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Abstract
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1. Introduction, notation, and main results

1.1. Introduction

In this paper we establish general theorems quantifying the notion of recurrence – by studying
which moments of the passage time exist – for irreducible continuous-time Markov chains
ξ = (ξt )t∈[0,∞[ on a countable space X in critical regimes.

Models of discrete-time Markov chains with non-trivial behaviour include reflected random
walks in wedges of dimension d = 2 [1,6,14], Lamperti processes [12,13], etc. These chains
exhibit strange polynomial behaviour. In the null recurrent case some (but not all) moments of the
random time needed to reach a finite set are obtained by transforming the discrete-time Markov
chain into a discrete-time semimartingale via its mapping through a Lyapunov function [6].

There exist in the literature powerful theorems [1], applicable to discrete-time critical Markov
chains, allowing to determine which moments of the passage time exist. Beyond their theoretical
interest, such results can be used to estimate the decay of the stationary measure [16], and even
the speed of convergence towards the stationary measure. The first aim of this paper is to show
that theorems concerning moments of passage times can be usefully and instrumentally extended
to the continuous time situation.

Continuous-time Markov chains have an additional feature compared to discrete-time ones,
namely, on each visited state they spend a random holding time (exponentially distributed) de-
fined as the difference between successive jump times. We consider the space inhomogeneous
situation where the parameters γx ∈ R+ of the exponential holding times (the inverse of their
expectation) are unbounded, i.e. supx∈X γx = +∞. In such situations, the phenomenon of explo-
sion can occur for transient chains. Chung [3] has established that the condition


∞

n=1 1/γξ̃n
<

+∞, where ξ̃n is the position of the chain immediately after the n-th jump has occurred, is equiv-
alent to explosion. However this condition is very difficult to check since is global i.e. requires
the knowledge of the entire trajectory of the embedded Markov chain. Later, sufficient conditions
for explosion – whose validity can be verified by local estimates – have been introduced. Suf-
ficiently sharp conditions of explosion and non-explosion, applicable only to Markov chains on
countably infinite subsets of non-negative reals, are given in [8,10], while Lyapunov functions are
used in [2] for the study of Markov chains with state space Z and time-dependent holding times.
In [20], a sufficient condition of explosion is established for Markov chains on general count-
able sets; similar sufficient conditions of explosion are established in [21] for Markov chains on
locally compact separable metric spaces.

In the discrete time case, many results on recurrence/transience, i.e. the estimating of the
number of times the Markov chain returns to a given state can be obtained through estimating
the moments of the time needed to return to this state. The reason is that (discrete) time flows
homogeneously; each step of the chain takes a unit of time to be performed because the internal
clock of the chain ticks at constant pace. In the continuous time case, the connection between the
number of steps and the time needed to perform them is more subtle because the internal clock
of the chain ticks at different pace when the process visits different states. The second aim of
this paper is to show that the phenomenon of explosion can also be sharply studied by the use of
Lyapunov functions and to establish locally verifiable conditions for explosion/non explosion for
Markov chains on arbitrary graphs. This method is applied to models that even without explosion
are difficult to study. More fundamentally, the development of the semimartingale method has
been largely inspired by having these specific critical models in mind (such as the cascade of
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k-critically transient Lamperti models or of reflected random walks on quarter planes) that seem
refractory to known methods.

Finally, we demonstrate a new phenomenon, we termed implosion (see Definition 1.2 be-
low), reminiscent of Döblin’s condition for general Markov chains [4], occurring in the case
supx∈X γx = ∞. We show that this phenomenon can also be explored with the help of Lyapunov
functions.

1.2. Notation

Throughout this paper, X denotes the state space of our Markov chains; it denotes an abstract
denumerably infinite set, equipped with its full σ -algebra X = P(X). It is worth stressing here
that, generally, this space is not naturally partially ordered. The graph whose edges are the ones
induced by the stochastic matrix, when equipped with the natural graph metric on X need not be
isometrically embeddable into Zd for some d. Since the definition of a continuous-time Markov
chain on a denumerable set is standard (see [3], for instance), we introduce below its usual equiv-
alent description in terms of holding times and embedded Markov chain merely for the purpose
of establishing our notation.

Denote by Γ = (Γxy)x,y∈X the generator of the continuous Markov chain, namely the matrix
satisfying: Γxy ≥ 0 if y ≠ x and Γxx = −γx , where γx =


y∈X\{x}

Γxy . We assume that for all
x ∈ X, we have γx < ∞.

We construct a stochastic Markovian matrix P = (Pxy)x,y∈X out of Γ by defining

Pxy =


Γxy

γx
if γx ≠ 0

0 if γx = 0,
for y ≠ x, and Pxx =


0 if γx ≠ 0
1 if γx = 0.

The kernel P defines a discrete-time (X, P)-Markov chain ξ̃ = (ξ̃n)n∈N termed the Markov
chain embedded at the moments of jumps. To avoid irrelevant complications, we always assume
that this Markov chain is irreducible.

Define a sequence σ = (σn)n≥1 of random holding times distributed, conditionally on ξ̃ ,
according to an exponential law. More precisely, consider

P(σn ∈ ds|ξ̃ ) = γξ̃n−1
exp(−sγξ̃n−1

)1R+
(s)ds, n ≥ 1,

so that E(σn|ξ̃ ) = 1/γξ̃n−1
. The sequence J = (Jn)n∈N of random jump times is defined accord-

ingly by J0 = 0 and for n ≥ 1 by Jn =
n

k=1 σk . The lifetime is denoted by ζ = limn→∞ Jn
and we say that the (not yet defined continuous-time) Markov chain explodes on {ζ < ∞}, while
it does not explode (or is regular, or conservative) on {ζ = ∞}.

Remark 1.1. The parameter γx must be interpreted as the proper frequency of the internal clock
of the Markov chain multiplicatively modulating the local speed of the chain. We always assume
that for all x ∈ X, 0 < γx < ∞. The case 0 < γ := infx∈X γx ≤ supx∈X =: γ < ∞

is elementary because the chain can be stochastically controlled by two Markov chains whose
internal clocks tick respectively at constant pace γ and γ . Therefore the sole interesting cases are

– supx γx = ∞: the internal clock ticks unboundedly fast (leading to an unbounded local speed
of the chain),

– infx γx = 0: the internal clock ticks arbitrarily slowly (leading to a local speed that can be
arbitrarily close to 0).
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To have a unified description of both explosive and non-explosive processes, we can extend
the state space into X̂ = X ∪ {∂} by adjoining a special absorbing state ∂ . The continuous-time
Markov chain is then the càdlàg process ξ = (ξt )t∈[0,∞[ defined by

ξ0 = ξ̃0 and ξt =



n∈N

ξ̃n1[Jn ,Jn+1[(t) for 0 < t < ζ

∂ for t ≥ ζ.

Note that although X is merely a set (i.e. no internal composition rule is defined on it), the above
“sum” is well-defined since for every fixed t only one term survives. We refer the reader to
standard texts (for instance [3,18]) for the proof of the equivalence between ξ and (ξ̃ , J ). The
natural right continuous filtration (Ft )t∈[0,+∞[ is defined as usual through Ft = σ(ξs : s ≤ t);
similarly Ft− = σ(ξs : s < t), and F̃n = σ(ξ̃k, k ≤ n) for n ∈ N. For an arbitrary (Ft )-
stopping time τ , we denote as usual its past σ -algebra Fτ = {A ∈ F∞ : A ∩ {τ ≤ t} ∈ Ft } and
its strict past σ -algebra Fτ− = σ {A ∩ {t < τ }; t ≥ 0, A ∈ Ft } ∨ F0. Since it is immediate to
show that τ is Fτ−-measurable, we conclude that the only information contained in FJn+1 but
not in FJn+1− is conveyed by the random variable ξ̃n+1, i.e. the position where the chain jumps
at the moment Jn+1.

If A ∈ X , we denote by τA = inf{t ≥ 0 : ξt ∈ A} the (Ft )-stopping time of reaching A.
A dual notion to explosion is that of implosion:

Definition 1.2. Let (ξt )t∈[0,∞[ be a continuous-time Markov chain on X and let A ⊂ X be a
proper subset of X. We say that the Markov chain implodes towards A if ∃K > 0 : ∀x ∈ Ac,

Ex (τA) ≤ K .

Remark 1.3. It will be shown in Proposition 2.14 that in the case the set A is finite and the
chain is irreducible, implosion towards A means implosion towards any state. In this situation,
we speak about implosion of the chain.

It is worth noticing that some other definitions of implosion can be introduced; all convey the
same idea of reaching a finite set from an arbitrary initial point within a random time that can
be uniformly (in the initial point) bounded in some appropriate stochastic sense. We stick at the
form introduced in the previous definition because it is easier to establish necessary and sufficient
conditions for its occurrence and is easier to illustrate on specific problems (see Section 3).

We use the notational conventions of [19] to denote measurable functions, namely mX =

{ f : X → R| f is X -measurable} with all possible decorations: bX to denote bounded
measurable functions, mX+ to denote non-negative measurable functions, etc. For f ∈ mX+

and α > 0, we denote by Sα( f ) the sublevel set of f of height α defined by

Sα( f ) := {x ∈ X : f (x) ≤ α}.

We recall that a function f ∈ mX+ is unbounded if supx∈X f (x) = +∞ while tends to infinity
( f → ∞) when for every n ∈ N the sublevel set Sn( f ) is finite. Measurable functions f defined
on X can be extended to functions f̂ , defined on X̂, by f̂ (x) = f (x) for all x ∈ X and f̂ (∂) := 0
(with obvious extension of the σ -algebra).

We denote by Dom(Γ ) = { f ∈ mX :


y∈X\{x}
Γxy | f (y)| < +∞,∀x ∈ X} the domain of

the generator and by Dom+(Γ ) the set of non-negative functions in the domain. The action of the
generator Γ on f ∈ Dom(Γ ) reads then: Γ f (x) :=


y∈X Γxy f (y). Similarly we could have de-

fined Dom(P) and Dom+(P). Nevertheless, it is immediate to see that whenever the inequalities
0 < γ (x) < ∞ hold for all x ∈ X, we have Dom(Γ ) = Dom(P) and Dom+(Γ ) = Dom+(P).
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1.3. Main results

We recall once more that in the whole paper we make the following

Global assumption 1.4. The chain embedded at the moments of jumps is irreducible and
0 < γx < ∞ for all x ∈ X.

We are now in a position to state our main results concerning the use of the Lyapunov function
to obtain, through semimartingale theorems, precise and locally verifiable conditions on the
parameters of the chain allowing us to establish the existence or non-existence of moments
of passage times, explosion or implosion phenomena. The proofs of these results are given in
Section 2; Section 3 treats some critical models (especially 3.1 and 3.3) that are difficult to
study even in discrete time, illustrating thus both the power of our methods and giving specific
examples on how to use them.

1.3.1. Existence or non-existence of moments of passage times

Theorem 1.5. Let f ∈ Dom+(Γ ) be such that f → ∞.

1. If there exist constants a > 0, c > 0 and p > 0 such that f p
∈ Dom+(Γ ) and

Γ f p(x) ≤ −c f p−2(x), ∀x ∉ Sa( f ),

then Ex (τ
q
Sa( f )) < +∞ for all q < p/2 and all x ∈ X.

2. Let g ∈ mX+. If there exist
(a) a constant b > 0 such that f ≤ bg,
(b) constants a > 0 and c1 > 0 such that Γ g(x) ≥ −c1 for x ∉ Sa(g),
(c) constants c2 > 0 and r > 1 such that gr

∈ Dom(Γ ) and Γ gr (x) ≤ c2gr−1(x) for
x ∉ Sa(g), and

(d) a constant p > 0 such that f p
∈ Dom(Γ ) and Γ f p

≥ 0 for x ∉ Sab( f ),
then Ex (τ

q
Sa( f )) = +∞ for all q > p and all x ∉ Sa( f ).

Remark 1.6. The condition f → ∞ (together with the majorisation on Γ f p(x)) in the first
statement of Theorem 1.5 guarantees recurrence of the chain. If we assume recurrence of the
chain and we can find a bounded function f we can prove the existence of exponential moments
of the time of reaching a finite set. This phenomenon will be discussed later (see Proposition 1.16
below).

In many cases, the function g, whose existence is assumed in statement 2, of the above the-
orem can be chosen as g = f (with obviously b = 1). In such situations we have to check
Γ f r

≤ c2 f r−1 for some r > 1 and find a p > 0 such that Γ f p
≥ 0 on the appropriate sets.

However, in the case of the problem studied in Section 3.3, for instance, the full-fledged version
of the previous theorem is needed.

Note that the conditions f ∈ Dom+(Γ ) and f p
∈ Dom+(Γ ) for some p > 0 holding simul-

taneously imply that f q
∈ Dom+(Γ ) for all q in the interval with end points 1 and p. When τA

is integrable, the chain is positive recurrent. In the null recurrent situation however, τA is almost
surely finite but not integrable; nevertheless, some fractional moments E(τ q

A) with q < 1 can
exist. Similarly, in the positive recurrent case, some higher moments E(τ q

A) with q > 1 may fail
to exist.
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When p = 2, the first statement in Theorem 1.5 simplifies to the following: if Γ f (x) ≤ −ϵ,
for some ϵ > 0 and for x outside a finite set F , then the passage time Ex (τ

q
F ) < ∞ for all x ∈ X

and all q < 1. As a matter of fact, in this situation, we have a stronger result, expressed in the
form of the following

Theorem 1.7. Suppose that the chain is recurrent. The following are equivalent:

1. The chain is positive recurrent.
2. There exist a triple (ϵ, F, f ), with ϵ > 0, F a finite non-empty subset of X and f a function

in Dom+(Γ ) verifying Γ f (x) ≤ −ϵ for all x ∉ F.

Obviously, positive recurrence implies a fortiori that Ex (τF ) < ∞.

Remark 1.8. It is obvious that the triple (ϵ, F, f ) in Theorem 1.7 is not uniquely determined.
Mostly, it will be possible to chose a function f → ∞ and F as the sublevel set of f at height a,
for some a > 0. Sometimes it will be possible to chose the function f uniformly bounded; this
case will be further considered in Theorem 1.15 and leads to implosion. It is also immediate that
if f verifies the conditions Γ f (x) ≤ −ϵ for x ∈ Fc then the modified function f + c, where c
is an arbitrary positive constant, also verifies the same condition. Further, if a function f verifies
this condition, the function g = f 1Fc verifies a fortiori the same condition.

If only establishing occurrence of recurrence or transience is sought, the first generalisation of
Foster’s criteria to the continuous-time case was given in the unpublished technical report [17].
Notice however that the method in that paper is subjected to the same important restriction
as in the original paper of Foster [7], namely the semi-martingale condition must be verified
everywhere but in one point.

If γx is bounded away from 0 and ∞, then since the Markov chain can be stochastically con-
trolled by two Markov chains with constant γx reading respectively γx = γ and γx = γ for
all x , the previous result is the straightforward generalisation of Theorems 1 and 2 of [1] estab-
lished in the case of discrete time; as a matter of fact, in the case of constant γx , the complete
behaviour of the continuous time process is encoded solely into the jump chain and since results
in [1] were optimal, the present theorem introduces no improvement. Only the interesting cases
of supx∈X γx = ∞ or infx∈X γx = 0 are studied in the sequel; the models studied in Section 3, il-
lustrate how the theorem can be used in critical cases to obtain locally verifiable conditions of the
existence/non-existence of moments of reaching times. The process X t = f (ξt ), the image of the
Markov chain through the Lyapunov function f , can be shown to be a semimartingale; therefore,
the semimartingale approach will prove instrumental as was the case in discrete time chains.

1.3.2. Explosion
The next results concern explosion obtained again using Lyapunov functions. It is worth

noting that although explosion can only occur in the transient case, the next result is strongly
reminiscent of Foster’s criterion [7] for positive recurrence!

Theorem 1.9. The following are equivalent:

1. There exist f ∈ Dom+(Γ ) strictly positive and ϵ > 0 such that Γ f (x) ≤ −ϵ for all x ∈ X.
2. The explosion time ζ satisfies Exζ < +∞ for all x ∈ X.

Remark 1.10. Comparison of statements 1 of Theorem 1.5 and 1 of Theorem 1.9 demands some
comments. The conditions of Theorem 1.5 imply that Sa( f ) is a finite set and necessarily not
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empty. For p = 2 and F = f p, the condition reads Γ F(x) ≤ −ϵ outside some finite set and
this implies recurrence. In Theorem 1.9 the condition Γ f ≤ −ϵ must hold everywhere and this
implies transience.

The one-side implication [Γ f (x) ≤ −ϵ,∀x] ⇒ [Px (ζ < +∞) = 1,∀x] is already
established, for f ≥ 0, in the second part of Theorem 4.3.6 of [20]. Here, modulo the (seemingly)
slightly more stringent requirement f > 0, relying on the powerful ideas developed within the
proof of the aforementioned theorem of [20], we strengthen the result from almost sure finiteness
to integrability and prove equivalence instead of mere implication.

Proposition 1.11. Let f ∈ Dom+(Γ ) be a strictly positive bounded function and denote b =

supx∈X f (x); assume there exists an increasing – not necessarily strictly – function g : R+ \

{0} → R+ \ {0} such that its inverse has an integrable singularity at 0, i.e.
 b

0
1

g(y)dy < ∞. If
we have Γ f (x) ≤ −g( f (x)) for all x ∈ X, then Exζ < ∞ for all x.

The previous proposition, although stating the conditions on Γ f quite differently than in
Theorem 1.9, will be shown to follow from the former. This proposition is interesting only when
infx∈X g ◦ f (x) = 0 because then the condition required in 1.11 is weaker than the uniform
requirement Γ f (x) ≤ −ϵ for all x of Theorem 1.9.

If for some x ∈ X, explosion (i.e. Px (ζ < +∞) > 0) occurs, irreducibility of the chain
implies that the process remains explosive for all starting points x ∈ X. However, since the phe-
nomenon of explosion can only occur in the transient case, examples (see Section 3.4) can be con-
structed with non-trivial tail boundary so that for some initial x ∈ X, we have both 0 < Px (ζ <

+∞) < 1. Additionally, the previous theorems established conditions that guarantee Exζ < ∞

(implying explosion). However examples are constructed where Px (ζ = ∞) = 0 (explosion does
not occur) while Exζ = ∞. It is therefore important to have results on conditional explosion.

Theorem 1.12. Suppose that there exists a triple (ϵ, A, f ) with ϵ > 0, A a proper (finite or
infinite) subset of X such that X \ A is infinite and f ∈ Dom+(Γ ) such that

– there exists x0 ∉ A with f (x0) < infx∈A f (x),
– Γ f (x) ≤ −ϵ on Ac.

Then Ex0(ζ |τA = ∞) < ∞.

Remark 1.13. It can be shown that the conditioning set appearing in Theorem 1.12 is not neg-
ligible, hence the statement about the conditional expectation is not trivial. Additionally, if A is
finite, then Ex (ζ ) < ∞. Therefore, we have a much more instrumental criterion for explosion
than the one provided by Theorem 1.9; as a matter of fact, except a small number of elementary
examples, it is almost impossible to find a function f that maps the Markov chain to a strict
supermartingale everywhere, as was required in Theorem 1.9.

The previous results (Theorems 1.9 and 1.12) – through unconditional or conditional integra-
bility of the explosion time ζ – give conditions establishing explosion. For Theorem 1.9 these
conditions are even necessary and sufficient. It is nevertheless extremely difficult in general to
prove that a function satisfying the conditions of the theorems does not exist. We need there-
fore a more manageable criterion guaranteeing non-explosion. Such a result is provided by the
following

Theorem 1.14. Let f ∈ Dom+(Γ ). If

– f → ∞,
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– there exists an increasing (not necessarily strictly) function g : R+ → R+ whose inverse is
locally integrable but has non integrable tail (i.e. G(z) :=

 z
0

dy
g(y) < +∞ for all z ∈ R+ but

limz→∞ G(z) = ∞), and
– Γ f (x) ≤ g( f (x)) for all x ∈ X,

then Px (ζ = +∞) = 1 for all x ∈ X.

The idea of the proof of Theorem 1.14 relies on the intuitive idea that if Γ f (x) ≤ g( f (x))
for all x , then E( f (X t )) cannot grow very fast with time and since f → ∞ the process itself
cannot grow fast either. The same idea has been used in [5] to prove non-explosion for Markov
chains on metric separable spaces. Our result relies on the powerful ideas developed in the proof
of Theorems 1 and 2 of [10] and of Theorem 4.1 of [5] but improves the original results in
several respects. In first place, our result is valid on arbitrary denumerably infinite state spaces
X (not necessarily subsets of R); in particular, it can cope with models on higher dimensional
lattices (like random walks in Zd or reflected random walks in quadrants). Additionally, even
for processes on denumerably infinite subsets of R, our result covers critical regimes such as
those exhibited by the Lamperti model (see Section 3.1), a “crash test” model, recalcitrant to the
methods of [10].

1.3.3. Implosion
Finally, we state results about implosion.

Theorem 1.15. Suppose that the chain is recurrent.

1. The following are equivalent:
– There exist a triple (ϵ, F, f ) with ϵ > 0, F a finite set and f ∈ Dom+(Γ ) such that

supx∈X f (x) = b < ∞ and
x ∉ F ⇒ Γ f (x) ≤ −ϵ.

– For every finite A ∈ X , there exists a constant C := CA ∈ ]0,∞[ such that the following
holds

x ∉ A ⇒ ExτA ≤ C,
(hence there is implosion towards A and subsequently the chain is implosive).

2. Let f ∈ Dom+(Γ ) be such that f → ∞ and assume there exist constants a > 0, c > 0,
ϵ > 0, and r > 1 such that f r

∈ Dom+(Γ ). If further
– Γ f (x) ≥ −ϵ, for all x ∉ Sa( f ), and
– Γ f r (x) ≤ c f r−1(x), for all x ∉ Sa( f ),
then the chain does not implode towards Sa( f ).

Proposition 1.16. Suppose that the chain is implosive. Then there exists α > 0 such that for
every finite set F and every x ∈ Fc, we have Ex (exp(ατF )) < ∞.

Consequently implosion implies the existence of all moments and even of exponential
moments.

We conclude this section by the following

Proposition 1.17. Suppose that the chain is recurrent. Let f ∈ Dom+(Γ ) be strictly positive and
such that supx∈X f (x) = b < ∞; assume further that for any a such that 0 < a < b, the sublevel
set Sa( f ) is finite. Let g : [0, b] → R+ be an increasing function such that B :=

 b
0

dy
g(y) < ∞.

If Γ f (x) ≤ −g( f (x)) for all x ∉ Sa( f ) then ExτSa( f ) ≤ B for all x ∉ Sa( f ), i.e. the chain
implodes towards Sa( f ).
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In some applications, it is quite difficult to guess immediately the form of the function f
satisfying the uniform condition Γ f (x) ≤ −ϵ required for the first statement of Theorem 1.15
to apply. It is sometimes more convenient to check merely that Γ f (x) ≤ −g( f (x)) for some
function g vanishing at 0 in some controlled way. Proposition 1.17 – although does not improve
the already optimal statement 1 of Theorem 1.15 – provides us with a convenient alternative
condition to be checked.

2. Proof of the main theorems

We have already introduced the notion of Dom(Γ ). A related notion is that of locally p-
integrable functions, defined as ℓp(Γ ) = { f ∈ mX :


y∈X Γxy | f (y) − f (x)|p < +∞,∀x ∈

X}, for some p > 0. Obviously ℓ1(Γ ) = Dom(Γ ). In accordance to our notational convention
on decorations, ℓp

+(Γ ) will denote positive p-integrable functions. For f ∈ ℓ1(Γ ), we define the
local f -drift of the embedded Markov chain as the random variable

∆ f
n+1 := ∆ f (ξ̃n+1) := f (ξ̃n+1)− f (ξ̃n+1−) = f (ξ̃n+1)− f (ξ̃n),

the local mean f -drift by

m f (x) := E(∆ f
n+1|ξ̃n = x) =


y∈X

Pxy( f (y)− f (x)) = Ex∆
f
1 ,

and for ρ ≥ 1 and f ∈ ℓρ(Γ ) the ρ-moment of the local f -drift by

v
(ρ)
f (x) := E(|∆ f

n+1 |
ρ

|ξ̃n = x) =


y∈X

Pxy | f (y)− f (x)|ρ = Ex |∆
f
1 |
ρ .

We always write shortly v f (x) := v
(2)
f (x). The action of the generator Γ on f reads

Γ f (x) :=


y∈X

Γxy f (y) = γx m f (x).

Since (ξt )t is a pure jump process, the process (X t )t transformed by f ∈ Dom(Γ ), i.e. X t =

f (ξt ), is also a pure jump process reading, for t < ζ ,

X t = f (ξt ) =

∞
k=0

f (ξ̃k)1[Jk ,Jk+1[(t) = X0 +

∞
k=0

∆ f
k+11]0,t](Jk).

If there is no explosion, the process (X t ) is a (Ft )-semimartingale admitting the decomposition
X t = X0 + Mt + At , where Mt is a martingale vanishing at 0 and the predictable compensator
reads [11]

At =


]0,t]

Γ f (ξs−)ds =


[0,t[

Γ f (ξs)ds.

Notice that, although not explicitly marked, (X t ), (Mt ), and (At ) depend on f . We use in the
sequel also the infinitesimal form of the above decomposition. For any admissible f we have
d X t = d Mt + d At = d Mt + Γ f (ξt−)dt ; in particular, since (Mt ) is a (Ft )-martingale,
E(d X t |Ft−) = E(d At |Ft−) = Γ f (ξt−)dt represents the conditional increment of X as an
ordinary differential multiplied by a previsible random factor.

Before starting to prove our results on the continuous time chain (ξt ), recall first the criteria
from [6] on recurrence/transience adapted to the embedded discrete time chain (ξ̃n) on X.
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Theorem 2.1. The following are equivalent:

– The chain (ξ̃n) is recurrent.
– There exists a couple (F, f ), where F is a finite non-empty subset of X, and f ∈ Dom+(P),

with f → ∞ verifying m f (x) ≤ 0, for all x ∈ Fc.

Proof. See Theorem 2.2.1 of [6]. �

Theorem 2.2. The following are equivalent:

– The chain (ξ̃n) is transient.
– There exists a couple (A, f ), where A is a subset of X, and f ∈ Dom+(P) is such that there

exists x0 ∈ Ac for which f (x0) < infx∈A f (x) and verifies m f (x) ≤ 0 for all x ∈ Ac.

Proof. See Theorem 2.2.2 of [6]. �

2.1. Proof of Theorems 1.5 and 1.7 on moments of passage times

We start by Theorem 1.7.

Lemma 2.3. Let (Ω ,G , (Gt ),P) be a filtered probability space and (Yt ) a (Gt )-adapted process
taking values in [0,∞[. Let c ≥ 0 and denote T = inf{t ≥ 0 : Yt ≤ c}. Suppose that

1. For some y ∈ ]c,∞[, we have Py(T < ∞) = 1.
2. There exists ϵ > 0 such that E(dYt |Gt−) ≤ −ϵdt on the event {T ≥ t}.

Then Ey(T ) ≤
y
ϵ

.

Proof. Obviously Ey(T ) = Ey(T1{T =∞}) + Ey(T1{T<∞}) and if Py(T = ∞) > 0, then of
course we have Ey(T ) = ∞. But this possibility is excluded by the hypothesis of the lemma.
It remains thus to study what happens when T < ∞ almost surely. Since {T ≥ t} ∈ Gt−,
the hypothesis of the lemma reads E(dYt∧T |Gt−) ≤ −ϵ1{T ≥t}dt . Taking expectations and
integrating over time, yields, for every t ∈ R+, 0 ≤ Ey(Yt∧T ) ≤ y − ϵ

 t
0 Py(T ≥ s)ds which

implies ϵEy(T ∧ t) ≤ y. Now, since the event {T < ∞} has probability 1, by taking the limit
t → ∞ in the previous formula yields Ey(T ) ≤

y
ϵ

, by Fatou’s lemma. �

Proof of Theorem 1.7. [2 ⇒ 1]: Without loss of generality, using Remark 1.8, may be by modi-
fying f , we can always assume that infx∈Fc f (x) > 0 and f (x) = 0 for x ∈ F . Choose
then an arbitrary c ∈ ]0, infx∈Fc f (x)[. Let X t = f (ξt ) and T = inf{t ≥ 0 : X t ≤ c}.
Obviously, T = τF := inf{t ≥ 0 : ξt ∈ F} and the assumed recurrence of the
chain guarantees that Px (T < ∞) = 1. Then condition 2 reads E(d X t∧T |Gt−) ≤

−ϵ1{T ≥t}dt . Hence, in accordance with Lemma 2.3, we get Ex (τF ) = Ex (T ) ≤
f (x)
ϵ

for every x ∉ F . Now, let x ∈ F . Then

Ex (τF ) = Ex (τF |ξ̃1 ∈ F)Px (ξ̃1 ∈ F)+ Ex (τF |ξ̃1 ∉ F)Px (ξ̃1 ∉ F)

≤ sup
x∈F


1
γx

+


y∈X

Pxy
f (y)

ϵ


< ∞,

the finiteness of the last expression being guaranteed by the conditions f ∈ Dom+(Γ )
and the finiteness of the set F .
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[1 ⇒ 2]: Let F = {z} for some fixed z ∈ X; positive recurrence of the chain implies that
Ex (τF ) < ∞ for all x ∈ X. Define

f (x) =


Ex (τF ) if x ∉ F,
0 otherwise.

Then, m f (x) =


y≠z PxyEy(τF )− Ex (τF ) = Ex (τF − σ1)− Ex (τF ) = −Ex (σ1) =

−
1
γx

, for all x ∉ F . It follows that Γ f (x) = γx m f (x) = −1 outside F . By adding
constant 1 to the function f determined above (see Remark 1.8), we see that f meets
all the requirements. �

The proof of Theorem 1.5 is quite technical and will be split into several steps formulated as
independent lemmata and propositions on semimartingales that may have an interest per se. As a
matter of fact, we use these intermediate results to prove various results of very different nature.

Lemma 2.4. Let f ∈ Dom+(Γ ) tending to infinity, p ≥ 2, and a > 0. Use the abbreviation
A := Sa( f ). Denote X t = f (ξt ) and assume further that f p

∈ Dom+(Γ ). If there exists c > 0
such that

Γ f p(x) ≤ −c f p−2(x), ∀x ∉ A,

then the process defined by Z t = (X2
τA∧t +

c
p/2τA ∧ t)p/2 is a non-negative supermartingale.

Proof. Introducing the predictable decomposition 1 = 1{τA<t} +1{τA≥t}, we get E(d Z t |Ft−) =

E(d(X2
t +

c1
p/2 t)p/2

|Ft−)1{τA≥t}. Now, (X t ) is a pure jump process, hence by applying the Itô

formula, reading for any g ∈ C2 and (St ) a semimartingale, dg(St ) = g′(St−)d Sc
t + ∆g(St ),

where (Sc
t ) denotes the continuous component of (St ), we get

d


X2

t +
c

p/2
t

p/2

= c


X2

t− +
c

p/2
t

p/2−1

dt

+


X2

t +
c

p/2
t

p/2

−


X2

t− +
c

p/2
t

p/2

.

Writing the semimartingale decomposition for the process (X p
t ), we remark that the hypothesis

of the lemma implies that

E(d X p
t |Ft−) = Γ f p(ξt−)dt ≤ −cX p−2

t− dt on the event {τA ≥ t}.

Applying the conditional Minkowski inequality and the supermartingale hypothesis, we get, on
the set {τA ≥ t},

E


X2

t +
c

p/2
t

p/2
Ft−


≤


E(X p

t |Ft−)
2/p

+
c

p/2
t
p/2

=


X p

t− + E(d X p
t |Ft−)

2/p
+

c

p/2
t
p/2

≤

X2
t−


1 −

c

X2
t−

dt

2/p

+
c

p/2
t

p/2

≤


X2

t− −
c

p/2
dt +

c

p/2
t

p/2

.
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Hence, on the event {τA ≥ t}, we have the estimate

E(d Z t |Ft−) ≤ c


X2

t− +
c

p/2
t

p/2−1

dt +


X2

t− +
c

p/2
t −

c

p/2
dt

p/2

−


X2

t− +
c

p/2
t

p/2

.

Simple expansion of the remaining differential forms (containing now only Ft−-measurable
random variables) yields E(d Z t |Ft−) ≤ 0. �

Corollary 2.5. Let f ∈ Dom+(Γ ) tending to infinity, p ≥ 2, and a > 0. Use the abbreviation
A := Sa( f ). Denote X t = f (ξt ) and assume further that f p

∈ Dom+(Γ ). If there exists c > 0
such that

Γ f p(x) ≤ −c f p−2(x), ∀x ∉ A,

then there exists c′ > 0 such that

Ex (τ
q
A) ≤ c′ f (x)2q for all q ≤ p/2 and all x ∈ X.

Proof. Without loss of generality, we can assume that x ∈ Ac since otherwise the corollary holds
trivially. Denoting by Yt = X2

t∧τA
+

c
p/2 t ∧ τA, we observe that Z t = Y p/2

t is a non-negative su-

permartingale by virtue of Lemma 2.4. Since the function R+ ∋ w → w2q/p
∈ R+ is increasing

and concave for q ≤ p/2, it follows that Y q
t is also a supermartingale. Hence,

c

p/2

q

Ex [(t ∧ τA)
q
] ≤ Ex (Y

q
t ) ≤ Ex (Y

q
0 ) = f (x)2q .

We conclude by the monotone convergence theorem on identifying c′
= (

p
2c )

q . �

Proposition 2.6. Let f ∈ Dom+(Γ ) tending to infinity, 0 < p ≤ 2, and a > 0. Use the
abbreviation A := Sa( f ). Denote X t = f (ξt ) and assume further that f p

∈ Dom+(Γ ). If there
exists c > 0 such that

Γ f p(x) ≤ −c f p−2(x), ∀x ∉ A,

then the process, defined by Z t = X p
τA∧t +

c
q (τA ∧ t)q , satisfies

Ex (Z t ) ≤ c′′ f (x)p, for all q ∈ ]0, p/2].

Proof. Since d(X p
t +

c
q tq) = d X p

t + ctq−1dt , we have

E(d Z t |Ft−) ≤ E(d Z t |Ft−)1{τA≥t} ≤ cdt1{τA≥t}(−X p−2
t− + tq−1).

Now, q
p ≤

1
2 ≤

1−q
2−p . Choosing v ∈ ]

q
p ,

1−q
2−p [, we write

E(d Z t |Ft−) ≤ cdt1{τA≥t}(−X p−2
t− + tq−1)1{X t−∈ ]a,tv]}

+ cdt1{τA≥t}(−X p−2
t− + tq−1)1{X t−∈ ]tv,+∞]}.

For X t− ≤ tv , the first term of the right hand side of the previous inequality is non-positive;
as for the second, the condition X t− > tv implies that −X p−2

t− + tq−1
≤ tq−1. Hence, since
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(X p
t )t∈R+

is a supermartingale,

Ex (d Z t ) ≤ ctq−1Px (X
p
t− ≥ tvp

; τA ≥ t)dt ≤ ctq−1 Ex (X
p
t−)

tvp dt ≤ ctq−1−vp f (x)pdt.

Integrating this differential inequality yields Ex (Z t ) ≤ c f p(x)


∞

a1/v
dt

tvp+1−q ; the condi-
tion v > q/p ensures the finiteness of the last integral proving thus the lemma with c′′

=

c


∞

a1/v
dt

tvp+1−q . �

Corollary 2.7. Under the same conditions as in Proposition 2.6, there exists c′′′ > 0 such that
Ex (τ

q
A) ≤ c′′′ f (x)p,∀q ∈ ]0, p/2].

Proof. Since X t is non-negative, q
c Z t ≥ (t ∧ τA)

q . By the previous proposition, Ex [(t ∧ τA)
q
] ≤

q
c Ex (Z t ) ≤ c′′ q

c f (x)p. We conclude by the monotone convergence theorem on identifying

c′′′
=

c′′q
c . �

Remark 2.8. All the propositions, lemmata, and corollaries shown so far allow to prove
statement 1 of Theorem 1.5. The subsequent propositions are needed for statement 2 of this
theorem. Notice also that the following Proposition 2.9 is very important and tricky. It provides
us with a generalisation of Theorem 3.1 of Lamperti [13] and serves twice in this paper: one
first time to establish conditions for some moments of passage time to be infinite (statement 2 of
Theorem 1.5) and once more in a very different context, namely for finding conditions for the
chain not to implode (statement 2 of Theorem 1.15).

Proposition 2.9. Let (Ω ,G , (Gt )t ,P) be a filtered probability space and (Yt ) be a (Gt )-adapted
process taking values in an unbounded subset of R+. Let a > 0 and Ta = inf{t ≥ 0 : Yt ≤ a}.
Suppose that there exist constants c1 > 0 and c2 > 0 such that
1. E(dYt |Gt−) ≥ −c1dt on the event {Ta > t}, and
2. there exists r > 1 such that E(dY r

t |Gt−) ≤ c2Y r−1
t− dt on the event {Ta > t}.

Then, for all α ∈ ]0, 1[, there exist ϵ > 0 and δ > 0 such that

∀t > 0 : P(Ta > t + ϵYt∧Ta |Gt ) ≥ 1 − α, on the event {Ta > t; Yt > a(1 + δ)}.

Remark 2.10. The meaning of Proposition 2.9 is the following. If the process (Yt ) has average
increments bounded from below by a constant −c1, it is intuitively appealing to suppose that
the average time of reaching 0 is of the same order of magnitude as Y0. However this intuition
proves false if the increments are wildly unbounded since then 0 can be reached in one step.
Condition 2, by imposing some control on r -moments of the increments with r > 1, prevents
this from occurring. It is in fact established that if Ta > t , the remaining time Ta − t to reach
Aa := [0, a] exceeds ϵYt with probability 1−α; more precisely, for every α we can chose ϵ such
that P(Ta − t > ϵYt |Gt ) ≥ 1 − α.

Proof of Proposition 2.9. Let σ = (Ta − t)1{Ta≥t}; then for all s > 0 we have {σ < s} = {Ta ≥

t}∩{Ta < t+s} ∈ Gt+s−. To prove the proposition, it is enough to establish P(σ > ϵYt |Gt ) ≥ 1−

α on the set {σ > 0; Yt > a(1 + δ)}. On this latter set: P(σ > ϵYt |Gt ) = P(Yt+(ϵYt )∧σ > a|Gt ),
because once the process Yt+(ϵYt )∧σ enters in Aa , it remains there forever, due to the stopping
by σ . On defining U := Y(ϵYt )∧σ+t one has

E(U |Gt ) = E(U1{U≤a}|Gt )+ E(U1{U>a}|Gt )

≤ a + (E(U r
|Gt ))

1/r (P(U > a|Gt ))
1−1/r

;
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therefore

P(U > a|Gt ) ≥


(E(U |Gt )− a)+
(E(U r |G ))1/r

r/(r−1)

.

To minorise the numerator, we observe that on the set {σ > 0, Yt > (1 + δ)a},

E(U |Gt ) = E(Yt+ϵYt∧σ − Yt |Gt )+ Yt =

 t+ϵYt

t
E(dYs∧σ |Gt )+ Yt ≥ −c1ϵYt + Yt .

To majorise the denominator E(U r
|G ) = E(Y r

t+(ϵYt )∧σ
|Gt ), we must be able to majorise

E(Y r
t+s∧σ |Gt ) for arbitrary s > 0. Let t > 0 be arbitrary and S be a Gt -optional random variable,

S > 0. For c3 = c2/r and any s ∈ ]0, S], define

FS(s) = E[(Yt+s∧σ + c3S − c3s ∧ σ)r |Gt ].

We shall show that FS(s) ≤ FS(s−) for all s ∈ ]0, S]. It is enough to show this inequality
on {σ > s} since otherwise FS(s) = FS(s−) and there is nothing to prove. To show that FS
is decreasing in ]0, S], it is enough to show that E(dΞs |Gt+s−) ≤ 0 for all s ∈ ]0, S], where
Ξs = (Yt+s∧σ + c3S − c3s ∧ σ)r . Now, on {σ > s}, by use of Itô’s formula, we get

dΞs = −rc3(Yt+s− + c3S − c3s)r−1ds + (Yt+s + c3S − c3s)r − (Yt+s− + c3S − c3s)r .

Moreover, using the Minkowski inequality, we get

E[(Yt+s + c3S − c3s)r |Gt+s−] ≤


E(Y r

t+s |Gt+s−)
1/r

+ c3S − c3s
r
,

and by use of the hypothesis

E(Y r
t |Gt−) ≤ Y r

t− + c2Y r−1
t− 1{Ta>t}dt = Y r

t−


1 +

c2

Yt−
1{Ta>t}dt


≤

Yt− + c31{Ta>t}dt

r
.

Therefore, E(dΞs |Gt+s−) ≤ 0 for all s ∈ ]0, S]. Subsequently, for all S > 0,

Y r
t+S = FS(S) ≤ lim

s→0+

FS(s) = (Yt + c3S)r .

Since S is an arbitrary Gt -optional random variable, on choosing S = ϵYt , we get finally

(E(Y r
t+ϵYt

|Gt ))
1/r

≤ Yt + c3ϵYt .

Substituting yields, that for any α ∈ ]0, 1[, parameters ϵ > 0 and δ > 0 can be chosen so that the
following inequality holds:

P(U > a|Gt ) ≥


1 − c1ϵ −

a
Yt


+

1 + c3ϵ

 r
r−1

≥


1 − c1ϵ −

1
1 + δ

 r
r−1

+

(1 + c3ϵ)
−

r
r−1

≥ 1 − α. �

Lemma 2.11. Let (Ω ,G , (Gt ),P) be a filtered probability space, (Yt ) and (Z t ) two R+-valued,
(Gt )-adapted processes on it. For a > 0, we denote Sa = inf{t ≥ 0 : Yt ≤ a} and Ta = inf
{t ≥ 0 : Z t ≤ a}. Suppose that there exist positive constants a, b, p, K1 such that

1. Yt ≤ bZ t almost surely, for all t , and
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2. E(Z p
t∧Ta

) ≤ K1.

Then, there exists K2 > 0 such that E(Y p
t∧Sab

) ≤ K2.

Proof. For arbitrary s > 0, the condition Zs < a implies Xs ≤ bZs < ab almost surely. Hence,
{Sab ≥ t} ⊆ {Ta ≥ t}. Then,

E(Y p
t∧Sab

) ≤ E

Y p

t∧Sab
(1{Sab≥t} + 1{Sab<t})


≤ E(Y p

t 1{Sab≥t})+ (ab)p
≤ bp K1 + (ab)p

:= K2. �

Proposition 2.12. Let (Ω ,G , (Gt ),P) be a filtered probability space, (Yt ) and (Z t ) two R+-
valued, (Gt )-adapted processes on it. For a > 0, we denote Sa = inf{t ≥ 0 : Yt ≤ a} and
Ta = inf{t ≥ 0 : Z t ≤ a}. Suppose that

1. there exist positive constants a, c1, c2, r such that
– E(d Z t |Gt−) ≥ −c1dt on the event {Ta ≥ t},
– E(d Zr

t |Gt−) ≤ c2 Zr−1
t− dt on the event {Ta ≥ t},

– Z0 = z > a.
2. Y0 = y and there exists a constant b > 0 such that

– ab < y < bz and
– Yt ≤ bZ t almost surely for all t .

If for some p > 0, the process (Y p
t∧Sab

) is a submartingale, then E(T q
a ) = ∞ for all q > p.

Proof. We can without loss of generality examine solely the case P(Sab < ∞) = 1, since
otherwise E(T q

a ) = ∞ holds trivially for all q > 0. Assume further that for some q > p,
it happens E(T q

a ) < ∞. Hypothesis 1 allows applying Proposition 2.9; for α = 1/2, we can
thus determine positive constants ϵ and δ such that P(Ta > t + ϵZ t∧Ta |Gt ) ≥ 1/2 on the event
{Z t∧Ta > a(1 + δ)}. Hence

E(T q
a ) ≥ E(T q

a 1{Zt∧Ta>a(1+δ)})

≥
1
2

E

(t + Z t∧Ta )

q1{Zt∧Ta>a(1+δ)}


≥
ϵq

2
E(Zq

t∧Ta
)−

ϵq

2
aq(1 + δ)q .

Now, finiteness of the q moment of Ta implies the existence of a constant K1 > 0 such that
E(Zq

t∧Ta
) ≤ K1. From Lemma 2.11 it follows that there exists some K2 > 0 such that E(Y q

t∧Sab
)

≤ K2. The previous majorisation – holding for q > p – implies that the family (Y p
t∧Sab

)t∈R+

is uniformly integrable and since the time Sab is assumed almost surely finite, we get
limt→∞ E(Y p

t∧Sab
) = E(Y p

Sab
) ≤ (ab)p. On the other hand, (Y p

t∧Sab
) is a submartingale, so is

thus a fortiori (Y q
t∧Sab

). Hence, E(Y q
t∧Sab

) ≥ E(Y q
0 ) = yq , leading to a contradiction if we chose

y > (ab)p/q . �

Corollary 2.13. Let (Ω ,G , (Gt ),P) be a filtered probability space, (X t ) a R+-valued, (Gt )-
adapted process on it. For a > 0, we denote Ta = inf{t ≥ 0 : X t ≤ a}. Suppose that there
exist positive constants a, c1, c2, p, r such that

– X0 = x > a,
– E(d X t |Gt−) ≥ −c1dt on the event {Ta ≥ t},
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– E(d Xr
t |Gt−) ≤ c2 Xr−1

t− dt on the event {Ta ≥ t},
– (X p

t∧Ta
) is a submartingale.

Then E(T q
a ) = ∞ for all q > p.

After all this preparatory work, the proof of Theorem 1.5 is now immediate.

Proof of Theorem 1.5. Write X t = f (ξt ) and use the abbreviation A := Sa( f ). Notice more-
over that τA = Ta .
1. Since f → ∞ the set A is finite. The integrability of the passage time follows from Corollar-

ies 2.5 and 2.7.
2. On identifying Z t and Yt in Proposition 2.12 with g(ξt ) and f (ξt ) respectively, we see that

the conditions of the theorem imply the hypotheses of the proposition. The non-existence of
moments immediately follows. �

2.2. Proof of theorems on explosion and implosion

As stated in the introduction, the result concerning integrability of the explosion time is
reminiscent to Foster’s criterion for positive recurrence! The reason lies in Lemma 2.3.
Proof of Theorem 1.9. 1 ⇒ 2 : Condition Γ f (x) ≤ −ϵ implies that m f (x) < 0. Since this

occurs for all x ∈ X, the function f cannot be constant. Therefore i := infx∈X f (x) <
supx∈X f (x) =: s. On choosing a a ∈ ]i, s[, and defining Ac

= {x ∈ X : f (x) ≤ a}, we
are in the situation described by Theorem 2.2, hence transience follows from that theo-
rem. Let (Fn)n∈N be an arbitrary nested increasing sequence of finite sets exhausting X.
Since the chain is transient, it follows that it leaves almost surely any finite set in finite
time, hence Px (τFc

n
< ∞) = 1, for every x ∈ Fn . Since the condition Γ f (x) ≤ −ϵ

holds everywhere for a strictly positive f , using Remark 1.8, we can change the function
f into fn = f 1Fn that vanishes outside Fn and still verifies the condition Γ fn(x) ≤ −ϵ,
for x ∈ Fn . Additionally, since the set Fn is finite, we have minx∈Fn f (x) > 0. Consider
now the process Y (n)t = fn(ξt ); the condition Γ fn(x) ≤ −ϵ implies that the process is
a strong supermartingale on Fn . Choose an arbitrary c ∈ ]0,minx∈Fn f (x)[ and observe
that Tn = inf{t ≥ 0 : Y (n)t ≤ c} = τFc

n
. Lemma 2.3 guarantees that ϵEx (τFc

n
) ≤

fn(x) = f (x) on Fn . But Fn ↗ X and τFc
n

↗ ζ ; therefore, by Fatou’s lemma,

Ex (ζ ) ≤
f (x)
ϵ

on X.
2 ⇒ 1 : Let f (x) := Ex (ζ ) ∈]0,∞[. Compute then m f (x) =


y∈X Pxy f (y) − f (x) =

y∈X PxyEy(ζ ) − Ex (ζ ) = Ex (ζ − σ1) − Ex (ζ ) = −
1
γx

(the penultimate equality
holding because the kernel P is stochastic on X, hence it is impossible to reach the
boundary ∂ in one step). It follows that Γ f (x) = −1 for all x ∈ X. �

Proof of Proposition 1.11. Let G(z) =
 z

0
dy

g(y) . Then G is differentiable, with G ′(z) =
1

g(z) > 0
hence an increasing function of z ∈ [0, b]. Since g is increasing, G ′ is decreasing and hence G is
concave satisfying limz→0 G(z) = 0 and limz→∞ G(z) < ∞. Additionally, boundedness of G
implies that G ◦ f ∈ ℓ1

+(Γ ). Due to differentiability and concavity of G, we have:

Γ G ◦ f (x) = γxE

G( f (ξ̃n)+ ∆ f

n+1)− G( f (ξ̃n))|ξ̃n = x


≤ γx
1

g( f (x))
m f (x) =

Γ f (x)

g( f (x))
≤ −c;

we conclude by Theorem 1.9 because G ◦ f is strictly positive and bounded. �
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Proof of Theorem 1.12. The conditions, thanks to Theorem 2.2, imply transience of the chain.
Additionally, it can be shown that Px0(τA = ∞) > 0 (see proof of Theorem 2.2.2 of [6]).

Let (Fn)n∈N be a nested increasing sequence of finite sets exhausting X \ A. Since every Fn is
finite and the chain is transient, Px0(τFc

n
< ∞) = 1; the very same arguments used in the proof

of Theorem 1.9 and Lemma 2.3 imply here that Ex0(τFc
n
) ≤

f (x0)
ϵ

. Now τFc
n

↗ ζ ∧ τA; hence by

Fatou’s lemma, Ex0(ζ ∧ τA) ≤
f (x0)
ϵ

. But Ex0(ζ ∧ τA) ≥ Ex0(ζ ∧ τA|τA = ∞)Px0(τA = ∞).
We conclude that

Ex0(ζ ∧ τA|τA = ∞) ≤
f (x0)

ϵPx0(τA = ∞)
. �

Proof of Theorem 1.14. Let G(z) =
 z

0
1

g(y)dy; this function is differentiable with G ′(z) =

1
g(z) > 0, hence increasing. Since g is increasing, G ′ is decreasing, hence G is concave. Non
integrability of the infinite tail means that G is unboundedly increasing towards ∞ as z → ∞,
hence G ◦ f → ∞. Concavity and differentiability of G imply that G( f (x)+ ∆)− G( f (x)) ≤

∆G ′( f (x)); integrability of f guarantees then 0 ≤ E(G( f (ξ̃n)+ ∆ f
n+1)|ξ̃n = x) ≤ G( f (x))+

m f (x)
g( f (x)) < ∞ so that F := G ◦ f ∈ ℓ1

+(Γ ) as well. Now

Γ G ◦ f (x) = γxE

G( f (ξ̃n)+ ∆ f

n+1)− G( f (ξ̃n))|ξ̃n = x


= γxE

 f (x)+∆
f
n+1

f (x)

1
g(y)

dy|ξ̃n = x



≤ γx
1

g( f (x))
m f (x) ≤ c.

Let X t = F(ξt ) be the process obtained form the Markov chain after transformation by F . Using
the semimartingale decomposition of X t = X0+Mt +


]0,t] Γ F(ξs−)ds, it becomes obvious then

that Ex X t ≤ F(x) + ct , showing that for every finite t , Px (X t = ∞) = 0. But since F → ∞

the process itself ξt cannot explode. �

Proposition 2.14. Suppose the chain is recurrent and there exist a finite set A ∈ X and a
constant C = CA > 0 such that, for all x ∈ X, the uniform bound ExτA ≤ C holds. Then the
chain implodes towards any state z ∈ X.

Proof. We only sketch the proof since it relies on the same ideas serving to prove that an ir-
reducible Markov chain that positively recurs to a finite set, positively recurs everywhere. First
remark that obviously σ0 ≤ τA, where σ0 is the holding time at the initial state, i.e. 1

γx
=

Ex (σ0) ≤ ExτA ≤ C . Hence γ := infx∈X γx > 0. Let a be an arbitrary state in A and z an
arbitrary fixed state in X. Irreducibility means that there exists a path of finite length, say k = ka ,
satisfying a ≡ x0, . . . , xk ≡ z and δ = δa =

k−1
i=0 Pxi ,xi+1 > 0. Now it is straightforward to

show that the probability that starting on A, we recur n times to A before reaching z ∈ X decays
exponentially with n. Therefore, once we have reached A, with probability 1 we will reach z.
Standard arguments then allow to show that supx Ex (τz) ≤ K A,z for some constant K A,z < ∞

and this guarantees implosion towards any z ∈ X. �

Proof of Theorem 1.15. 1. We first show implosion. Since f is bounded, the condition
Γ f (x) = γx m f (x) ≤ −ϵ guarantees that γ = infx γx > 0, hence the chain has always
strictly positive speed.
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[⇒: ] Since F is finite and the chain is recurrent, it follows that Px (τF < ∞) = 1 for all
x ∉ F ; associated with the condition Γ f (x) ≤ −ϵ for x ∉ F these properties guarantee –
by virtue of Lemma 2.3 – that Ex (τF ) ≤

f (x)
ϵ

≤ supz∈X
f (z)
ϵ

≤
b
ϵ

. Now, due to recurrence
and irreducibility, if there exists a constant C ′

= C ′

F such that x ∉ F ⇒ Ex (τF ) < C ′,
then, for every z ∈ X, there exists a constant C such that x ≠ z ⇒ Ex (τz) < C , by virtue
of Proposition 2.14.
[⇐: ] Suppose now that for a finite A ∈ X , there exists a constant C such that
Ex (τA) ≤ C . Consequently 1

γx
≤ ExτA ≤ C , leading necessarily to the lower bound

γ > 0. Define

f (x) =


0 if x ∈ A
ExτA if x ∉ A.

Then it is immediate to show that for x ∉ A, we have Γ f (x) ≤ −1.
2. To show non-implosion, use Proposition 2.9 to guarantee that if at some time t the process ξt

is at some point x0, then the time needed for the process X t = f (ξt ) to reach Sa( f ) exceeds
ϵ f (x0) with some substantially large probability. More precisely, Px0(τSa( f )− t > ϵ f (x0)) ≥

1 − α, for some α ∈ ]0, 1[. Therefore Ex0(τSa( f )) ≥ (1 − α)ϵ f (x0) and since f → ∞ then
this expectation cannot be bounded uniformly in x0. �

Proof of Proposition 1.16. Since the chain is implosive, for every finite set F , there exists a
constant C = CF such that every x ∈ Fc, we have Ex (τF ) ≤ C . By Markov’s inequality, we get
that Px (τF ≥ 2C) ≤

1
2 . Now, using the strong Markov property we show that Px (τF ≥ 2kC) ≤

1
2k for all k ≥ 1, from which the existence of exponential moments Ex (exp(ατF )) < ∞ follows,
for sufficiently small α > 0. �

Proof of Proposition 1.17. Let G(z) =
 z

0
dy

g(y) . Since G ′(z) =
1

g(z) > 0 the function G is

increasing with G(0) = 0 and G(b) = B. Since g is increasing G ′
=

1
g is decreasing, hence the

function G is concave. Then concavity leads to the majorisation

mG◦ f (x) ≤ G ′( f (x))m f (x) =
m f (x)

g( f (x))
.

The condition imposed on the statement of the proposition implies that Γ G ◦ f (x) ≤ −1. We
conclude from Lemma 2.3. �

3. Application to some critical models

This section intends to treat some problems in order to illustrate how our methods can be ap-
plied and show their power. The problems depend of course on the choice of the family (γx )x∈X;
they have the particularity that even if the parameters γx were constant, the problems should
still have a critical behaviour. Since our γx are not constant and moreover are unbounded, the
results of this section combine the criticality of the embedded Markov chain with the explosion/
implosion phenomena.

We need first some technical conditions. Let f ∈ ℓ2+δ0 for some δ0 > 0. For every
g : R+ → R+ a C3 function, we get

mg◦ f (x) = E(g( f (ξ̃n+1))− g( f (ξ̃n))|ξ̃n = x)

= g′( f (x))m f (x)+
1
2

g′′( f (x))v f (x)+ Rg(x),
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where Rg(x) is the conditional expectation of the remainder occurring in the Taylor
expansion.1

Definition 3.1. Let F = (Fn)n∈N be an exhaustive nested sequence of sets Fn ↑ X, f ∈ ℓ2+δ
+ (Γ )

and g ∈ C3(R+; R+). We say that the chain (or its jumps) satisfies the remainder condition (or
shortly condition R) for F, f , and g, if

lim
n→∞

sup
x∈Fc

n

Rg(x)


g′( f (x))m f (x)+

1
2

g′′( f (x))v f (x)


= 0.

The quantity Dg( f, x) := g′( f (x))m f (x) +
1
2 g′′( f (x))v f (x) in the expression above is the

effective average drift at the scale defined by the function g. If the function f is non-trivial, there
exists a natural exhaustive nested sequence determined by the sub-level sets of f . When we omit
to specify the nested sequence, we shall always consider the natural one.

Introduce the notation ln(0) s = s and recursively, for all integers k ≥ 1, ln(k) s = ln(ln(k−1) s)
and denote Lk(s) =

k
i=0 ln(i) s, for k ≥ 0, and Lk(s) := 1 for k < 0. Equivalently, we define

exp(k) as the inverse function of ln(k). In most occasions we shall use (Lyapunov) functions
g(s) := lnη(l) s with some integer l ≥ 0 and some real η ≠ 0, defined for s sufficiently large,

s ≥ s0 := exp(l)(2) say. It is cumbersome but straightforward to show then that for f ∈ ℓ2+δ0(Γ )
with some δ0 > 0, the condition R is satisfied. It will be shown in this section that condition R
and Lyapunov functions of the aforementioned form play a crucial role in the study of models
where the effective average drift Dg( f, x) tends to 0 in some controlled way with n when x ∈ Fc

n ,
where (Fn) is an exhaustive nested sequence; models of this type lie in the deeply critical regime
between recurrence and transience.

3.1. Critical models on denumerably infinite and unbounded subsets of R+

Consider a discrete time irreducible Markov chain (ξ̃n) on a denumerably infinite and
unbounded subset X of R+. Since now X inherits the composition properties stemming from
the field structure of R, we can define directly m(x) := mid(x) and v(x) := vid(x), where id
is the identity function on X. The model is termed critical when the drift m tends to 0, in some
precise manner, when x → ∞.

In [12] Markov chains on X = {0, 1, 2, . . .} were considered; it has been established that the
chain is recurrent if m(x) ≤ v(x)/2x while is transient if m(x) > θv(x)/2x for some θ > 1. In
particular, if m(x) = O( 1

x ) and v(x) = O(1) the model is in the critical regime.
The case with arbitrary degree of criticality

m(x) =

k
i=0

αi

L i (x)
+ o


1

Lk(x)


and v(x) =

k
i=0

xβi

L i (x)
+ o


x

Lk(x)


,

with αi , βi constants, has been settled in [15] by using Lyapunov functions. Under the additional
conditions

lim sup
n→∞

ξ̃n = ∞ and lim inf
x∈X

v(x) > 0

1 The most convenient form of the remainder is the Roche–Schlömlich one (see Appendix A, Table 9.IV, p. 1754 of [9]
for instance).
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and some technical moment conditions – guaranteeing the condition R for this model – that can
straightforwardly be shown to hold if id ∈ ℓ2+δ0(Γ ), for some δ0 > 2, it has been shown in [15]
(Theorem 4) that

– if 2α0 < β0 the chain is recurrent while if 2α0 > β0 the chain is transient;
– if 2α0 = β0 and 2αi − βi − β0 = 0 for all i : 0 ≤ i < k and there exists i : 0 ≤ i < k such

that βi > 0 then
– if 2αk − βk − β0 ≤ 0 the chain is recurrent,
– if 2αk − βk − β0 > 0 the chain is transient.

We assume that the moment conditions id ∈ ℓ2+δ0(Γ ) – guaranteeing the condition R for this
model – are satisfied throughout this section.

Let (ξ̃n) be a Markov chain on X = {0, 1, . . .} satisfying for some k ≥ 0

m(x) =

k−1
i=0

β0

2L i (x)
+

αk

Lk(x)
+ o


1

Lk(x)


and v(x) = β0 + o(1),

with 2αk > β0. The aforementioned result guarantees the transience of the chain; we term such
a chain k-critically transient. When 2αk < β0 the previous result guarantees the recurrence of
the chain; we term such a chain k-critically recurrent.

In spite of its seemingly idiosyncratic character, this model proves universal as Lyapunov
functions used in the study of many general models in critical regimes map those models to
some k-critical models on denumerably infinite unbounded subsets of R+.

3.1.1. Moments of passage times

Proposition 3.2. Let (ξt ) be a continuous-time Markov chain on X and A be the finite set
A := [0, x0]∩X for some sufficiently large x0. Suppose that for some integer k ≥ 0, its embedded
chain is k-critically recurrent, i.e.

m(x) =

k−1
i=0

β0

2L i (x)
+

αk

Lk(x)
+ o


1

Lk(x)


and v(x) = β0 + o(1),

with 2αk < β0. Denote C = αk/β0 (hence C < 1/2) and assume there exists a constant κ > 0

such that2 γx = O(
L2

k (x)
lnκ
(k)(x)

) for large x. Define p0 := p0(C, κ) = (1 − 2C)/κ .

1. Assume that v(ρ)(x) = O(1) with ρ = max(2, 1 − 2C)+ δ0. If q < p0 then Exτ
q
A < ∞.

2. Assume that v(ρ)(x) = O(1) with ρ = max(2, p0)+ δ0. If q ≥ p0 then Exτ
q
A = ∞.

Remark 3.3. We remark that when κ ↓ 0 (for fixed k and C) then p0 ↑ ∞ implying that more
and more moments exist.

Proof of Proposition 3.2. For the function f (x) = lnη(k) x we determine

m f (x) =
1
2
β0η(2C + η − 1 + o(1))

lnη(k)(x)

L2
k(x)

.

2 i.e. there exists a constant c3 > 0 such that 1
c3

≤
γx lnκ

(k)(x)

L2
k (x)

≤ c3 for x ≥ x0.
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1. For a p > 0, we remark that
0 < pη < 1 − 2C and η ≥

κ

2


⇒ Γ f p(x) ≤ −c f p−2(x),

for some constant3 c > 0. Hence p < 2(1 − 2C)/κ and statement 1 of Theorem 1.5 implies
for any q ∈ ]0, (1 − 2C)/κ[, the q-th moment of the passage time exists. Optimising over the
accessible values of q we get that Ex (τ

q) < ∞ for all q < p0.
2. We distinguish two cases:

[1 − 2C < κ:] We verify that, choosing η ∈ ]1 − 2C, κ] and p > 1−2C
κ

, the three conditions of
statement 2 of Theorem 1.5 (with f = g), namely Γ f ≥ −c1, Γ f r

≤ c2 f r−1,
for some r > 1, and Γ f p

≥ 0, outside some finite set A.
[κ ≤ 1 − 2C :] In this situation, choosing the parameters η ∈ ]0, κ] and p > 1−2C

κ
implies

simultaneous verification of the three conditions of statement 2 of Theorem 1.5.

In both situations, we conclude that for all q > 1−2C
κ

, the corresponding moment does not exist.
Optimising over the accessible values of q, we get that Ex (τ

q) = ∞ for all q > p0. �

3.1.2. Explosion and implosion

Proposition 3.4. Let (ξt ) be a continuous time Markov chain. Suppose that for some integer
k ≥ 0, its embedded chain is k-critically transient.

1. If there exist a constant d1 > 0, an integer l > k, and a real κ > 0 (arbitrarily small) such
that

γx ≥ d1Lk(x)Ll(x)(ln(l) x)κ , x ≥ x0,

then Py(ζ < ∞) = 1 for all y ∈ X.
2. If there exist a constant d2 > 0 and an integer l > k such that

γx ≤ d2Lk(x)Ll(x), x ≥ x0,

then the continuous-time chain is conservative.

Proof. 1. For a k-critically transient chain, chose a function f behaving at large x as f (x) =
1

lnη
(l)(x)

. Denote C = αk/β0 (hence C > 1/2 for the chain to be transient). We estimate then

m f (x) = −
1
2
β0η(2C − 1)

1

Lk(x)Ll(x) lnη(l) x
+ o


1

Lk(x)Ll(x) lnη(l) x


.

We conclude by Theorem 1.9.
2. Choose as the Lyapunov function the identity function f (x) = x and estimate

mln(l+1) ◦ f (x) =
1
2
β0(2C − 1)

ln(l+1) x

Lk(x)Ll+1(x)
=

1
2
β0(2C − 1)

1
Lk(x)Ll(x)

.

We conclude by Theorem 1.14 by choosing g(s) = Ll(s). �

Proposition 3.5. Let (ξt ) be a continuous time Markov chain. Suppose that for some integer
k ≥ 0, its embedded chain is k-critically recurrent. Denote C = αk/β0 (hence C < 1/2 for the
chain to be recurrent). Let A be the finite set A := [0, x0] ∩ X for some sufficiently large x0.

3 The constant c can be chosen c ≥
1
2β0η(1 − 2C)c3.
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1. If there exist a constant d1 > 0, an integer l > k, and an arbitrarily small real κ > 0 such
that

γx ≥ d1Lk(x)Ll(x)(ln(l) x)κ , x ≥ x0,

then there exists a constant B such that EyτA ≤ B, uniformly in y ∈ Ac, i.e. the chain
implodes.

2. If there exist a constant d2 > 0 and an integer l > k such that

γx ≤ d2Lk(x)Ll(x), x ≥ x0,

then the continuous time chain does not implode.

Proof. 1. Use the function f defined for sufficiently large x by the formula f (x) = 1 −
1

lnη
(l) x

,

for some l > k and η > 0. We estimate then

m f (x) =
1
2
β0η(2C − 1)

1

Lk(x)Ll(x) lnη(l) x
+ o


1

Lk(x)Ll(x) lnη(l) x


.

We conclude by statement 1 of Theorem 1.15.
2. Using the function f defined for sufficiently large x by the formula f (x) = lnη(l+1) x , for

some l ≥ k. We estimate then

m f (x) =
1
2
β0η(2C − 1)

lnη(l+1) x

Lk(x)Ll+1(x)
+ o


lnη(l+1) x

Lk(x)Ll+1(x)


.

If γx ≤ d2Lk(x)Ll(x) for large x , then, using the above estimate for the case η = 1 and the
case η = r for some small r > 1, we observe that the conditions Γ f ≥ −ϵ and Γ f r

≤ f r−1

are simultaneously verified. We conclude by statement 2 of Theorem 1.15. �

3.2. Simple random walk on Zd for d = 2 and d ≥ 3

Here the state space X = Zd and the embedded chain is a simple random walk on X. Since in
dimension 2 the simple random walk is null recurrent while in dimension d ≥ 3 is transient, a
different treatment is imposed.

3.2.1. Dimension d ≥ 3
For the Lyapunov function f defined by Zd

∋ x → f (x) := ∥x∥, we can show that there exist
constants α0 > 0 and β0 > 0 such that lim∥x∥→∞ ∥x∥m f (x) = α0 and lim∥x∥→∞ v f (x) = β0
such that C = α0/β0 > 1/2. Therefore the one dimensional process X t = f (ξt ) has 0-critically
transient Lamperti behaviour.

We get therefore that (ξt )t∈R+
is a (quite unsurprisingly) transient process and that if there

exist a constant a > 0 and

– a constant d1 > 0, an integer l > 0, and a real κ > 0 (arbitrarily small) such that

γx ≥ d1∥x∥Ll(∥x∥)(ln(l) ∥x∥)κ , ∥x∥ ≥ a,

then Py(ζ < ∞) = 1 for all y ∈ X;
– a constant d2 > 0 and an integer l > 0 such that

γx ≤ d2∥x∥Ll(∥x∥), ∥x∥ ≥ a,

then the continuous time chain is conservative.



2410 M. Menshikov, D. Petritis / Stochastic Processes and their Applications 124 (2014) 2388–2414

3.2.2. Dimension 2
Using again the Lyapunov function f (x) = ∥x∥, we show that the one dimensional process

X t = f (ξt ) is of the 1-critically recurrent Lamperti type. Hence, again using the results obtained
in Section 3.1, we get that if there exist a constant a > 0 and

– a constant d1 > 0, an integer l > 1, and an arbitrarily small real κ > 0 such that

γx ≥ d1L1(∥x∥)Ll(∥x∥)(ln(l) ∥x∥)κ , ∥x∥ ≥ a,

then there exists a constant C such that EyτA ≤ C , uniformly in y for y : ∥y∥ ≥ a, i.e. the
chain implodes;

– a constant d2 > 0 and an integer l > 1 such that

γx ≤ d2L1(∥x∥)Ll(∥x∥), ∥x∥ ≥ a,

then the continuous time chain does not implode.

3.3. Random walk on Z2
+ with reflecting boundaries

3.3.1. The model in discrete time

Here X = Z2
+. We denote by

◦

X= {x ∈ Z2
+ : x1 > 0, x2 > 0} the interior of the wedge

and by ∂1X = {x ∈ Z2
+ : x2 = 0} (and similarly for ∂2X) its boundaries. Since X is a subset

of a vector space, we can define directly the increment vector D := ξ̃n+1 − ξ̃n and the average

conditional drift m(x) := mid(x) = E(D|ξ̃n = x) ∈ R2. We assume that for all x ∈
◦

X, m(x) = 0
so that we are in a critical regime. For x ∈ ∂♭X; with ♭ = 1, 2, the drift m♭(x) does not vanish

but is a constant vector m♭ that forms angles φ♭ with respect to the normal to ∂♭X. For x ∈
◦

X,
the conditional covariance matrix C(x) := (C(x)i j ), with C(x)i j = E[Di D j |ξ̃n = x], is the
constant 2 × 2 matrix C , reading

C := Cov(D, D) =


s2

1 λ

λ s2
2


.

There exists an isomorphism Φ on R2 such that Cov(ΦD,ΦD) = ΦCΦt
= I ; it is elementary

to show that

Φ =


s2

d
−
λ

s2d

0
1
s2

 ,
where d =

√
det C , is a solution to the aforementioned isomorphism equation. This isomor-

phism maps the quadrant R2
+ into a squeezed wedge Φ(R2

+) having an angle ψ at its summit
reading ψ = arctan(−d2/λ). Obviously ψ = π/2 if λ = 0, while ψ ∈ ]0, π/2[ if λ < 0 and
ψ ∈]π/2, π[ if λ > 0. We denote by Y = Φ(X) the squeezed image of the lattice. The isomor-
phism Φ transforms the average drifts at the boundaries into n♭ = Φm♭ forming new angles, ψ♭,
with the normal to the boundaries of Φ(R2

+).
The discrete time model has been exhaustively treated in [1] and its extension to the case of

excitable boundaries carrying internal states in [14]. Here we recall the main results of [1] under
some simplifying assumptions that allow us to present them here without redefining completely
the model or considering all the technicalities. The assumptions we need are that the jumps
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– are bounded from below, i.e. there exists a constant K > 0 such that D1 ≥ −K and
D2 ≥ −K ,

– satisfy a sufficient integrability condition, for instance E(∥D∥
2+δ0
2+δ0

) < ∞ for some δ0 > 0,
– are such that their covariance matrix is non degenerate.

Under these assumptions we can state the following simplified version of the results in [1].
Denote χ = (ψ1 + ψ2)/ψ and A = {x ∈ X : ∥x∥ ≤ a}.

1. If χ ≥ 0 the chain is recurrent.
2. If χ < 0 the chain is transient.
3. If 0 < χ < 2 + δ0, then for every p < χ/2 and every x ∉ A, Exτ

p
A < ∞.

4. If 0 < χ < 2 + δ0, then for every p > χ/2 and every x ∉ A, Exτ
p
A = ∞.

Let f : R2
+ → R+ be a C2 function. Define f̃ (y) = f (Φ−1 y). Although the Hessian

operator does not in general transform as a tensor, the linearity of Φ allows however to write

Hess f (x) = Φt Hess f̃ (Φx)Φ. For every x ∈
◦

X we establish then4 the identity:

E(⟨D,Hess f ◦Φ(x)D⟩|ξ̃n = x) = Lap f ◦Φ(x).

We denote hβ,β1(x) = ∥x∥
β cos(β arctan( x2

x1
) − β1). Then this function is harmonic, i.e.

Laphβ,β1
= 0. We are interested in harmonic functions that are positive on Φ(R2

+); positivity and
geometry impose then conditions on β and β1. In fact, sign(β)β1 is the angle of ∇hβ,β1(x) at
x ∈ ∂1X, with the normal to ∂1X. Similarly, if β2 = βψ − β1, then sign(β)β2 is the angle of
the gradient with the normal to ∂2X. Now, it becomes evident that βi , i = 1, 2, must lie in the
interval ]−π/2, π/2[ and subsequently β =

β1+β2
ψ

. Notice also that the datum of two admissible
angles β1 and β2 uniquely determines the harmonic function whose gradient at the boundaries
forms angles as above. Hence, ⟨∇hβ,β1(y), n♭⟩ = ∥y∥

ββ sin(ψ♭−β♭), for y ∈ ∂♭Y and ♭ = 1, 2.
Let now g : R+ → R+ be a C3 function and h = hβ,β1 a harmonic function that remains

positive in Φ(R2
+). On denoting y = Φx , abbreviating Ξ := g(h(Φξ̃n+1)) − g(h(Φξ̃n)), and

using the fact that h is harmonic, we get

E(Ξ |ξ̃n = x) = g′(h(y))E(⟨∇h(y),ΦD⟩|ξ̃n = x)

+
g′′(h(y))

2
E(⟨∇h(y),ΦD⟩

2
|ξ̃n = x)

+
[g′(h(y))]2

2
E(⟨ΦD,Hessh(y)ΦD⟩|ξ̃n = x)+ R3

= g′(h(y))⟨∇h(y), n(y)⟩ +
g′′(h(y))

2
∥∇h(y)∥2

+ R3(y),

where R3 is the remainder of the Taylor expansion. The value of the conditional increment de-
pends on the position of x . If x ∈ ∂♭X the dominant term of the right hand side is g′(h(y))
⟨∇h(y), n♭⟩, while in the interior of the space, that term strictly vanishes because there n(y) = 0;
hence the dominant term becomes the term g′′(h(y))

2 ∥∇h(y)∥2.

4 Since we have used the symbol ∆ to denote the jumps of the process, we introduce the symbol Lap to denote the
Laplacian.
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3.3.2. The model in continuous-time

Proposition 3.6. Let 0 < χ = (ψ1 +ψ2)/ψ (hence the chain is recurrent) and A := Aa = {x ∈

X : ∥x∥ ≤ a} for some a > 0, and γx = O(∥x∥
2−κ); denote p0 = χ/κ . Suppose further that

id ∈ ℓρ(Γ ) for some ρ > 2.

1. If q < p0, then Ex (τ
q
A) < ∞.

2. If q > p0, then Ex (τ
q
A) = ∞.

Proof. Consider the Lyapunov function f (x) = hβ,β1(x)
η.

1. If 0 < pη < 1 then m f p (x) < 0. The condition Γ f p
≤ −c f p−2 reads then γx ≥

C
h pη−2η
β (x)

h pη−2
β ∥∇hβ∥2

= C ′ ∥x∥
2β−2βη

∥x∥2β−2 = C ′
∥x∥

2−2βη from which it follows that 2βη > κ . This

inequality, combined with 0 < pη < 1, yields that for all q <
β
κ
<

χ
κ

, Ex (τ
q
A) < ∞.

Hence, on optimising on the accessible values of q we obtain the value of p0.
2. We proceed similarly; we need however to use the full-fledged version of statement 2 of

Theorem 1.5, with both the function f and g = hηχ,ψ1
. Then f (x) ≤ Cg(x) and

[ηβ < κ and ηp > 1] ⇒ [Γ g ≥ −ϵ and Γ gr
≤ cgr−1for r > 1, and Γ f p

≥ 0].

Simultaneous verification of these inequalities yields p0 = χ/κ . �

Using again Lyapunov functions of the form f = hηβ we can show that the drift of the chain
in the transient case can be controlled by two 0-critically transient Lamperti processes in the
variable ∥x∥ that are uniformly comparable. We can thus show, using methods developed in
Section 3.1 the following

Proposition 3.7. Let χ < 0 (hence the chain is transient).

1. If there exist a constant d1 > 0 and an arbitrary integer l > 0 such that γx ≥ d1∥x∥Ll(∥x∥)

lnκ(l) ∥x∥, for some arbitrarily small κ > 0, then the chain explodes.
2. If there exist a constant d2 > 0 and an arbitrary integer l > 0 such that γx ≤ d2∥x∥Ll(∥x∥),

then the chain does not explode.

With the help of similar arguments we can show the following

Proposition 3.8. Let 0 < χ (hence the chain is recurrent).

1. If there exist a constant d1 > 0 and an arbitrary integer l > 0 such that γx ≥ d1∥x∥Ll(∥x∥)

lnκ(l) ∥x∥, for some arbitrarily small κ > 0, then the chain implodes.
2. If there exist a constant d2 > 0 and an arbitrary integer l > 0 such that γx ≤ d2∥x∥Ll(∥x∥),

then the chain does not implode.

3.4. Collection of one-dimensional complexes

We introduce some simple models to illustrate two phenomena:

– it is possible to have 0 < Px (ζ < ∞) < 1,
– it is possible to have Px (ζ = ∞) = 0 and Exζ = ∞.
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The simplest situation corresponds to a continuous-time Markov chain whose embedded chain
is a simple transient random walk on X = Z with non trivial tail boundary. For instance, choose
some p ∈ ]1/2, 1[ and transition matrix

Pxy =


1/2 if x = 0, y = x ± 1;

p if x > 0, y = x + 1 or x < 0, y = x − 1;

1 − p if x > 0, y = x − 1 or x < 0, y = x + 1;

0 otherwise.

Then, for every x ≠ 0, 0 < Px (τ0 = ∞) < 1. Suppose now that γx = c for x < 0 while there
exist a sufficiently large integer l ≥ 0 and an arbitrarily small δ > 0 such that γx ≥ cLl(x) lnδ(l) x
for x ≥ x0. Then, using Theorem 1.12, we establish that Ex (ζ |τZ−

> ζ) < ∞ for all x > 0
while Px (ζ = ∞|τZ+

= ∞) = 1 for all x < 0. This result combined with irreducibility of the
chain leads to the conclusion: 0 < Px (ζ < ∞) < 1 for all x ∈ X.

It is worth noting that bending the axis Z at 0 allows considering the state space as the gluing
of two one-dimensional complexes X2 = {0} ∪ N × {−,+}; every point x ∈ Z \ {0} is now
represented as x = (|x |, sgn(x)). This construction can be generalised by gluing a denumerably
infinite family of one-dimensional complexes through a particular point o and introducing the
state space X∞ = {o} ∪ N × N; every point x ∈ X∞ \ {o} can be represented as x = (x1, x2)

with x1, x2 ∈ N.
Let (ξt )t∈[0,∞[ be a continuous time Markov chain evolving on the state space X∞. Its

embedded (at the moments of jumps) chain (ξ̃n)n∈N has transition matrix given by

Pxy =


πy2 if x = o, y = (1, y2), y2 ∈ N,
p if x = (x1, x2), y = (x1 + 1, x2), x1 ≥ 1, x2 ∈ N,
1 − p if x = (x1, x2), y = (x1 − 1, x2), x1 > 1, x2 ∈ N,
1 − p if x = (1, x2), n ∈ N, y = o,
0 otherwise,

where 1/2 < p < 1 and π = (πn)n∈N is a probability vector on N, satisfying πn > 0 for all n.
The chain is obviously irreducible and transient.

The space X∞ must be thought as a “mock-tree” since, for transient Markov chains, it has
a sufficiently rich boundary structure without any of the complications of the homogeneous
tree (the study on full-fledged trees is postponed in a subsequent publication). Suppose that
for every n ∈ N there exist an integer ln ≥ 0, a real δn > 0, and a Kn > 0 such that for

x = (x1, x2) ∈ N × N for x1 large enough, γx satisfies γ(x1,x2) = Kx2O(Llx2
(x1) ln

δx2
(lx2 )

x1).

By applying Theorem 1.12, we establish that Zx2 := E(x1,x2)(ζ |τo = ∞) < ∞ for all
x1 > 0 and all x2 ∈ N, hence P(x1,x2)(ζ = ∞|τo = ∞) = 0. Irreducibility implies then
that Po(ζ = ∞) = 0. However,

Eo(ζ ) ≥


x2∈N

πx2E(1,x2)(ζ |τo = ∞)P(1,x2)(τo = ∞) =
2p − 1

p


x2∈N

πx2 Zx2 .

Since the sequences (ln)n , (δn)n , and (Kn)n are totally arbitrary, while the positive sequence
(πn)n must solely satisfy the probability constraint


n∈N πn = 1, all possible behaviour for Eoζ

can occur. In particular, we can choose, for all n ∈ N, ln = 0 and δn = 1; this choice gives
γ(x1,n) = KnO( 1

x2
1
) for every n and for large x1, leading to the estimate Zn ≥ C Kn , for all n.
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Choosing now, for instance, πn = O(1/n2) and Kn = O(n) for large n, we get

Po(ζ = ∞) = 0 and Eoζ = ∞.

This remark leads naturally to the question whether for transient exploding chains with non-
trivial tail boundary, there exists some critical q > 0 such that E(ζ p) < ∞ for p < q while
E(ζ p) = ∞ for p > q . Such models include continuous time random walks on the homo-
geneous tree and more generally on non-amenable groups. These questions are currently under
investigation and are postponed to a subsequent publication.
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Supér (3) 57 (1940) 61–111.

[5] Andreas Eibeck, Wolfgang Wagner, Stochastic interacting particle systems and nonlinear kinetic equations, Ann.
Appl. Probab. 13 (3) (2003) 845–889.

[6] Guy Fayolle, Vadim A. Malyshev, Mikhail V. Menshikov, Topics in the Constructive Theory of Countable Markov
Chains, Cambridge University Press, Cambridge, 1995.

[7] F.G. Foster, On the stochastic matrices associated with certain queuing processes, Ann. Math. Statist. 24 (1953)
355–360.

[8] K. Hamza, F.C. Klebaner, Conditions for integrability of Markov chains, J. Appl. Probab. 32 (2) (1995) 541–547.
[9] Kiyosi Ito (Ed.), Encyclopedic Dictionary of Mathematics, Vols. I–IV, second ed., MIT Press, Cambridge, MA,

1987. Translated from the Japanese.
[10] G. Kersting, F.C. Klebaner, Sharp conditions for nonexplosions and explosions in Markov jump processes, Ann.

Probab. 23 (1) (1995) 268–272.
[11] Fima C. Klebaner, Introduction to Stochastic Calculus with Applications, second ed., Imperial College Press,

London, 2005.
[12] John Lamperti, Criteria for the recurrence or transience of stochastic process. I, J. Math. Anal. Appl. 1 (1960)

314–330.
[13] John Lamperti, Criteria for stochastic processes. II. Passage-time moments, J. Math. Anal. Appl. 7 (1963) 127–145.
[14] M. Menshikov, D. Petritis, Markov chains in a wedge with excitable boundaries, in: Analytic Methods in Applied

Probability, in: Amer. Math. Soc. Transl. Ser. 2, vol. 207, Amer. Math. Soc., Providence, RI, 2002, pp. 141–164.
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