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Abstract

In this note, a diffusion approximation result is shown for stochastic differential equations driven by a
(Liouville) fractional Brownian motion B with Hurst parameter H € (1/3, 1/2). More precisely, we resort
to the Kac—Stroock type approximation using a Poisson process studied in Bardina et al. (2003) [4] and
Delgado and Jolis (2000) [9], and our method of proof relies on the algebraic integration theory introduced
by Gubinelli in Gubinelli (2004) [14].
© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

After a decade of efforts [2,8,14,21,22,28,29], it can arguably be said that the basis of the
stochastic integration theory with respect to a rough path in general, and with respect to a
fractional Brownian motion (fBm) in particular, has been now settled in a rather simple and
secure way. This allows in particular to define rigorously and solve equations on an arbitrary
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interval [0, T] with T > 0, of the form:
dy; = o (y;)dB; + b (y) dt, yo=aeR", (D

where 0 : R” — R"%4_p : R" — R” are two bounded and smooth functions, and B stands
for a d-dimensional fBm with Hurst parameter H > 1/4. A question which arises naturally
in this context is then to try to establish some of the basic properties of the process y defined
by (1), and this global program has already been started as far as moments estimates [16], large
deviations [20,24], or properties of the law [6,26] are concerned (let us mention at this point that
the forthcoming book [12] will give a detailed account on most of these topics).

In the current note, we wish to address another natural problem related to the fractional
diffusion process y defined by (1). Indeed, in the case where B is an ordinary Brownian motion,
one of the most popular methods in order to simulate y is the following: approximate B by a
sequence of smooth or piecewise linear functions, say (X¢).-¢, which converges in law to B,
e.g. an interpolated and rescaled random walk. Then see if the process y® solution of Eq. (1)
driven by X¢ converges in law, as a process, to y. This kind of result, usually known as diffusion
approximation, has been thoroughly studied in the literature (see e.g. [17,32,33]), since it also
shows that equations like (1) may emerge as the limit of a noisy equation driven by a fast
oscillating function. The diffusion approximation program has also been taken up in the fBm
case by Marty in [23], with some random wave problems in mind, but only in the cases where
H > 1/2 or the dimension d of the fBm is 1. Also note that, in a more general context, strong
and weak approximations to Gaussian rough paths have been studied systematically by Friz and
Victoir in [11]. Among other results, the following is proved in this latter reference: let (X¢)¢0
be a sequence of d-dimensional centered Gaussian processes with independent components and
covariance function R®. Let X be another d-dimensional centered Gaussian processes with
independent components and covariance function R. Assume that all those processes admit a
rough path of order 2, that R® converges pointwise to R, and that R? is suitably dominated in p-
variation norm for some p € [1, 2). Then the rough path associated to X ¢ also converges weakly,
in 2 p-variation norm, to the rough path associated to X.

This result does not close the diffusion approximation problem for solutions of SDEs like (1).
Indeed, for computational and implementation reasons, the most typical processes taken as
approximations to B are non-Gaussian, and more specifically, are usually based on random
walks [19,33,30] or the Kac—Stroock type [4,9,18,31] approximations. However, the issue of
diffusion approximations in a non-Gaussian context has hardly been addressed in the literature,
and we are only aware of the aforementioned reference [23], as well as the recent preprint [7]
(which deals with Donsker’s theorem in the rough path topology) for significant results on the
topic. The current article proposes then a natural step in this direction, and studies diffusion
approximations to (1) based on the Kac—Stroock approximation to white noise.

Let us be more specific about the kind of result we will obtain. First of all, we consider in
the sequel the so-called d-dimensional Liouville fBm B, with Hurst parameter H € (1/3, 1/2),
as the driving process of Eq. (1). This is convenient for computational reasons (especially for
the bounds we use on integration kernels), and is harmless in terms of generality, since the
difference between the usual fBm and Liouville’s one is a finite variation process (as shown
in [3]). More precisely, we assume that B can be written as B = (Bl, el Bd), where the Bi’s
are d independent centered Gaussian processes of the form

t
B! =/ (t —H=1dwi,
0
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for a d-dimensional Wiener process W = (W', ..., W9). As an approximating sequence of B,
we shall choose (X?).-0, where X% is defined as follows, fori =1, ..., d:

t
X8 (1) = / (t + ¢ — =265 (r)dr, @)
0
where
0% (r) = é(—l)N“%), 3)

for Ni,i = 1,...,d, some independent standard Poisson processes. Let us then consider the
process y® solution to Eq. (1) driven by X?, namely:

dy; = o (y7)dX; + b (y;) dr, yvy=aecR", 1el0,T] 4
Then our main result is as follows:

Theorem 1.1. Assume that o : R* — R"™< is a bounded C? function having bounded
derivatives, and b : R" — R" is a Lipschitz and bounded function. Let (y®)¢~0 be the family
of processes defined by (4), and let 1/3 < y < H, where H is the Hurst parameter of B.
Then, as ¢ — 0, y® converges in law to the process y obtained as the solution to (1), where the
convergence takes place in the Hélder space CY ([0, T]; R™).

Observe that we have only considered the case H > 1/3 in the last result. This is of course
for computational and notational sake, but it should also be mentioned that some of our kernel
estimates, needed for the convergence in law, heavily rely on the assumption H > 1/3. On the
other hand, the case H > 1/2 follows easily from the results contained in [9], and the case
H = 1/2 is precisely Stroock’s result [31]. This is why our future computations focus on the
case 1/3 < H < 1/2.

The general strategy we shall follow in order to get our main result is rather natural in the
rough path context: it is a well-known fact that the solution y to (1) is a continuous function of
B and of the Lévy area of B (which will be called Bz), considered as elements of some suitable
Holder (or p-variation) spaces. Hence, in order to obtain the convergence y® — y in law, it will
be sufficient to check the convergence of the corresponding approximations X¢ and X>¢ in their
respective Holder spaces (observe however that X is not needed, in principle, for the definition
of y?). Then the two main technical problems we will have to solve are the following:

(1) First of all, we shall use the simplified version of the rough path formalism, called algebraic
integration, introduced by Gubinelli in [14], which will be summarized in the next section.
In the particular context of weak approximations, this allows us to deal with approximations
of B and B? directly, without recurring to discretized paths as in [8]. However, the algebraic
integration formalism relies on some space C};, where k stands for a number of variables in
[0, T], and y for a Holder type exponent. Thus, an important step will be to find a suitable
tightness criterion in these spaces. For this point, we refer to Section 4.

(2) The convergence of finite-dimensional distributions (“fdd” in the sequel) for the Lévy area
B? will be proved in Section 5, and will be based on some sharp estimates concerning the
Kac-Stroock kernel (3) that are performed in Section 6. Indeed, this latter section is mostly
devoted to quantify the distance between fOT f ()6 (u)du and fOT f(u)dWw, for a smooth
enough function f, in the sense of characteristic functions. This constitutes a generalization
of [9], which is interesting in its own right.
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Here is how our paper is structured: in Section 2, we shall recall the main notions of the al-
gebraic integration theory. Then Section 3 will be devoted to the weak convergence, divided into
the tightness result (Section 4) and the fdd convergence (Section 5). Finally, Section 6 contains
the technical lemmas of the paper.

2. Background on algebraic integration and fractional SDEs

This section contains a summary of the algebraic integration introduced in [14], which was
also used in [26,25] in order to solve and analyze fractional SDEs. We recall its main features
here, since our approximation result will also be obtained in this setting.

Let x be a Holder continuous R¢-valued function of order y, with 1/3 < y < 1/2, and
o :R" — R"™4_p:R" — R" be two bounded and smooth functions. We shall consider in the
sequel the n-dimensional equation

dy; =0 (y)dx, +b(y)dr, yo=aeR" 1t€[0,T] (&)

In order to define rigorously and solve this equation, we will need some algebraic and analytic
notions which are introduced in the next subsection.

2.1. Increments

We first present the basic algebraic structures which will allow us to define a pathwise integral
with respect to irregular functions. For an arbitrary real number 7 > 0, a vector space V and an
integer k > 1 we denote by Ci(V) the set of functions g : [0, T]k — V such that g;,..,, =0
whenever #; = t;4| for some i < k — 1. Such a function will be called a (k — 1)-increment, and
we will set C(V) = Ug>1 Ci (V). An important elementary operator is defined by

k+1

§:C(V) > G (V) Oy = D gy i (6)
i=1

where #; means that this particular argument is omitted. A fundamental property of 8, which is
easily verified, is that 6 = 0, where 86 is considered as an operator from Cy (V) to Cx42(V). We
will denote ZCy (V) = Cx (V) N Kerd and BC; (V) = Ci1(V) N Im.

Some simple examples of actions of § are obtained for g € C1(V) and h € Co(V). Then, for
any s, u,t € [0, T], we have

(0g)st = & — &s» and  (8h)sur = hyg — hgy — hyy. @)

Furthermore, it is easily checked that ZCr41(V) = BCi(V) for any k > 1. In particular, the
following basic property holds:

Lemma 2.1. Let k > 1 and h € ZCiy1(V). Then there exists a (nonunique) f € Cr(V) such
that h = &f.

Observe that Lemma 2.1 implies that all elements 2 € C>(V) with 82 = 0 can be written
as h = §f for some (nonunique) f € C;(V). Thus we get a heuristic interpretation of 8|c,(v):
it measures how much a given 1-increment is far from being an exact increment of a function,
i.e., a finite difference.
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Note that our further discussion will mainly rely on k-increments with k < 2. For the
simplicity of the exposition, we will assume from now that V = R?. We measure the size of
these increments by Holder norms, which are defined in the following way: for f € Co(V) let

| fye]
Ifll, = sup ad

s,t€[0,T] |l‘_s|’u

and Cy(V)={f €Ca(V): I fll <o0}.

Obviously, the usual Holder spaces Cf (V) are determined in the following way: for a continuous
function g € C;(V) simply set

gl = 11881l (®)

and we will say that g € C{‘(V) iff |||, is finite. Note that || - ||, is only a semi-norm on C;(V),
but we will work in general on spaces of the type

Cl, (V) ={g:[0,T1=> V; go=a, llglly < oo}, ©)

for a given a € V, on which |g|l, is a norm. For 2 € C3(V) set in the same way

Ialy, = sup . (10)
s,u,t€[0,T] |u —S|V|l‘ - Z't|'0

Irlly = inf 3> hilloru—pi h =D hi,0 < pi <
i i

where the infimum is taken over all sequences {h; € C3(V)} such that h = ), h; and for all
choices of the numbers p; € (0, ). Then || - ||, is easily seen to be a norm on C3(V), and we set

CY (V) ={h e C3(V); Ilhll, < oo}.

Eventually, let C31+(V) =Up>1 Cé‘ (V), and note that the same kind of norms can be considered
on the spaces ZC3(V), leading to the definition of the spaces ZC?(V) and ZC;*(V).

With these notations in mind, the crucial point in the current approach to pathwise integration
of irregular paths is that the operator § can be inverted under mild smoothness assumptions. This
inverse is called A. The proof of the following proposition may be found in [14], and in a more
elementary form in [15]:

Proposition 2.2. There exists a unique linear map A : ZC31+(V) — C21+(V) such that

SA =1d and A8 =1d

ZC7T(v) oty

In other words, for any h € C31+(V) such that §h = O there exists a unique g = A(h) € C21+(V)
such that 8g = h. Furthermore, for any i > 1, the map A is continuous from ZC?(V) to Cg(V)
and we have

1
1R = 55— Il € ZC{ (V). (1)

Moreover, /A has a nice interpretation in terms of generalized Young integrals:
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Corollary 2.3. For any 1-increment g € Co(V) such that §g € C31+(V) set 8f = (Id — Ad)g.
Then

n
8f)st = lim AP
(6f)st IHmHO;gt’ fiv1

where the limit is over any partition Iy = {ty = s,...,t, = t} of [s, t], whose mesh tends to
zero. Thus, the 1-increment 8 f is the indefinite integral of the 1-increment g.

2.2. Weakly controlled paths

This subsection is devoted to the definition of generalized integrals with respect to a rough
path of order 2, and to the resolution of Eq. (5). Notice that, in the sequel of our paper, we will
use both the notations L ! fdg or Js:(f dg) for the integral of a function f with respect to a
given increment dg on the interval [s, #]. The second notation Js;(f dg) will be used to avoid
some cumbersome notations in our computations. Observe also that the drift term b is generally
harmless if one wants to solve the Eq. (5). See e.g. Remark 3.14 in [27]. Hence, we will simply
deal with an equation of the form

dy; =0 (y)dx;, te€][0,T], withyy=a (12)

in the remainder of this section.

Before going into the technical details, let us make some heuristic considerations about the
properties that a solution of Eq. (5) should have. Set 6; = o (y/), and suppose that y is a solution
of (12), with y € Cf for a given 1/3 < « < y. Then the integral form of our equation can be
written as

t
Vi =a —+—/ oudx,, tel[0,T]. (13)
0

Our approach to generalized integrals induces us to work with increments of the form (§y),, =
y; — ys instead of (13). However, it is easily checked that one can decompose (13) into

t t
6y)st = f 6udx, = 65(8x)5t + psr,  With py = / (64 — G5)dxy,
s s

if our integral is linear. We thus have obtained a decomposition of y of the form §y = 68x + p.
Let us see, still at a heuristic level, which regularity we can expect for 6 and r. If o is a C li'
function, we have that ¢ is bounded and

161 — 651 < IVollsollyllclt — 1%,

where || y||, denotes the Holder norm of y defined by (8). Hence we have that & belongs to C{ and
is bounded. As far as p is concerned, it should inherit both the regularities of 86 and x, provided
that the integral f: (64 — 0y)dx, = f; (86 )sudx, is well defined. Thus, one should expect that

p € C3, and even p € Cg *7 To summarize, we have found that a solution 8y of the equation
should be decomposable into

8y =68x +p, withé € C) bounded and p € C3*. (14)

This is precisely the structure we will demand for a possible solution of (12):
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Definition 2.4. Let z be a path in Cy (R¥) with k < y and 2k + y > 1. We say that z is a
controlled path based on x, if zg = a, which is a given initial condition in R¥, and 8z € C5 (R¥)
can be decomposed into

bz=108x+r, 1e (82)sr = Ls(8x)st + pst, 5,1 € [0, T], 15)

with ¢ € Cf (R¥*4) and p is a regular part belonging to 622’( (RK). The space of controlled paths
will be denoted by Qk,a(Rk), and a path z € Qk,a(Rk) should be considered in fact as a couple
(z, ¢). The natural semi-norm on Q , (R¥) is given by

Nz Q.o RE)] = Nz; CE (R + NE; CE RN + NTg; CE RV + Np; €34 (RF)]
with A'[g; C (V)] defined by (8) and N[¢; C2 (V)] = supy—y<7 1] v

Having defined our algebraic and analytic framework, we now can give a sketch of the strategy
used in [14] in order to solve Eq. (12):

1. Verify the stability of Q, ,(R¥) under a smooth map ¢ : R¥ — R”.

2. Define rigorously the integral [ z,dx, = J(zdx) for a controlled path z and computed its
decomposition (15).

3. Solve Eq. (12) in the space Q, ,(R¥) by a fixed point argument.

Actually, for the second point one has to assume a priori the following hypothesis on the driving
rough path, which is standard in rough path type considerations:

Hypothesis 2.5. The R?-valued y-Holder path x admits a Lévy area, that is a process x> =

J (dxdx) € €3 (R?*?) satistying
o =sx@bx, i [OXu | 0. ) = 85 1[5 L,
s,u,t €[0,T],i,je{l,...,d}.
Then the following result is proved in [14], using the strategy sketched above:

Theorem 2.6. Let x be a process satisfying Hypothesis 2.5 and o : R" — R"™4 pe q C?
function, which is bounded together with its derivatives. Then

(1) Egq. (12) admits a unique solution y in Q, ,(R") for any k < y such that 2k +y > 1.
(2) The mapping (a, x,X?) — v is continuous from R x C]y (R x C;V (Rxdy 1o Qr.a(R™).

We shall see in the next subsection that this general theorem can be applied in the fBm context.
2.3. Application to the fBm

Let B = (B, ..., BY) be a d-dimensional Liouville fBm of Hurst index H € (%, %), that is
B!, ..., B4 are d independent centered Gaussian processes of the form

t
Bi =f (t —rH=2dw!,
0

where W = (W', ..., W%) is a d-dimensional Wiener process. The next lemma, whose proof is
straightforward (see [S] page 7), will be useful all along the paper.
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Lemma 2.7. There exists a positive constant ¢, depending only on H, such that
i i2 : H-1 H-172 ! 2H-1
EIBj =B = | [c—-n""2—=@=n"2dr+ | ¢t-1r dr
0 K

clt — s|?H (16)

IA

forallt > s > 0.

Let & be the set of step functions on [0, T'] with values in R?. Consider the Hilbert space H
defined as the closure of £ with respect to the scalar product induced by

d
(@o.n1s -+ Lo,y Mgossy]s - - - l[o,sd]))H = Z R, si),
i=1

si,t;€[0,T], i=1,...,d,

where R(t,s) .= E [Bf BA’:]. Then a natural representation of the inner product in H is given via
the operator .#, defined from & to L2([0, T1), by:

1 T
Hopt) = (T —f =20 - (5 - H> f [o(r) — o1 — N3 dr,
1

and it can be checked that /¢ can be extended as an isometry between 7 and the Hilbert space
L2([0, T1; R?). Thus the inner product in H can be defined as:

(0, )y = (Ko, H ) 120,7):RY) -

The mapping (1[04, - - - » 1j0,74]) > Zle B,’;, can also be extended into an isometry between H
and the first Gaussian chaos H|(B) associated with B = (B!, ..., B%). We denote this isometry
by ¢ — B(g), and B(p) is called the Wiener—It6 integral of ¢. It is shown in [10, page 284] that
Ci’ (R4) ¢ 'H whenever y > 1/2 — H, which allows to define B(¢) for such kind of functions.

We are now ready to prove that Theorem 2.6 can be applied to the Liouville fBm, which
amounts to check Hypothesis 2.5.

Proposition 2.8. Let B be a d-dimensional Liouville fBm, and suppose that its Hurst parameter
satisfies H € (1/3, 1/2). Then almost all sample paths of B satisfy Hypothesis 2.5, with any
Hoélder exponent 1/3 <y < H, and a Lévy area given by

t u t u
Bft=/ dBu®/ dB,, ie. Bf,(i,j):/ dB;f dB/,i,je(l,...,d},
S S A A

for 0 < s < t < T. Here, the stochastic integrals are defined as Wiener—Ito integrals when
i # j, while, when i = j, they are simply given by

t . u . 1 . N2
i i _ - i _ pi
/SdBu/S dBU_2<B, Bs) .

Proof. First of all, it is a classical fact that B € C%’(Rd) for any 1/3 < y < H, when B
is a Liouville fBm with H > 1/3 (indeed, combine the Kolmogorov—éentsov theorem with
Lemma 2.7). Furthermore, we have already mentioned that Ci/ (RY) ¢ H for any y > 1/2 — H.
In particular, if H > y > 1/3, the condition y > 1/2 — H is satisfied and, conditionally to B/,
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f f dBL f v" dB,{ is well defined for i # j, as a Wiener—Ito integral with respect to B!, of the form

Bi(¢) for a well-chosen ¢. Hence, B? is almost surely a well-defined element of Cp (R?*9).
Now, simple algebraic computations immediately yield that SB> = § B ® 8 B. Furthermore,
Lemma 6.4 yields

E[ B2, )] < el = 5.

Invoking this inequality and thanks to the fact that B? is a process in the second chaos of B, on
which all L? norms (p > 1) are equivalent, we get that

E[IB2 G )IP] < cplt = 5P,

This allows to conclude, thanks to an elaboration of Garsia’s lemma which can be found in [14,
Lemma 4] (and will be recalled at (30)), that B* € 022” (R4*4) for any y < 1/3. This ends the
proof. [

With all these results in hand, we have obtained a reasonable definition of diffusion processes
driven by a fBm, and we can now proceed to their approximation in law.

3. Approximating sequence

In this section, we will introduce our smooth approximation of B, namely X*, which shall
converge in law to B. This will allow to interpret Eq. (4) in the usual Lebesgue—Stieltjes sense.
We will then study the convergence in law of the process y® solution to (4) towards the solution

y of (1).
As mentioned in the introduction, the approximation of B we shall deal with is defined as
follows, fori =1, ...,d:

X" (@) = / (t+e— r)H‘%GE*’(r)dr, (17)
0
where
. ] icr
6 (r) = — (=DM,
3

for N, i = 1,...,d, some independent standard Poisson processes. Furthermore, we have
recalled in Theorem 2.6 that the solution y to (1) is a continuous function of (a, B, B2),

considered respectively as elements of R?, Ci/ (R?) and ng (R¥*4) for 1/3 < y < H. Thus
our approximation Theorem 1.1 can be easily deduced from the following result:

Theorem 3.1. For any ¢ > 0, let X** = (Xf;g(i, I)s,1=0;i,j=1,....a be the natural Lévy’s area
associated to X¢, defined by

r . .
X G = [ o - xiaxie, ()
)
where the integral is understood in the usual Lebesgue—Stieltjes sense. Then, as ¢ — 0,

(xe, X2 1Y (g B2, (19)

where B2 denotes the Lévy area defined in Proposition 2.8, and where the convergence in law
holds in spaces Cf (R?) x C;M (R4*), forany pu < H.
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The remainder of our work is devoted to the proof of Theorem 3.1. As usual in the context
of weak convergence of stochastic processes, we divide the proof into the weak convergence for
finite-dimensional distributions (Section 5) and a tightness type result (Section 4).

Remark 3.2. A natural idea for the proof of Theorem 3.1 could be to use the methodology
initiated by Kurtz and Protter in [19]. But the problem, here, is that the quantities we are dealing
with are not “close enough” to a martingale.

4. Tightness in Theorem 3.1

From now, we write C}' (resp. Cg“ ) instead of C}(R?) (resp. Cg“ (R4*4)). We first need a

general tightness criterion in the Holder spaces C/* and C;".

Lemma 4.1. Let & denote the set of (x,x2) € Ci’ X ng verifying xo = 0 and

Vst =0, Vi, j=1,....d: x4, j)=x30, j)— X2, j) —xi(x] —xi). (20)
Let (1 such that 0 < u < y. Then, any bounded subset 2 of &V is precompact in C{L X Cg”.

Proof. Let (x",x*") be a sequence of 2. By assumption, (x", x(z)j") is bounded and
equicontinuous. Then, Ascoli’s theorem applies and, at least along a subsequence, which may
also be called (x", xgj"), it converges uniformly to (x, Xg_). Using (20), we obtain in fact that
(x", xz’") converges uniformly to (x, XZ). Moreover, since we obviously have

x|, < liminf ||x" and ||x2 < liminf ||X2"|,,,.
lxll, < imin [l [l 0 Ix“{l2, < im1in I 2

we deduce that (x, x?) € C}' x C;” . Finally, we have
lx —x"|l, — 0 and [x* —x*"|2, —> O,

owing to the fact that

1-£ 1=K
e = %"l < llx = 2"l I = x"lloo " < (11l + 1" 1y ) Ix = x"lloo

and similarly:
I

1—&
2 2 2 2, 22
—x""lay < (IIX ll2y + lIx "Ilzy)IIX x| O

lIx

We will use the last result in order to get a reasonable tightness criterion for our approximation
processes X¢ and X2e, by means of a slight elaboration of [21, Corollary 6.1]:

Proposition 4.2. Let X¢ and X*¢ be defined respectively by (17) and (18). If, for every n > 0,
there exists y > w and A < 0o such that

sup P[IIX°|, > A1<n and sup P[IX*%|lp, > Al <1, 2

O0<e<l 0<e<l

then (X¢,X%¢) is tight in CI* x C3"".
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Proof. Recall the Prokhorov theorem relating precompactness of measures on a space to
compactness of sets in the space. This result states that a family M of probability measures
on the Borel sets of a complete separable metric space S is weakly precompact if and only if for
every 1 > 0 there exists a compact set K;, C § such that

sup 11 (S\ Ky) <71
HeM

Furthermore, it is readily checked that the couple (X?, X%#) satisfies the assumption (20),
which allows to apply Lemma 4.1. Hence, combining this lemma with Prokhorov’s theorem,
our proposition is easily proved. [

Let us turn now to the main result of this subsection:
Proposition 4.3. The sequence (X, X*>?),~¢ defined in Theorem 3.1 is tight in Cf X Cg”.

Proof. Thanks to Proposition 4.2, we just have to prove that (X¢, X>¢) verifies (21). For an
arbitrary n € (0, 1), we will first deal with the relation

sup P[IIX[l, > A] <n, (22)
O<e<l1
for A = A, large enough, and 1/3 < y < H. To this purpose, let us recall some basic facts

about Sobolev spaces, for which we refer to [1]: for « € (0, 1) and p > 1, the Sobolev space
WP ([0, T]; R") is induced by the semi-norm

T _
1L, = / f @O = O o 23)

|t—s|1+“1’

Then the Sobolev imbedding theorem states that, if ap > 1, then W* P ([0, T, R9) is contin-
uously imbedded in Ci/ (R?) for any y < a — 1/p, where the spaces Ci’ have been defined by
relation (8), and in this case, we furthermore have that

If1ly < el flle.ps 24)

for a positive constant ¢ = ¢, ,. Notice that, in both (8) and (23), the sup part of the usual Holder
or Sobolev norm has been omitted, but can be recovered since we are dealing with fixed initial
conditions. In order to prove (22), it is thus sufficient to check that, for any p > 1 sufficiently
large and o < H, the following bound holds true:

T £ £
Xe(t)—X P
sup E[/ / Xm - (S)|ddt]5Ma,,,<oo. (25)
0<e<l [t — s|iter

Invoking Lemma 6.1 and then Lemma 2.7, we easily get (see [5] page 11 for the details), for any
e > 0,any ¢ > s > 0 and any integer m > 1:

E[1X @) = X 0P| < cam,ult = s, 26)

Note that here, and in the remainder of the proof, c(. denotes a generic constant depending only
on the object(s) inside its argument, and which may take different values one formula to another
one. From (26), we deduce that (25) holds for any ¢ < H and p large enough, from which (22)
is easily seen. Moreover, thanks to the classical Garsia—Rodemich—-Rumsey lemma, see [13], for
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any £,6,T > Oandi € {l,...,d}, there exists a random variable G180 guch that, for any
s,t €[0,T]:
X (0) = X ()] < GTooT e — s 772, @7)

Since the bound in (26) is independent of ¢, it is easily checked that, for any integer m > 1, any
ie{l,...,d}and any 8, T > 0 (§ small enough), we have

Com,s = sup E <|GT,5,e,i|2m) < 400

O<e<l
Let us turn now to the tightness of (X2),~. Recall first that X%° (i, i) = Tt — x5H2,
Therefore, we deduce from (26) that

- Cam,H
E[IXG G )] < =5l — s (28)

Assume now that i # j. We have, by applying successively (50), Lemma 6.1 and (27):

t . .
/ (K55 = X5V + e — P
S

m

E[X5 (L )P < cn E

s ) . m
E / (X0 = XP) (e -2 — s+ e —w7) du
0

t t ) ' s 2 ™
/ (/ |X,ﬁ’8—Xﬁ'€|(u+8—v)H2du> dv
0 sVv

This last expression can be trivially bounded by considering the case ¢ = 0, and some elementary
calculations then lead to the relation

ENX3 G, )] < emrlt — |72 (29)

+Cm

—i—Cm’HE

In order to conclude that X? verifies the second inequality in (21), let us recall the following
inequality from [14]: let g € C2(V) for a given Banach space V; then, for any x > O and p > 1
we have

1/p
|gst 1P
gl SC(UK+2/p;p(g)+ ||5g||y) with Uy, ,(g) = (/ / t—Sts|VI’d sdt . (30)

By plugging inequality (28)—(29), for § > 0 small enough, into (30) and by recalling that
§X>¢ = §X° ® X and inequality (27), we obtain easily the second part of (21). [

5. Fdd convergence in Theorem 3.1

This section is devoted to the second part of the proof of Theorem 3.1, namely the convergence
of finite-dimensional distributions. Precisely, we shall prove the following:

Proposition 5.1. Let (X¢, X>¥) be the approximation process defined by (17) and (18). Then
f.d.d. — lin%)(Xg, X>#) = (B, B?), (31)
e—

where f.d.d. — lim stands for the convergence in law of the finite-dimensional distributions.
Otherwise stated, for any k > 1 and any family {s;, t;; i <k,0 <s; <t; < T}, we have

2,
L— hm(X Sm’ .. ka XSkfk) (B, B

LB B2 ). (32)

Slll
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Proof. The proof is divided into several steps. I

(i) Reduction of the problem. For simplicity, we assume that the dimension d of B is 2 (the
general case can be treated along the same lines, up to some cumbersome notations). Fori = 1, 2,
eg>0and 0 <u <t <T,letus consider

t
Yo (u, 1) = / (X508 — X1Ey (v — WH=3dy
u
and
t
Yi(u,1) = / (Bl — B)(v — )"~ 2dv.
u

In this step, we shall prove that the fdd convergence (31) is a consequence of the following

one:
</ Qg’l(u)du,/ Hg’z(u)du,/ X2¢0% (u)du,
0 0 0

x / Yz’s(u,-)é’a’l(u)du,/- XLJ,’EQS’Z(M)du,/ Yl’g(uw)eg’Z(“)d”)
0 0 0

rag <W1,W2sf BgdW;,/ yz(u,-)dwul,/ B;dwj,/ Y, .)dW3>. (33)
0 0 0 ’

Indeed, assume for an instant that (33) takes place. Then, approximating the kernel (r — -)#—1/2

in L2 by a sequence of step functions (along the same lines as in [9, Proof of Theorem 1, p. 404]),
it is easily checked that we also have:

x /O'YM(M,.>ef»1(u>du,fo'(-+e—u)ff—%x;fe&’-"(u)du,/()'Yl’f(u,-wf*z(u)du)
(51,52 [ Baw,
x /O'Yz(u, ~)qu‘,/0'(~—u)H‘%BJde,/O'Y'Wv)dwzf)- 9

In other words, we can add the deterministic kernel (- + & — u)H -3 in the first, second, third and
fifth components of (33) without difficulty. Let us invoke now the forthcoming identity (50) in
Lemma 6.3 for s = 0, which allows easily to go from (34) to:

(xbe, x> X25(1,2), X252, 1)) 28 (31,32,/ Bdel,/ Bld32>. (35)
0 0

Finally, in order to prove our claim (32) from (35), it is enough to observe that ng (i,i) =
(X;%)?/2 and
X35 ) = X5 ) = X7 ) = X6 (x) = X7,

t N

(1) Simplification of the statement (33). For the simplicity of the exposition, we only prove
(33) for a fixed t, instead of a vector (#1,...,%,). It will be clear from our proof that the
general case can be elaborated easily from this particular situation, up to some additional
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unpleasant notations. Precisely, we shall prove that, for any u = (uy,...,ue) € RO, we have
lim;— 08, = E[exp(i{u, U))], where 8, := E[exp(i{u, U?))], U® is defined by

t t t
Ut = m/ Gg’l(v)dv+u2/ 98’2(v)dv+u3/ X295 (v)dv
0 0 0

t t t
+u4/ Y2'8(v,t)95’1(v)dv+u5/ Xi’ges’z(v)dv+u6/ YL, 652 (v)dv,
0 0 0
and

t
U=uw +u2W}+u3/ B2dw]
0

t t t
+u4/ Y2(v, 1)dw} +u5/ Bvlde2+u6/ Y (v, 1)dw?.
0 0 0

In order to analyze the asymptotic behavior of §., let us first express U¢ as an integral with
respect to %! only. Indeed, Fubini’s theorem easily yields

t t t
/ X052 (v)dv :/ duGa’l(u)/ dos2 () (v + & — w2,
0 0 u
and the same kind of argument also gives
t t t w 1
/ YL (v, 652 (v)dv = / duOg’l(u)/ dw[ dvo®?(v)(w —v)7 2
0 0 u u
x ((w+e— u)H_% —(v+e— u)H_%)
t t u
+ f du@s’l(u)f dwf dve*2 (W) (w — VH I (w + e — w2,
0 u 0

Therefore, integrating first with respect to the randomness contained in #%!, one is allowed to
. t pe,
write §; = E(P,(Z%) ™2 Jo® 2(”)d”) where, for f € L1([0, t]), we set

P.(f) =E (eif(; f(”)ea'l(u)du> ,

and where the process Z¢ is defined by:

t
ZE = uy + u3 X2+ usY>(u, t) + us / +e—u)=20°2(v)dv

u

t w
+u6/ dw/ dves’z(v)(w_U)H%((w—i-e—u)H*% —(v—l—e—u)H*%)
u u

t u
+u6/ dw/ A2 () (w — )3 (w46 — )3 (36)

u 0
Hence setting now, for f € L2([0, t]),

. 1 !

B(f) =E (elfé f W"‘Wi) — exp <—— / f2(u)du> ,
2 Jo

we have obtained the decomposition

8 = E (@(Z)ei”zwrz) +vd 0}



X. Bardina et al. / Stochastic Processes and their Applications 120 (2010) 39-65 53

where the process Z is given by

1
Z, = uj +u3B,f—|—u4Y2(u,t) +u5/ (v—u)H_%dWU2
u
! w 5 H_3 ] 1
+u6/ dw/ dw, (w —v) _?((w—u) _5—(v—u)7)
u u

t u
+u6/ dw/ dez(u) — v)Hfg(w — u)Hfé, u €[0,1],
u 0
and with two remainders v, v? defined as:
vg — E (Qg(ZS)eiuz fol 95*2(u)du) _E (@(Za)eiuz f(; 98*2(u)du)

b
Vg

E (ds(ze)eiuzfo’ 96~2(u)du) _E (¢(Z)eiuzwf> .

The convergence of vf above is easily established: using again the same strategy than in [9,
Proof of Theorem 1] (namely reducing the problem to a convergence of the Kac—Stroock process
to white noise itself via an approximation of Liouville’s kernel by step functions), one has that

t P
<zf,/0 Qg’z(u)du> g%%)(z, Ww2).

Note that the convergence in law in the last equation holds in the space 4 x R, where ¥ =
% ([0, t]) denotes the space of continuous function endowed with the uniform norm || - ||s0. In
particular, it is readily checked that lim,_, ¢ vf =0.

Now, it remains to prove that lim,ov{ = 0. To this aim, we notice that we can bound

trivially |2 le| by 1, and then apply the forthcoming Lemma 6.2 in order to deduce that

2 4 u?)1Z¢ )2
a 2« 2 u u |u L2
[l < E || e callZellallZell 21 +¢zg(8)3+wzg(8)§ +<ﬂzs(8)7 e 2

for any o € (0, 1). Furthermore, it is well known that characteristic functions on a neighborhood
of 0 are sufficient to identify probability laws. Consequently, using Holder’s inequality, we see
that in order to get lim;_,¢ v = 0, we are left to check that, for a given ug > 0,

sup E[lIZe]13] < oo, (37)
O<e<l
1in% E[¢7 ()] =0, m% E[y3 ()] =0, 111% E[¢3 ()] =0, (38)
E—> E—> E—>
| Ze 1%,
sup Ele 2] <M forallu < uo. (39)
O<e<l

We are now going to see that relations (37), (38) and (39) are satisfied.
(iii) Simplification of inequality (39). Recall that Z¢ has been defined by (36), and decompose
itas Z, = uy +uzUy (u) + ugU; () + usU3 (u) + ucUy (u) + usUs (u), with

Ut (u) = X2¢

u

t
US(u) = Y5 (u, 1), Us(u) = / r+¢—wH=3652(r)dr

t w
UE (1) =u(,/ dw/ dre®2(ryw — I 3w+ e -2 — (r + 6 —w)—2)
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t u
Us(u) = f dwf dro®2(r)(w — r)H_%(w +e&— u)H—%
u 0

In order to obtain (39), it is sufficient to check that there exists M > 0 such that, for « > 0 small
enoughandi =1,...,5, we have

sup E (e" I Uis(")zd“) <M. 40)

0<e<l

Moreover, observe that Uf can always be written under the form

T
UE () = / Viu, r. )0°2(r)dr, (1)
0
for a deterministic function V; (u, r, €), and it is thus enough to check that
T
C; = sup sup / Viz(u, r,e)dr < oo. 42)
uel0,T] 0<e<1J0

Indeed, using Lemma 6.1, we can write

E (eK I Uf(u)zdu) = i ’%E {( / ' U;“(u>2du>m]
: 0

m=0

< = Z (TK)m / [Uig(u)bn]du

-1 / (2m)’(TK)'"

T om(mh?

o0
Vi, -, )l 75du < > (9TkCi)™,
m=0
where we have used the bound (m/3)™ < m! < m™ in the last inequality, so that the desired
conclusion follows for ¥ > 0 small enough.

(iv) Proof of (42). We shall treat separately the cases fori = 1, ..., 5. During all the compu-
tations below, C > 0 will denote a constant depending only on H and 7', which can differ from
one line to another.

(a) Casei = 1. We have Xz = [ Vi(u, r, £)6°2(r)dr with

Viu,r, ) = i (r)(u+e —r)f=2

Since
2H

T u u u
/ Vlz(u,r,s)dr:/ (u+s—r)2”*‘dr5/ (u-r)”“dr:z— <cC,
0 0 0

we have that (42) takes place fori = 1.
(b) Case i = 2. We have Y2¢(u, 1) = fOT Va(u, r, £)0%2(r)dr, with

4 1 1
Va(u,r, &) = 1[0,u](r)/ (wH+e—rf"2 —@w+e—-rH2)w —wH 3y

t
+1[u.t](")/ (w+e— ”)H_%(w _ M)H_%dw,
r
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Then fif V2(u,r, e)dr = Az 1(u, ) + A2 (u, €), where
2

u t 1 1
Az,](u,5)=/ (/ ((w+s—r)H—z—(u+s—r)H—z)(w—u)H—3dw> dr,
0 u

t t 3 2
A (u, €) =/ (/ (w—i-s—r)Hé(w—u)Hidw) dr.

Forany 8 € (0, 1) and w > u > r > 0, we can write, for some w* € (u + &, w + ¢):
)(w +¢ —r)H_% —(u+e —r)H_%

1_
Clw — ulP ( 1 1 ) ’3< Clw —ulP
|

= 3 = 1 :
|w*_r|(§—H)ﬁ u—r|7+ﬁ_H

1 1
lw+e—ri27"  ju4+e—riz7H

Then, choosing 8 = % — H + § (with § > 0 small enough), we can write

Agi(u,e) < c/” dr /t dw ) _ c
u,e) < _— X — ) <C,
2,1 o |u — r[24HF2 L Jw — |l

where we have used the fact that 2 —4H < 1 whenever H > 1/4. Using similar arguments, it is
also possible to prove that A 2 (u, &) < C (see [5] page 17 for the details).
(c) Case i = 3. We have

' T
/ r+e— u)H*%QS’z(r)dr = / Vi(u, r, £)0%%(r)dr,
u 0

with V3(u, r, &) = 1j,,n(r)(r + & — u)f _%, so that the desired conclusion follows immediately
since

(t — u)ZH

1 t t
f VZ(u,r, e)dr = / r+e—uwfldr < f r—wlgr=""""_ <.
0 u u 2H
(d) Case i = 4. We can write
t w H 3 H 1 H 1 2
f dwf dr(w = "2 (w +e =72 =+ e —w)!72)8"2(0)
u u
as [, Va(u, r, £)0°2(r)dr, with

t 3 ) ]
Vau,r, &) = 1[u,t](r)/ w-—r""2(w+e—w2 - +e—w2)dw.

Then, according to the computations already performed for the analysis of A> ; above, we obtain,
for § > 0 small enough,

/Tv2< )d<Cft—l /t—dw “arec
u,r,e)dr < r<C.
0 L — a2\ = 18

(e) Case i = 5. We have

t u T
f dw/ dr(w — 3w+ e —w)30°2(r) = f Vs(u, r, £)0°2(r)dr,
u 0 0
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with

! H-3 H-1
Vs(u,r,e) =1j0,,(r) | (w—r)""2(w+¢e—u)" 2dw.
u

. 3_ _ 1_
Since [w—r |27 > |[w—u|""HH|y—r|2 0 forr < u < w, we get (for § > 0 small enough) that

3 C C
‘(w—r)H_f(w+8—u)H_% < 3 — =< ] 3 .
lw—r2"Hw—ul27H lu —r|2 78w — u|272H+3
Hence, invoking again the fact that H > 1/4, we end up with
2
T “odr ! dw
Vs (u,r,e)dr <C —_ X —— ] =

0 0 |M_r|l_2(S u |w—1,{|‘7_2H'~_‘S

(v) Proof of (38). In the previous step, we have shown in particular that, forany i =1, ..., 5,

we have supy_, < fOT E[|Ul.8(u)|p]du < oo for all p > 1, which implies

T
sup / E[|Zi|p]du < oo, forallp> 1.
0

O<e<l

On the other hand, a simple application of Schwarz inequality yields

u 2 T
E[¢7:()] = [(/ (z5) e_izdu> } < Cezfo E[(z8)*]du

and the same kind of argument also gives

T . 2
E[vz @] =E [(/ dxfo dy(Zi)2(z;)2e(gz"> }
U] |: T _26-p\ 1 T x , e )
=2 Ll ([ [aver

T
<C8f E(Zs
0

Finally, we have
e 172\ 2
E (8||Z£||Lz+</ (z;)zdu> )
0

262E(1Z°12,) +2 f E[(22)?)du
0

E[¢7: ()]

IA

T 1/2
262E(I1Z°)2,) + 26112 ( /0 E[<z;)4]du) ,
and the proof of (38) follows immediately by putting all these facts together.

(vi) Proof of (37). Foralla < B — %, the Sobolev inequality (24) yields | Z°|lo < ClIZ¢|Ig, p,
where || f | g, has been defined by (23). Moreover, recall from (36) that Z° has the form

IA

T
zZE—Z¢ =f G(s,t,r)0%*(r)dr
0
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for some G(s,t,-) € L2([O, T1). Hence, using the definition of 942, we can write, for any even
integer p > 2,

E|Z; - Z]|P =¢7F /[0 - G(s,t,r))---G(s,1, r,,)E[(—1)N<%>+“'+N<%">]dr1 --dr,

_2(r17r2) _Z(rpflfrp)
=ple”? /[() - G(s,t,r1)---G(s, t,rp)e & -..e e Apyzezp,ydry - drp

2(r1—rp)

p! 5 B p/2
—_— (8 / , G(s,t,r1)G(s,t,rp)e & 1{r.3r2}d71d72>
[0,T]

~ (/2!

p! g2 NETES p/2
T2\ 2 Jo 2G(svt”’l)G(S,t,rz)E[(—l) : )drydry
’ [0,T]

!
= o (E1Z] - )",
22(p/2)!

In particular, we see that, in order to achieve the proof of (37), it is enough to check that

E|Zf - ZE* < Clt — 5772 (43)
for some § > 0 (small enough). Actually, we shall use again the decomposition of Z¢ in terms
of the U;’s, which means that it is sufficient to prove E|UlfE (u) — Uf(v)|2 < Clu — v|H_‘S for
i =1,...,5 Butitis easily seen that
2

T
E\Uf(u) —Uf()|> = E / (Vi(u, r,8) = Vi(u, r, £))052(r)dr
0

T
5/ (Vi(u, r, &) — Viv, r, £))dr,
0

where V; is defined by (41), and are specified at step (iii). It is thus enough for our purposes to
show that fOT(V,-(u, r,e) —Vi(uv,r, 8))2dr <Clu— v|H"S forO <u <v <t wheret € [0, T],
which can be done as in Step (iv) above, see [5] page 20 for the details.

The proof of Proposition 5.1 is done. [l

6. Some technical lemmas

This section collect the technical results that have been used throughout the proof of Theo-
rem 3.1. The first lemma aims at giving some estimates concerning the Kac—Stroock kernel (3),
which can be seen as a elaboration of the ones contained in Delgado and Jolis [9, Lemma 2].
Notice however that these latter results are not sharp enough for our purposes, which forced us
to a refinement.

Lemma 6.1. Letm € N, f, f1,..., fom € L2(0,T), k € {1,2} and ¢ > 0. We have:

[2m T ok 2m)!
E ,1:[1 /0 FO8 || < S fill D ol (44)
and
B T 2m+1 2 + !
E ( fo f(r)@g’k(i’)dr> ] 5<p;-(s)%llf|li’%’, (45)
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where
1

0r() = el fll 2 + ([0 |f<s>|2ds)2

Proof. Form e N, ¢ > O and fi,..., fom € L2([0, T, let us denote

2m T
25, (fioeoos fom) = E [1‘[ fo fj(r)9€’k(r)dr].
Jj=1

We will need to introduce some operations on the set of permutations (in the sequel, Sy stands
for the set of permutations on {1, ..., k}): when t € Gy, and 0 € &,,,, we note o x T the element
of Gy, defined by

(ox1)2j—1)=1tQo(j)—1) and (o*x71)(2j)=1t20())).

Remark that we haveid* 7 =t and o' x (0 x7) = (60') x T, 50 * : &, x &2, — Sy, defines
a (right) group action of G,,, on G,,. For any t € &,,,, the orbit of ‘C has exactly m! elements.

Consequently, the set & of the orbits under the group action has @2 elements and we have,
by denoting 7; one particular element of the orbit o; = o(t;) € 0 for r1, ..., rm €]0,1],
I{Viij,rfirj} = Z 1{r1(1)>"'>rr(2m)} = Z Z 1{r1(1)>--->rr<2m)}
€6y, 0,€0 TEO;
@em)\/m! m

Z 1_[1{"21,-(j)—1>’21,-(j)}' (46)
i=1  j=1

For the reader who might not be completely convinced by this inequality, let us illustrate it by an
example: when m = 2 and 7; = id € G4, we have 0; = o(t;) = {id, (13)(24)} and we have used

Z l{rr(1)>rr(2)>rr(3)>rr(4)} = 1{r1>f2>r3>r4} + 1{r3>r4>r1>r2} = 1{r1>r2}1{r3>r4}

TEO;
2
= 1_[ 1{r2rl-(j)—1>r21i(j)}'
Jj=1

Let us apply now inequality (46). We introduce first a notation which will prevail until the end

_2r
of the article: for ¢ > O and r € R, we set Q.(r) := e ¢ /2. Notice then that, for any ¢ > 0:

1
[AS,, (fi,- ., fam)| < g - LAGD] - fom (ram)]

2m

ZN 5
x |E | (=1)i=1 dry...droyy,
Z Z Zm/ l{r,(1)> >rf(2m)}|f1(rl)| |f2m(r2m)|
0, €0 TEO; [0,7

m
X Qe (Z(rr(zil) - rr(2i)))drl - droy,

i=1
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and thus, according to (46), we obtain

Cm)!/m! m
25, el = Y ] f[o o N 1 DI 02
= -l
X Qe (r1 — rp)dridry
_ @m)!
= ||f1||L2 A Sfomll g2,
the last inequality coming from

/0 L eI fe(r2)1 Qe (ri — ra)dridra
[0.7]

T r 2
< (/0 | ferp)? (fo Q. (ry — rz)drz) drl)
T T 3
X (/0 | fe(ra)|? (/ Q:(r1 — rz)dr1> drz)
r

1
=< §||fk||L2||fE||L2~ 47)

This finishes the proof of (44), so let us now concentrate on (45). For m € N, we have

T 2m+1
E|:</ f(r)@g’k(r)dr) ]
0
2m+1

1 2m—+1 Z N(g%)
/ [T1rent|E| -n = dri ... dramt
[

< —
82m+1 ()T2+ll1

2m
2m+1 (T 2m N+ NE)

=T+1f If(s)lds/ [Tt |E [ 75  [an . dra

I 0 [S,T]z'” =1

T v
1 _2
< @m+1) A5, (S, 1fD) / If(S)IEe e2ds.
0
2
Since for s > &, we have that ize &2 % we get that
1

7£ r 1 _2
/0 If(S)I e ézds—/ If(S)I 2d +8/ |f(S)|8—26 2 ds

5 3 e i ¢ T
(/0 10 ds) (fo Qe(ZS)dS> +2 / £ (5)lds

1 ¢ 2 1o
5 / L f)I7ds ) + =1 fllz2, (48)
2 \Jo 2

and (45) follows easily. O

The following lemma aims at measuring the distance between the laws of the stochastic
integrals fOT f (r)6%k(r)dr and fOT f (r)der, whenever f is a given (deterministic) function:

IA

IA
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Lemma 6.2. Let f € C*([0, T)) fora givena € (0,1), k € {1,2} and ¢ > 0. For any u € R,
we have:

‘E[ei” 1 f(r)Og*k(r)dr] _ E[eiu I f(r)dwf]

2 4 M ZHin
5[8 ca Il fllall £l 20 +¢f(8)—+tﬁf(8)—+<pf(8)—] z o, (49)

withcq = [3° x%e 2 dx and

2(x—y)

T x T X
b7(e) = /0 Pe Fde, ) = /0 dxf?(x) /0 dyf2(y)e 2

Proof. The proof is divided into two steps.
1. First step: control of the imaginary part. We can write, thanks to (45):

‘Im ( E[e I f(r)ewr)dr] — E[e" o f(r)dw,"m _ ‘Im E[e" I f(r)@g*k(r)dr]
|u|2m+l

00 T 2m+1
2:: am T ) [(/0 f(r)es,k(r)dr> }

2. Second step: control of the real part. This step is more technical, and we will mainly get a
bound on the quantity L,, . defined by:

u| 21717,
<<0f(8)—e 2

e = ‘W Ao (s ) — —/ FAs1)dsi . / £ (sm)dsim| -

In order to express this quantity in a suitable way for estimations, notice that fooo e Xds = %
We can thus insert this term artificially in the multiple integrals involved in the computations of

E[e" I f(r)der]. This gives:

2m)!
2m—3 5 5

) / F2(ram-1)dram / 2 dry,
0 0

By a telescoping sum argument, we can now write L,, . as a sum of m terms, whose prototype
is given by My, . = M1 e+ M,%, — M3 _, with

m,ge?

1 T e’}
Liype = ‘—Agm(f,...,f)—f fz(rl)dn/ e 22dr,
0 0
0

r
M, ¢ :/o If(rl)ldn/O | fr2)| Qe (r1 — r2)dr,

2m-2 2m—1
/0 |f(r2m—l)|dr2m—l‘/0 |f(r2m)_f(er—l)lQa(VZm—l — rom)droy,
where M7, , is defined by
T ry
= /o f(Vl)drl/O f(r2)Qe(ry —r2)dra

[e.0]

2m-2
/ fz(er—l)erm—I/ Q¢ (ram)drom,
0

2m—1
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and where
M, . / S (rydry / f(r2)Qe(ry —r2)dr
2m-3 2 o) 2
: / fo(ram—1)dry,—1 / e 2ndroy.
2m—2 0
We will now bound those three terms separately: invoking first (47), we get
| 1 T r m—1
M, & < — d —ry)d
he S T (/0 Felan [ 17l =) Vz)
T m—1
X / | f (ram—Ddram—1 ”f”a/ [rom — rom—11% Qe (ram—1 — ram)dram
0 0
2m 1 20
= m”f” I fllacae
On the other hand, (47) and (48) also yield:
1 T r m—1
M, < r—— (/ |f(rl)|d7’1/ [f(r2)]Qe(r) — rz)dr2>
( ! \Jo 0
r 2 2m—2
X 5/0 S ram—1) Qe (rom—1)dram—1 < mﬂf” Y or(e).
Finally, M, . can be bounded in a similar way (see [5] page 28 for the details), and we get
1
3 2m—4
Mm,e = (m —2)12m ”f” wf(s).
Our proof is now easily finished: plug our estimates on M,L & M,%, e into the
definition of M,, ., and then in the definition L,, .. This yields
)Re( ot I f(r)e“(r)dr] _ E[eiu I f(r)de])’
S u (2M)
S o)
= Q2m)!
WA Hf\liz
[8 Ca |l f llell £ll 207 +¢f(8)—+1/ff(8)—] ,
which is our claim. [
The following lemma gives an alternative form for X>¢ and B*:
Lemma 6.3. Fixi, j € {l,...,d},andt > s > 0. Forall ¢ > 0, we have
t . . .
X5, j) = / (X5 = XI*)(t + & — )" =209 (u)du
0
s . . .
— / (XLJ,S — Xﬁ’g)(s +e— u)H_%QS”(u)du
0
t . t . . 3
—oer dvG“(v)/ du(X)® = X3 +e—v)fi—2 (50)
0 sVu
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where we have set oy = 1/2 — H. In the limit ¢ — 0, we also have
t . ;
BhG.J) = [ (81 B]) - taw]
N
s ) .
—/ (B — B[t — w2 — (s —wyH~2]aw}
0
t ot ) ) 5
—ozH/ dWl’)/ du(B; — Bf)(u —v)* 2. (51)
0 vVs

Proof. For any ¢ > 0, the process X &l i differentiable, and according to (17), we have
u
X&) = 12051 () — ay / (u+e—v)I3265 (v)dv.
0
Recall also that we have set SX!,’S = X[j’e - X!’g for any s, t € [0, T']. This allows to write:

1 , . t . )
XZEG, j) = / sXLEdxLe = ef=2 f SX1E 05 (u)du
N

N
t . u 3 .
—aH/ du8X's’,’f/0 dv(u + & — v)1726% (v). (52)
S

Moreover, an elementary application of Fubini’s theorem yields:
t . u 5 t ) t . 3
/ duaxggf/ dv(u +¢ —v)I7265 (v) = / dng"(v)f dus Xyl u+e—v)2
s 0 0 sVv

t ) t
= / dvo®  (v)8X1F / dr(r +¢ — u)H_%
0 K

SV U

t _ t .
+ / dvée”(v)/ drs X (r+6 — v)”’%.
0 sVv

Integrating the kernel (r + & — u)? _%, and plugging the last identity into (52), we obtain the
desired relation (50).
To get formula (51) for Bft (i, j), it suffices to observe that

t , , .
B2,(i, j)=L%— 811310/ (Bi — BY)dBL*
N

with B,i’s = f(;‘ (u+e—v)f _%dW{;, and then to mimic the computations allowing us to write
(50) just above. Details are left to the reader (see also the proof of [3, Lemma 3]). O

Finally, the following lemma gives an estimate for the variance of Bf., (i, j) which is useful in
the proof of Proposition 2.8:

Lemma 6.4. There exists a constant ¢ > 0, depending only on H, such that E|Bf, i, D> <
clt —s|* forallt >s>0andi, je{l,...,d).

Proof. The case where i = j is immediate by Lemma 2.7, so we only concentrate on the case
where i # j. Using formula (51), we see that we have to bound the three following terms:

4 . ,
A :=f E|B) — B! )(t —w)* " 'du
N
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K X . 2
A ::/ E|B] — BI? ((r—u)H—%—(s—u)H—%) du
0

t
A3:=/E
0

Throughout the proof, ¢ will denote a generic constant (depending only on H, T') whose value

t ) ) 2
/ du(B,f - BI{)(M — U)H_% dv.
v

Vs

can change from one line to another. Owing to the fact that E|BL{ - B] 1> < clu — s|*, see
Lemma 2.7, we can write

t t
Al < c/ (u— s)ZH(t — u)ZHfldu <c(t— s)ZH/ (t— w?H=1qy = c(t — $)H
N N
We also get

A

IA

c/‘ (s — u)*H ((r —wHr (s - u)H*%)zdu
0
0

=0 2
[ (=)

I
[
—~
~
|
oo}

2
A+w)f2 - qué) du = c(t — s)4H,

A
2
|
172
S
=
S~ S
3
<
[ ]
T
—

the last integral being finite since H < % Finally, we have

2
E

t . .
/ du(Bj — BI)(u — v)"~3
v

N

! ! . . . . 3 3
:/ du/ dwE[(Bj) — B])(B], — B)]w —v) 2 (w —v)# 2
AVAY vVs

! ¢ 3 3 ¢ 3 2
§c/ du/ dw(u—v)ZH_i(w—v)ZH_i:c</ (u—v)zH_idu);
c[s[(t—v)”"% (s — )23 dv+c/ </(u )2H—zdu) dv
0

o0
< c(t— s)4H/ [(1 + v)2H_% - v2H_7] dv + c/ (t — v)4H—1dv
0 s

=c(t — s)4H.

so that

A3

IA

This finishes the proof of the lemma. [
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