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Abstract 3

Being motivated by a recent pioneer work Carmona and Delarue (2013), in this article, we propose a 4

broad class of natural monotonicity conditions under which the unique existence of the solutions to Mean- 5

Field Type (MFT) Forward–Backward Stochastic Differential Equations (FBSDE) can be established. Our 6

conditions provided here are consistent with those normally adopted in the traditional FBSDE (without 7

the interference of a mean-field) frameworks, and give a generic explanation on the unique existence of 8

solutions to common MFT-FBSDEs, such as those in the linear-quadratic setting; besides, the conditions 9

are ‘optimal’ in a certain sense that can elaborate on how their counter-example in Carmona and Delarue 10

(2013) just fails to ensure its well-posedness. Finally, a stability theorem is also included. 11
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1. Introduction1

Let (Ω ,F ,P) be a probability space and {Bt }t≥0 be a d-dimensional Brownian motion over2

the same space equipped with a natural filtration, generated by Bt , satisfying the usual continuity3

conditions. A fully coupled forward–backward stochastic differential equation (FBSDE) is:4 
X t = x0 +

 t

0
b (s; Xs, Ys, Zs) ds +

 t

0
σ(s; Xs, Ys, Zs)d Bs

Yt = g(XT )+

 T

t
h(s; Xs, Ys, Zs)ds −

 T

t
Zsd Bs, for any t ∈ [0, T ],

5

where X, Y, Z take values in Rn,Rm,Rm×d respectively, and b, σ, g, h are functions with ap-6

propriate dimensions. Ma, Protter and Yong [9] are the first to develop the “four-step scheme” to7

establish the existence and uniqueness of solutions of the FBSDEs when the underlying forward8

equation is non-degenerate. Hu and Peng [8] later proposed certain natural monotonicity condi-9

tions (that allows the underlying forward equation to be degenerate) under which they can show10

the unique existence of solutions to FBSDEs when both the dimensions of X and Y are equal;11

Peng and Wu [11] then extended the earlier result in [8] when the dimensions of X and Y are12

different under the so called G-monotonicity conditions. Besides, Pardoux and Tang [10] also13

used a purely probabilistic approach to provide a comprehensive study, again under monotonic-14

ity conditions, on the (local) theory of FBSDEs and their connection with quasilinear parabolic15

partial differential equations, which includes the (local) existence and uniqueness of the solu-16

tions of those FBSDEs, their a-priori estimates, and their continuous dependence (stability) on17

the underlying modelling parameters. The paper of Delarue [7] is an original breakthrough in18

the study of the well-posedness of FBSDEs based both on probabilistic techniques and on some19

PDE results which contains less restrictive assumption than that posed in [9].20

Mean-field type forward–backward stochastic differential equations (MFT-FBSDEs) are21

forward–backward stochastic differential equations in which the coefficients involved could also22

depend upon the distribution of the solution triple (X, Y, Z); see [2,1,3,4], and the references23

therein for more details of their emergence and introduction, and their subtle connections with24

mean-field games. The stochastic maximum principle approaches to both the solutions of mean25

field game problems and optimal control problems for mean field stochastic differential equations26

naturally reduce to the solutions of MFT-FBSDE systems (see [5,6]). In particulars, the frontier27

works of [3,4] provided the first probabilistic analysis of mean-field type control theory and28

related problems. In their interesting recent work [4], Carmona and Delarue used (Schauder)29

fixed-point or Picard iterative scheme together with recursive induction (over a finite partition of30

the time horizon) and localization argument (with respect to ‘monotone’ (up to a subsequence)31

convergence over the relaxation of bounds on the underlying coefficient functions of the32

dynamics) to build a coherent general theory of the existence of solutions of MFT-FBSDEs under33

a very mild Lipschitz condition on the coefficient functions; however, the uniqueness of solutions34

cannot be guaranteed in general, and a crucial counter-example (with a very simple structure)35

on this failure was also illustrated in [4]. In their another work [5], Carmona and Delarue36

implemented the continuation method as introduced in [11] to investigate the optimal control37

problem with McKean–Vlasov diffusion processes. More precisely, by adopting convexity38

assumptions on the Hamiltonian of the corresponding optimization problem, they established39

the unique existence of the forward–backward system via the stochastic Pontryagin (maximum)40

principle. It should note that the satisfaction of their proposed convexity assumption implies41

that of our advocated monotonicity condition (A1); nevertheless, their proposed condition may42
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exclude some other interesting cases that could satisfy alternative Assumptions (A2), (A3), (A4). 1

In contrast, in our present paper, we aim to establish that under the additional monotonicity 2

conditions on the coefficient functions, the well-posedness of the solutions to the corresponding 3

MFT-FBSDEs could be ensured. Besides, our proposed conditions seem to be ‘optimal’ in the 4

sense that, on the one hand, they provide a generic explanation on the unique existence of the 5

solutions to common MFT-FBSDEs, such as those arisen from linear-quadratic mean-field type 6

control problems; on the other hand, they also illuminate on how the counter-example provided 7

in [4] just critically fails to possess a unique solution in a ‘continuum manner’. 8

The organization of our paper is as follows. Section 2 devotes to the problem formulation 9

and settings for MFT-FBSDEs. The unique existence of their solutions is shown in Section 3. 10

Further results on comparison principle is given in Section 4. Two motivating examples and their 11

connections with our proposed monotonicity conditions are given in Section 5, and we finally 12

conclude in Section 6. Q2 13

2. Problem formulation 14

Let

Ω ,F , {Ft }t∈[0,T ],P


, where T > 0 is an arbitrarily fixed finite number and F = FT , 15

be a filtered probability space satisfying the usual conditions with {Ft }t∈[0,T ] generated by a d- 16

dimensional Brownian motion {Bt }t∈[0,T ]. In this article, we consider the following mean-field 17

type forward–backward stochastic differential equation (MFT-FBSDE): 18d X t = b

t; X t , Yt , Z t ,P(X t ,Yt ,Zt )


dt + σ(t; X t , Yt , Z t ,P(X t ,Yt ,Zt ))d Bt ,

dYt = −h

t; X t , Yt , Z t ,P(X t ,Yt ,Zt )


dt + Z t d Bt ,

X0 = x0, YT = g(XT ,PXT ),

(1) 19

for any t ∈ [0, T ], where X, Y, Z take values in Rn,Rm,Rm×d , respectively, and b, σ, g, h 20

are functions with appropriate dimensions. PXT and P(Xs ,Ys ,Zs ) = P
(Xs ,Ys ,Z

(1)
s ,...,Z (d)s )

denote the 21

probability measures induced by XT and (Xs, Ys, Zs) respectively, where Z (i)s ∈ Rm denotes the 22

i th column of Zs, i = 1, . . . , d. 23

In the rest of this paper, we shall adopt ⟨·, ·⟩ and |·| to be the respective usual inner product and 24

norm in Euclidean space; and for any z1, z2 ∈ Rm×d , we define |z1| ,

tr(z′1z1)

 1
2 , ⟨z1, z2⟩ , 25

tr(z′1z2) where z′1 stands for the transpose of z1; for any u1 , (x1, y1, z1), u2 , (x2, y2, z2) ∈ 26

Rn
× Rm

× Rm×d , we define |u1| ,

tr(x1x ′1)+ tr(y1 y′1)+ tr(z1z′1)

 1
2 and (u1, u2) , 27

⟨x1, x2⟩ + ⟨y1, y2⟩ + ⟨z1, z2⟩. We denote by M2 (0, T ;Rp) the set of all Rp-valued Ft -adapted 28

processes v· such that 29

E
 T

0
|vs |

2ds


<∞. 30

Definition 1. A triple process (X, Y, Z)(ω, t) : Ω × [0, T ] → Rn
× Rm

× Rm×d is called an 31

adapted solution of (1) if (i) (X, Y, Z) ∈ M2

0, T ;Rn

× Rm
× Rm×d


; and (ii) the triple also 32

satisfies (1) P-almost surely. 33

Given a m × n full-rank matrix G, in the rest of the paper, we shall adopt the following 34

notations: u , (x, y, z)T , 35

f (t; u, µ) ,

−h(t; x, y, z, µ)
b(t; x, y, z, µ)
σ (t; x, y, z, µ)

 , A(t; u, µ) ,

−G ′h(t; x, y, z, µ)
Gb(t; x, y, z, µ)
Gσ(t; x, y, z, µ)

 , 36
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where µ is a probability measure on Rn+m+md and Gσ , (Gσ1, . . . ,Gσd). Let W(·, ·) denote1

2-Wasserstein’s distance on M(Rp) defined by2

W(µ1, µ2) , inf


Rp×Rp
|x − y|2π(dx, dy)

 1
2

: π ∈ M(Rp
× Rp)3

with marginals µ1 and µ2


,4

where M(Rq) denotes the set of probability measures with finite second order moment on Rq
5

for some q ∈ N. It is obvious from its definition that6

|E[X1] − E[X2]| ≤ W (µ1, µ2) ≤

E

|X1 − X2|

2
 1

2
, (2)7

where X1 and X2 are q-dimensional random vectors that follow the distributions µ1 and µ28

respectively.9

In the rest of our paper, we also consider those functions f (t; u, µ) that sometimes satisfy the10

following additional condition:11

(H): f is independent of u, while its dependence on µ is only through its first moment

vµ(dv).12

Under (H), we adopt the notations f

t;

vµ(dv)


and A


t;

vµ(dv)


for f (t; u, µ) and13

A(t; u, µ) respectively.14

Let U 1 , (X1, Y 1, Z1), U 2 , (X2, Y 2, Z2) ∈ M2

0, T ;Rn

× Rm
× Rm×d


, define15

(X̂ , Ŷ , Ẑ) , (X1
− X2, Y 1

− Y 2, Z1
− Z2). Assume that for each (u, µ) ∈ Rn

×Rm
×Rm×d

×16

M(Rn+m+md), (x, µ′) ∈ Rn
× M(Rn), we have A(·; u, µ) ∈ M2


0, T ;Rn

× Rm
× Rm×d


17

and g(x, µ′) ∈ L2 (Ω ,FT ,P). We first list the following Assumptions (A1)–(A4): there exist18

L > 0, non-negative constants β1, β2 and α1 with β1 + β2 > 0, α1 + β1 > 0 such that for19

almost all (t, ω) ∈ [0, T ] × Ω , (u1, µ1), (u2, µ2) ∈ Rn
× Rm

× Rm×d
×M(Rn+m+md) and20

(x3, µ3), (x4, µ4) ∈ Rn
×M(Rn),21

• (A1)22

(i) | f (t; u1, µ1)− f (t; u2, µ2)| ≤ L

|u1
− u2
| +W(µ1, µ2)


,23

(ii) |g(x3, µ3)− g(x4, µ4)| ≤ L

|x3
− x4
| +W(µ3, µ4)


,24

(iii) E


A


t;U 1
t ,P(X1

t ,Y
1
t ,Z

1
t )


− A


t;U 2

t ,P(X2
t ,Y

2
t ,Z

2
t )


,U 1

t −U 2
t


25

≤ −β1E[|G X̂ t |
2
] − β2


E[|G ′Ŷt |

2
] + E[|G ′ Ẑ t |

2
]


,26

(iv) E


g(X1
T ,PX1

T
)− g(X2

T ,PX2
T
),G(X1

T − X2
T )

≥ α1E


|G X̂T |

2

;27

• (A2)28

(i) The condition (H) holds and29  f


t;E[V 1
]


− f


t;E[V 2

]

 ≤ L
E[V 1

] − E[V 2
]

 ,30

(ii) |g(x3, µ3)− g(x4, µ4)| ≤ L

|x3
− x4
| +W(µ3, µ4)


,31
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(iii) E


A


t;E[U 1
t ]


− A


t;E[U 2

t ]


,U 1

t −U 2
t


1

≤ −β1

GE[X̂ t ]

2 − β2

G ′E[Ŷt ]

2 + G ′E[Ẑ t ]

2 , 2

(iv) E


g(X1
T ,PX1

T
)− g(X2

T ,PX2
T
),G(X1

T − X2
T )

≥ α1E


|G X̂T |

2

; 3

• (A3) 4

(i) | f (t; u1, µ1)− f (t; u2, µ2)| ≤ L

|u1
− u2
| +W(µ1, µ2)


, 5

(ii) |g(x3, µ3)− g(x4, µ4)| ≤ L
E[V 3

] − E[V 4
]

 , 6

(iii) E


A


t;U 1
t ,P(X1

t ,Y
1
t ,Z

1
t )


− A


t;U 2

t ,P(X2
t ,Y

2
t ,Z

2
t )


,U 1

t −U 2
t


7

≤ −β1E[|G X̂ t |
2
] − β2


E[|G ′Ŷt |

2
] + E[|G ′ Ẑ t |

2
]


, 8

(iv) E


g(X1
T ,PX1

T
)− g(X2

T ,PX2
T
),G(X1

T − X2
T )

≥ α1

GE[X̂T ]

2 ; 9

• (A4) 10

(i) The condition (H) holds and 11 f (t;E[V 1
])− f (t;E[V 2

])

 ≤ L
E[V 1

] − E[V 2
]

 , 12

(ii) |g(x3, µ3)− g(x4, µ4)| ≤ L|E[V 3
] − E[V 4

]|, 13

(iii) E


A


t;E[U 1
t ]


− A


t;E[U 2

t ]


,U 1

t −U 2
t


14

≤ −β1

GE[X̂ t ]

2 − β2

G ′E[Ŷt ]

2 + G ′E[Ẑ t ]

2 , 15

(iv)E


g(X1
T ,PX1

T
)− g(X2

T ,PX2
T
),G(X1

T − X2
T )

≥ α1

GE[X̂T ]

2 ; 16

where V 1, V 2
∈ Rn+m+md and V 3, V 4

∈ Rn are random vectors which follow the distributions 17

µ1, µ2 on Rn+m+md and µ3, µ4 on Rn respectively. Furthermore, β1 > 0, α1 > 0 (resp. β2 > 0) 18

when m > n (resp. n > m). In particular, if m = n, then either β1 > 0 and α1 > 0, or β2 > 0. 19

Remark. (1) It is known in [4] that, solely under the standard Lipschitz condition, i.e., 20

|b(t; x ′, y′z′, µ′)− b(t; x, y, z, µ)| + |h(t; x ′, y′z′, µ′)− h(t; x, y, z, µ)| 21

+ |σ(t; x ′, y′z′, µ′)− σ(t; x, y, z, µ)| 22

≤ L

|x − x ′| + |y − y′| + |z − z′| +W


µ,µ′


, 23

where 24

L ≥ 1, y, y′ ∈ Rm, x ′, x ∈ Rn, z′, z ∈ Rm×d and 25

µ′, µ ∈ M


Rn+m+md

; 26

it cannot guarantee the unique existence of the solutions of general MFT-FBSDEs. Our 27

technical assumptions (A1)–(A4) as stated above depict trade-off between Lipschitz and 28

monotonicity conditions, in the sense that a weaker (stronger resp.) Lipschitz condition 29

corresponds to a stronger (weaker resp.) monotonicity condition, and both of them together 30
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play a major role in ensuring the uniqueness of the solution of the MFT-FBSDEs. The1

intuition behind the balance between these two conditions is hinted from the observation2

in the inequalities (2); indeed, the Wasserstein’s distance of two probability measures is3

bounded below by the Euclidean norm of the difference of their respective expectations,4

which motivates us to consider the problem under the different influences of various Lipschitz5

constraints for the measure arguments in the corresponding coefficient and pay-off functions.6

(2) The matrix G is used to match the dimensions of processes X t and Yt in monotonicity7

condition when they are different, and it can be arbitrarily chosen provided that it is of full8

rank. In particular, when X t and Yt are of the same dimension n ∈ N, we can simply take9

G = In×n .10

(3) Assumption (A2) (i) is equivalent to11

(i′)
 f


t; u1, µ1

− f


t; u2, µ2

 ≤ L
E[V 1

] − E[V 2
]

 ;12

indeed, (i)⇒(i′) is obvious. To show that (i′)⇒(i), note that if µ1 and µ2 have the same first13

moment, then f (t; u1, µ1) = f (t; u2, µ2) for allµ1 andµ2 because of (i′), and so f (t; u, µ)14

is independent of u and depends solely on (t;

vµ(dv)), i.e. f (t; u, µ) = f (t;


vµ(dv)).15

Similarly, by using the same argument, Assumption (A2)(iii) is equivalent to16

(iii′) E


A


t;U 1
t ,P(X1

t ,Y
1
t ,Z

1
t )


− A


t;U 2

t ,P(X2
t ,Y

2
t ,Z

2
t )


,U 1

t −U 2
t


17

≤ −β1

GE[X̂ t ]

2 − β2

G ′E[Ŷt ]

2 + G ′E[Ẑ t ]

2 .18

The equivalence between (i′) (resp. (iii′)) and (A4)(i) (resp. (A4)(iii)) also holds by applying19

the same argument.20

3. Existence and uniqueness of the solutions to the mean-field type forward–backward21

stochastic differential equations22

Theorem 1. Suppose that one of the above Assumptions (A1)–(A4) holds. There exists at most23

one adapted solution (X, Y, Z) for the MFT-FBSDE (1).24

Proof. Let U 1
t = (X

1
t , Y 1

t , Z1
t ),U

2
= (X2

t , Y 2
t , Z2

t ) be two adapted solutions of (1), we set25

Ût , (X̂ t , Ŷt , Ẑ t ) = (X
1
t − X2

t , Y 1
t − Y 2

t , Z1
t − Z2

t ),26

b̂t , b


t; X1
t , Y 1

t , Z1
t ,P(X1

t ,Y
1
t ,Z

1
t )


− b


t; X2

t , Y 2
t , Z2

t ,P(X2
t ,Y

2
t ,Z

2
t )


,27

σ̂t , σ


t; X1
t , Y 1

t , Z1
t ,P(X1

t ,Y
1
t ,Z

1
t )


− σ


t; X2

t , Y 2
t , Z2

t ,P(X2
t ,Y

2
t ,Z

2
t )


,28

ĥt , h


t; X1
t , Y 1

t , Z1
t ,P(X1

t ,Y
1
t ,Z

1
t )


− h


t; X2

t , Y 2
t , Z2

t ,P(X2
t ,Y

2
t ,Z

2
t )


,29

f̂t , f


t; X1
t , Y 1

t , Z1
t ,P(X1

t ,Y
1
t ,Z

1
t )


− f


t; X2

t , Y 2
t , Z2

t ,P(X2
t ,Y

2
t ,Z

2
t )


.30

An application of Itô’s formula to

Ŷt ,G X̂ t


yields31

E


g


X1
T ,PX1

T


− g


X2

T ,PX2
T


,G X̂T


32

= E
 T

0


A


t;U 1
t ,P(X1

t ,Y
1
t ,Z

1
t )


− A


t;U 2

t ,P(X2
t ,Y

2
t ,Z

2
t )


,U 1

t −U 2
t


dt


.33
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(1) If (A1) is satisfied, an immediate consequence of this assumption and a simple rearrangement 1

gives us that 2

α1E

|G X̂T |

2

+ β1E

 T

0
|G X̂ t |

2dt


≤ −β2E

 T

0
|G ′Ŷt |

2dt +
 T

0
|G ′ Ẑ t |

2dt


. 3

If n > m, in this case, β2 > 0. We can have
 T

0 |G
′Ŷt |

2dt = 0, which implies Y 1
t = Y 2

t 4

for almost every t ∈ [0, T ]; and by the continuity of Y 1 and Y 2, it also holds that P

Y 1

t = Y 2
t , 5

∀t ∈ [0, T ]

= 1. Apply Itô’s lemma to the left hand side of the equation |Ŷt |

2
= 0, it follows 6

that
 T

0 |Ẑs |
2ds = 0, and thus Z1

t = Z2
t for almost every t . Moreover, we can see that the process 7

{X̂ t }t∈[0,T ] satisfies the following mean-field type SDE: 8

d X̂ t = b̂t dt + σ̂t d Bt , X̂0 = 0, t ∈ [0, T ], 9

where the coefficients satisfy 10

|b̂t | + |σ̂t | ≤ 2

|b̂t |

2 + |σ̂t |
2 ≤ 2| f̂t | ≤ 2L


|X̂ t | +W


P(X1

t ,Y
1
t ,Z

1
t )
,P(X2

t ,Y
2
t ,Z

2
t )


11

≤ 2L


|X̂ t | +


E[|X̂ t |

2
]

 1
2

. (3) 12

Applying Itô’s formula to |X̂ t |
2 and by (3), we can derive that 13

E

|X̂ t |

2

= 2E

 t

0


b̂s, X̂s


ds


+ E

 t

0
|σ̂s |

2ds


14

≤ 4LE
 t

0


|X̂s | +


E[|X̂s |

2
]

 1
2

· |X̂s |ds


15

+ 4L2E

 t

0


|X̂s | +


E[|X̂s |

2
]

 1
2
2

ds


16

≤ 4L


E
 t

0
|X̂s |

2ds


+

 t

0
E[|X̂s |]


E[|X̂s |

2
]

 1
2

ds


17

+ 8L2


E
 t

0
|X̂s |

2ds


+ E

 t

0
|X̂s |

2ds


18

≤


8L + 16L2

  t

0
E

|X̂s |

2


ds, ∀t ∈ [0, T ], 19

which implies that X1
t = X2

t ,∀t ∈ [0, T ] ∩Q by Gronwall’s inequality; and by the continuity of 20

X1 and X2, it holds that P

X1

t = X2
t ,∀t ∈ [0, T ]


= 1. 21

If n < m, in this case, β1 > 0, α1 > 0. We can have
 T

0 |G X̂ t |
2dt = 0 and X1

T = X2
T , which 22

implies that X1
t = X2

t for almost every t ∈ [0, T ] and g(X1
T ,PX1

T
) = g(X2

T ,PX2
T
); and by the 23

continuity of X1 and X2, it follows that P

X1

t = X2
t ,∀t ∈ [0, T ]


= 1. Moreover, we can see 24

that the process {Ŷt }t∈[0,T ] satisfies the following mean-field type BSDE: 25

dŶt = −ĥt dt + Ẑ t d Bt , ŶT = 0, t ∈ [0, T ], 26



8 A. Bensoussan et al. / Stochastic Processes and their Applications xx (xxxx) xxx–xxx

by Assumption (A1) and X̂ t = 0 for t ∈ [0, T ], the drift coefficient satisfies1

|ĥt | ≤ L

|Ŷt | + |Ẑ t | +W


P(X1

t ,Y
1
t ,Z

1
t )
,P(X2

t ,Y
2
t ,Z

2
t )


2

≤ L


|Ŷt | + |Ẑ t | +


E[|Ŷt |

2
]

 1
2
+


E[|Ẑ t |

2
]

 1
2

. (4)3

Applying Itô’s formula to |Ŷt |
2, by substituting (4) and note that ab ≤ 1

2ϵ a2
+
ϵ
2 b2, a, b ∈ R, ϵ >4

0, we can derive that5

E

|Ŷt |

2

+ E

 T

t
|Ẑs |

2ds


= 2E

 T

t


ĥs, Ŷs


ds


≤ 2

 T

t
E

|ĥs ||Ŷs |


ds6

≤ 2L
 T

t


E[|Ŷs |

2
] + E


|Ẑs ||Ŷs |


+ E[|Ŷs |]


E

|Ŷs |

2
 1

2
+ E[|Ŷs |]


E

|Ẑs |

2
 1

2


ds7

≤ 2L
 T

t


E[|Ŷs |

2
] + E


|Ẑs ||Ŷs |


+ E


|Ŷs |

2

+


E[|Ŷs |

2
]

 1
2

E[|Ẑs |

2
]

 1
2


ds8

≤ 2L
 T

t


2+

1
2ϵ
+

1
2ϵ


E

|Ŷs |

2

+

ϵ
2
+
ϵ

2


E

|Ẑs |

2


ds9

= L
 T

t


4+

2
ϵ


E

|Ŷs |

2

+ 2ϵE


|Ẑs |

2


ds,10

then choose ϵ = 1
4L to get that11

E

|Ŷt |

2

+

1
2

E
 T

t
|Ẑs |

2ds


≤


8L2
+ 4L

  T

t
E

|Ŷs |

2


ds, ∀t ∈ [0, T ],12

which implies that Z1
t = Z2

t for almost every t , and Y 1
t = Y 2

t ,∀t ∈ [0, T ] ∩ Q by Gronwall’s13

inequality; and by the continuity of Y 1 and Y 2, it also holds that P

Y 1

t = Y 2
t ,∀t ∈ [0, T ]


= 1.14

If n = m, a similar argument can also be applied to obtain our desired result.15

(2) If (A2) is satisfied, then we can similarly deduce that16

α1E

|G X̂T |

2

+ β1

 T

0

E[G X̂ t ]

2 dt ≤ −β2

 T

0

E[G ′Ŷt ]

2 + E[G ′ Ẑ t ]

2 dt.17

If n > m, then β2 > 0, we can have
G ′E[Ŷt ]

2 = 0 and
G ′E[Ẑ t ]

2 = 0 for almost every18

t ∈ [0, T ], which implies E[Ŷt ] = 0 and E[Ẑ t ] = 0, a.e. Applying Itô’s formula to |X̂ t |
2, by the19

Lipschitz condition imposed in (A2), E[Ŷt ] = 0 and E[Ẑ t ] = 0, a.e., we can derive that20

E[|X̂ t |
2
] = 2E

 t

0


b̂s, X̂s


ds


+

 t

0
E[|σ̂s |

2
]ds21

≤ 2E
 t

0
|b̂s ||X̂s |ds


+

 t

0
E[|σ̂s |

2
]ds22

≤ 2L
 t

0
E[|X̂s |

2
]ds + L2

 t

0
E[|X̂s |

2
]ds, ∀t ∈ [0, T ].23

An application of Gronwall’s inequality yields that24

E[|X̂ t |
2
] = 0, ∀t ∈ [0, T ],25
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which implies that X1
t = X2

t ,∀t ∈ [0, T ] ∩Q; and by the continuity of X1 and X2, it also holds 1

that P

X1

t = X2
t ,∀t ∈ [0, T ]


= 1. Moreover, we can see that the process {Ŷt }t∈[0,T ] satisfies 2

the following mean-field type BSDE: 3

dŶt = −ĥt dt + Ẑ t d Bt , ŶT = 0, t ∈ [0, T ], 4

by Assumption (A2), E[X̂ t ] = 0,E[Ŷt ] = 0 and E[Ẑ t ] = 0 for almost every t ∈ [0, T ], the drift 5

coefficient satisfies 6

|ĥt | ≤ L
E[X̂ t ]

+ E[Ŷt ]

+ E[Ẑ t ]

 = 0, a.e., 7

then in light of the continuity of Y 1 and Y 2, it follows that P

Y 1

t = Y 2
t ,∀t ∈ [0, T ]


= 1, and 8

Z1
t = Z2

t for almost every t by standard result of BSDE. 9

If n < m, then α1 > 0 and β1 > 0, we can have E[X̂ t ] = 0, for almost every t , and X̂T = 0. 10

By Lipschitz’s condition imposed in (A2), i.e., 11

|ĥs | ≤ L
E[X̂s]

+ E[Ŷs]

+ E[Ẑs]

 = L
E[Ŷs]

+ E[Ẑs]

 , a.e., 12

which can implies that ĥs is independent of (X̂s, Ŷs, Ẑs). Applying Itô’s formula to |Ŷt |
2 and 13

noting X1
T = X2

T , we can derive that for any t ∈ [0, T ], 14

E[|Ŷt |]
2
+ E

 T

t
|Ẑs |

2ds


= E

g X1
T ,PX1

T


− g


X2

T ,PX2
T

2 15

+ 2E
 T

t


ĥs, Ŷs


ds


16

= 0+ 2
 T

t


E[ĥs],E[Ŷs]


ds 17

≤ 2L
 T

t

E[Ŷs]

2 + E[Ŷs]

 E[Ẑs]

 ds 18

≤ 2L
 T

t

E[Ŷs]

2 + 1
2ϵ

E[Ŷs]

2 + ϵ
2

E[Ẑs]

2 ds, (5) 19

then choose ϵ = 1
2L and apply Gronwall’s inequality to get that 20

E
 T

0
|Ẑ t |

2dt


= 0, E[|Ŷt |

2
] = 0, ∀t ∈ [0, T ], 21

which implies that Z1
t = Z2

t and Y 1
t = Y 2

t for almost every t ; and by the continuity of Y 1
22

and Y 2, it also holds that P

Y 1

t = Y 2
t ,∀t ∈ [0, T ]


= 1. Moreover, we can see that the process 23

{X̂ t }t∈[0,T ] satisfies the following mean-field type SDE: 24

d X̂ t = b̂t dt + σ̂t d Bt , X̂0 = 0, t ∈ [0, T ], 25

where the coefficients satisfy 26

|b̂t | + |σ̂t | ≤ 2

|b̂t |

2 + |σ̂t |
2 ≤ 2| f̂t | ≤ 2L

E[X̂ t ]

+ E[Ŷt ]

+ E[Ẑ t ]

 = 0, 27

then it follows that P

X1

t = X2
t ,∀t ∈ [0, T ]


= 1. 28
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Remark. To ensure the uniqueness of (1), the terminal condition on Y can barely be a function1

of (YT , ZT ) or generally P(YT ,ZT ); in other words, g in (1) can only depend on XT or PXT .2

In particular, the process {Z t }t∈[0,T ] is only dt ⊗ dP-a.e. defined, i.e. a prior setting for ZT3

cannot be viable if there is no additional assumption imposed. g’s independence of YT and PYT4

can be illustrated as follows: from the derivation of (5), suppose that g is a function of PYT ,5

i.e. YT = g

XT ,P(XT ,YT )


, then we can only achieve:6 g X1

T ,P(X1
T ,Y

1
T )


− g


X2

T ,P(X2
T ,Y

2
T )

2 ≤ W

P(X1

T ,Y
1
T )
,P(X2

T ,Y
2
T )

2
≤ E[|ŶT |

2
],7

which may not lead to a usual Gronwall’s inequality, without which uniqueness of the solution8

can hardly be concluded.9

(3) If either (A3) or (A4) is satisfied, a similar argument can also be applied to obtain our10

desired result. �11

3.1. Existence of solution under Assumption (A1)12

In this section, we establish the existence of solution of the MFT-FBSDE under Assumption13

(A1) by the argument of continuity method first introduced in [11]. Let λ ∈ [0, 1], consider the14

following class of mean-field type FBSDEs15 
d X t = [(1− λ)β2(−G ′Yt )+ λb


t;Ut ,P(X t ,Yt ,Zt )


+ φt ]dt

+ [(1− λ)β2(−G ′Z t )+ λσ

t;Ut ,P(X t ,Yt ,Zt )


+ ψt ]d Bt ,

dYt = −[(1− λ)β1G X t + λh

t;Ut ,P(X t ,Yt ,Zt )


+ γt ]dt + Z t d Bt ,

X0 = x0, YT = λg(XT ,PXT )+ (1− λ)G XT + ξ,

(6)16

where φ,ψ and γ are given process in M2 (0, T ) with values in Rn,Rn×d and Rm respectively,17

ξ ∈ L2 (Ω ,FT ,P). Clearly, the existence of solution of (6) for λ = 1 implies that of (1).18

Lemma 1. The following system, which is that of (6) when λ = 0, has a unique solution:19 d X t =

−β2G ′Yt + φt


dt +


−β2G ′Z t + ψt


d Bt ,

−dYt = (β1G X t + γt ) dt − Z t d Bt ,

X0 = x0, YT = G XT + ξ.

(7)20

Proof. See Lemma 2.5 in [11]. �21

Lemma 2. Under Assumption (A1), we also assume that there exists a constant λ0 ∈ [0, 1) for22

any φ,ψ, γ in M2 (0, T ) taking values in Rn,Rn×d and Rm respectively and ξ ∈ L2 (Ω ,FT ,P),23

such that (6) has an adapted solution. Then there exists a δ0 ∈ (0, 1) which only depends on24

G, L , α1, β1, β2 and T , such that for any λ ∈ [λ0, λ0 + δ0], (6) has an adapted solution.25

Proof. For each xT ∈ L2 (Ω ,FT ,P) and a triple us , (xs, ys, zs) ∈ M2

0, T ;Rn

× Rm
×26

Rm×d

, we take27 
φt ← δ


β2G ′yt + b


t; ut ,P(xt ,yt ,zt )


+ φt ,

ψt ← δ

β2G ′zt + σ


t; ut ,P(xt ,yt ,zt )


+ ψt ,

γt ← δ

−β1Gxt + h


t; ut ,P(xt ,yt ,zt )


+ γt ,

ξ ← δ

g(xT ,PxT )− GxT


+ ξ.

28
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By assumption, there exists a constant λ0 ∈ [0, 1) such that there exists a unique triple U = 1

(X, Y, Z) ∈ M2

0, T ;Rn

× Rm
× Rm×d


satisfying the following MFT-FBSDE: 2

d X t =

(1− λ0)β2(−G ′Yt )+ λ0b


t;Ut ,P(X t ,Yt ,Zt )


+ δ


β2G ′yt + b


t; ut ,P(xt ,yt ,zt )


+ φt


dt

+

(1− λ0)β2(−G ′Z t )+ λ0σ


t;Ut ,P(X t ,Yt ,Zt )


+ δ


β2G ′zt + σ


t; ut ,P(xt ,yt ,zt )


+ ψt


d Bt ,

dYt = −

(1− λ0)β1G X t + λ0h


t;Ut ,P(X t ,Yt ,Zt )


+ δ


−β1Gxt + h


t; ut ,P(xt ,yt ,zt )


+ γt


dt + Z t d Bt ,

X0 = x0, YT = λ0g(XT ,PXT )+ (1− λ0)G XT + δ

g(xT ,PxT )− GxT


+ ξ.

3

We now proceed to prove that, if δ is sufficiently small, the mapping Iλ0+δ : M2

0, T ; 4

Rn+m+m×d

× L2 (Ω ,FT ,P) → M2


0, T ;Rn+m+m×d


× L2 (Ω ,FT ,P) defined by Iλ0+δ 5

(u, xT ) = (U, XT ) is a contraction. 6

Let ū , (x̄, ȳ, z̄) ∈ M2

0, T ;Rn

× Rm
× Rm×d


and


Ū , X̄T


, Iλ0+δ (ū, x̄T ). We set 7

û = (x̂, ŷ, ẑ) = (x − x̄, y − ȳ, z − z̄), Û = (X̂ , Ŷ , Ẑ) = (X − X̄ , Y − Ȳ , Z − Z̄). 8

An application of Itô’s formula to

G X̂ t , Ŷt


yields that 9

λ0E


G X̂T , g

XT ,PXT


− g


X̄T ,PX̄T


+ (1− λ0)E


G X̂T ,G X̂T


10

+ δE


G X̂T ,−Gx̂T + g

xT ,PxT


− g


x̄T ,Px̄T


11

= λ0E
 T

0


A

t;Ut ,P(X t ,Yt ,Zt )


− A


t; Ūt ,P(X̄ t ,Ȳt ,Z̄t )


, Ût


dt


12

− (1− λ0)E
 T

0


β1


G X̂ t ,G X̂ t


+ β2


G ′Ŷt ,G ′Ŷt


+ β2


G ′ Ẑ t ,G ′ Ẑ t


dt


13

+ δE
 T

0


β1


G X̂ t ,Gx̂t


+ β2


G ′Ŷt ,G ′ ŷt


+ β2


G ′ Ẑ t ,G ′ ẑt


14

+


Ût , A


t; ut ,P(xt ,yt ,zt )


− A


t; ūt ,P(x̄t ,ȳt ,z̄t )


dt


, 15

and now in light of the condition given in Assumption (A1), we have 16

(α1λ0 + (1− λ0))E

|G X̂T |

2


17

+E
 T

0


β1


G X̂ t ,G X̂ t


+ β2


G ′Ŷt ,G ′Ŷt


+ β2


G ′ Ẑ t ,G ′ Ẑ t


dt


18

≤ δE
 T

0


β1|G|

2


1
2
|X̂ t |

2
+

1
2
|x̂t |

2

+ β2|G|

2


1
2
|Ŷt |

2
+

1
2
|ŷt |

2


19

+β2|G|
2


1
2
|Ẑ t |

2
+

1
2
|ẑt |

2


dt


+ δE

 T

0
|Ût |

A t; ut ,P(xt ,yt ,zt )


20

− A

t; ūt ,P(x̄t ,ȳt ,z̄t )

  dt


21

+ δE


1
2


|G|2|X̂T |

2
+ |G|2

x̂T
2+ |G X̂T |

g xT ,PxT


− g


x̄T ,Px̄T

 22
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≤ δE
 T

0


β1|G|

2


1
2
|X̂ t |

2
+

1
2
|x̂t |

2

+ β2|G|

2


1
2
|Ŷt |

2
+

1
2
|ŷt |

2


1

+β2|G|
2


1
2
|Ẑ t |

2
+

1
2
|ẑt |

2


dt


2

+ δE
 T

0
|Ût ||G|

 f

t; ut ,P(xt ,yt ,zt )


− f


t; ūt ,P(x̄t ,ȳt ,z̄t )

 dt


3

+ δE


1
2


|G|2|X̂T |

2
+ |G|2

x̂T
2+ |G X̂T |

g xT ,PxT


− g


x̄T ,Px̄T

4

≤ δE
 T

0


β1|G|

2


1
2
|X̂ t |

2
+

1
2
|x̂t |

2

+ β2|G|

2


1
2
|Ŷt |

2
+

1
2
|ŷt |

2


5

+β2|G|
2


1
2
|Ẑ t |

2
+

1
2
|ẑt |

2


dt


6

+ Lδ|G|E
 T

0


|Ût |

2
+

1
2
|ût |

2
+

1
2

W 2 P(xt ,yt ,zt ),P(x̄t ,ȳt ,z̄t )


dt


7

+ δE


1
2


|G|2|X̂T |

2
+ |G|2

x̂T
2+ L|G|2|X̂T |

2
+

L

2
|x̂T |

2
+

L

2
W 2 PxT ,Px̄T


.8

We also note that9 
W 2 P(xt ,yt ,zt ),P(x̄t ,ȳt ,z̄t )


≤ E

x̂t
2 + ŷt

2 + ẑt
2 = E

ût
2 , ∀t ∈ [0, T ],

W 2 PxT ,Px̄T


≤ E[|x̂T |

2
].

10

Therefore, there exists a positive constant K1 which only depends on L ,G, β1, β2 and T such11

that12

(α1λ0 + (1− λ0))E

|G X̂T |

2


13

+E
 T

0


β1


G X̂ t ,G X̂ t


+ β2


G ′Ŷt ,G ′Ŷt


+ β2


G ′ Ẑ t ,G ′ Ẑ t


dt


14

≤ δK1E
 T

0

ût
2 + |Ût |

2


dt


+ δK1E


|X̂T |

2
+ |x̂T |

2

,15

also note that (α1λ0 + (1− λ0)) > min {1, α1}, we can then obtain that16

min {1, α1} × E

|G X̂T |

2


17

+E
 T

0


β1


G X̂ t ,G X̂ t


+ β2


G ′Ŷt ,G ′Ŷt


+ β2


G ′ Ẑ t ,G ′ Ẑ t


dt


18

≤ δK1E
 T

0

ût
2 + |Ût |

2


dt


+ δK1E


|X̂T |

2
+ |x̂T |

2

. (8)19

Applying Itô’s formula to |X̂ t |
2, then we can derive that20

E

|X̂ t |

2

= 2E

 t

0


X̂s , (1− λ0)β2(−G′Ŷs)


ds


21

+ 2E
 t

0


X̂s , λ0


b

s;Us ,P(Xs ,Ys ,Zs )


− b


s; Ūs ,P(X̄s ,Ȳs ,Z̄s )


ds


22
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+ 2E
 t

0


X̂s , δ


β2G′ ŷs + b


s; us ,P(xs ,ys ,zs )


− b


s; ūs ,P(x̄s ,ȳs ,z̄s )


ds


1

+E
 t

0

(1− λ0)β2(−G′ Ẑs)+ λ0


σ

s;Us ,P(Xs ,Ys ,Zs )


− σ


s; Ūs ,P(X̄s ,Ȳs ,Z̄s )


2

+ δ

β2G′ ẑs + σ(s; us ,P(xs ,ys ,zs ))− σ(s; ūs ,P(x̄s ,ȳs ,z̄s ))

 2ds


3

≤ E
 t

0


|X̂s |

2
+ (1− λ0)

2β2
2 |G|

2
|Ŷs |

2


ds


4

+ λ0E
 t

0


|X̂s |

2
+

b s;Us ,P(Xs ,Ys ,Zs )


− b


s; Ūs ,P(X̄s ,Ȳs ,Z̄s )

2 ds


5

+E
 t

0


δβ2


|X̂s |

2
+ |G|2

ŷs
2 6

+ δ

|X̂s |

2
+
b s; us ,P(xs ,ys ,zs )


− b


s; ūs ,P(x̄s ,ȳs ,z̄s )

2ds


7

+E
 t

0


4(1− λ0)

2β2
2 |G|

2
|Ẑs |

2
+ 4λ2

0

σ s;Us ,P(Xs ,Ys ,Zs )


− σ


s; Ūs ,P(X̄s ,Ȳs ,Z̄s )

2 8

+ 4δ2β2
2 |G|

2
|ẑs |

2
+ 4δ2 σ(s; us ,P(xs ,ys ,zs ))− σ(s; ūs ,P(x̄s ,ȳs ,zs ))

2 ds

, 9

by Lipschitz’s assumptions imposed in (A1), (2) and Gronwall’s inequality we can obtain that 10

sup
0≤s≤T

E

|X̂s |

2

≤ δK1E

 T

0
|ûs |

2ds


+ K1E

 T

0


|Ŷs |

2
+ |Ẑs |

2


ds


. (9) 11

Note that 12

1
T

E
 T

0
|X̂s |

2ds


≤ sup

0≤s≤T
E

|X̂s |

2

, 13

we can also derive that 14

E
 T

0
|X̂s |

2ds


≤ δT K1E

 T

0
|ûs |

2ds


+ T K1E

 T

0


|Ŷs |

2
+ |Ẑs |

2


ds


. (10) 15

Similarly, applying Itô’s formula to |Ŷt |
2, and we can derive that 16

E

|Ŷt |

2

+ E

 T

t
|Ẑs |

2ds


17

= 2E
 T

t


Ŷs, (1− λ0)β1G X̂s + λ0


h

s;Us,P(Xs ,Ys ,Zs )


− h


s; Ūs,P(X̄s ,Ȳs ,Z̄s )


18

− δ

β1Gx̂s + h


s; us,P(xs ,ys ,zs )


− h


s; ūs,P(x̄s ,ȳs ,z̄s )


ds


19

+E
λ0


g

XT ,PXT


− g


X̄T ,PX̄T


+ (1− λ0)G X̂T 20

+ δ

g

xT ,PxT


− g


x̄T ,Px̄T


− δGx̂T

2 21
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≤

 T

t


E[|Ŷs |

2
] + (1− λ0)

2β2
1 |G|

2E[|X̂s |
2
]


ds1

+

 T

t


1
ϵ

E[|Ŷs |
2
] + ϵλ2

0E
h s;Us,P(Xs ,Ys ,Zs )


− h


s; Ūs,P(X̄s ,Ȳs ,Z̄s )

2 ds2

+

 T

t
δβ1


E[|Ŷs |

2
] + |G|2E[|x̂s |

2
]


ds3

+

 T

t
δ

E[|Ŷs |

2
] + E

h s; us,P(xs ,ys ,zs )


− h


s; ūs,P(x̄s ,ȳs ,z̄s )

2 ds4

+ 4λ2
0E
g XT ,PXT


− g


X̄T ,PX̄T

2+ 4 (1− λ0)
2
|G|2E[|X̂T |

2
]5

+ 4δ2E
g xT ,PxT


− g


x̄T ,Px̄T

2+ 4δ2
|G|2E


|x̂T |

2

,6

choosing ϵ = 1
8L2 , by Lipschitz’s assumptions imposed in (A1), (2) and Gronwall’s inequality to7

provide a bound for supt∈[0,T ] E[|Yt |
2
]; and then substitute the latter back to the same inequality8

to obtain the bound for
 T

0 E[|Ẑs |
2
]ds. By combining the obtained bounds, we can deduce that9

E
 T

0


|Ŷs |

2
+ |Ẑs |

2


ds


≤ δK1E

 T

0

ûs
2 ds


+ δK1E


|x̂T |

2


10

+ K1E
 T

0
|X̂s |

2ds


+ K1E


|X̂T |

2

. (11)11

(i) If n > m, then β2 > 0. Then GG ′ is a full-rank m × m matrix, we can easily derive that12

|G ′Ŷt | ≥
1

|G||(GG ′)−1|
|Ŷt | and |G ′ Ẑ t | ≥

1

|G||(GG ′)−1|
|Ẑ t |,13

along with (8)–(10), we can have14

E
 T

0
|Ûs |

2ds


+ E


|X̂T |

2

≤ δK


E
 T

0
|ûs |

2ds


+ E

x̂T
2 ,15

where K is a constant which only depends on L , α1, β1, β2,G and T .16

(ii) If m > n, then α1 > 0, β1 > 0. Then G ′G is a full-rank n × n matrix, we can easily derive17

that18

|G X̂ t | ≥
1

|G||(G ′G)−1|
|X̂ t |,19

along with (8) and (11), we can also have20

E
 T

0
|Ûs |

2ds


+ E


|X̂T |

2

≤ δK


E
 T

0
|ûs |

2ds


+ E

x̂T
2 .21

Therefore, we always have that22

E
 T

0
|Ûs |

2ds


+ E


|X̂T |

2

≤ δK


E
 T

0
|ûs |

2ds


+ E

x̂T
2 .23

Let δ0 =
1

2K , it is clear that the mappings24

Iλ0+δ (u, xT ) = (U, XT ) ,25
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are contraction for all δ ∈ (0, δ0). It follows that there is a unique fixed point which is the solution 1

of (6) for λ = λ0 + δ, δ ∈ (0, δ0). � 2

By applying Lemmas 1 and 2, it is easy to establish the unique existence of solution for the 3

MFT-FBSDE (1). 4

Theorem 2. Under Assumption (A1), there exists a unique adapted solution (X, Y, Z) of the 5

MFT-FBSDE (1). 6

3.2. Existence of solution under Assumption (A2), (A3) or (A4) 7

Similar to that in Section 3.1, we first establish the existence of solution of the MFT-FBSDE 8

under Assumption (A2). There could be some different argument used in comparison with that 9

in 3.1. Q3 10

Consider the following class of mean-field type FBSDEs 11
d X t = [(1− λ)β2(−G ′E[Yt ])+ λb (t;E[Ut ])+ φt ]dt
+ [(1− λ)β2(−G ′E[Z t ])+ λσ (t;E[Ut ])+ ψt ]d Bt ,

dYt = −[(1− λ)β1GE[X t ] + λh (t;E[Ut ])+ γt ]dt + Z t d Bt ,

X0 = x0, YT = λg(XT ,PXT )+ (1− λ)G XT + ξ,

(12) 12

where φ,ψ and γ satisfy the same conditions as in Lemma 2 in Section 3.1. Clearly, the existence 13

of solution of (12) for λ = 1 implies that of (1). 14

Lemma 3. The following system, which is that of (12) when λ = 0, has a unique solution: 15d X t =

−β2G ′E[Yt ] + φt


dt +


−β2G ′E[Z t ] + ψt


d Bt ,

dYt = − (β1GE[X t ] + γt ) dt + Z t d Bt ,

X0 = x0, YT = G XT + ξ.

(13) 16

Proof. Taking expectations on both sides of (13) yields 17dE[X t ] =

−β2G ′E[Yt ] + E[φt ]


dt,

dE[Yt ] = − (β1GE[X t ] + E[γt ]) dt,
E[X0] = x0, E[YT ] = GE[XT ] + E[ξ ].

(14) 18

As a special case of Lemma 1, this system (14) has a unique solution (E[X t ],E[Yt ]). In the 19

following, we follow the method adopted in the proof of Lemma 2.5 in [11] to establish our 20

desired result. Define 21

X̌ t , X t − E[X t ], Y̌t , Yt − E[Yt ], Ž t , Z t , 22

φ̌t , φt − E[φt ], γ̌t , γt − E[γt ], ξ̌ , ξ − E[ξ ], ψ̌t , ψt . 23

To show the unique existence of solution of (13), it suffices to prove unique existence of 24
d X̌ t = φ̌t dt +


−β2G ′E[Ž t ] + ψ̌t


d Bt ,

dY̌t = −γ̌t dt + Ž t d Bt ,

X̌0 = 0, Y̌T = G X̌T + ξ̌ ,

(15) 25

which is the difference between (13) and (14). 26
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(i) If n ≤ m, then G ′G is a strictly positive matrix, we define1 X̃
Ỹ
Z̃

 ,

 X̌
G ′Y̌
G ′ Ž

 , 
Y ∗

Z∗


,

Im − G(G ′G)−1G ′


Y̌
Im − G(G ′G)−1G ′


Ž

 ,2

where Im is the m × m identity matrix. Multiplying G ′ on both sides of the second and the3

third equations in (15) yields4 
d X̃ t = φ̌t dt +


−β2E[Z̃ t ] + ψ̌t


d Bt ,

dỸt = −G ′γ̌t dt + Z̃ t d Bt ,

X̃0 = 0, ỸT = G ′G X̃T + G ′ξ̌ .

(16)5

Multiplying

Im − G(G ′G)−1G ′


on both sides of the equations involving


Y̌ , Ž


in (15)6

also yields7 dY ∗t = −


Im − G(G ′G)−1G ′

γ̌t dt + Z∗t d Bt ,

Y ∗T =


Im − G(G ′G)−1G ′

ξ̌ .

(17)8

Clearly, the solution (Y ∗, Z∗) is uniquely determined. Consider the following mean-field9

BSDE:10 
−dpt =


G ′Gφ̌t + G ′γ̌t


dt +


G ′Gψ̌t − qt − β2G ′GE[qt ]


d Bt ,

pT = G ′ξ̌ ,
(18)11

and we claim that (18) has a unique solution (p, q) ∈ M2

0, T ;Rn+n×d


; indeed, define12

wt , qt + β2G ′GE[qt ],13

and (18) becomes a classical BSDE:14 
−dpt =


G ′Gφ̌t + G ′γ̌t


dt +


G ′Gψ̌t − wt


d Bt ,

pT = G ′ξ̌ ,
(19)15

whose solution (p, w) is uniquely determined. Then by definition16

E[wt ] = E

qt + β2G ′GE[qt ]


=

In + β2G ′G


E[qt ],17

thus E[qt ] =

In + β2G ′G

−1 E[wt ], and finally we can get18

qt = wt − β2G ′G

In + β2G ′G

−1 E[wt ].19

Now, let X̃ t be the solution of the SDE20 
d X̃ t = φ̌t dt +


−β2E[qt ] + ψ̌t


d Bt ,

X̃0 = 0.
21

It is easy to check that22

(X̃ t , Ỹt , Z̃ t ) ,


X̃ t ,G ′G X̃ t + pt , qt


23
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is the solution to (16). Then the triple


X̌ , Y̌ , Ž


is uniquely obtained by the substitution 1X̌
Y̌
Ž

 =
 X̃

G(G ′G)−1Ỹ + Y ∗

G(G ′G)−1 Z̃ + Z∗

 ; 2

indeed, its uniqueness follows immediately by working backward. 3

(ii) If n > m,GG ′ is a positive definite matrix. Similar approach as in (i) can be adopted, we 4

now set 5X̃
Ỹ
Z̃

 ,

G X̌
Y̌
Ž

 , X∗ ,


In − G ′(GG ′)−1G


X̌ . 6

Then X∗ is the unique solution of the following SDE: 7
d X∗t =


In − G ′(GG ′)−1G


φ̌t dt +


In − G ′(GG ′)−1G


ψ̌t d Bt ,

X∗0 = 0.
8

Multiplying G on both sides of the equation governing X̌ in (15) yields: 9
d X̃ t = Gφ̌t dt +


−β2GG ′E[Z̃ t ] + Gψ̌t


d Bt ,

dỸt = −γ̌t dt + Z̃ t d Bt ,

X̃0 = 0, ỸT = X̃T + ξ̌ .

(20) 10

To solve (20), we consider the following mean-field BSDE: 11
−dpt =


Gφ̌t + γ̌t


dt +


Gψ̌t − qt − β2GG ′E[qt ]


d Bt ,

pT = ξ̌ ,
(21) 12

and it is easy to show that (21) has a unique solution (p, q) by using a similar argument that 13

tackles (18). Let X̃ be the solution of the SDE: 14
d X̃ t = Gφ̌t dt +


Gψ̌t − β2GG ′E[qt ]


d Bt ,

X̃0 = 0.
15

Then it is easy to check that 16

(X̃ t , Ỹt , Z̃ t ) ,


X̃ t , X̃ t + pt , qt


17

is the solution of (20). The unique existence (X̌ , Y̌ , Ž) is now evident via the following relation: 18X̌
Y̌
Ž

 =
G ′(GG ′)−1 X̃ + X∗

Ỹ
Z̃

 ; 19

again its uniqueness follows from working backward. � 20

Lemma 4. Under Assumption (A2), we also assume that there exists a constant λ0 ∈ [0, 1) for 21

any φ,ψ, γ in M2 (0, T ) taking values in Rn,Rn×d and Rm respectively and ξ ∈ L2 (Ω ,FT ,P), 22

such that (12) has an adapted solution. Then there exists a δ0 ∈ (0, 1) which only depends on 23

G, L , α1, β1, β2 and T , such that for any λ ∈ [λ0, λ0 + δ0], (12) has an adapted solution. 24
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Proof. We use similar argument as that in the proof for Lemma 2. Taking1 
φt ← δ


β2G ′E[yt ] + b (t;E[ut ])


+ φt ,

ψt ← δ

β2G ′E[zt ] + σ (t;E[ut ])


+ ψt ,

γt ← δ (−β1GE[xt ] + h (t;E[ut ]))+ γt ,

ξ ← δ

g(xT ,PxT )− GxT


+ ξ.

2

In light of the statement assumption, there exists a constant λ0 ∈ [0, 1) such that there exists3

a unique triple U = (X, Y, Z) ∈ M2

0, T ;Rn

× Rm
× Rm×d


satisfying the following MFT-4

FBSDE:5 

d X t =

(1− λ0)β2(−G ′E[Yt ])+ λ0b (t;E[Ut ])

+ δ

β2G ′E[yt ] + b (t;E[ut ])


+ φt


dt

+

(1− λ0)β2(−G ′E[Z t ])+ λ0σ (t;E[Ut ])

+ δ

β2G ′E[zt ] + σ (t;E[ut ])


+ ψt


d Bt ,

dYt = −

(1− λ0)β1GE[X t ] + λ0h (t;E[Ut ])

+ δ (−β1GE[xt ] + h (t;E[ut ]))+ γt

dt + Z t d Bt ,

X0 = x0, YT = λ0g(XT ,PXT )+ (1− λ0)G XT + δ

g(xT ,PxT )− GxT


+ ξ.

6

We aim to show that when δ is sufficiently small, the mapping Iλ0+δ (u, xT ) = (U, XT ) is a7

contraction. We first apply Itô’s formula to

G X̂ t , Ŷt


and we obtain8

λ0E


G X̂T , g

XT ,PXT


− g


X̄T ,PX̄T


+ (1− λ0)E


G X̂T ,G X̂T


9

+ δE


G X̂T ,−Gx̂T + g

xT ,PxT


− g


x̄T ,Px̄T


10

= λ0E
 T

0


A (t;E[Ut ])− A


t;E[Ūt ]


, Ût


dt


11

− (1− λ0)

 T

0


β1


E[G X̂ t ],E[G X̂ t ]


+ β2


E[G ′Ŷt ],E[G ′Ŷt ]


12

+β2


E[G ′ Ẑ t ],E[G ′ Ẑ t ]


dt13

+ δ

 T

0


β1


E[G X̂ t ],E[Gx̂t ]


+ β2


E[G ′Ŷt ],E[G ′ ŷt ]


+ β2


E[G ′ Ẑ t ],E[G ′ ẑt ]


dt14

+ δ

 T

0
E


Ût , A (t;E[ut ])− A (t;E[ūt ])


dt.15

According to the condition specified in Assumption (A2), we follow the same lines of argument16

as in the proof for Lemma 2, there exists a positive constant K1 which only depends on17

L ,G, β1, β2 and T such that18

min {1, α1} · E

|G X̂T |

2

+ E

 T

0


β1

GE[X̂ t ]

2 + β2

G ′E[Ŷt ]

2 + β2

G ′E[Ẑ t ]

2 dt


19

≤ δK1

 T

0


E
ût

2+ E

|Ût |

2


dt


+ δK1E


|X̂T |

2
+ |x̂T |

2

. (22)20
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Next we apply Itô’s formula to both |X̂ t |
2 and |Ŷt |

2, and by (iii) and (iv) imposed in (A2) and 1

Gronwall’s inequality we can have 2

sup
0≤s≤T

E

|X̂s |

2

≤ δK1

 T

0

[Ex̂s]
2 + E[ŷs]

2 + E[ẑs]
2 ds

+ K1

 T

0

E[Ŷs]

2 ds +
 T

0

E[Ẑs]

2 ds


, (23) 3

E
 T

0
|X̂s |

2ds


≤ δT K1

 T

0

[Ex̂s]
2 + E[ŷs]

2 + E[ẑs]
2 ds

+ T K1

 T

0

E[Ŷs]

2 ds +
 T

0

E[Ẑs]

2 ds


, (24) 4

E
 T

0


|Ŷs |

2
+ |Ẑs |

2


ds


≤ δK1

 T

0

[Ex̂s]
2 + E[ŷs]

2 + E[ẑs]
2 ds

+ δK1
E x̂T

2 + K1

 T

0

E[X̂s]

2 ds + K1E

|X̂T |

2

. (25) 5

As in Lemma 2, by considering the cases n > m and m > n separately, we still have 6

E
 T

0
|Ûs |

2ds


+ E


|X̂T |

2

≤ δK


E
 T

0
|ûs |

2ds


+ E

x̂T
2 , 7

where K only depends on L ,G, α1, β1, β2 and T . Let δ0 =
1

2K , it is then clear that the mappings 8

Iλ0+δ (u, xT ) = (U, XT ) , 9

are contraction for all δ ∈ (0, δ0), therefore there is a unique fixed point which is the solution of 10

(12) for λ = λ0 + δ, δ ∈ (0, δ0). � 11

Similar to Theorem 2, by applying Lemmas 3 and 4, it is easy to establish the unique existence 12

of solution for the MFT-FBSDE (1) under Assumption (A2). 13

Theorem 3. Under Assumption (A2), there exists a unique adapted solution (X, Y, Z) of the 14

MFT-FBSDE (1). 15

Similarly, we can also establish the existence result under Assumption (A3) or (A4). 16

Theorem 4. Under either Assumption (A3) or (A4), there exists a unique adapted solution 17

(X, Y, Z) of the MFT-FBSDE (1). 18

4. Stability theorem 19

In this section we provide a stability theorem for the solutions of the mean-field type 20

forward–backward stochastic differential equations when the initial and terminal conditions 21

are different. We consider the following two MFT-FBSDEs with different initial and terminal 22

conditions: 23
d X1

t = b


t; X1
t , Y 1

t , Z1
t ,P(X1

t ,Y
1
t ,Z

1
t )


dt + σ


t; X1

t , Y 1
t , Z1

t ,P(X1
t ,Y

1
t ,Z

1
t )


d Bt ,

dY 1
t = −h


t; X1

t , Y 1
t , Z1

t ,P(X1
t ,Y

1
t ,Z

1
t )


dt + Z1

t d Bt ,

X1
0 = x1

0 , Y 1
T = g1


X1

T ,PX1
T


,

(26) 24
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and1 
d X2

t = b


t; X2
t , Y 2

t , Z2
t ,P(X2

t ,Y
2
t ,Z

2
t )


dt + σ


t; X2

t , Y 2
t , Z2

t ,P(X2
t ,Y

2
t ,Z

2
t )


d Bt ,

dY 2
t = −h


t; X2

t , Y 2
t , Z2

t ,P(X2
t ,Y

2
t ,Z

2
t )


dt + Z2

t d Bt ,

X2
0 = x2

0 , Y 2
T = g2


X2

T ,PX2
T


.

(27)2

Suppose that the common coefficient functions and the corresponding terminal function g’s3

of (26) and (27) satisfy the common one of the Assumptions (A1)–(A4). In accordance with4

Theorems 2–4, the solutions of the above systems uniquely exist and we denote them by5

(X1, Y 1, Z1) and (X2, Y 2, Z2) respectively.6

Theorem 5. Suppose that one of above Assumptions (A1)–(A4) holds. Then there exists a7

positive constant C which only depends on T, α1, β1, β2,G and L such that8

E

|X̂T |

2

+ E

 T

0
|Ût |

2dt


9

≤ C


E


sup

(x,µ)∈Rn×M(Rn)

g1(x, µ)− g2(x, µ)
2+ |x̂0|

2


,10

where x̂0 , x1
0 − x2

0 .11

Proof. Applying Itô’s formula to

G X̂ t , Ŷt


which yields that12

E


G X̂T , g1


X1
T ,PX1

T


− g2


X2

T ,PX2
T


−


Gx̂0,E[Ŷ0]


13

= E
 T

0


A


t;U 1
t ,P(X1

t ,Y
1
t ,Z

1
t )


− A


t;U 2

t ,P(X2
t ,Y

2
t ,Z

2
t )


,U 1

t −U 2
t


dt


.14

(1) If (A1) is satisfied, then we can derive that15

α1E

|G X̂T |

2

+ E


G X̂T , g1


X2

T ,PX2
T


− g2


X2

T ,PX2
T


−


x̂0,G ′E[Ŷ0]


16

≤ −β1E
 T

0
|G X̂ t |

2dt


− β2E

 T

0


|G ′Ŷt |

2
+ |G ′ Ẑ t |

2


dt


, (28)17

by Cauchy–Schwarz inequality and ab ≤ ϵa2
+

1
4ϵ b2 (a, b ∈ R, ϵ > 0), we can get that18

α1E

|G X̂T |

2

+ β1E

 T

0
|G X̂ t |

2dt


+ β2E

 T

0


|G ′Ŷt |

2
+ |G ′ Ẑ t |

2


dt


19

≤ ϵE

|G X̂T |

2

+

1
4ϵ

E
g1


X2

T ,PX2
T


− g2


X2

T ,PX2
T

220

+ ϵ|G|2E[|Ŷ0|
2
] +

1
4ϵ
|x̂0|

2
21

≤ ϵE

|G X̂T |

2

+

1
4ϵ

E


sup

(x,µ)∈Rn×M(Rn)

g1 (x, µ)− g2 (x, µ)
222

+ ϵ|G|2E[|Ŷ0|
2
] +

1
4ϵ
|x̂0|

2. (29)23
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Applying the similar technique as in Lemma 2 to |X̂ t |
2 and |Ŷt |

2 and we can obtain that 1

sup
t∈[0,T ]

E[|X̂ t |
2
] ≤ K2


E
 T

0


|Ŷt |

2
+ |Ẑ t |

2


dt


+ |x̂0|

2

, (30) 2

sup
t∈[0,T ]

E

|Ŷt |

2

+ E

 T

0
|Ẑs |

2ds


3

≤ K2


E


sup

(x,µ)∈Rn×M(Rn)

g1(x, µ)− g2 (x, µ)
2+ E[|X̂T |

2
] + E

 T

0
|X̂s |

2ds


, (31) 4

where K2 is a positive constant depending only on T and L . Moreover, we can have that 5

E
 T

0


|Ŷs |

2
+ |Ẑs |

2


ds


≤

T K2

T ∧ 1


E


sup

(x,µ)∈Rn×M(Rn)

g1(x, µ)− g2 (x, µ)
2

+ E

|X̂T |

2

+ E

 T

0
|X̂s |

2ds


, (32) 6

E

|Ŷ0|

2

≤ K2


E


sup

(x,µ)∈Rn×M(Rn)

g1(x, µ)− g2 (x, µ)
2

+ E

|X̂T |

2

+ E

 T

0
|X̂s |

2ds


, (33) 7

E
 T

0
|X̂ t |

2dt


≤ T K2


E
 T

0


|Ŷt |

2
+ |Ẑ t |

2


dt


+ |x̂0|

2

. (34) 8

(i) If m > n, then β1 > 0, α1 > 0. Choose a small enough ϵ, combining (29), (32) and (33) we 9

can deduce that 10

E

|X̂T |

2

+ E

 T

0
|Ût |

2dt


11

≤ C


E


sup

(x,µ)∈Rn×M(Rn)

g1(x, µ)− g2(x, µ)
2+ |x̂0|

2


, 12

where C is a positive constant depending only on T, α1, β1, β2,G and L . 13

(ii) If n > m, then β2 > 0. Choose a small enough ϵ, combining (29), (30), (33) and (34), we 14

can also deduce that 15

E

|X̂T |

2

+ E

 T

0
|Ût |

2dt


16

≤ C


E


sup

(x,µ)∈Rn×M(Rn)

g1(x, µ)− g2(x, µ)
2+ |x̂0|

2


. 17

(2) If (A2) is satisfied, then we can derive that 18

α1E

|G X̂T |

2

+ E


G X̂T , g1


X2

T ,PX2
T


− g2


X2

T ,PX2
T


−


x̂0,G ′E[Ŷ0]


19

≤ −β1

 T

0

GE[X̂ t ]

2 dt − β2

 T

0

G ′E[Ŷt ]

2 dt − β2

 T

0

G ′E[Ẑ t ]

2 dt, 20
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by Cauchy–Schwarz inequality and ab ≤ ϵa2
+

1
4ϵ b2 (a, b ∈ R, ϵ > 0), we can get1

α1E

|G X̂T |

2

+ β1

 T

0

GE[X̂ t ]

2 dt + β2

 T

0

G ′E[Ŷt ]

2 + G ′E[Ẑ t ]

2 dt2

≤ ϵE

|G X̂T |

2

+

1
4ϵ

E
g1


X2

T ,PX2
T


− g2


X2

T ,PX2
T

23

+ ϵ|G|2E[|Ŷ0|
2
] +

1
4ϵ
|x̂0|

2
4

≤ ϵE

|G X̂T |

2

+

1
4ϵ

E


sup

(x,µ)∈Rn×M(Rn)

g1 (x, µ)− g2 (x, µ)
25

+ ϵ|G|2E[|Ŷ0|
2
] +

1
4ϵ
|x̂0|

2. (35)6

By applying Itô’s formula to |X̂ t |
2, (2) and Lipschitz’s conditions imposed in (A2), for any7

t ∈ [0, T ] we can obtain that8

E[|X̂ t |
2
] − |x̂0|

2
= 2E

 t

0


b


s;E[U 1
s ]


− b


s;E[U 2

s ]


, X̂s


ds


9

+E
 t

0

σ s;E[U 1
s ]


− σ


s;E[U 2

s ]

210

≤ 2L
 t

0

E[X̂s]

 E[X̂s]

+ E[Ŷs]

+ E[Ẑs]

 ds11

+ L2
 t

0

E[X̂s]

+ E[Ŷs]

+ E[Ẑs]

2
ds12

≤


4L + 3L2

  t

0

E[X̂s]

2 ds +


L + 3L2
  t

0

E[Ŷs]

2 ds13

+


L + 3L2

  t

0

E[Ẑs]

2 ds14

≤


4L + 3L2

  t

0
E[|X̂s |

2
]ds +


L + 3L2

  t

0

E[Ŷs]

2 ds15

+


L + 3L2

  t

0

E[Ẑs]

2 ds,16

by using Gronwall’s inequality, we can get that17

sup
t∈[0,T ]

E[|X̂ t |
2
] ≤ K2

 T

0

E[Ŷt ]

2 dt +
 T

0

E[Ẑ t ]

2 dt + |x̂0|
2

, (36)18

which implies that19

E
 T

0
|X̂ t |

2dt


≤ T K2

 T

0

E[Ŷt ]

2 dt +
 T

0

E[Ẑ t ]

2 dt + |x̂0|
2

. (37)20
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Similarly, applying Itô’s formula to |Ŷt |
2, by (2) and Lipschitz’s conditions imposed in (A2), we 1

can obtain that 2

E
 T

t
|Ẑs |

2ds


+ E


|Ŷt |

2


3

= 2E
 T

t


Ŷs, h


s;E


U 1

s


− h


s;E


U 2

s


ds


4

+E
g1


X1

T ,PX1
T


− g2


X2

T ,PX2
T

2 5

≤ 2LE
 T

t
|Ŷs |

E[X̂s]

+ E[Ŷs]

+ E[Ẑs]

 ds


6

+ 2E
g1


X1

T ,PX1
T


− g1


X2

T ,PX2
T

2 7

+ 2E
g1


X2

T ,PX2
T


− g2


X2

T ,PX2
T

2 8

≤ 2L
 T

t
E

|Ŷs |

2
 1

2
E[X̂s]

+ E[Ŷs]

+ E[Ẑs]

 ds 9

+ 2L2E

|X̂T | +W


PX1

T
,PX2

T

2


10

+ 2E


sup

(x,µ)∈Rn×M(Rn)

g1 (x, µ)− g2 (x, µ)
2 11

≤ 2L
 T

t


E

|Ŷs |

2
 1

2
E[X̂s]

+ E

|Ŷs |

2

+ E


|Ŷs |

2
 1

2
E[Ẑs]

 ds 12

+ 4L2


E

|X̂T |

2

+W


PX1

T
,PX2

T

2


13

+ 2E


sup

(x,µ)∈Rn×M(Rn)

g1 (x, µ)− g2 (x, µ)
2 14

≤ L
 T

t


E

|Ŷs |

2

+

E[X̂s]

2 ds + 2L
 T

t
E[|Ŷs |

2
]ds 15

+ L
 T

t


1
ϵ′

E

|Ŷs |

2

+ ϵ′

E[Ẑs]

2 ds 16

+ 8L2E

|X̂T |

2

+ 2E


sup

(x,µ)∈Rn×M(Rn)

g1 (x, µ)− g2 (x, µ)
2 , 17

then we choose ϵ′ = 1
2L and by Gronwall’s inequality to get that 18

sup
t∈[0,T ]

E

|Ŷt |

2

+ E

 T

0
|Ẑs |

2ds


19

≤ K2


E


sup

(x,µ)∈Rn×M(Rn)

g1(x, µ)− g2 (x, µ)
2+ E[|X̂T |

2
] +

 T

0

E[X̂s]

2 ds


, (38) 20
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which can imply that1

E
 T

0


|Ŷs |

2
+ |Ẑs |

2


ds


≤

T K2

T ∧ 1


E


sup

(x,µ)∈Rn×M(Rn)

g1(x, µ)− g2 (x, µ)
2

+E

|X̂T |

2

+

 T

0

E[X̂s]

2 ds


, (39)2

E

|Ŷ0|

2

≤ K2


E


sup

(x,µ)∈Rn×M(Rn)

g1(x, µ)− g2 (x, µ)
2

+ E

|X̂T |

2

+

 T

0

E[X̂s]

2 ds


. (40)3

(i) If m > n, then β1 > 0, α1 > 0. Choosing a small enough ϵ, by combining (35), (37), (39)4

and (40), we can deduce that5

E

|X̂T |

2

+ E

 T

0
|Ût |

2dt


6

≤ C


E


sup

(x,µ)∈Rn×M(Rn)

g1(x, µ)− g2(x, µ)
2+ |x̂0|

2


,7

where C is a positive constant, which depends on T, α1, β1, β2,G and L .Q48

(ii) If n > m, then β2 > 0. Choosing a small enough ϵ, by combining (35), (37), (39) and (40),9

we can also deduce that10

E

|X̂T |

2

+ E

 T

0
|Ût |

2dt


11

≤ C


E


sup

(x,µ)∈Rn×M(Rn)

g1(x, µ)− g2(x, µ)
2+ |x̂0|

2


.12

(iii) Finally, if either Assumption (A3) or (A4) holds, a similar argument can be applied to obtain13

our desired result. �14

5. Examples15

In this section, we show how our previous theorems can be applied to study two representative16

examples as follows. In particular, our Example 1 is motivated from [4]; while Example 2 is17

arisen from [2,1]. Though these examples could be treated from the first principle, they still18

illustrate that our theorems are ‘optimal’ in the sense that how their counter-examples in [4] just19

fail to ensure its well-posedness in a continuous manner.20

Example 1. Let us consider the following MFT-FBSDE with m = n = d = 1, α ∈ R, λ ∈ [0, 1]21

and θ ∈ [0, 1], which is motivated by [4] (in which the authors considered the case when22

α = 1, λ = 1 and θ = 1),23 d X t = αE [Yt ] dt
dYt = − (λE [X t ]+ (1− λ)X t ) dt + Z t d Bt
X0 = 0, YT = θE[XT ] + (1− θ)XT ,

(41)24
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where T ∈ R+ and satisfies 1

α sin
√
αT

=
√
α cos

√
αT

, (42) 2

when α ≥ 0. Therefore, in this case the matrix G in our previous theorem is just 1 and 3

Ut =

X t
Yt
Z t

 , A

t;Ut ,P(X t ,Yt ,Zt )


=

−λE[X t ] − (1− λ)X t
αE[Yt ]

0

 , 4

g(X,PXT ) = θE[XT ] + (1− θ)XT . 5

Then 6

E


A


t;U 1
t ,P(X1

t ,Y
1
t ,Z

1
t )


− A


t;U 2

t ,P(X2
t ,Y

2
t ,Z

2
t )


,U 1

t −U 2
t


7

= −λ

E


X1
t − X2

t

2
− (1− λ)E


(X1

t − X2
t )

2

+ α


E

Y 1

t − Y 2
t

2
, 8

E


g


X1
T ,PX1

T


− g


X2

T ,PX2
T


, X1

T − X2
T


9

= θ

E[X1

T − X2
T ]

2
+ (1− θ)E


X1

T − X2
T

2

. 10

(a) If α > 0, there does not exist an apparent non-negative couple (β1, β2) with β1 + β2 > 0 11

such that 12

−β1


E


X1
t − X2

t

2
− β2


E

Y 1

t − Y 2
t

2
+


E


Z1
t − Z2

t

2


13

≥ −λ

E


X1
t − X2

t

2
− (1− λ)E


(X1

t − X2
t )

2

+ α


E

Y 1

t − Y 2
t

2
, 14

and this observation illuminate that it is probably that none of Assumptions (A1)–(A4) could 15

be satisfied, which hints perhaps that (41) might possess no unique solution! Indeed, for 16

α > 0, taking expectation on both sides of (41) yields that 17
dE[X t ] = αE [Yt ] dt,

dE[Yt ] = −E [X t ] dt,

E[X0] = 0, E[YT ] = E[XT ],

(43) 18

then we can get that 19

d2

dt2 E[X t ] + αE[X t ] = 0, E[X0] = 0, 20

a simple calculation yields that 21

E [X t ] = K1 sin
√
αt, K1 ∈ R, 22

by comparing its derivative with the expectation E[Yt ], we can deduce that 23

E [Yt ] =
K1
√
α

cos
√
αt, K1 ∈ R. 24

We can check that E[XT ] = E[YT ] holds automatically by condition (42) for any K1 ∈ R. 25

Therefore, the following expressions could serve as solutions for this system: 26

X t = K1 sin
√
αt, Yt =

K1
√
α

cos
√
αt, Z t = 0, K1 ∈ R. 27
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(b) If α ≤ 0, we analyse the solution of system (41) as follows:1

(1) For λ = 1 and θ = 1, then Assumption (A4) is clearly satisfied (by taking β1 = 1 and2

β2 = 0). Therefore, there exists a unique solution for the system (41); indeed, we can3

solve it out explicitly as shown below:4

(i) For α < 0, taking expectation on both sides of (41), we can get5 dE[X t ] = αE [Yt ] dt,
dE[Yt ] = −E [X t ] dt,
E[X0] = 0, E[YT ] = E[XT ].

(44)6

By simple calculations, we can get7

E[X t ] = Ae−
√
−αt
+ Be

√
−αt , (45)8

where A, B are two constants to be determined. Since E[X0] = 0, we can deduce9

that A + B = 0,10

E[X t ] = Ae−
√
−αt
− Ae

√
−αt . (46)11

Substituting (46) into (44), we can obtain that12

E[Yt ] =
A
√
−α

e−
√
−αt
+

A
√
−α

e
√
−αt . (47)13

By E[YT ] = E[XT ], we can derive that14

A
√
−α

e−
√
−αT
+

A
√
−α

e
√
−αT
= Ae−

√
−αT
− Ae

√
−αT ,15

and then16

A


1
√
−α
− 1


+


1
√
−α
+ 1


e2
√
−αT


= 0,17

which implies that A = 0, and we can obtain that E[X t ] = E[Yt ] = 0. Therefore, we18

first see that the solution X is19

X t = 0.20

Note that Y satisfies the following standard BSDE:21

dYt = Z t d Bt , YT = 0,22

by the uniqueness of the BSDE, we can conclude that Yt = 0 and Z t = 0.23

(ii) For α = 0, it is obvious that X t = 0, Yt = 0 and Z t = 0 is the unique solution of the24

system.25

(2) For 0 ≤ λ < 1 and θ = 1, we can verify that Assumption (A3) is satisfied (by taking β1 =26

1− λ and β2 = 0). Therefore, there exists a unique solution for the system (41); indeed,27

essentially the same calculation as in the case (b) (1) can be carried out to show that28

X t = Yt = Z t = 0,29

is the unique solution of (41).30

(3) For λ = 1 and 0 ≤ θ < 1, it is easy to verify that Assumption (A2) is satisfied (by taking31

β1 = 1 and β2 = 0), and there exists a unique solution X t = Yt = Z t = 0.32

(4) For 0 ≤ λ < 1 and 0 ≤ θ < 1, it is easy to verify that Assumption (A1) is satisfied (by33

taking β1 = 1− λ and β2 = 0), and there exists a unique solution X t = Yt = Z t = 0 for34

the system (41).35

Remark. 1. The case λ = 1 and θ = 1 can be viewed as a filtering problem in engineering. X t36

is unobservable process while Yt is the observable process, and the observation Yt is affected37

directly by the mean of X t , which cannot be directly observed.38

2. The Lipschitz condition provided in Assumptions (A4) cannot involve space variables; indeed,39

any appearance of space variables in f and g would lead to a stronger monotonicity condition40

which is classified as a case under (A1).41
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Example 2. Consider the following MFT-FBSDE arisen from solving the mean-field type linear- 1

quadratic stochastic control problem as introduced in [2,1] with X and Y are both n-dimensional 2

stochastic processes, 3
d X t =


At X t − Bt R−1

t B ′t Yt + ĀtE[X t ]


dt + σt d Bt

−dYt =


Qt + Q̄t


X t + Āt Yt − Q̄t StE[Yt ] − S′t Q̄t (In − St )E[Yt ]

+ ĀtE[Yt ]

dt + Z t d Bt

X0 = x0, YT =

QT + Q̄T


XT − Q̄T ST E[XT ] − S′T Q̄T E[XT ],

4

where A, B, Ā, S are bounded deterministic matrix-valued functions in time of suitable size, Z 5

and σ are L2-function in time of suitable size. Q and Q̄ are non-negative definite matrix-valued 6

functions in time of suitable size. We also assume that R > δ In for some δ > 0. Note that since 7

both X t and Yt are of dimension n, we can choose G = In , then Ut = (X t , Yt , Z t ) and 8

A

t;Ut ,P(X t ,Yt ,Zt )


9

=

− Qt + Q̄t


X t − Āt Yt + Q̄t StE[X t ] + S′t Q̄t (In − St )E[Yt ] − ĀtE[Yt ]


At X t − Bt R−1
t B ′t Yt + ĀtE[X t ]

σt

 . 10

Then we can derive that 11

E


A


t;U 1
t ,P(X1

t ,Y
1
t ,Z

1
t )


− A


t;U 2

t ,P(X2
t ,Y

2
t ,Z

2
t )


,U 1

t −U 2
t


12

= −E


Qt + Q̄t
 

X1
t − X2

t


, X1

t − X2
t


− E


A′t


Y 1
t − Y 2

t


, X1

t − X2
t


13

+


Q̄t StE[X1

t − X2
t ],E[X

1
t − X2

t ]


+


S′t Q̄t (In − St )E[X1

t − X2
t ],E[X

1
t − X2

t ]


14

−


ĀtE[Y 1

t − Y 2
t ],E[X

1
t − X2

t ]


+ E


At (X

1
t − X2

t ), Y 1
t − Y 2

t


15

−E


Bt R−1
t B ′t (Y

1
t − Y 2

t ), Y 1
t − Y 2

t


+


ĀtE[X1

t − X2
t ],E[Y

1
t − Y 2

t ]


16

= −E


Qt + Q̄t
 

X1
t − X2

t


, X1

t − X2
t


+ 2


Q̄t StE[X1

t − X2
t ],E[X

1
t − X2

t ]


17

−


S′t Q̄t StE[X1

t − X2
t ],E[X

1
t − X2

t ]


− E


Bt R−1

t B ′t (Y
1
t − Y 2

t ), Y 1
t − Y 2

t


18

≤ −


Q̄tE


X1

t − X2
t


,E[X1

t − X2
t ]


+ 2


Q̄t StE[X1

t − X2
t ],E[X

1
t − X2

t ]


19

−


S′t Q̄t StE[X1

t − X2
t ],E[X

1
t − X2

t ]


− E


Bt R−1

t B ′t (Y
1
t − Y 2

t ), Y 1
t − Y 2

t


20

−E


Qt (X
1
t − X2

t ), X1
t − X2

t


21

≤ −E


Bt R−1
t B ′t (Y

1
t − Y 2

t ), Y 1
t − Y 2

t


− E


Qt (X

1
t − X2

t ), X1
t − X2

t


, 22

where the last inequality holds by noting that 23

−


Q̄tE


X1

t − X2
t


,E[X1

t − X2
t ]


+ 2


Q̄t StE[X1

t − X2
t ],E[X

1
t − X2

t ]


24

−


S′t Q̄t StE[X1

t − X2
t ],E[X

1
t − X2

t ]


25

= −E[


X1
t − X2

t

′
]

Q̄′t − 2S′t Q̄′t + S′t Q̄′t St


E[X1

t − X2
t ] 26
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= −E[


X1
t − X2

t

′
]

q̄t q̄
′
t − 2S′t q̄t q̄

′
t + S′t q̄t q̄

′
t St

E[X1

t − X2
t ]1

= −E[


X1
t − X2

t

′
]

q̄t q̄
′
t − S′t q̄t q̄

′
t − q̄t q̄

′
t St + S′t q̄t q̄

′
t St

E[X1

t − X2
t ]2

= −E[


X1
t − X2

t

′
]

S′t q̄t − q̄t

 
S′t q̄t − q̄t

′ E[X1
t − X2

t ] ≤ 0,3

where Q̄t = q̄t q̄ ′t for some q̄t ∈ Rn×n by its non-negative definite nature. Therefore, Assumption4

(A1) is satisfied in the present case, and there exists a unique solution to this system in light of5

our general theorem, which provides a generic explanation from a higher standpoint.6
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