+k−1 . . . ≤ tm+1 ≤ t1 ≤ T be given and for
s = (s1, . . . , sm, . . . , sm+k) ∈ Cm+k , z = (z1, . . . , zm, . . . , zm+k) ∈ Ωm+k and tm+1 ≤ t ≤ t1
define the function

φ(t, s1, . . . , sm, z1, . . . , zm)

= E

[
exp

{
i

m+k∑
j=m+1

s j

〈
Yt j ,

1
· − z j

〉
+ i

m∑
j=1

s j

〈
Yt ,

1
· − z j

〉}]
.

Then φ satisfies the PDE

∂φ

∂t
=

m∑
j=1

(
s j

(
1 + 2σ 2 ∂ M(t, z j )

∂z j

)
∂φ

∂s j
+

(
z j + 2σ 2 M(t, z j )

) ∂φ

∂z j

)

+

(
2iσ 2

(
2
β

− 1
) m∑

j=1

∫
s j dX t (x)

(x − z j )3 −
2σ 2

β

m∑
j=1

m∑
l=1

∫
s j sldX t (x)

(x − z j )2(x − zl)2

)
φ. (20)

Remark 3.2. This is a slight reformulation of Israelsson’s result: He allows for Y0 to be random
and works with real and imaginary parts of the complex functions s

·−z in order to ensure that
the characteristic function φ be a priori well defined. However, once it is established that the
distributions are Gaussian for such test functions, φ will be a well defined entire function of s for
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test functions 1
·−z , z ∈ Ω . The argument leading to Eq. (20) is then identical to that in Israelsson’s

proof, but this form is convenient for finding explicit solutions.

Remark 3.3. There is a numerical mistake in Israelsson’s derivation of Eq. (20) which has been
corrected here; all occurrences of the factor α

2 in the equations on page 51 and onward in [11]
should be replaced by α.

Israelsson’s method is similar to, although technically more involved than, that used by Rogers
and Shi to prove Theorem 2.1. It is shown that the characteristic function of the Stieltjes transform
of any subsequential limit of Y n

t must satisfy Eq. (20), and a tightness argument then reduces the
problem to proving existence and uniqueness of solutions to this equation.

By explicitly solving Eq. (20) under appropriate initial conditions, we will be able to find
expressions for the mean and covariance of the finite dimensional distributions of Yt .

Lemma 3.4. For any fixed t0 ≥ 0, let φt0(s, z) be a given analytic function defined for s =

(s1, . . . , sk) ∈ Ck and z = (z1, . . . , zk) ∈ Ω k and let U = {(t, s, z) : t > t0, s ∈ Ck, z ∈ Ω k
}

and Γ = {(t0, s, z) : s ∈ Ck, z ∈ Ω k
} ⊆ ∂U. The initial value problem

∂φ

∂t
=

k∑
j=1

(
s j

(
1 + 2σ 2 ∂ M(t, z j )

∂z j

)
∂φ

∂s j
+

(
z j + 2σ 2 M(t, z j )

) ∂φ

∂z j

)

+

(
2iσ 2

(
2
β

− 1
) k∑

j=1

∫
s j dX t (x)

(x − z j )3

−
2σ 2

β

k∑
j=1

k∑
l=1

∫
s j sldX t (x)

(x − z j )2(x − zl)2

)
φ in U ;

φ(t0, s, z) = φt0(s, z) on Γ , (21)

has the following unique solution:

φ(t, s, z) = φt0

(
s · ht0

t
′
(z), ht0

t (z)
)

exp

{
i

k∑
j=1

s jµ j −
1
2

k∑
j=1

k∑
l=1

s j slΛ jl

}
, (22)

where

µ j =
1
2

(
2
β

− 1
)

ht0
t

′′
(z j )

ht0
t

′
(z j )

,

Λ jl = Λl j =
1

3β

(
Sht0

t

)
(z j , zl),

and s · ht0
t

′
(z), ht0

t (z) is shorthand notation for (s1ht0
t

′
(z1), . . . , skht0

t
′
(zk)) and (ht0

t (z1), . . . ,

ht0
t (zk)) respectively.

Proof. The equation is linear and can be solved with the method of characteristics. Fix (t, s, z) ∈

U and let φ(τ) = φ(x(τ )) be the solution along the characteristic x(τ ) = (t (τ ), s(τ ), z(τ ))

through that point. By (21), the equations for x(τ ), if we choose t (τ ) = τ , become

dz j (τ )

dτ
= −z j (τ ) − 2σ 2 M(τ, z j (τ )) (23)
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and

ds j (τ )

dτ
= −s j (τ )

(
1 + 2σ 2 ∂ M

∂z j
(τ, z j (τ ))

)
, (24)

while the solution φ(τ) = φ(x(τ )) along the characteristic is given by the equation

dφ(τ)

dτ
=

{
2iσ 2

(
2
β

− 1
) k∑

j=1

∫
s j (τ )dX t (x)

(x − z j (τ ))3

−
2σ 2

β

k∑
j=1

k∑
l=1

∫
s j (τ )sl(τ )dX t (x)

(x − z j (τ ))2(x − zl(τ ))2

}
φ(τ). (25)

It will be convenient to solve these equations for all τ > 0 and impose the initial condition at
the end. It may seem difficult to find solutions in closed form because of the dependence on
the evolution of X t , which is known only through the property of having Stieltjes transform
satisfying (4). As we will show however, all dependence on X t can be expressed in terms of M
and, more crucially, the evolution of M along the characteristic is particularly simple. For the
first point, it is easy to see by algebraic manipulations that∫

dX t (x)

(x − z j )3 =
1
2

∂2

∂z2
j

(∫
dX t (x)

(x − z j )

)
=

1
2

Mzz(t, z j ),∫
dX t (x)

(x − z j )4 =
1
6

∂3

∂z3
j

(∫
dX t (x)

(x − z j )

)
=

1
6

Mzzz(t, z j ),

and, with a little more effort,∫
dX t (x)

(x − z j )2(x − zl)2 =

(
2(M(t, z j ) − M(t, zl))

(z j − zl)3 −
Mz(t, z j ) + Mz(t, zl)

(z j − zl)2

)
,

if z j 6= zl . (Differentiating under the integral sign is clearly justified here since all integrands are
bounded.) Assuming without loss of generality that z j 6= zl if j 6= l, Eq. (25) can thus be written

1
φ(τ)

dφ(τ)

dτ

= 2iσ 2
(

2
β

− 1
) k∑

j=1

s j (τ )

2
Mzz(τ, z j (τ )) −

2σ 2

β

(
k∑

j=1

s j (τ )2

6
Mzzz(τ, z j (τ ))

+

∑
j 6=l

s j (τ )sl(τ )

(
2(M(τ, z j (τ )) − M(τ, zl(τ )))

(z j (τ ) − zl(τ ))3 −
Mz(τ, z j (τ )) + Mz(τ, zl(τ ))

(z j (τ ) − zl(τ ))2

))
.

(26)

Eqs. (23) and (24) can now be integrated with the aid of (4) defining the evolution of M(τ, z j (τ )).
Fix z j = z and put M(τ ) ≡ M(τ, z(τ )), Mz(τ ) ≡

∂ M(τ,z(τ ))
∂z and so on for all partial derivatives

of M(t, z). Differentiating, we have by the chain rule and Eqs. (4) and (23)

dM(τ )

dτ
= Mz(τ )z′(τ ) + Mt (τ ) = Mz(τ )(z′(τ ) + 2σ 2 M(τ ) + z(τ )) + M(τ ) = M(τ )
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or in integrated form simply

M(τ ) = M(t, z)eτ−t . (27)

With (27) substituted into (23), the latter equation can be integrated to yield

z(0) = zet
+ σ 2(et

− e−t )M(t, z) ≡ ht (z).

Using this initial condition, Eqs. (23) and (27) give the explicit expression

z(τ ) = e−τ z(0) − σ 2(eτ
− e−τ ) f (z(0)) = gτ (z(0)) = gτ (ht (z)) (28)

for the characteristic. In particular, taking τ = t gives z = gt (ht (z)), and since there is a unique
characteristic through each point in U it follows that for t ≥ t1 ≥ t0, ht (z) = ht1(gt1(ht (z))),
which is the assertion of Proposition 2.2. Note that this provides a method of calculating ht (and
M(t, z)) by finding an inverse of the explicitly defined function gt .

Since the function (t, z) 7→ gt (z) = e−t z − σ 2(et
− e−t ) f (z) is C∞, it follows from implicit

differentiation of the relation gt (ht (z)) = z that the order of differentiation can be interchanged

in the mixed partial derivatives of ht (z), in particular ∂k+1(ht (z))
∂t∂zk =

∂k+1(ht (z))
∂zk∂t

for k = 1, 2, 3.
Using this and differentiating Eq. (4) gives

Mzt = Mt z = (2σ 2 Mz + 1)Mz + (2σ 2 M + z)Mzz + Mz,

Mzzt = Mt zz = (6σ 2 Mz + 3)Mzz + (2σ 2 M + z)Mzzz,

and

Mzzzt = Mt zzz = 6σ 2(Mzz)
2
+ (8σ 2 Mz + 4)Mzzz + (2σ 2 M + z)Mzzzz .

With these equations we can obtain ODEs for Mz , Mzz and Mzzz in a completely analogous
fashion:

dMz(τ )

dτ
= Mzz(τ )z′(τ ) + Mzt (τ ) = 2(σ 2 Mz(τ ) + 1)Mz(τ ), (29)

dMzz(τ )

dτ
= Mzzz(τ )z′(τ ) + Mzzt (τ ) = (6σ 2 Mz(τ ) + 3)Mzz(τ ), (30)

and

dMzzz(τ )

dτ
= Mzzzz(τ )z′(τ ) + Mzzzt (τ ) = 6σ 2(Mzz(τ ))2

+ 4(2σ 2 Mz(τ ) + 1)Mzzz(τ ).

(31)

Putting w ≡ ht (z), Eq. (27) can be expressed as

M(τ ) = f (w)eτ , (32)

and Eqs. (29) through (31) can be integrated to produce

Mz(τ ) = f ′(w)
eτ

g′
τ (w)

, (33)

Mzz(τ ) =
f ′′(w)

(g′
τ (w))3 , (34)
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and

Mzzz(τ ) =
1

(g′
τ (w))4

(
f ′′′(w) + 3σ 2(eτ

− e−τ )
( f ′′(w))2

g′
τ (w)

)
, (35)

where gτ (w) = e−τw − σ 2(eτ
− e−τ ) f (w). Inserting into Eq. (24) and integrating we get

s(τ ) = s
g′
τ (w)

g′
t (w)

. (36)

We can now finally express the right hand side of Eq. (26) as an explicit function of τ by
plugging in our expressions (28) and (32) through (36) derived for the evolution of s j , z j and
z-derivatives of M along the characteristic. Integrating we see that

log
(

φ(t, s, z)

φ(t0, s(t0), z(t0))

)
= I + I I + I I I, (37)

where

I = 2iσ 2
(

2
β

− 1
)∫ t

t0

k∑
j=1

s j (τ )

2
Mzz(τ, z j (τ ))dτ,

I I = −
2σ 2

β

∫ t

t0

(
k∑

j=1

s j (τ )2

6
Mzzz(τ, z j (τ ))

)
dτ,

and

I I I = −
2σ 2

β

∫ t

t0

∑
j 6=l

s j (τ )sl(τ )

(
2(M(τ, z j (τ )) − M(τ, zl(τ )))

(z j (τ ) − zl(τ ))3

−
Mz(τ, z j (τ )) + Mz(τ, zl(τ ))

(z j (τ ) − zl(τ ))2

)
dτ.

To calculate these integrals we first note some immediate consequences of the definitions of the
function ht0

t = gt0 ◦ ht and the generalized Schwarzian derivative:

ht0
t

′′
(z)

ht0
t

′
(z)

=
1

g′
t (w)

(
g′′

t0(w)

g′
t0(w)

−
g′′

t (w)

g′
t (w)

)
, (38)

and

(Sht0
t )(z1, z2) =

1
g′

t (w1)g′
t (w2)

(
(Sgt0)(w1, w2) − (Sgt )(w1, w2)

)
, (39)

where wi = ht (zi ). Using the change of variables x = b(τ ) = σ 2(e2τ
−1) we can now calculate

the integrals on the right hand side of Eq. (37). First, we note that by (38),∫ t

t0
s(τ )Mzz(τ )dτ = s

∫ t

t0

g′
τ (w)

g′
t (w)

f ′′(w)

(g′
τ (w))3 dτ

=
s f ′′(w)

2σ 2g′
t (w)

∫ b(t)

b(t0)

dx

(1 − x f ′(w))2 =
s f ′′(w)

2σ 2g′
t (w) f ′(w)

[
1

1 − x f ′(w)
− 1

]b(t)

b(t0)

=
s

2σ 2g′
t (w)

(
e−t b(t) f ′′(w)

e−t (1 − b(t) f ′(w))
−

e−t0b(t0) f ′′(w)

e−t0(1 − b(t0) f ′(w))

)
=

s

2σ 2

ht0
t

′′
(z)

ht0
t

′
(z)

.
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This means that

I = 2iσ 2
(

2
β

− 1
)∫ t

t0

k∑
j=1

s j (τ )

2
Mzz(τ, z j (τ ))dτ =

i
2

(
2
β

− 1
) k∑

j=1

s j
ht0

t
′′
(z j )

ht0
t

′
(z j )

. (40)

Turning to the second integral, we have∫ t

t0
s(τ )2 Mzzz(τ )dτ =

s2

(g′
t (w))2

∫ t

t0

e2τ

(1 − b(τ ) f ′(w))2

(
f ′′′(w) +

3( f ′′(w))2b(τ )

1 − b(τ ) f ′(w)

)
dτ

=
s2

2σ 2(g′
t (w))2

∫ b(t)

b(t0)

1

(1 − x f ′(w))2

(
f ′′′(w) +

3( f ′′(w))2x

(1 − x f ′(w))

)
dx

=
s2

2σ 2(g′
t (w))2

∫ b(t)

b(t0)

1

(1 − x f ′(w))2

((
f ′′′(w) −

3( f ′′(w))2

f ′(w)

)
+

3( f ′′(w))2

f ′(w)

1
(1 − x f ′(w))

)
dx

=
s2

2σ 2(g′
t (w))2

[(
f ′′′(w)

f ′(w)
−

3( f ′′(w))2

( f ′(w))2

)(
1

(1 − x f ′(w))
− 1

)
+

3
2

( f ′′(w))2

( f ′(w))2

(
1

(1 − x f ′(w))2 − 1
)]b(t)

b(t0)

=
s2

2σ 2(g′
t (w))2

(
b(t) f ′′′(w)

1 − b(t) f ′(w)
+

3
2

(
b(t) f ′′(w)

1 − b(t) f ′(w)

)2

−
b(t0) f ′′′(w)

1 − b(t0) f ′(w)
+

3
2

(
b(t0) f ′′(w)

1 − b(t0) f ′(w)

)2
)

=
s2

2σ 2(g′
t (w))2

(
−(Sgt )(w) + (Sgt0)(w)

)
=

s2

2σ 2 (Sht0
t )(z, z),

where we used the identity (39) in the last step. Hence

I I = −
2σ 2

β

∫ t

t0

(
k∑

j=1

s j (τ )2

6
Mzzz(τ, z j (τ ))

)
dτ = −

1
6β

k∑
j=1

s2
j (Sht0

t )(z j , z j ). (41)

To calculate integral I I I , put c =
w j −wl

f (w j )− f (wl )
. Then for each j 6= l we get a contribution to the

sum in I I I which takes the form

−
2σ 2

β

∫ t

t0
s j (τ )sl(τ )

(
2(M(τ, z j (τ )) − M(τ, zl(τ )))

(z j (τ ) − zl(τ ))3

−
Mz(τ, z j (τ )) + Mz(τ, zl(τ ))

(z j (τ ) − zl(τ ))2

)
dτ

=
s j sl

βg′
t (w j )g′

t (wl)
(

f (w j ) − f (wl)
)2 ∫ b(t)

b(t0)

(
2c f ′(w j ) f ′(wl) − ( f ′(w j ) + f ′(wl))

(x − c)2
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+
2(c f ′(w j ) − 1)(c f ′(wl) − 1)

(x − c)3

)
dx . (42)

Now for any s ≥ 0 we can simplify∫ b(s)

0

(
2c f ′(w j ) f ′(wl) − ( f ′(w j ) + f ′(wl))

(x − c)2 +
2(c f ′(w j ) − 1)(c f ′(wl) − 1)

(x − c)3

)
dx

=
(
2c f ′(w j ) f ′(wl) − ( f ′(w j ) + f ′(wl))

) ( 1
b(s) − c

+
1
c

)
+

(
c2 f ′(w j ) f ′(wl) − c( f ′(w j ) + f ′(wl)) + 1

)( 1

(b(s) − c)2 −
1

c2

)
=

1

c2(b(s) − c)2

(
2c f ′(w j ) f ′(wl) − ( f ′(w j ) + f ′(wl))

)
(cb(s)2

− c2b(s))

+

(
c2 f ′(w j ) f ′(wl) − c( f ′(w j ) + f ′(wl)) + 1

)
(2cb(s) − b(s)2)

=
1

c2(b(s) − c)2

(
−(x − b(s))2

+ c2(b(s) f ′(w j ) − 1)(b(s) f ′(wl) − 1)
)

= ( f (w j ) − f (wl))
2
(

g′
s(w j )g′

s(wl)

(gs(w j ) − gs(wl))2 −
1

(w j − wl)2

)
=

1
6
( f (w j ) − f (wl))

2(Sgs)(w j , wl),

so by Eqs. (42) and (39),

I I I =

∑
j 6=l

s j sl

6βg′
t (w j )g′

t (wl)

(
(Sgt )(w j , wl) − (Sgt0)(w j , wl)

)
= −

1
6β

∑
j 6=l

s j sl(Sht0
t )(z j , zl). (43)

Inserting the expressions (40), (41) and (43) into Eq. (37) gives (22). �

We are now ready to prove the main result.

Proof (Proof of Theorem 2.3). Let s = (s1, . . . , sk) ∈ Ck , z = (z1, . . . , zk) ∈ Ω k and
t = (t1, . . . , tk), where 0 ≤ tk ≤ tk−1 . . . ≤ t1, be given. We will prove that the characteristic
function

φ(t, s, z) = E

[
exp

{
i

k∑
j=1

s jU j

}]

of the random vector U = (〈Yt1 ,
1

·−z1
〉, . . . , 〈Ytk ,

1
·−zk

〉) is the characteristic function of a
Gaussian vector. Since we have assumed that Y0 is fixed (non-random), it follows that φ0(s, z) ≡

φ(0, s, z) = exp{i
∑k

j=1 s j 〈Y0,
1

·−z j
〉}. With the convention tk+1 = 0, define the functions φ

( j)
τ ,

j = 1, . . . , k, depending on the variables s( j)
= (s( j)

1 , . . . , s( j)
j ), z( j)

= (z( j)
1 , . . . , z( j)

j ) and the
single time variable τ , t j+1 ≤ τ ≤ t j by the following expression:

φ( j)
τ (s( j), z( j)) = E

[
exp

{
i

k∑
m= j+1

sm

〈
Ytm ,

1
· − zm

〉
+ i

j∑
m=1

s( j)
m

〈
Yτ ,

1

· − z( j)
m

〉}]
.
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Israelsson’s Theorem, 3.1, states precisely that the φ
( j)
τ satisfy Eq. (21) with initial conditions

φ
( j)
t j+1

(s( j), z( j)) = φ
( j+1)
t j+1

(s( j), s j+1, z( j), z j+1) for j = 1, . . . , k − 1, and φ
(k)
0 (s(k), z(k)) =

φ0(s(k), z(k)). Thus we may successively integrate k times to obtain φ(t, s, z) = φ
(1)
t1 (s1, z1) in

terms of the initial conditions, using Lemma 3.4 in each step. More explicitly, for j = 1, . . . , k−1
we have by Lemma 3.4

φ
( j)
t j

(s( j), z( j)) = φ
( j+1)
t j+1

(s( j)
· h

t j+1
t j

′

(z( j)), s j+1, h
t j+1
t j

(z( j)), z j+1)

× exp

{
i

j∑
l=1

s( j)
l µ

( j)
l −

1
2

j∑
l=1

j∑
m=1

s( j)
l s( j)

m Λ( j)
lm

}
, (44)

where µ
( j)
l =

1
2 ( 2

β
− 1)

h
t j+1
t j

′′

(z( j)
l )

h
t j+1
t j

′

(z( j)
l )

and Λ( j)
lm = Λ( j)

ml =
1

3β
(Sh

t j+1
t j

)(z( j)
l , z( j)

m ).

Applying formula (44) k − 1 times, starting with φ(t, s, z) = φ
(1)
t1 (s1, z1), we obtain

φ(t, s, z) = φ
(k)
tk (s(k), z(k))

k−1∏
j=1

exp

{
i

j∑
l=1

s( j)
l µ

( j)
l −

1
2

j∑
l=1

j∑
m=1

s( j)
l s( j)

m Λ( j)
lm

}
, (45)

where z( j)
j = z j , s( j)

j = s j and
z( j)

m = h
t j
t j−1

◦ · · · ◦ htm+1
tm (zm) = h

t j
tm (zm)

s( j)
m = sm

j−1∏
l=m

htl+1
tl

′
(z(l)

m ) = smh
t j
tm

′

(zm) for m = 1, . . . , j − 1.

After a final application of Lemma 3.4, Eq. (45) becomes

φ(t, s, z) = φ0(s · h′
t (z), ht (z)) exp

{
k∑

j=1

(
i

j∑
l=1

s( j)
l µ

( j)
l −

1
2

j∑
l=1

j∑
m=1

s( j)
l s( j)

m Λ( j)
lm

)}

= φ0(s · h′
t (z), ht (z)) exp

{
i

k∑
l=1

k∑
j=l

s( j)
l µ

( j)
l −

1
2

k∑
l=1

k∑
m=1

k∑
j=l∨m

s( j)
l s( j)

m Λ( j)
lm

}
, (46)

where s · h′
t (z) = (s1h′

t1(z1), . . . , skh′
tk (zk)) and ht (z) = (ht1(z1), . . . , htk (zk)). Now

s( j)
l µ

( j)
l =

1
2

(
2
β

− 1
)

slh
t j
tl

′

(zl)
h

t j+1
t j

′′

(h
t j
tl (zl))

h
t j+1
t j

′

(h
t j
tl (zl))

=
1
2

(
2
β

− 1
)

sl

d
dzl

(
h

t j+1
t j

′

(h
t j
tl (zl))

)
h

t j+1
t j

′

(h
t j
tl (zl))

=
1
2

(
2
β

− 1
)

sl
d

dzl

(
log h

t j+1
t j

′

(h
t j
tl (zl))

)
,

so since

d
dzl

(
log

k∏
j=l

h
t j+1
t j

′

(h
t j
tl (zl))

)
=

d
dzl

log((htk+1
tk ◦ · · · ◦ htl+1

tl )′(zl)) =
d

dzl
log(h′

tl (zl)),



1040 M. Bender / Stochastic Processes and their Applications 118 (2008) 1022–1042

we have found that

k∑
j=l

s( j)
l µ

( j)
l =

1
2

(
2
β

− 1
)

sl
d

dzl
log(h′

tl (zl)). (47)

To evaluate slsmΛlm ≡
∑k

j=l∨m s( j)
l s( j)

m Λ( j)
lm we distinguish between two cases. First, suppose

that htl (zl) 6= htm (zm). In this case, if we assume l > m, we can write

slsmΛlm =

k∑
j=l∨m

s( j)
l s( j)

m Λ( j)
lm

= sl

k∑
j=l

h
t j
tl

′

(zl)smh
t j
tm

′

(zm)
1

3β

(
Sh

t j+1
t j

)
(h

t j
tl (zl), h

t j
tm (zm))

= slsm
2
β

k∑
j=l

h
t j
tl

′

(zl)h
t j
tm

′

(zm)

×
∂2

∂(h
t j
tl (zl))∂(h

t j
tm (zm))

log

h
t j+1
t j

(h
t j
tl (zl)) − h

t j+1
t j

(h
t j
tm (zm))

h
t j
tl (zl) − h

t j
tm (zm)


= slsm

2
β

k∑
j=l

∂2

∂zl∂zm
log

h
t j+1
t j

(h
t j
tl (zl)) − h

t j+1
t j

(h
t j
tm (zm))

h
t j
tl (zl) − h

t j
tm (zm)


= slsm

2
β

∂2

∂zl∂zm
log

k∏
j=l

(
h

t j+1
tl (zl) − h

t j+1
tm (zm)

h
t j
tl (zl) − h

t j
tm (zm)

)

= slsm
2
β

∂2

∂zl∂zm
log

(
htk+1

tl (zl) − htk+1
tm (zm)

htl
tl (zl) − htl

tm (zm)

)

= slsm
1

3β
htl

tm
′
(zm)

(
Shtl

)
(zl , htl

tm (zm)),

as claimed. Secondly, consider the case htl (zl) = htm (zm). Using the identity (S( f ◦ g))(z) =

(g′(z))2(S f )(g(z)) + (Sg)(z) for the Schwarzian derivative of a composition, we have

slsmΛlm =

k∑
j=l∨m

s( j)
l s( j)

m Λ( j)
lm

=

k∑
j=l

slh
t j
tl

′

(zl)smh
t j
tm

′

(zm)
1

3β

(
Sh

t j+1
t j

)
(h

t j
tl (zl), h

t j
tm (zm))

= slsm
1

3β

k∑
j=l

h
t j
tl

′

(zl)h
t j
tm

′

(zm)
(

Sh
t j+1
t j

)
(h

t j
tl (zl))

= slsm
1

3β

k∑
j=l

h
t j
tl

′

(zl)h
t j
tm

′

(zm)


(

S(h
t j+1
t j

◦ h
t j
tl )
)

(zl) −

(
Sh

t j
tl

)
(zl)

(h
t j
tl

′

(zl))2


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= slsm
1

3β

k∑
j=l

htl
tm

′
(zm)

((
Sh

t j+1
tl

)
(zl) −

(
Sh

t j
tl

)
(zl)

)
= slsm

1
3β

htl
tm

′
(zm)

(
Shtl

)
(zl , zl).

Thus Eq. (46) can be expressed as

φ(t, s, z) = exp

{
i

k∑
j=1

s j

(
h′

t j
(z j )

〈
Y0,

1
· − ht j (z j )

〉
+

1
2

(
2
β

− 1
)

d
dz j

log(h′
t j
(z j ))

)

−
1
2

k∑
l=1

k∑
j=1

sls j
1

3β
htl

t j

′
(z j )

(
Shtl

)
(zl , htl

t j
(z j ))

}
, (48)

which shows that U is Gaussian with mean and covariance as claimed. �
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