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Abstract

We consider the stochastic three dimensional magnetohydrodynamic-o model (MHD-«) which arises
in the modeling of turbulent flows of fluids and magnetofluids. We introduce a suitable notion of weak
martingale solution and prove its existence. We also discuss the relation of the stochastic 3D MHD-«
model to the stochastic 3D magnetohydrodynamic equations by proving a convergence theorem, that is,
as the length scale o tends to zero, a subsequence of weak martingale solutions of the stochastic 3D
MHD-« model converges to a certain weak martingale solution of the stochastic 3D magnetohydrodynamic
equations. Finally, we prove the existence and uniqueness of the probabilistic strong solution of the 3D
MHD-« under strong assumptions on the external forces.
© 2012 Elsevier B.V. All rights reserved.
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1. Introduction

The three dimensional magnetohydrodynamic (MHD) equations involve coupling Maxwell’s
equations governing the magnetic field and the Navier—Stokes equations (NSE) governing
the fluid motion (see [10]). They play a fundamental role in Astrophysics, Geophysics,
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Plasma Physics, and in many other areas in applied sciences. In many of these, turbulent
magnetohydrodynamic flows are typical. Even with the most current sophisticated scientific
tools, it is a very challenging task to compute analytically or via direct numerical simulations the
turbulent behavior of 3-D incompressible fluids or magnetic fluids due to the large range of scale
of motions that need to be resolved. To tackle this issue, models which can capture the physical
phenomenon of turbulence in fluid flows at a lower computability cost have been proposed
over the past three decades. The Navier—Stokes-o model is considered to be amongst the best
as a closure model of turbulence in fluid flows. Several analytical and numerical results seem
to confirm this fact (see [11-13]). This excellent performance of the Navier—Stokes-« model
has motivated the extensive analysis of alpha subgrid models of turbulence in recent years (see
[11-15,22,23,26,27,30-32,35,53]).

Thanks to the success of these alpha models of turbulence, it is natural to consider their
extension to the magnetohydrodynamic equations as well. In [33], Linshiz and Titi suggested
several models, but in accordance to their analytic comparison it is enough to consider the
following magnetohydrodynamic-alpha (MHD-¢ ) model

v > 1_

E+(M~V)U+;UJVMI' —vAv+ VP + VB = (B-V)B,

dB

5, H @ VB (B-V)u—nAB =0, (1
v=( —a’A)u,

Vu=V.v=V.B=0,
u(x, 0) = ug, B(x,0) = By,

where u and B, represent the unknown ‘filtered’ fluid velocity and magnetic field, respectively,
P is the unknown ‘filtered’ pressure, and @ > 0 is the length scale parameter that represent the
width of the filters.

For a flow region 7, (1) has formally three quadratic invariants in the ideal case, i.e., when
v=n=0:

o the energy E% = %fT(v(x).u(x) + |B(x)|?)dx,
e the cross helicity Hg = % fT v(x).B(x)dx, and

e the magnetic helicity Hy, = % fT A(x).B(x)dx, where A is the vector potential so that
B =V xA.

These ideal invariants reduce, as « — 0, to those of 3-D MHD equations under suitable
boundary conditions (in periodic boundary conditions or in the whole space R3). These facts
make (1) more interesting than other MHD-« systems, which are either ill-posed or do not inherit
some of the original properties of the 3-D MHD equations, when considering the alpha models
as a regularizing numerical scheme. See [33] for justifications of the last statement.

However, in order to consider a more realistic model of turbulent evolutive fluid, it is sensible
to consider some kind of stochastic perturbation represented by a noise term in the equations.
This idea of introducing a noise term has been motivated by Reynolds’ work on stochastic
fluids mechanics which stipulated that turbulence is composed by slow (deterministic) and
fast (stochastic) components. It is also important to note that a noise term may also reflect,
for instance, some environmental effects of the phenomena, some external random forces,
etc. Such approach in the mathematical investigation for the understanding of the Newtonian
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turbulence phenomenon was pioneered by Bensoussan and Temam in [6] where they studied the
Stochastic Navier—Stokes Equation (SNSE). Since then stochastic partial differential equations
and stochastic models of Newtonian fluid dynamics have been the object of intense investigations
which have [1,5,7,8,17-19,34,38,43,41,42,44,45,21].

In our turn, we shall study the stochastic 3-D MHD-« model in the present work. Let 7 > 0
be a final time and let 7 = [0, 27'[]3 , the 3-D stochastic MHD-« is described by the following
system

3
1
dv + |:(u.V)v + Z vjVuj —vAv + Vg + 5V|B|2 - (B.V)B:| dt
j=1

= filu, B,t)dt + g1(u, B, t)dW,
dB + [(u.V)B — (B.V)u — nABldt = f>(u, B, t)dt + g>(u, B, t)dW,
v=(I —a’Au, )
Vu=Vw=V.B=0,

/u(x,t)dx:/ B(x,t)dx =0,
T T

u and B are periodic in space x,
u(x, 0) = uo, B(x,0) = By,

where u = (u1,u»,u3), B = (B, B2, B3) and ‘B3 are unknown random fields defined on
T x [0, T], representing, respectively, the fluid velocity, the magnetic field and the pressure,
at each point of 7 x [0, T]. The terms f;(u, B,t) and g;(u, B,t)dW (i = 1,2) are external
forces depending on u and B, where W is an R?-valued standard Wiener process. Finally, uq
and By are given non random initial velocity and magnetic field, respectively. Although we are
working with finite dimensional Wiener process W, all the results of this paper remain valid if
W is infinite dimensional with E|W (¢)|?> < co. Our argument can be also transferred to the case
of two different mutually independent Wiener processes.

At the limit « = 0, we formally obtain the stochastic 3-D MHD equations. The study of
the stochastic 3-D MHD equations was investigated in [49,2,46]. The authors in [49,2] consider
additive noises. Using Galerkin’s approximation and compactness method, the author in [46]
proved the existence of probabilistic weak solutions for the stochastic 3-D MHD equations
in the presence of nonlinear multiplicative noise which do not satisfy the Lipschitz condition.
In [33], the Cauchy problem for the deterministic 3-D MHD-« model (1) with periodic boundary
conditions was studied, the global existence, uniqueness and regularity of weak solutions were
established. The relation between the solutions of the MHD-« model and the solutions of the
MHD equations was proved as « approaches zero.

To the best of our knowledge, there is no known result for the stochastic equations (2). The
purpose of the present paper is to prove some results related to problem (2) which are the
stochastic version of some of those obtained in [33] for the deterministic case. The following
three points are our main goals.

(1) We prove the existence of weak martingale solution for the stochastic 3-D MHD-« model. We
consider a sufficiently general forcing consisting of a regular part and a stochastic part both
depending nonlinearly on the velocity of fluid and the magnetic field and we do not require
the functions involved in the forcing to satisfy the Lipschitz condition. The method for the
proof uses the compactness method in a version which seems to have been introduced initially
by Bensoussan in [3-5]. This approach has proved very efficient in works by the present
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authors [18,20,43,41,46,45,44]. The compactness method combines Galerkin approximation
scheme with sharp compactness results in function spaces of Sobolev type due to Simon [47]
and some celebrated compactness results of Prokhorov [40] and Skorokhod [48].

(2) After obtaining the existence of a weak martingale solution of the stochastic 3-D MHD-«
model, we turn our attention to the study of its asymptotic behavior as « tends to zero. For
this purpose, we study the weak compactness of weak martingale solutions as « approaches
zero. This is not derived directly from a priori estimates obtained in Theorem 2.3 because
some explode when « approaches zero. One of the main difficulties lies in obtaining needed
a priori estimates in which the constants are independent of « (see the proof of Lemma 6.1).
Once the a priori estimates are secured, the next task is to obtain the tightness of probability
measures generated by the sequence {uy}q~0 Which enables us to make use of Prokhorov
and Skorokhod’s compactness results. The last main issue is the passage to the limit which
turns out to be rather complicated in view of the nature of the nonlinear terms involved in our
model (2) (see the proof of (157)).

The question of asymptotic analysis of partial differential equations when some physical
parameters converge to some limit has always been of great interest. Notable example is the
vanishing viscosity question in Navier—Stokes equations which is still not fully solved when
the problem is assigned with Dirichlet boundary conditions for instance. We refer to [16,25,
52,51]. In the stochastic case fewer investigation has been carried out; we refer to [9] for
relevant investigation.

(3) We also prove the pathwise uniqueness of the solution of problem (2) when the forcing
terms satisfy the Lipschitz condition. The existence of weak martingale solution and the
pathwise uniqueness along with Yamada—Watanabe’s Theorem imply the unique existence
of probabilistic strong solution to (2).

The paper is structured as follows. In Section 2, we gather all the necessary tools, we introduce
the definition of the probabilistic weak solution of the problem. In the very same section
we formulate the first main result (see Theorem 2.3). In Section 3, we introduce a Galerkin
approximation scheme for the problem (2) and obtain a priori estimates for the approximating
solutions. In Section 4, we prove the crucial result of tightness of Galerkin’s solutions and apply
Prokhorov’s and Skorokhod’s compactness results. In Section 5, we prove our first main result. In
Section 6, we obtain uniform a priori estimates for weak solutions {uy }~0 of the stochastic 3-D
MHD-a model. We derive the results of the tightness of the corresponding probability measures
and perform the passage to the limit which establishes the convergence of {u,,}, to a probabilistic
weak solution of the stochastic 3-D MHD equations. This gives us another proof of the existence
of a weak martingale solution to the stochastic 3-D MHD equations. In Section 7, we prove
the existence and uniqueness of the probabilistic strong solution for the 3-D stochastic MHD-«
model under Lipschitz assumptions on the data.

2. Statement of the problem and the first main result
We introduce some notations and background following the mathematical theory of
Navier—Stokes equations (NSE). Let L?(7) and H™(7) the L”-Lebesgue spaces and Sobolev

spaces, respectively. We denote by | - | the L?-norm, and by (., .) the L>-inner product. Let X be
a linear subspace of integrable functions defined on the domain 7, we define

X:{(peX:/(j)(x)dx:O},
T
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and

V = {¢ : ¢ is vector valued trigonometric polynomial defined on 7,
V.-¢=0and (1, ¢) = 0}
The spaces H and V are the closures of V in L2(T)3 and HY(T)3, respectively. We endow H

with the inner product of L?(7)? and the norm of L?(7)>. We equip the space V with the inner
product

((u, )y = (u, v) + «>(Vu, Vo). (3)

Its associated norm is denoted by ||.||y. The importance of this choice will become clear in the
course of the proof of some key estimates in the forthcoming section. On V, the norm generated
by the inner product ((., .)),, is equivalent to the gradient norm denoted by | - || and the usual

H'-norm. Indeed, we can deduce from the definition of ||.||y and Poincaré’s inequality that
O+ ) Mully < llull < ullv, weV. )

Let P, : L2(T)> — H be the Helmholtz—Leray projection, and A = — P, A be the Stokes
operator with the domain D(A) = HX(T)}* N V. In the periodic boundary condition case
A = —A|pa) is a self-adjoint positive operator with compact inverse. Hence the space H has an
orthonormal basis {w; : j > 1} of eigenfunctions of A, Aw; = Ajw;, withO <A1 <Az <---,
Aj o~ j*/3(2)~2. Furthermore, it is possible to define the fractional powers of A and it turns out

that D(A%) = V (see, among others, [50]). Moreover, if Y' is the dual of the topological space
Y then it turns out that D(A%) = D(A™%) for any a > 0 and

lulpeaey = |A%ul, )

for any o € R. For these facts we refer the reader to [50] for instance. Throughout we will denote
by {(u, v) the values of u € Y/ on v € Y. By the Riesz representation we will identify H with its
dual and we will consider the chain

D(A)CVCH=H cV c DA™Y,

where each space is densely and compactly embedded into the next one. It follows from this
chain that

(u,v) ={u,v), Yue H, velV.

The following relations are very important throughout the article. For all f € H and ¢ € V,
we have

(d +e”A)7 f.9)), = (f. ). (6)
I+ oA flly < If1. )
We also recall that (/ + «*>A)~! is an isomorphism from H onto D(A).
Following the notation of the NSE, we denote
B(u, v) = Py;[(u.V)v],
B(u, v) = P,[(V x v) x ul,
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for any u, v, € V. Note that
Bu, v), w) = —Bu, w), v),
and
B, v), w) = B, v), w) — Bw, v), u), ®)

for any u, v, w € V. The Eq. (8) follows from the identity

3
(b.V)a+ Y a;jVbj =—b x (V x a) + V(a.b), )
j=1

where x is the vector product in R>. We recall that
IBS(u, u) =B, u).

The definitions of B(u, v) and B(u, v), and the above algebraic identities may be extended to
larger spaces by the density of V in the appropriate space each time the corresponding trilinear
forms are continuous. In the following lemma whose proof can be found in [33], we collect
crucial properties of the extensions of the bilinear B and B (which we also denote by B and B.)

Lemma 2.1. (1) Let X be either B or B. The bilinear form X can be extended continuously from
V x V with values in V' (the dual space of V). In particular, for u, v, w € V,

X, 0), w)wrl < clul 2 ull o] ]l (10)
Moreover

B, v), w) = —Bu, w),v), u,v,weV, an
which in turn implies that

B, v),v) =0, wuwvelV. 12)
Also,

Bu, v), w) = B, v), w) — Bw, v),u), u,v,wevV, (13)
and hence

B, v),u) =0, u,velV. (14)

(2) Furthermore, letu € D(A),v € V,w € H and let X be either B or IE%; then

I(X (u, v), w)| < cllull?|Aul"?|v]| Jw]. (15)
(3) Letu e V,ve D(A),w € H then

|(B(u, v), w)| < cllull v]|"/? Av|/?|w]. (16)
(4) Letu € D(A),ve H,w €V then

|(B(u, v), wyyr| < cllull*?|Aul? ] |w]|. (17)
(5) Letu,v,w €V, then

|(B(u, v), w)| < Cllull lv]l lw]?|lw] /2. (18)
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(6) Letu € Hyv e V,w € D(A) and let X be either B or I@; then
(X (u, v), w)peay| < clul o]l [w]/?|Aw]"/2. (19)
(7) Letu € V,ve H,w € D(A) then
|(B(u, v), w)pay| < c(ulull o] |Aw] + [v] lull |w]]/? |Aw]/?), (20)
and hence by Poincaré’s inequality,
|(B(u, v), w)pay| < eG4 ull [v] |Aw]. Q1)
(8) Letu € D(A),ve V,w e V; then

|(B(u, v), w)payl < clull? 1Aul"? ] Jwll + |Aul oIl [w] 7 lw] /). (22)

In this lemma and throughout the paper, ¢ denotes a positive constant.
Now, we make precise our assumptions on f;, g;, i = 1, 2.

(A1) We assume that f; (resp., g;), i = 1,2, are nonlinear measurable mappings defined on
H x H x [0, T] taking values on H (resp., H®). We also suppose that they are continuous
with respect to their first two arguments and that

| fi(u, B, 1)| < c(1+ |ul +|BJ), (23)
and

Igi (u, B, )| goa < c(1+ |u| + |B]), 24
fori =1,2,t€[0,T]and u, B € H.

Using the above notations and the identity (9), we apply P, to the system (2) to obtain, as for
the case of the NSE, the equivalent system of equations

dv + [Bu, v) + vAv — B(B, B)ldt = fi(u, B, H)dt + g1(u, B, )dW,
dB + [B(u, B) — B(B, u) + nABldt = fo(u, B, )dt + g2(u, B, 1)dW,

v =u+ a?Au, (25)
u(0) = uyo,
B(0) = By.

Before we proceed further we introduce the following notations which will be used frequently
in the manuscript. Let X be any Banach space of functions defined on R3. Let (£2, F, P) be any
complete probability space equipped with a right-continuous and increasing filtration (Ft),¢0.1]
such that F contains all null sets of F; such kind of filtration will be termed as a “filtration
satisfying the usual condition”. The mathematical expectation with respect to the probability
measure P is denoted by E. By the symbol LP (£2,P, L9 (0, T, X)) we denote the space of
Sfunctions u = u (w, t, x) defined on {2 x [0, T] with values in X, and such that

(a) u (w, t, x) is measurable with respect to (w, t) and for each t is F;-measurable in w.
®) u(w,t, x) € X, for almost all (w, t) and

T 1/p
lullprc.p.Laco.7.x) = (E/ ()% dl)p/q) < 00.
0
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If g = o0, we write

1/p
lullLr0,p,200.7.%) = | Eess sup [u(®)|% < 0.
0<t<T

We now define the concept of weak martingale solution of the problem (25) as follows.
Definition 2.2. A weak martingale solution of (25) is a system {({2, F, P), (F;)seq0.71, W, u, B}
where

(1) (12, F, P) is a complete probability space,

(2) (Fp)iepo,1) 1s a filtration satisfying the usual condition on (£2, F, IP),
(3) W is a F;-adapted R4 -valued Wiener process,

(4) u € LP(2,P; L®(0, T, V)) N LP(2,P; L*(0, T, D(A))),

B e LP(2,P; L=, T, H)) N LP(2,P; L*(0, T, V)), for every p € [1, 00)
(5) forall (w,¢) € D(A) x V,

t ~
(W), w) — (v, w) + fo ((IBS(u, v) — B(B, B), w)pay + v(v, Aw)) ds

t t
=/0 (fl(u,B,s),w>ds+/O (&1, B, 5), w)dW(s), 26)

v(t) =u(t) + ozZAu(t),
Vo = Uup + Ol2Au0,

and

t
(B(1),¢) — (Bo, &) + / ((B(u, B) —B(B, u), {) +n((B,£)))ds
27)

t 0 t
:/o (fz(u,B,S),C)Jr/O (82(u, B, 5), £)dW (s)

hold dt ® dP-almost everywhere.

(6) The functions u(t) and B(t) takes values in H and are continuous with respect to t P-almost
surely.

The point (6) of our definition can be justified as follows. Owing to Lemma 2.1, point (4) of
Definition 2.2 and (26)—(27) B(t) can be written in the following form

t

t
B(t) = By -I—/ G(s)ds +/ Ss)W(s), tel[0,T],
0 0

where G € L>(12x[0, T1; D(A)) and S € L>(12x[0, T1; H). Now it follows from [29, Chapter
I, Theorem 3.2] that there exists 2* € F such that P(£2*) = 1 and for w € §2* the function B
takes values in H, is continuous in H with respect to t. The same argument applies for u.

The first main result of this paper is given in the next statement.

Theorem 2.3. Assume that ug € V,By € H and assumptions (Al) are satisfied. Then
for any a > O, there exist probabilistic weak solutions {(.Q, F,P), (Fiero,r1, W, u, B} of
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problem (25) such that the following estimates hold for any 1 < p < oo:

p/2
E sip (ju0)P +o?ul?)" = Cp, (8)
0<t<T
T p/2
E(/ [2v||ua(s)||2+2va2|Au(s)|2] ds) <Cpo. (29)
0
E sup [B(1)|” <Cp3, (30)
0<t<T
T p/2
E( / ||B(s)||2ds> <Cpu, 31)
0
T
E sup / lu(t +0) — u@®)|?dt < Cs()$, (32)
0<|0|<8<1J0
T
E sup / |B(t +60) — B(1)|%.dt < Ce()s. (33)
0<]0]<6<17J0

Here the constants (Cp ;)i=1,... 4 are independent of a, while Cs5(a), Ce(a) — oo asa — 0. E
is the mathematical expectation with respect to P.

3. Galerkin approximations and a priori estimates

In this section we introduce the Galerkin approximation of our problem and derive some
uniform a priori estimates for the approximating solutions.

3.1. The approximate equations

Let {w; : j = 1,2,3...} be an orthonormal basis of H which was already introduced in the
previous section. Let us set H,, = Span{wi, wy, w3, ..., wy,} and let P, be the L2-orthogonal
projection from H onto H,,. We look for a sequence of pairs (u,,; B;,) in H,ffz solutions of the
following system of stochastic differential equations

dvy, + Pm[B(umv Um) + VAV, — B(By, Bn)ldt = Py fin1dt + ngmldW_

dBy + PuB(um, By) — B(Bu, um) + nAByldt = Py fin2dt + Py gmadW,

U = Uy + azAum 34
um(0) = Ppug

Bm(o) = P Bo,

defined on a fixed stochastic basis (fZ , F; (]}t)te[O,T], P, W). The mathematical expectation with
respect (wrt) to [P is denoted by [E. Here and throughout we set

fmi = fi(uma BM7 t)’

8mi = & (Um, By, 1),
fori =1,2,t €[0,T]andm =1, 2, .... By the theory of stochastic differential equations (see,

for instance, [24]) there is a local solution (u,,; B;,) defined on [0, T;,]. The following a priori
estimates will enable us to prove that 7;, = T.
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3.2. A priori estimates

Throughout this section C will denote a positive constant independent of & and m which may

change from one term to the next.

Lemma 3.1. The couple (u,,; By,) satisfies the estimates

E sup (lum()]3 + |Bu(s))

0<s<T

_ T
28 [ (0 [l ()12 + @21Aun ) |+ 018 1) ds < .
0

Proof. It follows from (34) that
dity + (I + > A) " Py [B(m, vyn) — BBy, By)ldt + Aupdt
= (I +o*A) ' Py fndt + (I + &> A) " Pugmid W,
and
dBy + Pu[B(m, Bn) — BBy, um) + nAByldt = Py fuodt + PpgmadW.

Thanks to It6’s formula with ||u,, ||%, and |B,,|* we have

dllum|? +2 [((vAum + (I + A PulBm, vm) = B(B, Ba)l, )y } dt
=2((( + A fut, um))ydt + 11 + 0> A) ™" Prugm I3 dt
+2((I + A g1, um)) , dW
and
d|Bn|* +2{(ABy + B, Bn) — BBy, tty), ttm)} dt
= 2(fm2, Bu)dt + |gm2l?dt + (gm2, Bm)dW.

In view of relation (6) and the definition of ((., .)),,, we see that

v

(At um))y = llum 1> + 02| At |
Thanks to (6) and (14),

(I + A PuBm, vm), tm))y = Blttm, vm). um) = 0.
Also,

(I +o*A) " PuB(Bu, Bw), tm))y, = B(Bu, Bu), ttm).-
By (6) and (7) the following hold

(A + A7 Py fnt s tim))yy = (fn1 s i)

(A + oA Pugmi. tm))y = (Gm1. Um),

I+ A gl < lgmil*.

(35)

(36)

(37

(38)

(39)
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The above inequalities imply that
dlltn Iy +2 (vt 1P + 2| At ] = BB, B, ) ) d
—2((I + ?>A) Vg1, um)dW
=2(fmt, um)dt + | + > A) ™" Pugmillydt. (40)
Using (11) and (12) it follows from (39) that
d1 B +2 (0l Bl + BB, Bu). ) ) dt = 2(fon2, Bt + |gma dr
+ (gm2, Bn)dW. (41)
Now summing up (40) and (41) yields
Ay + 1Bnl?) +2 [Vl |12 + 02 At ) + 1 B ]
—2[(gm1, m) + (gm2, Bm)1dW
= 2[(fonts ) + oz B) + (/DN + 20 gt I} + (1/2) g dr. 42)
Let

[ iti=1
=B, ifi =2,

and y,,; be either f,,; or g,,;, i = 1, 2. Thanks to the assumptions (A1) and the fact that

12 <003, 43)
we have

Otmis Omi) < 1xmil lomi] < CL+ w3 + 1Bnl?), (44)
and

Igm2l* < C(1+ | Bul* + llum 1) 45)

In view of (7) and (23), there holds
I+ @A) furl} < CA A+ llum 3 + 1Bul?). (46)

It follows from these and (42) that

t
e @I + 1B +2/0 [0l P + (At ) + 1]l Bl ds
t
< llum O} + B (O +CT +/0 (lumlly + B l*)ds
t -
+2"/é [(gm1, um) + (gm2, Bm)]dW‘ . 47)

Let us set

t
Ym = 2 ‘A [(gmL Um) + (8m2, Bm)]dw‘ .
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By invoking Burkholder-Davis—Gundy’s inequality we get that

_ _ ¢ 1/2
E sup y < 6E <‘/(; [(gm1s um) + (gm2, Bm)]2 dS)

0<s<t
T ! 2 2 2 2
< 3 ( [ [lom Phunt® + lenaPi 8] s
0

Using (24) and (43), we obtain

1/2

_ _ t 1/2
E sup y < 3CE (/ [+l + 1B DUt + 1Bl ds) ,
0555[ 0
1- _ t
< 5E sup Ultm I3 + 1Bul®) +CT + CIE/ Ultm I3 + 1B |H)ds. (48)
0<s<t 0

Taking the supremum, then the mathematical expectation and using (48) we infer from (47) that

_ _ t
E sup (lun($)II7 +|Bm(s)|2)+2E/0 (vl + &2 A ) + 0]l 2] ds

0<s<t
_ t
< CT 4 CE [ [lunlfy + 1B, ds. (49)
0

Dropping off the second term in the left hand side of the last estimate and invoking Gronwall’s
lemma yield

E sup (lum)I3 + |Bn(s)») < C.

0<s<t

We deduce from (49) that

_ t
E/O [0l @12 + @ At ) + 1| B (I | ds < C.

These last two equations conclude the proof of the lemma. [l

The following result is related to the higher integrability of u,, and B,,.

Lemma 3.2. The couple (u,,; By) satisfies the following estimates:

E sup (lum()} + Bn(s)})?"? < C, (50)
0<s<T
_ T p/2
E(/ 2 [Vl O + | Aun ) + 1l B (O dr) = (51)
0

forall1 < p < oo.

Proof. To simplify the notations let us set ¢, = ||uy, ||%, + | B, |?. From (42), we have
dy +2 (v [l 12 + 02| Au | + 11 B l?) d
=2 [ (font ) + oz Bn) + (/DN + 02 gt [} + (1/2) gma? |

+2[(gm1, um) + (m2, Bin)] dw. (52)
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By It6’s formula,

d(ém)¥ = (p/2)dm +4(p/D(P = 2/ )T [(gm1s tm) + (g2 Bu)> x d1. (53)

By setting x, = [v(||um 1% + 2| Aum|?) + 11| Bul| ], we see from the last equation that

d(gm) +p(¢m)pT
=Lon'™ {2(fmz, Bu) + I + @20 gt I}, + 1gmal? ] di

+pdm)' T (fml, um)dt + p(p —2)(gm) T [(gml, Um)
+ (gm2, Bm)] dr + P(¢m)p% [(gm1, um) + (&m2, Bm)] dw. (54)
We are going to estimate each term in (54) as follows:

I+ @A) gt + lgm2l? < lgm)> + lgm2l®,  (by (7))
c(1 4 |um|*> + |Bul®), (by (24))
C(+¢n), (by (43)).

Cauchy—Schwarz’s, Cauchy’s inequalities together with (23) and this last estimate imply that

=
=

28w {201, ) + 202, Ba) + 11+ 20 gt} + L2l
< C@n) 2" +Clgm)7,
<C (q’)m)g (by Young’s inequality).

It follows from Cauchy—Schwarz’s, Cauchy’s inequalities and (24) that

PP = 2)(bm) T (@1 ttm) + (gm2. Bu) 2 < Clop) '™

2
x (|um|+|um|2+|8m|+|8m|2) :
Com) " (bm + lumlly + 1B

p2

2C(¢m)2 +4Cop*
< C(¢m) 3 (by Young’s inequality).

IA

IA

For y, = p ‘fos (¢,,,)pr2 [(gm1> Um) + (gm2, Bm)] , we see from Burkholder—Davis—

Gundy’s inequality that

- . 12
E sup = C(p)E (/(; (¢rn)p_2 [(gm1, um) + (gm2, Bm)]2 dS) ,

0<s<t

_ t 1/2
< C(p)E (/0 (¢m)p_2 I:(gmlv Mm)z + (gm2, Bm)z:l ds) ,

for all t € [0, T']. Arguing as before, we obtain

_ _ t
E sup ym < eE(gm)?’> + CSE/ (¢m)P?ds, foranyr € [0, T).
0

0<s<t
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Taking the supremum, the mathematical expectation in (54) and collecting all these inequalities,
we have that

t
E sup (¢pm)?/> < C + CE / (Pm)P/*ds,
0

0<s<t

which together with Gronwall’s lemma imply

_ 2 2 p/2
E sup (HumHV—+|Bm|) <C, foranyr e [0, T]. (55)

0<s<t

We derive from (55) and (42) that

_ r p/2
E(/O [v(||um||2+a2|Aum|2>+n||Bm||2]ds) =C. (56)

The lemma follows from (55) and (56). [

The next estimates are very important for the proof of the tightness of the law of the Galerkin
solution (u;,; By).

Lemma 3.3. There exists a positive constant C(«) such that C(a) — 0o as « — 0 and the
following inequalities hold

_ T
E sup / |t (1 4 0) — up (1)]?dt < C(@)8, (57)
0<]6|<6 JO
_ T
E sup /|mm+m—BMm§mgcmm (58)
0<l6]<s Jo

forany 0 < § < 1.

Remark 3.4. In the above lemma, u,, and B,,, are extended to O outside [0, T].
Proof. We can infer from (34) that

|V (t 4+ 6) — v (D[
2

t+6 -
<2 / |:Pm(B(um, Um)+VAUrn +B(BmaBm)+fm1)] ds
t

t+6 B
/ ngmldW
t

D(AY
2

+2

k]

which implies

1+0 5
[ (t +60) = v (D) By < 8 / (1P B, v ay + 021 A0 D ay | ds
t

t+6 1+0
+ / | P B(B Bm)ﬁ)(A)/dS +/ |meml|2ds
t t

146 2
/ ngmldW
t

+2 (59)
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We have
|Avn D ay = lvml*,
|PmBumvm|2D(A)/ < cllum ||2|vm|2,
| PuB (B Bu)|Day < ¢|Bul* | Bull*.

Therefore,

_ T pt+s _pT pt+s
E / f V2| Aoy |2dsdt < E f / lom |2dsdt,
0 t 0 t

T prs
< E/ / (tm P + ] At P)dsdt,
0 t

_pT pt+S
51{«:// I3 dsdt
0 t
_pT pt4S
+(x2E// o?| Auy, |*dsdt,
0 t

< Cs+a’C. (60)

Also,

_ T pt+8 . _ T pr+8
E/o/t |PmIB%(um,vm)|2D(A),dsdtSCIE/O/t et ||V |2 dsdt.

Hence

_ pT pt+8 . -
E/ / | P Bt vm) |4y dsdt < SCE sup [upl|*
0 t

0<t<T
2

T
+ 8K ( / (|um|2+a4|Aum|2>dt) ,
0

Cs _
—7 + CSE sup fup|*
o

—<t<T

IA

2

T
+a43fE(/ a2|Aum|2dt) .
0

_ T t+38 5 ol
Ef f | PuB . vm) [ aydsdt < =7 + C5 +a*Cs. (61)
0 Jr o

It follows from the last estimate and (51) that

Similarly,

T b T b
B[ 1B B uydsd = B [ [ BRI Pasar
2

T
CSE sup |Bp|? + cSE </ ||Bm||2dt) ,
0<t<T 0

< C5+Cés (by(50)and (51)). (62)

IA
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In view of (23), we have

T S T pt4s
(SIE/ / | Py fu1 |2dsdt < CSE/ / (1 + |um|? + | Bm|?)dsdt,
0 t 0 t

< C8’T + C8’E sup |um|*> + ¢8°E sup |Byl?,

0<t<T 0<t<T
< 8% (by (50)). (63)
By Burkholder—Davis—Gundy’s inequality, (24) and by arguing as before we show that
_ T | pt=0 2
E sup f / PugmidW| dt < cé. (64)
0<6<5J0 t
It follows from (60)—(64) and (59) that
T
i 2 2 2 4 Cé
E sup [m (& +60) — v (D] paydt < C8"+C8+aCé+a"Cé+ —,
0<6<6<17J0 o
= C(a)s, (65)

where C (o) — oo as @ — 0. Since
it +0) = un (O < |AT @t +0) = v (O)* = [V (t +0) — Vi (D[4
we deduce from (65) that
T
E sup / [t (t +6) — um(t)|2dt < C(a)s,
0<6<6<1J0

where C () — oo as ¢ — 0. To complete the proof of (57), we can use the same argument to
prove a similar estimate for the case 8 < 0.
We derive from (34) that

t+60
|Bu(t +6) = Bu (D)l < CO ( / [1PuB B, )l + | PuB i, Bm>|2w]ds)
t

1+6
+Co (f [114Bul} + 1P f2l?] ds)
t

146 2
+ / ngmZdW (66)
t
It is clear that
T 48 T
E/ / |ABy |3, dsdt < 51@/ | B ||?dt < C8. (67)
0 t 0
Due to the properties of P, and B, we have
_ T pt4s
E/ / [|PmB(Bm,um)|%,, + 1P B, Bm)l%,,]dsdt (68)
0 t

Tt
<2CE f / it 1211 B 1> dsdt (69)
0 t
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2

_ _ T
< CSE sup lum|* + CE ( / ||Bm||2ds) . (70)
OStST 0

Thanks to (50) and (51), we obtain

B T t+48 ) ) cs
E/ / [leIB%(Bm, )% + | PuB i, Bm)lv/] dsdi = 5 +C. 1)
0 t

By similar argument as used before we prove that

. T | pt+0 B
E sup f / PngmadW
0<6<6<1J0 t

Using (67)—(72), we get from (66) that

2
< Cs. (72)

Cé
a4’

T
E sup / |Bu(t +6) — Bu(t)[3,dt
0<6<5<1J0

C8%+Cs +

IA

IA

C(a)d,
where C (o) — oo as @ — 0. Arguing as before concludes the proof of (58). [

4. Tightness property of the probability measures induced by the Galerkin solutions and
application of Prokhorov’s and Skorokhod’s theorems

We consider the space & = L2(0, T,V) x L2(0, T;H)xCQO,T,; Rd) eguippe_d with the
Borel o-algebra B(G). We denote by @ the measurable G-valued defined on ({2, 7, P) by
B(@) = (U (D), B (@), W(@)).
We introduce a probability measure I1,, on (&, B(&)) by
II,(S) = P(d71(S)), S eB(©S).

The next proposition, which can be proved by following the lines of the proof of Theorem 4.6
in [18] (see also [5]), is a result about the tightness of I1,,,.

Proposition 4.1. The family of probability measures {II,, : m = 1,2,3,....} is tight in G.

From the tightness property of {II,, : m = 1, 2, 3, ... .} and Prokhorov’s theorem, there exists
a subsequence II,,; and a probability measure II such that II,; weakly converges to II. By
Skorokhod’s embedding theorem, there exists a new probability space ({2, F, P) and random
variables (um_i, B, Wm_/), (u, B, W) on ({2, F, P) with values in & such that

the law of (umj: ij, ij) is Hmj, (73)
the law of (u, B, W) is II, (74)
(Umjs By Wi ;) = (u, B, W) strongly in & P-almost surely. (75)

We can see that {ij cmj=1,2,.. } is a sequence of d-dimensional standard Brownian
Motions. Let

Fr =0 {(u(s), B(s), W(s)) : 0 <s <1}.
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By same argument as in [3], we can prove that W is an d-dimensional F;-standard Wiener
process. We also show by using the idea in [5] that (um/., ij, ij) verifies the following
dP ® dt-almost everywhere:

t

(O (1), W) — (v (0), W) + /O (P Bt v, )iy + 0. Aw)) i

t
= [) [(Pm_/B(Bm,-a ij)a w)pay + (Pm_,- fm_;l’ w)] ds

t
+ / (Por, g1 w)d W, (5). (76)
0

and
t

By, (1), 8) — (B, (0), 0) + /O (P, Bt Buy), ©) + (B, £)) ds

= fol [(Pon; BB ) &) + (P, fin2, )] ds + /Ot(gm‘,-z, £)d W (s), (77)
for all (w, ¢) € D(A) x V.
S. Proof of Theorem 2.3
5.1. Passage to the limit

To complete the proof of Theorem 2.3, we need to pass to the limit in (76) and (77). For that
purpose we will pass first to the limit in each term in (76). This procedure is easy for the linear
terms so we will just give the details for the nonlinear ones. The couple (”m_/; Bm_/.) satisfies
(76)—(77), therefore the following estimates are valid forall 1 < p < oo

E sup (lum, I} + 1Bm;|H)P"* < C, (78)
0<s<T
T p/2
E( / 2[v<||um_,||2+a2|Aum_,|2>+n||Bm,||2]dt> <C, (79)
0
and
T
E  sup / ltm, (t +0) — up, (O *dt < C(@)8, (80)
0<|6|<6<1J0
T
E sup f B, (t +6) — By, (D3,dt < C()8, (81)
0<|0|<6<1J0

forany 0 < § < 1. Here C(0) — o0 as «a approaches zero. Therefore we can extract from
(um;; Bm;) a subsequence still denoted with the same fashion and a couple (u; B) such that

Upm; — u weakly starin L?(2,P; L*(0, T; V)), (82)
um;, —u weakly in L”(2,P; L*(0, T; D(A))), (83)
ij — B weakly starin L? (2, P; L*°(0, T; H)), (84)

By; — B weakly in LP(2,P; L*(0,T; V)). (85)
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From (75) we obtain that

Uy, — u strongly in L2(O, T;V),P-as., (86)

J

By, — u  strongly in L*(0,T; H), P-as. 37)

Let us consider the positive nondecreasing function ¢(x) = x*, defined on R... The function ¢
obviously satisfies

lim 2O

im — =00

xX—>00 X

Thanks to the estimates (78)—(79) we have

sup B (lum; 1720, 7.y)) < 00,
m_,'Zl T

sup E(@ (1B, 17200 7. 11)) < -

mj=1 o

2
L2(0,T;V)
and || By, ||i2 0.7:7) is uniform integrable with respect to the probability measure. Hence thanks
to (86)—(87) and Vitali’s convergence theorem (see, for instance, [28, Chapter 3, Proposition 3.2])
we have

Thanks to uniform integrability criteria in [28, Chapter 3, Exercise 6] we see that ||uy ||

Un; —> U strongly in LQ(Q, P; L2(0, T;V)), (88)
B,; — B strongly in L*(2,P; L*(0, T; H)). (89)

It follows from these facts that we can extract again from (i, ;; By ;) a subsequence still denoted
by the same symbols such that

um; — u almost everywhere dP ® dt in V and H, (90)
By, — u almost everywhere dP ® dt in H. ©n

For any w € D(A) we have

<L+ 17 +19),

m;

t ~ ~
'E fo [ Bt v, Py w) = B, v), w) peay | ds
where

t
1,511/) = Efo (B@m,» vm;)s Pm;w — w)peayds

t
1,5121.) = E/ (B(um; —u, vm;), w)payds
0

t
1,53}? = E/O (B, vm; — v), W) p(ayds

Note first that for any ¢ € H,

[Pn;¢ — ¢l —> 0 asmj — oo. 92)
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By (21),

10

m;

IA

t
E / it 1 1m || Py A — Awlds
0

IA

T
¢| P Aw—Aw||:E sup [l II* +IE/ |vm/.|2dsi|.
0<r<T

In view of (78), (79) and (92) we see from the last estimate that 7, (1 ) — Oasm; — oo.
Again by (21)

T
1Y) < clAw|E /0 i, = el 1w, Ids

T 1/2 T
fcIAwI(E/O ||um,-—u||2ds) (E/O |vm,-|2)

Due to (4), (79), (88) we have

1/2

1,5,2]) —0 asmj; — oo.

For x € L%(2,P; L%(0, T; H)), let &(x) = EfOT (I@(u, X), w)pcayds. We see from (21) and
Cauchy—Schwarz’s inequality that

T 1/2 T
150 < clAw] (Ef ||u||2ds> (Ef |x|2dS>
0 0

This shows that @ is linear continuous. Since Um; =V weakly in L2(Q, P; LZ(O, T; H)), then

1/2

P(Um; —v) > 0asm; — oo. That s, IAS ,) — Oasmj; — oo.
Collectmg these convergences we see that

t t

/0 (B(umjv Umj)v ijw) - /0 (B(uv U), LU)D(A)/dS in L](Q X [O» T]) (93)

For
t

XMj = ‘EA [(ijB(ij,ij),U))_(B(B,B),W)D(A)’]ds (94)
we have

Xomy < I8+ I3+ I,
with

t
Jrf’llj) = EA (B(Bm]9 ij)s Pm/-w - 'l,U)D(A)’dS ’

t
) = B [ BB, = B, B whpiayds

t
I8 = (B [ BB, B, = By, w)piays|.
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Now, by (10) and Poincaré’s inequality

T
Ia) < el Puyw — w|E fo | B, 1 %ds.

Since || Pp;w — w|| - Oasm; — oo and ]EfOT | B |>ds < C, we get that
J,Ellj) — 0 asmj — oo.
To deal with J,ffj) we invoke (19) and Cauchy—Schwarz’s inequality to obtain

T 172 T
Jﬁ’5|Aw|<E / |Bm,—B|2ds> (E / ||Bm,-||2ds>
0 0

This along with (79) and (89) imply that

1/2

Jn(fj) — 0 asmj — oo.
Since ij — B weakly in L2(02,P; L2(0, T; V)), then we can show as before (see argument
for I,Efj)) that

J,Sj) — 0 asmj; — oo.

These show that

t t
/(ij]B(ij,ij),w)dse/ (B(B, B), w)payds in L'(£2 x [0, T]). (95)
0 0

By (90)-(91), the continuity of f; and g;, and the applicability of Vitali’s convergence theorem
we have

Pu, fiCm,. B, 1) = fi(u, B,t) strongly in L*(22,P; L*(0, T; H)), (96)
Pun;8i(m,;, B, 1) — gi(u, B, 1) strongly in L*(£2, P; L*(0, T; H®?)), (97)

for i = 1, 2. Thanks to (97) we argue as in [5] and show that

t t
/0(Pm,-gi(um,-,Bm‘,.,S),x)dij —\/O (8i(u, B, s), x)dW

weakly in L2(2, P; L?(0, T)), (98)

fori=1,2and x =w € D(A)ifi =1 and x = ¢ € V otherwise.
The convergences (88), (93), (95), (96) and (98) enable us to pass to the limit in (76), from which
we see that (26) holds.

It remains to pass to the limit in (77). As above we only work with the nonlinear terms since
the linear ones are straightforward. We have that
< S+ S5+ Sy

m;j?

t
Efo (B, By, Py 0) — (Bl B), )y] ds

where

k]

t
Sw) = ‘E /0 @, Bu,), Pu;¢ — £)ds
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’

t
51512,) _ ‘Efo (B(um; —u, Bm;), ¢)yrds

t
58 =[5 [ B b, — B c1vas

By (16), Poincaré’s and Cauchy—Schwarz’s inequalities we have

r 12 T
Sr(nlj) = C|ij§ —¢| <E/0 |Aumj|2ds> (E/O ”ij “2ds)

Owing to (79) and (92) we see that

1/2

S,S/?—)O asm; — oo.

Invoking (10) and Cauchy—Schwarz’s inequality we get

T 172 T
S < eligll (E fo ||um,—u||2ds) (E /0 ||Bm,||2ds)

This estimate, (79) and the convergence (88) imply that

12

S,(nzj)—>0 asmj — oQ.

The convergence S,(n3j) — 0 asmj — oo can be proved by the same idea used for I,Efj) and J,Efj).
We have just proved that

t t
/(B(umj,ij),ij{)ds%/ (B(u, B), {)yds in L'(2 x [0, T]). (99)
0 0

Similarly, we check that

t t
/(E(ij,um/.),Pmig)dse/ (B(B, u), ¢)yds  in L'(2 x [0, TY). (100)
0 ’ ’ 0

The convergences (89), (3), (98), (99), (96) imply that (27) holds. The estimates (28)—(33) follow
from passing to the limit in (78)—(81), and this concludes the proof of Theorem 2.3.

6. Asymptotic behavior of the 3-D stochastic MHD-« model as o« — 0

In this section, we assume that the hypotheses of Theorem 2.3 hold so that there exists a
sequence of weak martingale solutions {(.Qa, Far Po), (Fier0.71, Wa, U, Ba} which satisfies
the inequalities in Theorem 2.3. Our goal in this section is to study the behavior of the above
sequence when we let « tends to zero. The main ingredient for achieving this target is the use of
Prokhorov’s and Skorokhod’s theorems. This procedure mainly relies on some uniform estimates
on appropriate norms of the finite differences of u, and B,. But the constants Cs(«), Ce(c)
explode when ¢ — 0, then the applicability of Prokhorov’s and Skorokhod’s theorems are not
ensured by the estimates (31) and (32). We still need to prove the following inequalities.

Lemma 6.1. There exists a constant C independent of o such that for all « € [0,1) and
0 <38 <1, we have

T
E¢  sup / | Ba(t +60) — By (1) [}y 4ydt < C8, (101)
0<|0]<8<1J0
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T
E, sup / |ua(t+9)—uo,(t)|2D(A),dt§C6. (102)
0<|9|<6<1J0

Before we proceed to the proof of these results we should give the following remark.

Remark 6.2. From the Theorem 2.3, the following are valid for any 1 < p < oo:

Ey sup |ug($)|” +Ey sup [Bu(s)|P < Cp, (103)
s€[0,7] s€[0,7]
T p/2 T p/2
Eq <f0 |Iua(s)||2ds) + Eq (/0 IIBa(s)IIst) < Cp, (104)

where C), > 0 is independent of c.

Proof. We start by proving (102). First recall that D(A) = D(A~!) and I + «?A is an
isomorphism from D(A) onto H. Moreover

I+ A e < 1. (105)
It follows from (25) that
dug + [vAua F (T +?A)  Bug, g + a2 Aug) — (I + a2 A) "' B(B,, B,,)] dr
= (I 4+a?A) 7 fi(ug, By, 1)dt + (I + 0> A) " g1 (ug, By, /AWy, (106)
which implies that

sup |A™! (ug(t 4 0) — ug (1)) |
0<6<6

468
< [ (17 it Bl vl ) s
t
144 -
+/ (IA_I(I—i—ozzA)_lIB%(ua,va)|)ds
t

t+6
+ / (1471 + 02 4) " B(B, Bo)l) ds
t

+ sup (107)

t+6
/ AT T+ a?A) 7 gi (g, Ba, $)|dWy| .
0<0<§ |/t

From (105), (19) and Cauchy’s inequality we have that

- —1 —1/4
AT + &®A) " Blug, ve)l < 2e27 7 [val llug I,
—1/4
< 247 lug | (ug) + ?| Aug ),

—1/4
< 2637 " {lual luall + alluglle] Augl}
_ 1/2

1/4
= 202" (jual? + a1

12
x (ol +? Aug?)
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On the other hand
|ATN I + 0 A) 7 Xi (g, By, )] < |A7' Xi (g, By, )] < C(1+ || + | Ba),
where X; is either fj or g;. With these inequalities at hand, we derive from (107) that

sup |A™! (ug(t 4+ 0) — ua () |2
0<6<$
< C8*+TC8 sup |ug(s)> + C8% sup |By(s))?
s€[0,T] s€[0,7T]
t+8 2
+(/ |Ba(s)|||Ba(s)”ds) +C sup (lua(s)]
t s€[0,T]
2

t46 1/2
+ & lug ()% ( f [0 (I + [ Aug ()] )
t

2

t46
+2 sup / AT + o2 A) g1 (g, Ba,y $)dWy
13

0<6<é

Integrating with respect to ¢ along [0, 7] and taking the mathematical expectation yield

T
Eq sup / |A™! (ug (t + 0) — ug (1)) |%dt
0<0<6J0

T t+36 12 2
<CT8+C8>+CE,{ sup ||ua(s)||2V/ (/ [Iluall2+a2|Aua|2] ds> dt
s€[0,T] 0 t

T 1+ 2
+Eq 1 sup |Ba(s)|2/ (/ ||Ba(s)||ds) dt
s€[0,T] 0 t
1+0 2
/ AN + 02 A) 7 g1 (g, Ba, $)d Wy
t

dt, (108)

T
+ 2E, / sup
0 0<6<s

where we have used the uniform estimates (28) and (30). By Holder’s inequality we have

5 T t+6 5 5 5 1/2 2
B | sup Ja(o)1} | (/ [lta]1? + ol A ] ds) dr
s€[0,T] 0 t

T
saera< sup ua ()17 fo [nua(s)uz+a2|Aua(s)|2]dr>,

5€[0.T]
1/2

12 ; 2
< 8T (Ea sup ||ua<s>||$> (Ea [ /0 (||ua<s>||2+a2|Aua(s)|2>ds}) , (109)

s€[0,T]

T 1438 2
Ey | sup |Ba(s)? f (f ||Ba<s>||ds) dt
s€[0,T] 0 t

T
sazEa( sup | B (s)|? f ||Ba(s>||2ds>,
] 0

s€[0,T

and
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1/2
< 8? (IE sup |Ba(s)|4) (110)

s€[0,7T]

T N 1/2
% (E [/ ||Ba<s)||2ds} ) . (111)
0

Using (28)—(31) implies

T t+46 1/2 2
Ey § sup ||ua(s)||%,/. <f [||ua||2 +a2|Aua|2] ds> dt; < Cé, (112)
s€[0,T] 0 '

T 148 2
Ey | sup |Ba(s>|2/ (/ ||Ba<s>||ds> dt{ < Cs, (113)
s€[0,T] 0 t

where C is a positive constant independent of «. Next by Burkhdlder—Davis—Gundy’s inequality
we have

T 146 2
Ea/ sup / A_I(I +(¥2A)_1g1(ua, By, s)dW,| dt
0 0<6<6§|Jt
T t+6
< CEa/ (/ AN+ a?A) " g1 (g, Ba,s>|2ds> dt, (114)
0 t
T 4§
<c=< / (f (1 + lua () + |Ba(s>|2)ds> di < Cs. (115)
0 t

By (109)—(115) we derive from (108) that (102) holds, that is,

T
Eo sup / AT (ug (t 4+ 6) — ug (1)) |2dt < C8,
0<160]1<6 JO

where C is a positive constant independent of «.
Now let us deal with (101). We know from (19) that

|A™ " B(ug, Bo)| < clug| I Byl

Therefore,

t+46
Eq ( / A" Blug, Ba>|ds)
t

2

IA

t+6 ) )
¢5Eq f a2 Ba 2ds,
t

145

< c8Eq sup |uql? | Bo I ds.
0<t<T t
148 2
< 8By sup |ug|* + cSEq (/ ||Ba||2ds) )
OSth t

Thanks to (28) and (31) we have

2

t+6
E, </ |A_IIB3(ua,Ba)|ds> < 8. (116)
t
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Similarly
438 2 438 2
Eq (/ |A™'B(By, ua)|ds> < 8By sup |Byl* + cSE, (f ||ua||2ds) .
t 0<t<T t
Because of (29) and (30) we get
1+8 2
Eq (/ |A~'B(B,. ua)|ds) < 8. (117)
t
By using Burkhdlder—Davis—Gundy’s inequality it is not hard to show that
T | pt+6
Ey sup / / 8i(Ug, By, s)AWy|dt <cb§, i=12. (118)
0<0<6<1J0 t
In view of (116)—(118), we prove as before that (101) holds. More precisely,
T
Eo,  sup / A~ (By(t +6) — By()) |?dt < Cs. O (119)
0<|0|<5<1J0

The following compactness result plays a crucial role in the proof of the tightness of the
probability measures generated by the sequence (u¢; By)ac[0,1)-

Lemma 6.3. Let w,, v, two sequences of positive real numbers which tend to zero as n —
oo. Then the injection of

Dy, u, = {61 € L®(0,T; H)NL*(0, T; V);

1 T 1/2
sup — sup (./o lq(t +6) — q(t)IZD(A),dt> < oo}

n Vn |8)<pn

in LZ(O, T; H) is compact.

The proof is similar to the analogous result in [3,36,37]. The space D,, ,, is a Banach space
with the norm

T 1/2
l¢lp,,,, =ess sup |g@®)+ (/(; ||61(f)||%/df>

0<t<T

| T 12
+ sup — sup (/0 |q(t+0)—q(t)|%(A),dt> .

n Vn |0|<u,

Alongside D, ,,, we also consider the space X ,, 4,. 1 < p < 00, of random variables ¢ such
that the norm
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117 T r/2 %
NS0 en = (Eaess sup |§(t)|”> + (JEa (/ ||;(t)||2vdz> )
0<t<T 0

| T 1/2
+Eq sup — sup (/0 |§(t+9)—§(t)|2D(A),dt) ,

n VY |0|<pn

is finite. Endowed with the norm (¢ ||x,, ,,. ... s Xp.v,.u, 15 @ Banach space.
Combining the estimates (101)—(102) and those of Remark 6.2, we have

Proposition 6.4. For any real number 1 < p < oo and for any sequences vy, |, converging

to 0 such that the series ), ~ VM" converges, there exists a positive constant C independent of o
n
such that

luallx, ., < Cs
1Ballx,, 0 < C.
forall n.

Now we consider the space G = C(0, T; Ry x L%(0,T; H) x L*(0, T; H) equipped with
the Borel o-algebra B(S). For o € [0, 1), let &, be the measurable G-valued mapping defined
on (£, Fa, Po) by

P(w) = (Wo(w), ug(®), By(@)).
For each o we introduce a probability measure /I, on (&; B(S)) by
IT,(S) = Py ($7'(S)), forany S € B(S).

Theorem 6.5. The family of probability measures {Il, : o € [0, 1)} is tight in (&; B(G)).
Proof. For ¢ > 0 we should find compact subsets

Ze CCO, T:RN: Yo € LXO, T H): Xe € L2(0, T3 H),
such that

Py (@ ug(w,.) € Ye) + Po (0 : By(w,.) & X¢) < % (120)

Py (0 Wo(w,.) & X)) < 7, 121

| ™

for all .

The quest for Y, is made by taking into account some facts about Wiener process and it is
standard so we omit it.

Next we choose Y, and X, as balls of radii M, in D,, ,, centered at O and with v,, i,

independent of ¢, converging to 0 and such that the series ), —VU“" converges, from Lemma 6.3,

Ye, X, are compact subsets of L2(0, T; H). Furthermore, we have
Py (@ : g (@) € Ye) + Py (0 : By() & X¢) < Py (0 : luallp,, ,, > M)
+ Py (0) : ”Ba”Dvn,Hm > Ms)

1
< — (Eallual b, +EalBalp, )
M;
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1
e (lualix,, ., + 1Ballxi,, )

2C
M,
where C > 0 is independent of « (see Proposition 6.4 for the justification).

Choosing M, = 2C e, we get (120). From the inequalities (120)—(121) we deduce that

IA

=<

b}

Py (0 : Wo(w) € Xei ug(w) € Ye; By(w) € Xe) =2 1 —¢,
for all @ € [0, 1). This proves that for all « € [0, 1)
Hy (Ve xYe x Xg) =1 —¢,
from which we deduce the tightness of {II, : « € [0, 1)} in (&, B(&)). O

6.1. Approximation of the 3-D stochastic MHD equations

In this subsection, we prove that the weak solution of the stochastic 3-D MHD equations are
obtained from a sequence of solution of the 3-D stochastic MHD-o model as « approaches 0.

From the tightness of {II, : « € [0, 1)} in the Polish space & and Prokhorov’s theorem, we
infer the existence of a subsequence /Iy, of probability measures and a probability measure /I
such that IT,; — II weakly. By Skorokhod’s theorem, there exists a probability space (2, F, P)

and two triplets of random variables (W, i Uajs B, j), (W, u, B) with values in & such that

the law of (Wq;, ua;, Ba;) is Iy, (122)
the law of (W, i1, B) is I1, (123)
(Waj, Ugj, Baj) = (W, i, B) strongly in & P-almost surely. (124)

We can see that Wy, is a sequence of d-dimensional standard Wiener processes.
Let Fi=o{W(s), i, B(s):0<s <1} Arguing as in [3,5] we prove that W is a d-dimensional
Fi-standard Wiener process and the triplet (Wa/., Ug;, Baj) satisfies

(e (1), w) — (v, (0), w)

t
+ / (Bt ) — BBy B, w) iy + 0(ot, . Aw)) ds
0

t t
=/0 (f1(uaj,Baj,S),w)ds+/(; (81(uq; s Baj, s), w)dWy, (s), (125)
and
t
(Botj(t)s é‘) - (Baj(o)v g) + /(; [(B(Maj, Botj) - B(B()ljv u()!j)9 {) + n((Botj9 é‘))] dS
t t
= A (f2(”aj» BC{jv S)v é’) + /(; (82(1401], B(x_/'a S)7 é’)dWOl(S)7 (126)
for P ® dt-almost everywhere, for all (w;¢) € D(A) x V and for any «;. In (125), Vo, =

Ug; +a12.Auaj . Before we state the second main result of our work we repeat here the definition of
weak martingale solution of the 3-D stochastic MHD equations. The following is taken from [46].
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De~ﬁni~ti0~n 6.6: A weak ~martir~1gale solution of the stochastic MHD equations is a system
{(2, F,P), (Fi)iero.11, W, i1, B} where

(D (Q F,P)isa complete probability space, o
2 (.E),e o,7] 1s a filtration satisfying the usual condition on (2, F, P,

(3) W is a}} -adapted R9-valued Wiener process,
(4) it € LP(2,P; L®(0, T, H)) N LP(2,P; L*0, T, V)),

B e LP(Q, P; L>®(0, T, H) N LP(Q, P; L2 0,T,V)), forevery p € [l,00)
(5) for all (w, £) € D(A) x V,

t
(), w) — (g, w) +/ ((IB%(:Z, i) — B(B, B), w)peay + v(. Aw)) ds
t ) 0 ¢ i ) (127)
=f (fl(ﬁ,B,s),w>ds+f (9100, B. s), w)dW (s).
0 0
and
t
(Bw).0) = Bo.0)+ [ (BB~ B@.0).0)+n((B.0) ds
' 3 0" i i (128)
=fo (fz(ﬁ,B,s>,c)+f0 (2(@. B.5). )dW(s)

hold dt ® dP-almost everywhere. _
(6) The functions u(t) and B(t) takes values in H and are continuous with respect to t P-almost
surely.

The Justification of point (6) of Definition 6.6 can be done exactly in the same way as for the
item (6) of Definition 2.2.

Theorem 6.7. Assume that the set of hypotheses (A1) holds and ug € V and By € H. Then as
a; tends to 0, the sequence Ug;, Vaj, Baj (obtained) above satisfy

ug, — i strongly in L*(2,P; L*(0, T; H)), (129)
Ua, — il weakly star in L*(£2, P; L™(0, T; H)), (130)
Ug, =~ il weakly in L*(2,P; L*(0, T; V)), (131)
Vo, = D strongly in L*(2,P; L*(0, T; V")), (132)
Vo, — 0 weakly in L*(2,P; L*(0, T; H)), (133)
By, — B strongly in L*(2,P; L*(0, T; H)), (134)
By, — B weakly in L*(2,P; L*(0,T; V), (135)

where (f), .7:", ]}te[O,T]; ]f”, W, u, E) is a weak martingale solution of the 3-D stochastic MHD
equations with initial values u(0) = ug and B(0) =

Proof. From (125) and (126), it follows that (uaj; Baj) satisfies the estimates

E sup |lug; () +E sup [By; ()" < Cp, (136)
s€[0,T] s€[0,T]
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B T piz2 T p/2
o ( / ||ua,.<s>||2ds) +B ( / 1B, <s>||2ds> <c, (137)
0 ’ 0

. T p/2
D (/ [2u||uaj I+ 2v?| Aug, |2] ds) <C,. (138)
0

where E denotes the mathematical expectation with respect to (f), F R If"). Hence, modulo the
extraction of a subsequence denoted again Ug;, Va;s Baj we have

uq, — @i weakly starin L”(2,P; L™(0, T; H)), (139)
ug, — i weakly in L7 (2, B; L*(0, T; V), (140)
Vo, — 0 weakly in L7 (2, B; L0, T; H)), (141)
By, = B weakly star in L7 (2, P; L(0, T; H)), (142)
By, — B weakly starin L” (2, P; L®(0, T; V)). (143)
By Vitali’s convergence theorem and (124), we have
Ug; — U strongly in L*(2,P; L*0, T; H)), (144)
By, — B strongly in L*({2,P; L*(0, T; H)). (145)

Therefore, modulo the extraction of a subsequence denoted again with the same symbols,

Ug; = i dt ® dP-almost everywhere in H, (146)
By, — B dt ® dP-almost everywhere in H. (147)

Leti =1,2, x1 =w € D(A) and x» = ¢ € V. The convergences (146)—(147) together with the
assumptions on f;, g; and Vitali’s convergence theorem imply that

t t
[ httay Buyesr s > [ (it Boo)oxds i L@ x 10,70, (148)
0 0

(8i (Uaj. Baj. 1), xi) = (8i(ii, B, 1), xi) in L*(2 x [0, T]). (149)
Thanks to (149) we prove as in [5] that

/0t<gi<ua,., By, 5), xi)dWa; — /Ot(g,-(a, B.s), x)dW in L*(2 x [0,T]).  (150)
We also have

fE/Ot Ve, — tta; [I}ds = a5 /Ot o} | Aug; (s)[*ds.
From this and (134) we deduce that

Vo, — @ strongly in L*(2,B; L*(0, T; V")), (151)

and v(t) = u(t) almost everywhere in dt ®dP, since E fOT aflAuaj (s)|ds is uniformly bounded
in Olj .
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Using (144)—(145), we have

t t
fo (B(Ba, . Ba,), w) p(ayds — /0 (B(B. B), w)payds in L3 @2 x[0,T],  (152)

t t ~ -
./0 (B(ua,, Ba;), &) p(ayds —>/0 (B(@, B), {)payds in L*(2 x [0, T]), (153)
t t 5
/0. (B(Baj, Maj), C)payds — /0 (B(B, u), {Ypcayds in LZ(Q x [0, T]). (154)
We have
t t
/ B(ua,, vo,)ds — f B(a, ii)ds weakly in LP(2, P; LP(0, T; D(A)")), (155)
0 ’ 0

for some 1 < B < 2. To prove this, it is sufficient to show that

B(ua,, vo;) — B, i) = B(i, @) weakly in LP (2, P; LF (0, T; D(A))), (156)
for some 1 < B < 2. For that purpose let us recall first that Vo, = Uq; + ozzAuaj and

B(ta; va;) = B, ta;) + 3 BUa;, Aug,).
Hence we need to show that for 1 < 8 < 2

o7 B(ug;. Aug;) — 0 strongly in LF (2, B; LF(0, T: D(A)")), (157)
and

B(ua,, ua;) — B(i, i) weakly in L*(2, B; L*(0, T; D(A))), (158)

as a; — 0. Owing to (140) and (144) the convergence (158) can be easily proved as in the case
of 3-D stochastic Navier—Stokes equations, so we will deal only with (157). Thanks to (20) there
holds

2m 2
lo?Bua;, Aua)lIpay < collua, |1 Aug,|.

Fixing an arbitrary 8, 1 < B8 < 2, we obtain the following chain of inequalities
T

Bug;, Aug )P, .d
”aj (uaja uaj)”D(A)’ t

0

_—
<ol [ ey (0017 A P,
0

T
2 _
<Pt (Csup flug, ()]7) / it 157 | Aug, 1Pt
0

t€l0,T]
) T 1/q
< cPoi (sup ||ua,(r)||y>[ / ||ua,-(t>||q<ﬁy>dt] (159)
° tel0,T] 0
T 1/p
x U IAuaj(t)l"ﬁdt] , (160)
0

where y is an arbitrary number such that 0 < y < §, and in (160) we applied Holder’s inequality
with % + % = 1 (these numbers will be determined later on).
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Continuing the chain of inequalities, we have

T
/0 le?Bua, . Atta) Iy, dt

< PP Csup flua, (0177
te[0,T]

T 1/q T 1/p
x U [ IIq(ﬂ_V)dt:| U |Auaj|”ﬁdt:| ) (161)
0 0

Now we set p = ﬁ,q = 573 /5 Let the number y satisfies the equation g(8 — y) = 2, that is,
y = 2(B — 1). We see from this that 0 < y < g holds.

Replacing such p, g and y in (161), we obtain the following results

T
/O ||C( B(ua,’ A”oz/)”D(A)/
2-8

T 2
< cPoi P up_ o Hlua, 13! [ /O ||ua,-<t>||2dr}

tel0,

T B/2
x [/ o | Aug, (t)|2dtj| ) (162)
0

Taking the mathematical expectation in (162) and using Holder’s inequality, we have

B—1

T

E /0 le?B(ua, . Atta )|}y 4 dt < P [E( sup <) Hua, @] )]
t€(0,T]

T o
x [E ( / ||ua,(t>||2dz)]
0

B
B

B T 27—
x E(/ a§|Auaj(r)|2dt)
0

Using the estimates (136)—(138), we have

28
2

T
” 27 2-B
E/O |loes ]B%(ua,,Auaj)HD(A),dt < cﬂozj , l<p<2 (163)
Therefore, we have proved (157).
Collecting all the above convergences, especially (139)—(143), (144), (145), (148)—(155), we

pass to the limit in (125)—(126). We see from this passage to the limit that the processes u, B
satisfy the 3-D stochastic MHD equations. That is,

t
(1), w) — (@(0), w) + /O ((B(ﬂ, i) — B(B. B). w)peay + v(d, Aw)) ds

t t
=f (f1<ﬁ,é,s>,w>ds+/ (g1(i, B, s), w)dW s), (164)
0 0
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and

~ ~ ! ~ ~ ~
(B(1), &)~ (B(0).0) +/0 (B, B) ~ BB, @), ¢) +n(B. ) | ds

t ~ t ~ ~
=/0 (fz(ft,B,S),{)Jr/O (820, B, 5), £)dW (s), (165)

fordt ® ]f”—everywhere and for all (w; ¢) € D(A) x V.

Then, we have proved that the system (f), F , If”; f,, W, i, é) is a weak martingale solution of the
3-D stochastic MHD equations (see Definition 6.6 for the definition of weak martingale solution
of stochastic MHD equations). [

7. Pathwise uniqueness of the solutions

In this section we study the pathwise uniqueness of the solutions of the 3-D stochastic MHD-
o models. In addition to the assumptions (Al) we introduce new set of assumptions on the
nonlinear mappings f; and g;.

(A2) In addition to (A1) we suppose that f; and g;,i = 1, 2, are Lipschitz continuous, that is,
there exist a constant C such that

| fi(u, B1,t) — fi(ua, B2, )| < C(luy —uz| + |B1 — Bal),
lgi(u1, B1,t) — g2(u2, B2, t)|yea < C(lug —uz| + |B1 — Ba|).

In contrast to the 3-D stochastic MHD equations a pathwise uniqueness holds for the 3-D
stochastic MHD-«a models. Mainly we have the following result:

Theorem 7.1. In addition to assumptions (Al) we suppose that (A2) are valid. Then two
solutions (u1; B1), (u2; B2) of the 3-D stochastic MHD-«a defined on the same prescribed
stochastic basis (2, F,P; (F)iero,11, W) starting with the same initial condition (uo; Bo)
coincide P-almost surely.

From Yamada—Watanabe’s Theorem for infinite dimensional stochastic equations (see
[39, Theorem E.1.8]) which states that the existence of weak martingale solution and the
pathwise uniqueness imply the existence of unique probabilistic strong solution, we have the
following consequence of the above theorem.

Corollary 7.2. Assume that (Al) and (A2) hold. There exists a unique probabilistic strong
solution of the 3-D stochastic MHD-o models. That is, for a given stochastic basis
(12, F,P; (Ft)tero,11, W) and for any a > 0, there exists a unique couple (u; B) satisfying
the points (4)—(6) of Definition 2.2.

Proof of Theorem 7.1. Let v; = u; + «?Au; (i = 1,2),8v = v — v2,8u = uj; — uy and
8B = B} — B>. We see that

dsv + [vAav + BGu, v1) + Bluy, 81))] dt
= [B(5B, By) +B(B2,8B) + 6f1]1dt + 6g1dW,

dSB + [nASB + B(Su, B) + B(uz, B)] dt (166)
= [B(B, u1) + B(By, Su) + 8f>1dt + 8g2d W,

$v(0) = su(0) = §B(0) = 0,
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where

8fi = fi(ur, Br,t) — fi(uz, Ba, ),

and

8gi = gi(u1, By, t) — gi(uz, Bz, 1).
Applying (I + a>A)~! to the first equation in (166) gives

dsu + [wwu +B*Gu, v1) + B*(ua, 81))] dt
= [B* @B, BY) + B (B2, 8B) + 81| di + 8w,
where (I +a?A)~'x = x*. By Ito’s formula, we infer from this equation that
dllsuly +2 [v(Asu, 8wy + (B*Gu, v1), 6u)), + (B wa, 6v), 6u)),, | e

=2[((B*GB. B, u)), + (B* (B2, 8B), 6u)),, | di

+2[ (61 6u))y, + (1/2158} 13 | de +2((8¢t. 6u)) ya W,
or equivalently
dllsully +2 [v((Asu, 8y + (Biou, v, 6u) pay + (Blua, 50), 8u)peay | di
=2[(B(§B, By), du)p(ay + (B(B2, 8B), du) p(ay]dt
+2 [((m, Su) + (1/2)||5g*f||zv] dt +2(8g1, Su)dW.
There also holds
d18BP + 20|18 B|2dt = 2[(B(Su, B1), 8B)y + (BGB, u1), B)y]dt
+2[(B(Ba, 6u), 8By + (312, 6B) + (1/2)|5ga | e
+2(8g2, SB)AW.
Summing up (169) and (170) yields
dg + (20((4, 8w)y +20)18BI?) d
—2[ @1, 6u) + 612, 8B) + eI} + 10217 | do
=2 (—(@(uz, 8v), 8u)peay + (BB, B). 8u)pay + (BGB, u), (SB)V/> dt
+2[(8g1,u) + (8g2,86B)1dW.

Here and for the rest of the proof, ¢ = ||8u||%, + |8 B|?. Now let us set

t
o(s) =exp (/ —z(s)q)(s)ds) ,
0

(167)

(168)

(169)

(170)

(171)

where z(s) is a real valued function that will be fixed later on. We apply 1t6’s formula to o ()¢ (¢)

and find that
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t t
o () (1) + zf o (s) [v((Aau, Su))y + nllsB ||2] ds — / 2(s)0 () (5)ds
0 0
t
=2 [ a(6) (~(Buz. 80, 8u) peay + (BOB. B dubpiay ) ds
0

t t
+2/ (IB%(SB,ul),SB)V/ds+2/ o(s)[(6g1,0u) + (8g2,8B)1dW
0 0

t
+2f0 o (s) [((Sfl,(Su)+(6f2,¢SB) + 1613 + |8g2|2] ds. (172)

By (22) and by Young’s inequality we have

2/(B(ua, 8v), 8u) pay| < | Aua*(18ul® + o (|8u®) + vldull* + a 2oul’. (173)

1/2
A

By (19) and Young’s inequality, we obtain

= 2 2 2 2,V 2
2|(B(8B, B1), Su)p(ay| < 2¢c|8B|”|| By |l +v72||3u|| +§a |Adul”. (174)

Also, by (16) and Young’s inequality, we see that

2|(B(B, u1),8B)y/| = |Aur|*|8BI* +nll8 B|I*. (175)

1/2
771/

By summing up (173)—(175) and by using the resulting estimates in (172), we derive that

t
o ()p() + 2/ o (s) (v[||5u||2 + o2 Asul] + n||3B||2) ds
0

! 2c 5 2 ) c )
< CHNAL + o+ 20 By 4 — A ) o (s)ds
0 \vi, vo ni,
t
—f z(s)o (s)p(s)ds
0
! 1 2 1 2

2/ o) (6f1,50) + 72, 58) + 3 I3g1 1R, + 3158217 ) ds

0

t
+2/ o(s) ((8g1,6u) + (8g2,8B))dW. (176)
0

We choose

2c 2
2(s) = 1/2|Au2(s)|2 +—5 + 2l Bi)|* + 1/2|Au1<s>|
Vo
VA nhy
and infer from (176) that

t
Eo (1) (1) + ZE/ o (s) (v[||5u||2 + 2| Asul?] + 77||<SB||2) ds
0

t
< 2E/0 o(s) ((5f1 du) + (8f2,8B) + 5 |I3gl Iy + |5g2|2) ds, a7
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where the property of the stochastic integral was used. By using the Lipschitz properties of f;
and g;, i = 1, 2, we deduce from (177) that

t
Eo (1) (1) + 2E/ o (s) (v[||8u||2 + 2| Asul?] + n||<SB||2) ds
0

t
< 2E/ o (s) <C|8u|[|8u| 1 |8B|] + [8B|[|8u| + [5B|] + C[18ul* + |aB|2]) ds.
0
Since |§u| < ||dul|y, we obtain that

t
Eo (1) (1) + 2E/ o (s) (v[||5u||2 + 2| Asul?] + n||53||2) ds
0

t
< C]E/ o (s) (||5u||2V + |BB|2> ds,
0
from which we infer that
t
Eo(®)o(t) < CE/ o(s)p(s)ds.
0

We conclude the proof of the pathwise uniqueness theorem by the application of Gronwall’s
lemma. O
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