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Abstract

We study stationary max-stable processes {η(t) : t ∈ R} admitting a representation of the form η(t) =

maxi∈N(Ui +Yi (t)), where


∞
i=1 δUi is a Poisson point process on R with intensity e−udu, and Y1, Y2, . . .

are i.i.d. copies of a process {Y (t) : t ∈ R} obtained by running a Lévy process for positive t and a dual
Lévy process for negative t . We give a general construction of such Lévy–Brown–Resnick processes, where
the restrictions of Y to the positive and negative half-axes are Lévy processes with random birth and killing
times. We show that these max-stable processes appear as limits of suitably normalized pointwise maxima
of the form Mn(t) = maxi=1,...,n ξi (sn + t), where ξ1, ξ2, . . . are i.i.d. Lévy processes and sn is a sequence
such that sn ∼ c log n with c > 0. Also, we consider maxima of the form maxi=1,...,n Zi (t/ log n), where
Z1, Z2, . . . are i.i.d. Ornstein–Uhlenbeck processes driven by an α-stable noise with skewness parameter
β = −1. After a linear normalization, we again obtain limiting max-stable processes of the above form.
This gives a generalization of the results of Brown and Resnick (1977) to the totally skewed α-stable case.
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1. Statement of results

1.1. Introduction

Max-stable stochastic processes form a widely used class of models for extremal phenomena
in space and time. The one-dimensional margins of max-stable processes belong to the family of
extreme-value distributions. For the purposes of the present paper, it will be convenient to choose
the marginal distribution functions to be of the standard Gumbel form exp(−e−x ), x ∈ R. Our
processes will be defined on T = R. With these conventions, a stochastic process {η(t) : t ∈ R}

is called max-stable if for every n ∈ N,
max

i=1,...,n
ηi (t)− log n : t ∈ R


f.d.d.
= {η(t) : t ∈ R}, (1)

where η1, . . . , ηn are i.i.d. copies of the process η. By a result of de Haan [10], any max-stable
process η admits a spectral representation of the form

{η(t) : t ∈ R}
f.d.d.
=


max
i∈N

(Ui + Yi (t)) : t ∈ R

, (2)

where

•


∞

i=1 δUi is a Poisson point process (PPP) on R with intensity e−udu;
• Y1, Y2, . . . are i.i.d. copies of a stochastic process Y = {Y (t) : t ∈ R} which takes values in

R ∪ {−∞} and satisfies the condition EeY (t)
= 1;

•


∞

i=1 δUi is independent of {Yi : i ∈ N}.

As usual, δu denotes the unit Dirac measure at u.
In the special case when Y (0) = 0 a.s. it is convenient to imagine an infinite system of

particles on R∪{−∞} that start at time t = 0 at the spatial positions Ui and move independently
according to the law of the process Y . Then, η(t) is just the position of the right-most particle at
time t . In the case when Y (0) is not 0, the starting positions of the particles are at Ui + Yi (0). If,
for some t ∈ R, Yi (t) becomes −∞, the particle i is considered as “killed” at time t .

In this paper, we will be interested in stationary max-stable processes. One of the interesting
features of the de Haan representation (2) is that the process η can be stationary even though the
process Y is not. The first example of this type was constructed by Brown and Resnick [7]. They
considered a process of the form

ηBR(t) = max
i∈N

(Ui + Bi (t)− |t |/2), (3)

where B1, B2, . . . are independent copies of a two-sided standard Brownian motion {B(t) : t ∈R}.
Brown and Resnick [7] observed that the process ηBR is stationary and max-stable. Also, they
showed that ηBR appears as the large n limit for pointwise maxima of

(a) n independent Brownian motions and
(b) n independent Ornstein–Uhlenbeck processes,

after appropriate normalization which involves spatial rescaling of the processes. Note that
statement (b) explains the stationarity of ηBR.

Since the Brownian motion B is both a Gaussian process and a Lévy process, it is natural to
ask whether there is a generalization of the Brown–Resnick process ηBR in which the spectral
functions Yi are i.i.d.
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(i) Gaussian processes or
(ii) Lévy processes.

Regarding question (i), it was shown in [20] that if W1,W2, . . . are i.i.d. copies of a centered
Gaussian process W with stationary increments and variance σ 2(t) = Var W (t), then the max-
stable process

η(t) := max
i∈N

(Ui + Wi (t)− σ 2(t)/2)

is stationary. This class of max-stable processes has become a common tool in spatial extreme
value modeling [9,15].

In this paper, we will be interested in question (ii). Max-stable processes whose spectral
functions are Lévy processes were first considered by Stoev [30]. Our aim is to describe a two-
sided version of Stoev’s construction, to generalize the construction by allowing birth and killing
of Lévy processes, and to obtain limit theorems in which Stoev’s processes appear in a natural
way as limits.

The paper is organized as follows. We start by describing a two-sided version of Stoev’s
construction in Section 1.2. In Section 1.3 we generalize this construction to Lévy processes
with random birth and killing times. Stationary max-stable processes constructed in this way
will be called Lévy–Brown–Resnick processes. Mixed moving maxima representations of these
processes will be constructed in Section 1.4 and some of their properties will be studied in
Section 1.5. In Section 1.6 we compute the extremal index of a Lévy–Brown–Resnick process in
the case when the driving Lévy process has no positive jumps. In Section 1.7 we prove that the
processes introduced by Stoev [30] appear as limits of pointwise maxima of i.i.d. Lévy processes,
after applying suitable normalization procedures. Finally, in Sections 1.8 and 1.9 we generalize
the original results of Brown and Resnick [7] to the totally skewed α-stable case. The proofs are
given in Sections 2–4.

Remark 1.1. In this paper, we focus on continuous-time processes defined on R. However, our
results (except those of Sections 1.8 and 1.9) remain valid if we replace continuous time by
discrete time and Lévy processes by random walks.

1.2. Lévy–Brown–Resnick processes

Let {L+(t) : t ≥ 0} be a Lévy process satisfying

EeL+(1)
= 1. (4)

Stoev [30] showed that if L+

1 , L+

2 , . . . are i.i.d. copies of L+ and, independently,


∞

i=1 δUi is a
PPP on R with intensity e−udu, then the max-stable process

η(t) = max
i∈N

(Ui + L+

i (t)), t ≥ 0, (5)

is stationary on R+. Indeed, the mapping theorem for Poisson point processes implies, together
with (4), that for any t0 ≥ 0, the points Ui + L+

i (t0), i ∈ N, form a PPP with the same
intensity e−udu. By the Markov property of the Lévy processes L+

i , the time-shifted process
{η(t0 + t) : t ≥ 0} has the same law as the original process {η(t) : t ≥ 0}.

How to obtain a two-sided stationary extension of the process η? To this end, let us adopt the
particle system interpretation of the de Haan representation; see Section 1.1. Take some positive
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time T > 0 and look at some particle from the system conditioned to be in spatial position x
at time T . The conditional intensity of finding this particle in spatial position y at time T − t
is e−ydy q+

t (y, dx)/(e−x dx), where q+
t (x, dy) is the probability transition kernel of the process

L+ (describing the forward in time motion of particles). That is, the probability transition kernel
q−

t (x, dy) of the Lévy process L− (which describes the backward in time motion of particles) is
related to q+

t (x, dy) by the duality relation

e−x dx · q−
t (x, dy) = e−ydy · q+

t (y, dx). (6)

With other words, the process −L− can be obtained from L+ by exponential tilting (Esscher
transform):

P[−L−(t) ∈ B] = E[eL+(t)1L+(t)∈B], (7)

for all Borel sets B ⊂ R. Note that L− satisfies EeL−(t)
= 1, exactly as L+. Taking independent

realizations of L+ and L−, we define the two-sided process

L(t) =


L+(t), t ≥ 0,
L−(−t), t < 0.

(8)

Theorem 1.2. Let


∞

i=1 δUi be a PPP on R with intensity e−udu and, independently, let
L1, L2, . . . be i.i.d. copies of the process {L(t) : t ∈ R}. Then, the process

η(t) = max
i∈N

(Ui + L i (t)), t ∈ R, (9)

is max-stable and stationary.

Theorem 1.2 is a particular case of a more general Theorem 2.1.

Example 1.3. • Let {B(t) : t ∈ R} be a two-sided standard Brownian motion. The one-sided
process L+(t) = B(t)− t/2, t ≥ 0, satisfies (4). It follows from (7) that the dual process L−

has the same law as L+. Hence, the two-sided process L can be identified with B(t)− |t |/2,
and we recover the original Brown–Resnick process (3).

• Let {N+(t) : t ≥ 0} be a Poisson process with intensity λ > 0. Then, the process L+(t) =

N+(t) − (e − 1)λt satisfies (4). The dual process is given by L−(t) = (e − 1)λt − N−(t),
where {N−(t) : t ≥ 0} is a Poisson process with intensity eλ. The two-sided process L is then

L(t) =


N+(t)− (e − 1)λt, t ≥ 0,
−N−(−t)− (e − 1)λt, t < 0.

• Generalizing the above examples, one can show that if the process L+ has Lévy triple
(ν+, σ

2
+, d+), then the process L− has the Lévy triple (ν−, σ 2

−, d−), where the variance
σ 2

+ = σ 2
− is the same in both cases, and the Lévy measures ν+ and ν− are related by

ν−(−dx) = exν+(dx).

The proof follows from (7) and the well-known behavior of the Lévy triple under the Esscher
transform; see [23, Theorem 3.9]. Note that the drifts d+ and d− are uniquely determined by
the remaining parameters and the relation (4).

Fig. 1 shows a max-stable process η generated by a compound Poisson process with exponen-
tial jump sizes, and the complete set of trajectories {Ui + L i (·) : i ∈ N}.
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Fig. 1. Lévy–Brown–Resnick process generated by drifted compound Poisson processes with exponential jumps.
Different colors indicate different particles contributing to the maximum process. For the color version of this figure
the reader is referred to the web version of this article.

Remark 1.4. Two-sided processes obtained by running a Markov process forward in time and
the dual Markov process backward in time, as in (8), are well-known in probabilistic potential
theory; see Mitro [26].

1.3. Generalization to random creation and killing times

In this section we generalize the construction of Lévy–Brown–Resnick processes to the case
when (4) is not satisfied. We start with a Lévy process {ξ(t) : t ≥ 0} for which

ψ(1) := log Eeξ(1) < ∞. (10)

We do not require that ψ(1) = 0. Additionally, we need two parameters θ+ ≥ 0 and θ− ≥ 0
satisfying the relation

ψ(1) = θ− − θ+. (11)

We will construct a stationary system of independent particles which move according to the
law of the process ξ and where θ+ and θ− play the role of killing and birth rates, respectively.
First, we describe the forward motion of particles, that is, we restrict ourselves to non-negative
times t ≥ 0. Let π0 =


∞

i=1 δUi be a PPP on R having intensity e−udu. Consider a collection of
particles starting at the points Ui and moving independently of each other and of π0 according
to the law of the Lévy process ξ . Then, at any time t ≥ 0 the positions of the particles form
a PPP with intensity eψ(1)t e−udu. This easily follows from the transformation theorem for the
PPP. So, the intensity of the particles is not preserved except when ψ(1) = 0. In order to obtain a
stationary particle system, it is natural to introduce creation (in the case ψ(1) < 0) or killing (in
the case ψ(1) > 0) of particles. In fact, it is possible to consider both operations simultaneously.
At any moment of time t ≥ 0, let us kill any particle (independently of everything else) with
rate θ−. Independently, at any moment of time t ≥ 0, we create a new particle at spatial position
u ∈ R with intensity θ+e−ududt . It is clear that the intensity of particles is preserved (meaning
that it equals e−udu at any time t ≥ 0) if and only if the rates θ+ and θ− satisfy (11).

Thus, we constructed a one-sided stationary particle system defined for t ≥ 0. In order to
obtain a two-sided version of the system, note that when looking at the system backwards in
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time, creation of particles appears as killing and vice versa. This means that for t ≤ 0, the rates
θ+ and θ− interchange their roles. That is, for t ≤ 0, θ− is the creation rate, whereas θ+ is the
killing rate.

Let us describe our construction in more precise terms. There are three types of particles in
the system: those which are present at time 0, those which are born after time 0, and those which
were killed before time 0. Quantities related to the particles of the latter two types will be marked
by a tilde. We assume that:

(A1) The initial spatial positions of those particles which are present at time 0 form a PPP
π0 =


∞

i=1 δUi on R with intensity e−udu.

(A2) The times of birth and the initial positions of particles born after time 0 form a PPP
π+ =


∞

i=1 δ(T̃ +

i ,Ũ
+

i )
on (0,∞)× R with intensity θ+dt × e−udu.

(A3) The killing times and the terminal positions of particles killed before time 0 form a PPP
π− =


∞

i=1 δ(T̃ −

i ,Ũ
−

i )
on (−∞, 0)× R with intensity θ−dt × e−udu.

We assume that after its birth every particle moves (forward in time) according to the law of the
Lévy process {L+(t) : t ≥ 0} obtained from {ξ(t) : t ≥ 0} by killing it with rate θ−. That is, the
subprobability transition kernel q+

t (x, dy) of L+ is related to the probability transition kernel
pt (x, dy) of ξ by

q+
t (x, dy) = e−θ−t pt (x, dy). (12)

Let also {L−(t) : t ≥ 0} be the Lévy process which is the dual of L+ w.r.t. the (in general, non-
invariant) measure e−udu. That is, the subprobability transition kernel q−(x, dy) of L− is given
by

e−x dx · q−
t (x, dy) = e−ydy · q+

t (y, dx). (13)

Note that L− may be killed after finite time, in general. From (13) and (11) it follows easily that
the killing rate of the process L− is θ+. Consider a two-sided process {L(t) : t ∈ R} obtained by
pasting together independent realizations of L+ and L−:

L(t) =


L+(t), t ≥ 0,
L−(−t), t < 0.

(14)

Our assumptions on the motion of particles are as follows:

(A4) The motion of the particles which are present at time 0 is given by i.i.d. copies L1, L2, . . .

of the process {L(t) : t ∈ R}.

(A5) The forward in time motion of particles which are born after time 0 is given by i.i.d. copies
L̃+

1 , L̃+

2 , . . . of the process {L+(t) : t ≥ 0}.

(A6) The backward in time motion of particles which were killed before time 0 is given by
i.i.d. copies L̃−

1 , L̃−

2 , . . . of the process {L−(t) : t ≥ 0}.

(A7) The random elements π0, π+, π−, L i , L̃+

i , L̃−

i , i ∈ N, are independent.

The trajectories of particles which are present at time t = 0 are given by the two-sided random
functions

Vi (t) = Ui + L i (t), t ∈ R. (15)
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The trajectory of a particle which is born at time T̃ +

i > 0 is given by the one-sided random
function

Ṽ +

i (t) =


−∞, t < T̃ +

i ,

Ũ+

i + L̃+

i (t − T̃ +

i ), t ≥ T̃ +

i .
(16)

Similarly, the trajectory of a particle which was killed at time T̃ −

i < 0 is given by the one-sided
random function

Ṽ −

i (t) =


Ũ−

i + L̃−

i (T̃
−

i − t), t < T̃ −

i ,

−∞, t ≥ T̃ −

i .
(17)

Note that killing of a particle is interpreted as changing its coordinate to −∞. We always
agree that L+ should be right-continuous with left limits (càdlàg), whereas L− should be left
continuous with right limits, so that L is again càdlàg. We regard Vi , Ṽ +

i , Ṽ −

i as elements of
the Skorokhod space D̄ of càdlàg functions defined on R and taking values in R ∪ {−∞}.
Define the shifts Tt : D̄ → D̄, t ∈ R, by Tt f (s) = f (s − t). The next result generalizes
the Lévy–Brown–Resnick processes constructed in Section 1.2 by allowing random birth and
killing of spectral functions.

Theorem 1.5. The law of the following PPP on D̄ is invariant with respect to the time shifts Tt ,
t ∈ R,

Π :=

∞
i=1

δVi +

∞
i=1

δṼ +

i
+

∞
i=1

δṼ −

i
,

and its infinite intensity measure is

µΠ { f ∈ D̄ : f (t1) ∈ dx1, . . . , f (tn) ∈ dxn}

= e−x1dx1 · q+

t2−t1(x1, dx2) · · · · · q+

tn−tn−1
(xn−1, dxn), (18)

for all t1 < · · · < tn and x1, . . . , xn ∈ R. As a consequence, the process

η(t) := max{Vi (t), Ṽ +

i (t), Ṽ −

i (t) : i ∈ N}, t ∈ R, (19)

is max-stable and stationary.

The proof of Theorem 1.5 will be given in Section 2. It relies on a more general result on
stationary particle systems which is not only valid for Lévy processes but also for Markov
processes that possess an invariant measure.

Remark 1.6. By using the duality relation between q+
t and q−

t , see (13), the right-hand side
of (18) can be rewritten in the following form:

e−xn dxn · q−

tn−tn−1
(xn, dxn−1) · . . . · q−

t2−t1(x2, dx1).

Definition 1.7. The stationary max-stable process η defined in (19) will be called a Lévy–Brown–
Resnick process.

Example 1.8 (See Fig. 2). Let {B(t) : t ≥ 0} be a standard Brownian motion. Fix a scale
parameter σ > 0 and a drift λ ∈ R. Let ξ(t) = σ B(t) + λt , t ≥ 0. Then, ψ(1) = λ +

1
2σ

2;
see (10). Fix a killing rate θ− ≥ ψ(1) and let L+ be the process obtained by killing ξ with rate θ−.
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Fig. 2. Lévy–Brown–Resnick process generated by drifted Brownian motions; see Example 1.8. Both birth and killing
times are finite. Different colors indicate different particles contributing to the maximum process. For the color version
of this figure the reader is referred to the web version of this article.

A straightforward calculation using (12) and (13) shows that the dual process L− has the same
law as σ B(t) − (σ 2

+ λ)t killed at rate θ+ := θ− − ψ(1) ≥ 0. Fig. 2 shows the corresponding
max-stable process η together with the particle trajectories. In the case when σ = 1, λ = −

1
2

and θ− = θ+ = 0, we recover the original Brown–Resnick process ηBR; see (3).

Eq. (18) states that the intensity of Π is the so-called Kuznetsov measure associated with the
killed Lévy process L+ and the excessive measure µ(du) = e−udu. Kuznetsov measures can
be associated with any Markov process and any excessive σ -finite measure µ; see [22]. The
excessivity means that Ptµ ≤ µ, where Pt is the transition kernel of the Markov process. In our
case, the excessivity of µ w.r.t. the kernel q+

t follows from the inequality θ− ≥ ψ(1); see (11).
The existence of Kuznetsov measures was established in [22] using Kolmogorov’s extension
theorem; see also the work of Getoor and Glover [17] and Mitro [26] for alternative constructions.

Remark 1.9. The measure µΠ is the so-called exponent measure of the max-stable process η,
that is for all y1, . . . , yn ∈ R,

P[η(t1) ≤ y1, . . . , η(tn) ≤ yn] = exp

−µΠ { f ∈ D̄ : f (ti ) > yi for some i}


. (20)

Remark 1.10. Denote the Lévy triple of ξ by (ν+, σ
2
+, d+). Let us show that the laws of

the Lévy–Brown–Resnick processes (19) are in one-to-one correspondence with quintuples
(ν+, σ

2
+, d+, θ+, θ−) satisfying (10) and (11). By construction, any such quintuple determines

the law of η uniquely. Let us prove the converse. The law of η determines the exponent measure
µΠ uniquely; see (20). From (18) with n = 2 it follows that µΠ determines the kernel q+

t and
hence, by (12), the law of ξ(1) and the rate θ− uniquely. By (11), θ+ is also uniquely determined.
So, the law of η determines the quintuple (ν+, σ 2

+, d+, θ+, θ−) uniquely.

Proposition 1.11. If {η(t) : t ∈ R} is the Lévy–Brown–Resnick process determined by the
quintuple (ν+, σ 2

+, d+, θ+, θ−), then the reversed process {η(−t) : t ∈ R} is also a Lévy–Brown–
Resnick process with the quintuple (ν−, σ 2

−, d−, θ−, θ+), where ν−(−dx) = exν+(dx), σ 2
− = σ 2

+

and d− is uniquely determined by the remaining parameters.
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Proof. From the definition of the Lévy–Brown–Resnick processes it follows that the reversed
process η(−t) has the same structure as η(t), but the pairs (θ+, L+) and (θ−, L−) interchange
their roles. The relation between the Lévy triples of L+ and L− follows from the well-known
transformation properties of Lévy triples under exponential tilting; see [23, Theorem 3.9]. �

Corollary 1.12. The process η is reversible, that is, {η(t) : t ∈ R} has the same law as
{η(−t) : t ∈ R}, if and only if ξ is a Brownian motion with linear drift and θ− = θ+. In
particular, if there is no killing, then η is reversible if and only if it is the original Brown–Resnick
process ηBR.

Proof. From Proposition 1.11 we immediately obtain that for a reversible process η we must
have θ+ = θ− and ν+ = ν− = 0. �

1.4. An explicit mixed moving maximum representation

The construction of Lévy–Brown–Resnick processes given in Section 1.3 divides the spectral
functions according to whether they are present (that is, not equal to −∞) at time t = 0 or
not. One may ask whether there is a more natural, translation invariant construction. A possible
way to obtain such construction is to choose on any trajectory from Π some “reference point”
in a translation invariant way. In the case when ψ(1) = θ+ = θ− = 0, all paths from the PPP
Π are defined on the whole real axis (with birth at time −∞ and killing at time +∞). In this
case, it is natural to choose the maximum of the trajectory as the reference point. Following
this approach, Engelke and Ivanovs [14] obtained an explicit representation of η as a translation
invariant mixed moving maximum process.

Here, we will give a translation invariant construction of Π in the case when at least one rate
θ−, θ+ is strictly positive. Let us assume that θ− > 0. This assumption means that the birth time
of each path in Π is finite and it is natural to consider the birth point as the reference point of the
path. The following objects will be needed to describe an alternative construction of Π :

(B1) Let ρ+ :=


∞

i=1 δ(S+

i ,V
+

i )
be a PPP on R × R with intensity θ+ds × e−vdv.

(B2) Let L+

1 , L+

2 , . . . be i.i.d. copies of the killed Lévy process {L+(t) : t ≥ 0}.
(B3) Let the random elements ρ+, L+

1 , L+

2 , . . . be independent.

Consider particles which are born at times S+

i , have initial spatial positions Vi , and move
(forward in time) according to the processes L+

i . The trajectories of these particles are given
by the one-sided functions

W +

i (t) =


−∞, t < S+

i ,

V +

i + L+

i (t − S+

i ), t ≥ S+

i .
(21)

Theorem 1.13. Let θ− > 0. Then, the PPP Π from Theorem 1.5 has the same intensity as the
PPP

Π ′
:=

∞
i=1

δW+

i
.

Proof. Let us denote by µΠ ′ the intensity of the PPP Π ′ on the Skorokhod space D̄. We will
show that µΠ ′ coincides with the intensity µΠ in (18). Fix t1 < · · · < tn and x1 < · · · < xn .



S. Engelke, Z. Kabluchko / Stochastic Processes and their Applications 125 (2015) 4272–4299 4281

Since a path f ∈ Π ′ can be born at any point (s, v) ∈ R2 with intensity θ+ds × e−vdv, we have

µΠ ′{ f ∈ D̄ : f (t1) ∈ dx1, . . . , f (tn) ∈ dxn}

=

 t1

−∞


+∞

−∞

q+

t1−s(v, dx1)θ+e−vdvds


q+

t2−t1(x1, dx2) . . . q
+

tn−tn−1
(xn−1, dxn). (22)

Note that
+∞

−∞

q+

t1−s(v, dx1)e−vdv = e(ψ(1)−θ−)(t1−s)e−x1dx1.

Hence, the double integral on the right-hand side of (22) equals t1

−∞

θ+e(ψ(1)−θ−)(t1−s)ds · e−x1dx1 = e−x1dx1,

where we used the basic relation (11). The resulting expression for µΠ ′ coincides with the
formula for µΠ given in (18). �

In the case θ+ > 0 (which means that the killing times of the particles are finite), there
is a “backward” representation of Π analogous to the “forward” representation stated in
Theorem 1.13. For θ+ > 0, the killing points of the paths (S−

i , V −

i ) form a PPP on R × R with
intensity θ−ds × e−vdv. Attaching to each point (S−

i , V −

i ) a copy of the process L− backward
in time, we obtain a system of paths which has the same law as Π . In the case when both θ+
and θ− are non-zero (meaning that both birth and killing times of the paths are finite), both
representations (the forward one and the backward one) are valid.

1.5. General properties of Lévy–Brown–Resnick processes

Let η be a Lévy–Brown–Resnick process as constructed in the previous sections.

Proposition 1.14. Fix a compact set K ⊂ R. Then, the set

J := {i ∈ N : ∃t ∈ K such that η(t) = Vi (t) or η(t) = Ṽ +

i (t) or η(t) = Ṽ −

i (t)}

is a.s. finite. That is, with probability 1, only finitely many paths Vi , Ṽ +

i , Ṽ −

i contribute to the
process {η(t) : t ∈ K }.

The proof of Proposition 1.14 will be given in Section 3.1. Since the pointwise maximum of
finitely many càdlàg functions is again càdlàg, the sample paths of the process η are càdlàg with
probability 1.

A convenient measure of dependence for max-stable processes is the extremal correlation
function defined by

ρ(t) = 2 + log P[η(0) < 0, η(t) < 0] ∈ [0, 1]. (23)

Proposition 1.15. The extremal correlation function of η is given by

ρ(t) = e−θ+t
− e−θ−t


∞

0
euP[ξ(t) > u]du, t ≥ 0. (24)

In particular, in the case θ− = θ+ = 0, we have

ρ(t) = E min{1, eL(t)
}, t ∈ R. (25)
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The proof of Proposition 1.15 will be given in Section 3.2. Note that the existence of a
mixed moving maxima representation for η as shown in Engelke and Ivanovs [14] and
Section 1.4 implies that η is mixing. According to [30, Thm. 3.4] the latter is also equivalent
to limt→+∞ ρ(t) = 0.

1.6. Extremal index in the spectrally negative case

An important quantity associated with a stationary max-stable process η is its extremal index;
see [24, p. 67]. By the max-stability of η, for every T > 0 we can find Θ(T ) > 0 such that

P


sup

t∈[0,T ]

η(t)− log Θ(T ) ≤ x


= exp(−e−x ), x ∈ R. (26)

The extremal index of η is defined as the limit

Θ := lim
T →∞

Θ(T )
T

. (27)

In the next theorem we compute the extremal index of a Lévy–Brown–Resnick process η in the
case when the driving Lévy process ξ is spectrally negative. Recall that ξ is called spectrally
negative if it has no positive jumps, or, equivalently, if the Lévy measure of ξ is concentrated on
the negative half-axis. For a spectrally negative Lévy process ξ , the function

ψ(u) := log Eeuξ(1)

is finite for all u ≥ 0; see [4, Chapter VII]. Let ψ−1(0) be the largest solution of ψ(u) = 0.
The function ψ : [ψ−1(0),∞) → [0,∞) is strictly increasing and continuous, and the inverse
function is denoted by ψ−1.

Theorem 1.16. Let η be a Lévy–Brown–Resnick process generated by a Lévy process ξ that has
no positive jumps. Then, the extremal index of η is given by

Θ =


ψ ′(1), if θ+ = 0,
ψ−1(θ−)

ψ−1(θ−)− 1
θ+, if θ+ > 0.

(28)

The proof of Theorem 1.16 will be given in Section 3.3.

1.7. Extremes of independent Lévy processes

The original Brown–Resnick process ηBR, see (3), appeared as a limit of pointwise maxima of
independent Brownian motions, after appropriate normalization. Let B1, B2, . . . be i.i.d. standard
Brownian motions. Let un be any sequence such that 1 − Φ(un) ∼ 1/n, where Φ is the standard
normal distribution function. Brown and Resnick [7] proved that weakly on the space C(R),

2 log n


max

i=1,...,n
Bi


1 +

t

2 log n


− un


: t ∈ R


w

−→
n→∞


ηBR(t)+

t

2
: t ∈ R


. (29)

To make the left-hand side of (29) defined for every t ∈ R, we can extend Bi to the negative
half-axis in an arbitrary way, for example by requiring that Bi (s) = 0 for s < 0. The space C(R)
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is endowed with the topology of uniform convergence on compact intervals so that the weak
convergence on C(R) is equivalent to the weak convergence on C[−T, T ] for every T ≥ 0. See
also [20,8] for other classes of processes whose maxima converge to ηBR.

By using the self-similarity of the Brownian motion, we obtain that weakly on C(R),
max

i=1,...,n
Bi (2 log n + t)− un


2 log n : t ∈ R


w

−→
n→∞


ηBR(t)+

t

2
: t ∈ R


. (30)

Our aim is to generalize (30) to Lévy processes. Suppose that ξ1, ξ2, . . . are independent copies
of a non-deterministic Lévy process {ξ(t) : t ≥ 0} such that the distribution of ξ(1) is non-lattice
and

ψ(u) := log Eeuξ(1) < ∞, for all u ∈ [0, u∞), (31)

where u∞ ∈ (0,+∞] is maximal with this property. Let s1, s2, . . . be a sequence of non-negative
real numbers such that

λ := lim
n→∞

log n

sn
∈ (0,∞). (32)

We are interested in the functional limit behavior of the process

Mn(t) := max
i=1,...,n

ξi (sn + t).

To state our limit theorem on Mn(t), we need to introduce some notation. Note that ψ(0) = 0
and that the function ψ ′ is a strictly increasing and infinitely differentiable bijection between
(0, u∞) and (β0, β∞), where

β0 = lim
u↓0

ψ ′(u) = Eξ(1) ∈ R ∪ {−∞}, β∞ = lim
u↑u∞

ψ ′(u) ∈ R ∪ {+∞}.

The information function I is defined as the Legendre–Fenchel transform of ψ , that is

I (ψ ′(u)) = uψ ′(u)− ψ(u), u ∈ (0, u∞). (33)

Since every β ∈ (β0, β∞) can be represented as β = ψ ′(u) for some u ∈ (0, u∞), the function
I is defined on the interval (β0, β∞). Let λ∞ = limβ↑β∞

I (β), so that I is a bijection between
(β0, β∞) and (0, λ∞). Suppose additionally that λ ∈ (0, λ∞) and denote by θ ∈ (0, u∞) the
unique solution to I (ψ ′(θ)) = λ. Define a normalizing sequence bn by

bn = I −1(λn)sn ∼ ψ ′(θ)sn with λn :=
log n − log(θ

√
2πψ ′′(θ)sn)

sn
−→
n→∞

λ. (34)

Let L+ be the Lévy process defined by L+(t) = θξ(t)−ψ(θ)t , t ≥ 0. Note that L+ satisfies (4).
Let L be the corresponding two-sided process as in (8) and (7).

Theorem 1.17. We have the following weak convergence of stochastic processes on the Sko-
rokhod space D(R):

max
i=1,...,n

ξi (sn + t)− bn : t ∈ R


w
−→
n→∞


1
θ
η(t)+

ψ(θ)

θ
t : t ∈ R


(35)

where η is the Lévy–Brown–Resnick process corresponding to L; see (9).

In order to make the left-hand side of (35) well-defined for all t ∈ R, we define, say, ξi (s) = 0
for s < 0. The proof of Theorem 1.17 will be given in Section 4.1. The Skorokhod space is
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endowed with the usual J1-metric; see [5, Section 16]. Restricting Theorem 1.17 to t = 0 we
recover a known result due to Ivchenko [18] and Durrett [12]:

max
i=1,...,n

ξi (sn)− bn
d

−→
n→∞

exp(−e−θx ). (36)

Theorem 1.17 is a functional version of (36). Functional limit theorems for sums of geometric
Lévy processes of the form eβξi (sn+t) were obtained in [19] with limits being certain stationary
stable or Gaussian processes. Theorem 1.17 can be viewed as the limiting case of the results
of [19] as β → +∞.

Remark 1.18. The lattice assumption on ξ(1) cannot be removed. If ξ(1) is lattice, then
Theorem 1.17 breaks down and instead we have weak convergence along certain subsequences
of n to a topological circle of limiting processes as in [25] or [21].

1.8. Extremes of independent totally skewed α-stable Lévy processes

In this section we will generalize the results of Brown and Resnick [7] to totally skewed
α-stable Lévy processes. To this end, we will combine Theorem 1.17 with the scaling property of
these processes. Let us first recall some definitions related to α-stable processes (cf. [29]). A real-
valued random variable X is said to have an α-stable distribution Sα(σ, β, µ) with parameters
α ∈ (0, 2], σ ≥ 0, β ∈ [−1, 1] and µ ∈ R if its characteristic function has the form

E exp(iθX) =


exp


−σα|θ |α(1 − iβ sign(θ) tan(πα/2))+ iµθ


, α ≠ 1,

exp

−σ |θ |(1 +

2
π

iβ sign(θ) log |θ |)+ iµθ


, α = 1,

for all θ ∈ R. In general, α-stable distributions possess heavy power-law tails and are thus in the
max-domain of attraction of the Fréchet (rather than Gumbel) distribution. An exception, which
we will focus on, is the case of α-stable random variables that are totally skewed to the left, that
is, β = −1.

Let X be a random variable with distribution Sα(1,−1, 0). It is known that in the case
α ∈ [1, 2], X has positive density on the whole real line, whereas in the case α ∈ (0, 1) the
density is concentrated on the negative half-line. Asymptotic formulas for the right tail of X near
its right endpoint x∗ (which is +∞ for α ∈ [1, 2] an 0 for α ∈ (0, 1)) are well-known; see [1]
or [29, Eq. 1.2.11]. For α ≠ 1 the tail asymptotics has the form

P[X > x] ∼ Aαx−
α

2(α−1) exp

−Bαx

α
α−1


, x ↑ x∗, (37)

with certain explicit constants Aα and Bα . Suppose now that X1, X2, . . . , are i.i.d. copies of
X ∼ Sα(1,−1, 0), where α ∈ (0, 2]. Using (37) and standard asymptotic calculations, see
Theorem 3.3.26 in [13], one can obtain that there is a sequence bn,α (see (40)) and a number
θα > 0 (see (39)) such that

(log n)
1
α max

i=1,...,n
X i − bn,α

d
−→
n→∞

exp(−e−θαx ). (38)

We will obtain a functional version of (38). For α ∈ (0, 2] consider a Lévy process {ξα(t) : t ≥

0} such that the distribution of ξα(t) is Sα(t,−1, 0). It is well known, see Proposition 1.2.12
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in [29], that for u ≥ 0 we have

ψα(u) := log Eeuξα(1) =


cαuα, α ≠ 1,
c1u log u, α = 1,

with cα =


−

1
cos απ2

, α ≠ 1,

2
π
, α = 1.

Note that cα > 0 for α ∈ [1, 2], while cα < 0 for α ∈ (0, 1). Let us apply Theorem 1.17 to ξα . A
straightforward computation yields that the information function I = Iα from (33) is given by

Iα(β) =


(α − 1)


β

ααcα

 1
α−1

β, α ≠ 1,

c1e
β
c1

−1
, α = 1,

where the interval (β0, β∞) on which Iα is defined is (0,+∞) in the case α ∈ (1, 2], (−∞, 0)
in the case α ∈ (0, 1), and (−∞,+∞) in the case α = 1. Take sn = log n (so that λ = 1). We
easily compute that the solution to Iα(ψ ′

α(θα)) = 1 is given by

θα =

((α − 1)cα)−
1
α , α ≠ 1,

π

2
, α = 1.

(39)

Applying the Taylor expansion of I −1
α to (34) and discarding the o(1) terms, we obtain that the

normalizing sequence bn = bn,α is given by

bn,α =


1
θα


α

α − 1
log n −

1
2

log(2πα log n)


, α ≠ 1,

2
π

log
πe
2


log n −

1
π

log(2π log n), α = 1.

(40)

Let now ξ1,α, ξ2,α, . . . be i.i.d. copies of ξα . Applying Theorem 1.17 we obtain that weakly
on the Skorokhod space D(R) it holds that

max
i=1,...,n

ξi,α (log n + t)− bn,α : t ∈ R


w
−→
n→∞


1
θα
ηα(t)+

ψ(θα)

θα
t : t ∈ R


, (41)

where ηα is a Lévy–Brown–Resnick process defined as in Section 1.2 with

L+(t) = θαξα(t)− ψ(θα)t, t ≥ 0. (42)

Note that in the case α = 2, with ξi,α(t) = Bi (2t), we recover Brown and Resnick’s result (30).
Using the self-similarity of ξα we can also generalize (29). Let us denote the limiting process

in (41) by η̃α:

η̃α(t) :=
1
θα
ηα(t)+

ψ(θα)

θα
t. (43)

Theorem 1.19. For α ≠ 1, we have the following weak convergence of stochastic processes on
the Skorokhod space D(R):

(log n)
1
α max

i=1,...,n
ξi,α


1 +

t

log n


− bn,α : t ∈ R


w

−→
n→∞

{η̃α(t) : t ∈ R} . (44)
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For α = 1 we have, weakly on D(R),
log n max

i=1,...,n
ξi,1


1 +

t

log n


− b̃n,1(t) : t ∈ R


w

−→
n→∞

{η̃1(t) : t ∈ R} , (45)

where b̃n,1(t) = bn,1 +
2
π
(log n)(log log n)t .

Proof. It is well known [29, Section 3.1] that for α ≠ 1, the process ξα is 1/α-self-similar, that
is for all c > 0,

{ξα(ct) : t ≥ 0}
d
= {c1/αξα(t) : t ≥ 0}. (46)

Combining (41) with the self-similarity, we obtain (44). In the case α = 1 the self-similarity
breaks down and instead one has

{ξ1(ct) : t ≥ 0}
d
=


cξ1(t)−

2
π
(c log c)t : t ≥ 0


. (47)

Combining (47) and (41), we obtain (45). �

1.9. Extremes of independent totally skewed α-stable Ornstein–Uhlenbeck processes

In addition to their result (29) on extremes of i.i.d. Brownian motions, Brown and Resnick [7]
proved a similar result for Ornstein–Uhlenbeck processes. Let Y1, Y2, . . . be i.i.d. copies of the
stationary Gaussian Ornstein–Uhlenbeck process

Z(t) := e−t/2 B(et ), t ∈ R.

Then, with un satisfying 1 − Φ(un) ∼ 1/n, Brown and Resnick [7] proved that
2 log n


max

i=1,...,n
Zi


1 +

t

2 log n


− un


: t ∈ R


w

−→
n→∞

{ηBR(t) : t ∈ R} (48)

weakly on C(R). We now establish a generalization of this result in the totally skewed α-stable
case. As in the previous section, let {ξα(t) : t ≥ 0} be a Lévy process with ξα(t) ∼ Sα(t,−1, 0),
where α ∈ (0, 2]. The associated Ornstein–Uhlenbeck process {Zα(t) : t ∈ R} is defined by

Zα(t) =

e−t/αξα(et ), α ≠ 1,

e−tξ1(et )+
2
π

t, α = 1.
(49)

The self-similarity of ξα (or (47) in the case α = 1) implies that the process Zα is stationary with
Sα(1,−1, 0) margins. Let Z1,α, Z2,α, . . . be i.i.d. copies of Zα .

Theorem 1.20. For α ≠ 1, we have the following weak convergence of stochastic processes on
the Skorokhod space D(R):

(log n)
1
α max

i=1,...,n
Zi,α


t

log n


− bn,α : t ∈ R


w

−→
n→∞


1
θα
ηα(t) : t ∈ R


, (50)

where ηα is a Lévy–Brown–Resnick process defined as in Section 1.2 with L+ as in (42). For
α = 1 the result takes the form

(log n) max
i=1,...,n

Zi,1


t

log n


− b̃n,1(t) : t ∈ R


w

−→
n→∞


2
π
η1(t) : t ∈ R


. (51)
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Theorem 1.20 will be deduced from Theorem 1.19 using (49). The proof will be given in
Section 4.2. The study of the pointwise maximum of many independent stochastic processes
over an infinitesimal interval (see Theorems 1.19 and 1.20) is closely related to the results,
due to Albin [1–3], on the maximum of a single totally-skewed α-stable process over a finite
or increasing interval. The drifted process L+, see (42), appeared in the works of Albin as
an extremal tangent process describing the behavior of a totally skewed α-stable process after
reaching a high level.

2. Proofs: Stationarity results

2.1. Stationary systems of independent Markov processes

Let (E, dE ) be a Polish space with metric dE and Borel σ -algebra E . Let {P+
t : t ≥ 0}

and {P−
t : t ≥ 0} be two Markov probability transition semigroups on E which are in duality

w.r.t. some locally finite measure µ. This means that
A

P+
t (x, B)µ(dx) =


B

P−
t (y, A)µ(dy), for all A, B ∈ E . (52)

In particular, the measure µ is invariant w.r.t. both P+
t and P−

t :
E

P+
t (x, B)µ(dx) = µ(B) =


E

P−
t (x, B)µ(dx), for all B ∈ E .

Consider a system of particles located in E and moving independently of each other according
to the following rules. The positions of particles at time 0 form a Poisson point process (PPP)
π0 :=


i δUi with intensity measure µ. The motion of particles is described as follows. For each

i ∈ N consider Markov processes {ξ+

i (t) : t ≥ 0} and {ξ−

i (t) : t ≥ 0} which both start at Ui

and have transition semigroups P+
t and P−

t , respectively. We assume that the processes ξ+

i , ξ
−

i ,
i ∈ N, are conditionally independent given π0. Then, the position of particle i ∈ N at time t ∈ R
is given by the two-sided process

ξi (t) =


ξ+

i (t), t ≥ 0,
ξ−

i (−t), t < 0.

We assume that the sample paths of the Markov process {ξ+

i (t) : t ≥ 0} are right-continuous
with left limits (càdlàg), whereas the sample paths of {ξ−

i (t) : t ≥ 0} are left-continuous with
right limits. Then, the sample paths of ξi are càdlàg.

The positions of the particles at time t ∈ R are given by the point process πt :=


i δξi (t)
(which is a PPP on E), whereas the complete evolution of the particle system can be encoded
by the point process Π =


i δξi (which is a Poisson point process on D(R, E), the Skorokhod

space of càdlàg functions from R to E). Denote by Tt : D(R, E) → D(R, E) the shift operators
given by Tt f (s) = f (s − t) with f ∈ D(R, E) and s, t ∈ R.

Theorem 2.1. With the notation from above, the Poisson point process Π =


i∈N δξi is
stationary, that is for any t ∈ R,

i

δξi
f.d.d.
=


i

δTt ξi .
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Proof. At least in the one-sided case the result is well known, see [6] and the references therein,
but we give a short proof for completeness. Fix some times t1 ≤ · · · ≤ tm ≤ 0 ≤ tm+1 ≤ · · · ≤

tm+n . The intensity measure of Π is given by

µΠ { f ∈ D(R, E) : f (t1) ∈ dx1, . . . , f (tn+m) ∈ dxm+n}

=


E
µ(dx)P−

−tm (x, dxm) . . . P−

t2−t1(x2, dx1)P
+
tm+1

(x, dxm+1)

. . . P+

tm+n−tm+n−1
(xm+n−1, dxm+n).

Repeatedly using identity (52) to replace µ(dx)P−
t (x, dy) by P+

t (y, dx)µ(dy), we obtain

µΠ { f ∈ D(R, E) : f (t1) ∈ dx1, . . . , f (tn+m) ∈ dxm+n}

=


E
µ(dx1)P

+

t2−t1(x1, dx2) . . . P+

−tm (xm, dx)P+
tm+1

(x, dxm+1)

. . . P+

tm+n−tm+n−1
(xm+n−1, dxm+n)

= P+

t2−t1(x1, dx2) . . . P+

tm+1−tm (xm, dxm+1) . . . P+

tm+n−tm+n−1
(xm+n−1, dxm+n),

where in the last step we performed integration over dx and used the formula
E

P+

−tm (xm, dx)P+
tm+1

(x, dxm+1) = P+

tm+1−tm (xm, dxm+1).

Clearly, the resulting expression for µΠ does not change if we increase all ti ’s by the same
value. �

2.2. Proof of Theorem 1.5

In order to encode a motion of a particle which has random birth and death times, it is
convenient to introduce an extended state space E = R2; see Fig. 3. For a point (x, s) ∈ R2, the
first coordinate x is the usual spatial position of the particle. The second coordinate s indicates
whether the particle is not yet born (s < 0, in which case |s| is the time remaining to the birth),
it is alive (s = 0), or it has already been killed (s > 0, in which case s is the time elapsed after
the killing event), respectively.

Consider a Markov process Z+ on R2 which can be described as follows. Suppose that at time
0 the process Z+ starts at (x0, s0) with s0 < 0 (the particle is not yet born). Then, at any time
t ∈ (0, |s0|) the particle is still not born meaning that Z+(t) = (x0, s0 + t). At time t = |s0|

the particle is born, and it appears on the real line at position x0. After the birth, its coordinate x
changes according to the Lévy process L+, while the time coordinate s remains equal 0 (meaning
that the particle is alive). After an exponential time τ+

∼ Exp(θ−), the particle is killed while
being located at some spatial position denoted by x1 = x0 + L+(τ+). After the killing, the
particle disappears. Formally, this means that its spatial coordinate x = x1 remains constant,
whereas the time coordinate s increases at unit rate as the time goes on. To summarize, if the
process Z+ starts at time 0 at (x0, s0) ∈ R2 with s0 < 0, then

Z+(t) =


(x0, s0 + t), if s0 + t ≤ 0,
(x0 + L+(s0 + t), 0), if 0 ≤ s0 + t ≤ τ+,

(x0 + L+(τ+), s0 + t − τ+), if τ+
≤ s0 + t.

The description of Z+ in the cases s0 = 0 and s0 > 0 is similar. Let P+
t , t ≥ 0, be the probability

transition kernel of the process Z+.



S. Engelke, Z. Kabluchko / Stochastic Processes and their Applications 125 (2015) 4272–4299 4289

Fig. 3. Visualization of three different realizations of the Markov process Z+. The top figure shows the dependence of
the spatial coordinate x on time t . The bottom figure shows the dependence of s on t .

Theorem 2.2. The following σ -finite measure on R2 is invariant for the Markov process Z+:

ν(dx, ds) = e−x dx (1s<0θ+ds + δ0(s)+ 1s>0θ−ds) , (53)

where θ+ and θ− satisfy (11).

Proof. In the sequel, we write µ(dx) = e−x dx , x ∈ R. Fix some time t > 0. Let B ⊂ R2 be a
Borel set. We need to verify that

E
P+

t ((x, s), B)ν(dx, ds) = ν(B).

CASE 1. In the case B ⊂ R × (−∞, 0), we obtain
E

P+
t ((x, s), B)ν(dx, ds) =


B−(0,t)

ν(dx, ds) = ν(B).

CASE 2. In the case when B = B0 × {0}, where B0 ⊂ R is a Borel set, we obtain
E

P+
t ((x, s), B)ν(dx, ds) =

 0

−t


R

q+

t+s(x, B0)θ+µ(dx)ds +


R

q+
t (x, B0)µ(dx). (54)

The second summand on the right-hand side of (54) equals
R

q+
t (x, B0)µ(dx) = e−θ−tµ(B0)EeL+(t)

= et (ψ(1)−θ−)µ(B0) = e−θ+tµ(B0), (55)

where we used (11) for the last equality. With this observation, the first summand on the right-
hand side of (54) equals

µ(B0)

 0

−t
e−θ+(t+s)θ+ds = µ(B0)


1 − e−θ+t .

Thus, (54) equals µ(B0) = ν(B).
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CASE 3. Consider finally the case B ⊂ R × (0,+∞). Take some point (y, u) ∈ B. Let first
0 < u < t . We have

E
P+

t ((x, s), (dy, du))ν(dx, ds)

=

 0

u−t
θ+ds


R
µ(dx)q+

t−u+s(x, dy)θ−du +


R
µ(dx)q+

t−u(x, dy)θ−du

= θ−


1 − e−θ+(t−u)


µ(dy)du + θ−e−θ+(t−u)µ(dy)du

= θ−µ(dy)du.

In the case u > t the computation is the same as in Case 1. �

We are now going to define the dual of the process Z+ w.r.t. the invariant measure ν. Replacing
in the definition of Z+ the killing rate by θ+ and the driving process by L−, and reversing the
time direction, we obtain another Markov process on R2 denoted by Z−. For example, if the
process Z− starts at time 0 at (x0, s0) ∈ R2 with s0 > 0, then in the first stage the coordinate
s decreases linearly at unit rate to 0, in the second stage the coordinate s stays 0, while the
coordinate x changes according to a Lévy process L− until its killing after time τ−

∼ Exp(θ+),
and finally in the third stage the coordinate s decreases linearly at unit rate while the coordinate
x stays constant. More precisely, we have

Z−(t) =


(x0, s0 − t), if t − s0 ≤ 0,
(x0 + L−(t − s0), 0), if 0 ≤ t − s0 ≤ τ−,

(x0 + L−(τ−), τ−
− t + s0), if τ−

≤ t − s0.

The probability transition kernel of Z− is denoted by P−.

Theorem 2.3. The Markov processes Z+ and Z− are in duality (in the sense of (52)) w.r.t. the
invariant measure ν.

Proof. We need to establish the equality

P−
t ((x, s), d(y, u)) ν(dx, ds) = P+

t ((y, u), d(x, y)) ν(dy, du), (56)

for any (x, s), (y, u) ∈ R2. With regard to the definitions of Z+ and Z−, showing (56) breaks
down to several cases depending on the signs of s and u. We exemplarily consider the case s > 0
and u < 0. Let t ≥ s − u because otherwise the transition density is 0. We have

P−
t ((x, s), d(y, u)) ν(dx, ds) = θ+q−

t−s+u(x, dy)du e−x dx θ−ds

= θ−q+

t−s+u(y, dx)du e−ydy θ+ds

= P+
t ((y, u), d(x, s)) ν(dy, du).

The second equality uses the duality relation (13). �

Proof of Theorem 1.5. Consider particles on R2 forming a Poisson point process on R2 with
intensity ν defined in Theorem 2.2. Let the forward motion of the particles be given by the
independent Markov processes Z+, whereas the backward motion of particles be given by the
independent Markov processes Z−. By Theorem 2.3, the Markov processes Z+ and Z− are in
duality w.r.t. the measure ν. By Theorem 2.1, the resulting system of processes is stationary
on R2. Discarding the coordinate s (responsible for the “age” of the particles) and putting the
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spatial coordinate x to −∞ whenever s ≠ 0, we obtain the same particle system as described in
Theorem 1.5.

By the stationarity of the particle system, the left-hand side of (18) is shift-invariant, whereas
the right-hand side is shift-invariant by definition. Hence, when proving (18), there is no
restriction of generality in assuming that t1 = 0. But in this case, the functions Ṽ +

i and Ṽ −

i
make no contribution to the intensity of Π on the left-hand side of (18). The contribution of the
functions Vi is given, by the transformation formula for the PPP, by the right-hand side of (18).

The stationarity of the process η in (19) now follows immediately from the above. The max-
stability condition (1) can be verified by noting that the union of n independent copies of the
PPP π0 (similarly, π+, π−) has the same intensity as the original process spatially shifted by
log n. �

3. Proofs: General properties and extremal index

3.1. Proof of Proposition 1.14

We follow the idea used in the proof of Proposition 13 in [20]. By stationarity, we can assume
that K = [0, T ]. Then, the paths Ṽ −

i make no contribution to the process η on K . Fix some
l ∈ N. For k ∈ N consider the random event

Al,k =


inf

t∈[0,T ]

max
i=1,...,l

(Ui + L i (t)) > −k


.

Clearly, the event Al := ∪k∈N Al,k has probability at least 1 − (1 − e−T θ−)l (which is the
probability that at least one of the paths Ui + L i (t), 1 ≤ i ≤ l, will not be killed in [0, T ]).
On the event Al,k , the set J is contained in Ik ∪ Ĩ +

k , where

Ik =


i ∈ N : Ui + sup

t∈[0,T ]

L i (t) > −k


,

Ĩ +

k =


i ∈ N : Ũ+

i + sup
t∈[0,T ]

L̃+

i (t) > −k, T̃ +

i ∈ [0, T ]


.

The cardinality of Ik has Poisson distribution with parameter

λk :=


R

e−uP


sup

t∈[0,T ]

L(t) > u − k


du = ek


R

evP


sup

t∈[0,T ]

L(t) > v


dv. (57)

By an inequality of Willekens (see Equation 2.1 in [31]), we have the estimate

P


sup

t∈[0,T ]

L(t) > v


≤ CP[L(T ) > v − 1]

for all v > 1 and some finite constant C . Since EeL(T )
= 1, the integral on the right-hand side

of (57) converges and λk is finite. It follows that the set Ik is finite a.s. on the event Al,k . Similarly,
the set Ĩk is finite a.s. on Al,k . It follows that the set J is finite a.s. on Al . But we can make the
probability of Al as close to 1 as we wish by choosing appropriately large l.
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3.2. Proof of Proposition 1.15

The event {η(0) < 0, η(t) < 0} occurs if and only if the following 3 independent events occur
simultaneously:

1. there is no i ∈ N such that Ui > 0;
2. there is no i ∈ N such that Ui < 0 but Ui + L+

i (t) > 0;
3. there is no i ∈ N such that s := T̃ +

i ∈ [0, t] and Ũ+

i + L+

i (t − s) > 0.

With v := t − s we have

− log P[η(0) < 0, η(t) < 0]

= 1 + e−θ−t
 0

−∞

e−uP[ξ(t) > −u]du + θ+

 t

0
e−θ−v


+∞

−∞

e−uP[ξ(v) > −u]dudv

= 1 + e−θ−t


∞

0
euP[ξ(t) > u]du + θ+

 t

0
e−θ−vEeξ(v)dv.

Since Eeξ(v) = eψ(1)v by (10) and ψ(1) = θ− − θ+ by (11), the third term is equal to 1 − e−θ+t .
The desired formula (24) follows easily.

3.3. Proof of Theorem 1.16

First, we compute Θ(T ) as defined by (26). Recall that L+ is the process obtained by killing
ξ with rate θ−. Write M(t) := supu∈[0,t] L+(u). Then, by the definition of Lévy–Brown–Resnick
processes given in Section 1.3, we have

− log P


sup

t∈[0,T ]

η(t) ≤ x



=


+∞

−∞

e−uP[M(T ) > x − u]du + θ+

 T

0


+∞

−∞

e−uP[M(s) > x − u]duds

= e−x


EeM(T )
+ θ+

 T

0
EeM(s)ds


.

Note that the first integral is the contribution of particles which are present at time 0, whereas
the second integral is the contribution of particles born at T − s, where s ∈ [0, T ]. Writing
f (t) = EeM(t), we obtain that

Θ(T ) = f (T )+ θ+

 T

0
f (s)ds. (58)

We determine the behavior of Θ(T ) as T → ∞.

CASE 1. Let θ+ = 0. We will prove that

Θ(T ) = f (T ) ∼ ψ ′(1)T as T → +∞. (59)

Let τ(λ) ∼ Exp(λ) be random variable which has an exponential distribution with parameter
λ > 0 and is independent of everything else. Then,

∞

0
f (T )λe−λT dT =E f (τ (λ))=E exp


sup

s∈[0,τ (λ)]
L+(s)


= E exp


sup

s∈[0,τ (λ+θ−)]
ξ(s)


.
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Since ξ is a Lévy process with no positive jumps, Corollary 2 on page 190 of [4] states that

sup
s∈[0,τ (λ+θ−)]

ξ(s) ∼ Exp(ψ−1(λ+ θ−)).

It follows that
∞

0
f (T )e−λT dT =

ψ−1(λ+ θ−)

λ(ψ−1(λ+ θ−)− 1)
∼
ψ ′(1)

λ2 as λ ↓ 0, (60)

where in the last step we used that ψ(1) = θ−, see (11), and hence, ψ−1(θ−) = 1. Since the
function f is non-decreasing, we can apply to (60) the standard Tauberian theory, see Theorem
4 on page 423 in [16], to conclude that (59) holds. This proves the first case of (28).

CASE 2. Let θ+ > 0. We will prove that

C := lim
T →∞

f (T ) = E exp


sup
s>0

L+(s)


=

ψ−1(θ−)

ψ−1(θ−)− 1
< ∞. (61)

The equality of the limit and the expectation follows from the monotone convergence theorem.
We have to compute the expectation. Since L+ is obtained from ξ by killing it with rate θ− and
since ξ is a Lévy process with no positive jumps, we can again use Corollary 2 on page 190 of [4]
to obtain that

sup
s>0

L+(s) ∼ Exp(ψ−1(θ−)).

Note that ψ−1(θ−) > 1 because ψ(1) = θ− − θ+ < θ− by (11). Recalling the Laplace trans-
form of the exponential distribution, we obtain (61). Together with (58) this clearly implies that
Θ(T ) ∼ Cθ+T as T → ∞. The proof of the second case of (28) is complete.

4. Proofs: Convergence results

4.1. Proof of Theorem 1.17

STEP 1. For n ∈ N define i.i.d. random variables U1,n, . . . ,Un,n and i.i.d. stochastic processes
L1,n, . . . , Ln,n by

Ui,n = θ(ξi (sn)− bn), (62)

L i,n(t) = θ(ξi (sn + t)− ξi (sn))− ψ(θ)t, t ∈ R. (63)

If we restrict the L i,n’s to the positive half-axis t ≥ 0, then the Ui,n’s are independent of the
L i,n’s and the L i,n’s are i.i.d. copies of the process

L+(t) = θξ(t)− ψ(θ)t.

On the other hand, let


∞

i=1 δUi be a PPP on R with intensity e−udu. Independently, let
L1, L2, . . . be i.i.d. copies of L , a two-sided extension of the one-sided Lévy process L+; see (8).
We have to show that weakly on D(R),

ηn(t) := max
i=1,...,n

(Ui,n + L i,n(t))


t∈R

w
−→
n→∞


η(t) := max

i=1,...,n
(Ui + L i (t))


t∈R

.

It is known that weak convergence on D(R) is implied by the weak convergence on D[−T, T ]

for every T > 0; see [5, Theorem 16.7]. Fix some T > 0. We proceed as follows. In Steps 2–5
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we will prove weak convergence on the space D[0, T ]. The two-sided convergence on D[−T, T ]

will be established in Step 6.

STEP 2. We prove that the point process
n

i=1 δUi,n converges weakly to


∞

i=1 δUi , as n → ∞.
The point processes are considered on the state space (−∞,+∞]. By [28, Proposition 3.21], it
suffices to show that for every u ∈ R,

lim
n→∞

nP[U1,n > u] = e−u . (64)

By the precise large deviations theorem of Bahadur–Rao–Petrov [27], we have

P[ξ(t) > βt] ∼
1

I ′(β)
√

2πψ ′′(I ′(β))t
e−I (β)t , t → +∞, (65)

uniformly in β as long as it stays in a compact subinterval of (β0, β∞). Let βn = (bn +
u
θ
)/sn ,

so that limn→∞ βn = ψ ′(θ) ∈ (β0, β∞) by (34). Note that limn→∞ I ′(βn) = θ because I ′ is the
inverse function of ψ ′. It follows from (65) that

P[U1,n > u] = P[ξ(sn) > βnsn] ∼
1

θ
√

2πψ ′′(θ)sn
e−I (βn)sn , n → ∞. (66)

Using the definitions of βn and bn (see (34)) together with Taylor’s expansion, we obtain that

I (βn)sn = I


I −1(λn)+

u

θsn


sn = log n − log(θ


2πψ ′′(θ)sn)+ u + o(1),

where we used the fact that I −1(λn) converges to I −1(λ) = ψ ′(θ), see (34), and that I ′(ψ ′(θ)) =

θ . Inserting this into (66), we obtain the required equation (64). At this point note the following
consequence of (64):

max
i=1,...,n

Ui,n
d

−→
n→∞

e−e−u
. (67)

STEP 3. For a truncation parameter a ∈ N we define the truncated versions of the processes ηn
and η by

η(a)n (t) = max
i=1,...,n
Ui,n>−a

(Ui,n + L i,n(t)), η(a)(t) = max
i=1,...,n
Ui>−a

(Ui + L i (t)). (68)

We prove that for every fixed a ∈ N, the process η(a)n converges to η(a) weakly on D[0, T ].
Consider a bounded, continuous function f : D[0, T ] → R. We need to show that

lim
n→∞

E f (η(a)n ) = E f (η(a)). (69)

Let M be the space of locally finite integer-valued measures on R̄ = (−∞,+∞]. As usually,
M is endowed with vague topology. Let Ma be the (open) set of all µ ∈ M such that
µ({+∞}) = µ({−a}) = 0. Define a function f̄ : Ma → R by

f̄


i

δui


= E f


max

i : ui>−a
(ui + L i (·))


.

Note that any measure µ ∈ Ma has only finitely many atoms above −a. Using this, it is easy
to check that the function f̄ is well-defined and continuous on Ma . On M\Ma we define f̄
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to be, say, 0. Observe that Ma has full probability w.r.t. the law of the PPP


∞

i=1 δUi . By the
continuous mapping theorem, see [5, Theorem 2.7], it follows that

f̄


n

i=1

δUi,n


d

−→
n→∞

f̄


∞

i=1

δUi


.

It follows that we have the convergence of expectations of these uniformly bounded random
variables:

E f (η(a)n ) = E f̄


n

i=1

δUi,n


−→
n→∞

E f̄


∞

i=1

δUi


= E f (η(a)).

This completes the proof of (69).

STEP 4. We prove that η(a) converges to η weakly on D[0, T ], as a → +∞. It suffices to show
that

lim
a→+∞

P[∃t ∈ [0, T ] : η(t) ≠ η(a)(t)] = 0.

But this follows directly from Proposition 1.14.

STEP 5. We prove that

lim
a→+∞

lim sup
n→∞

P[∃t ∈ [0, T ] : ηn(t) ≠ η(a)n (t)] = 0.

Define a process {δ
(a)
n : t ∈ [0, T ]} by

δ(a)n (t) = max
i=1,...,n
Ui,n≤−a

(Ui,n + L i,n(t)).

It suffices to prove that

lim
b→+∞

lim sup
n→∞

P


inf
t∈[0,T ]

ηn(t) ≤ −b


= 0, (70)

lim
a→+∞

lim sup
n→∞

P


sup

t∈[0,T ]

δ(a)n (t) ≥ −b


= 0 for all b ∈ N. (71)

Proof of (70). Let in ∈ {1, . . . , n} be (for concreteness, the smallest) number such that Uin ,n =

maxi=1,...,n Ui,n . Then,

P


inf
t∈[0,T ]

ηn(t) ≤ −b


≤ P


inf

t∈[0,T ]

(Uin ,n + L in ,n(t)) ≤ −b


≤ P


Uin ,n ≤ −

b

2


+ P


inf

t∈[0,T ]

L(t) ≤ −
b

2


.

By (67), the first term on the right-hand side converges, as n → ∞, to exp(−eb/2), which, in
turn, converges to 0 as b → +∞. The second term on the right-hand side does not depend on n
and converges to 0 as b → +∞.
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Proof of (71). Let Sn = supt∈[0,T ] L1,n(t) and denote by µ the probability distribution of Sn
(which does not depend on n). Note that Sn and U1,n are independent. We have

P


sup

t∈[0,T ]

δ(a)n (t) ≥ −b


≤ nP


U1,n ≤ −a,U1,n + Sn ≥ −b


.

In order to prove (71) it suffices to show that for some ε > 0 and all b ∈ N,

lim
n→∞

nP

Sn > (1 + ε) log n − b


= 0, (72)

lim
a→+∞

lim sup
n→∞

n
 (1+ε) log n−b

a−b
P

U1,n > −b − s


µ(ds) = 0. (73)

Proof of (72). By a result of Willekens [31], the following estimate is valid for all u > 1:

P[Sn > u] = P


sup

t∈[0,T ]

L+(t) > u


≤ CP[L+(T ) > u − 1].

Using this estimate, the fact that EeL+(T )
= 1 and the Markov inequality, we immediately obtain

that (72) holds for all ε > 0 and b ∈ N.

Proof of (73). We have

P

U1,n > −b − s


= P


ξ(sn) > bn −

1
θ
(b + s)


= P [ξ(sn) > snβn(s)]

with

βn(s) =
bn

sn
−

b + s

θsn
.

Suppose that s stays in the range between a −b and (1+ ε) log n −b. By (34) and (32), for every
δ > 0 we have, for sufficiently large n,

βn(s) ≥ ψ ′(θ)−
(1 + ε)λ

θ
− δ =

ψ(θ)

θ
−
ελ

θ
− δ, βn(s) ≤ ψ ′(θ)+ δ.

Since β0 <
ψ(θ)
θ
< ψ ′(θ) < β∞ by convexity of ψ , we can take ε, δ > 0 so small and n so large

that βn(s) stays in a compact subinterval of (β0, β∞). Then, we can use the uniformity in (65).
By convexity of I , we have

I (βn(s))sn = I


I −1(λn)−

b + s

θsn


sn ≥ λnsn − I ′(I −1(λn))

b + s

θ

≥ log n − log(θ


2πψ ′′(θ)sn)− (b + s),

where we used that I ′(I −1(λn)) < I ′(I −1(λ)) = θ . Using the uniformity in (65) we obtain the
estimate

nP

U1,n > −b − s


≤

Cn
√

sn
e−I (βn(s))sn ≤ Ceb+s .
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It follows that

lim sup
n→∞

n
 (1+ε) log n−b

a−b
P

U1,n > −b − s


µ(ds)

≤


∞

a−b
Ceb+sµ(ds) = CebE[eSn1Sn>a−b].

Since the law of Sn does not depend on n and EeSn < ∞, we obtain that the right-hand side goes
to 0 as a → +∞. This completes the proof of (73).

Taken together, the results of Steps 3, 4, 5 imply that ηn converges to η weakly on D[0, T ];
see [5, Theorem 3.2 on p. 28].

STEP 6. Finally, we prove weak convergence on the two-sided space D[−T, T ]. Consider a
modified sequence s̃n = sn − T which also satisfies (32). The corresponding sequence b̃n is
given by

b̃n = I −1


log n − log(θ


2πψ ′′(θ)s̃n)

s̃n


s̃n = bn −

ψ(θ)

θ
T + o(1), (74)

where we used the Taylor expansion. By Steps 1–5 we have, weakly on D[0, 2T ],
max

i=1,...,n
ξi (s̃n + t̃)− b̃n : t̃ ∈ [0, 2T ]


w

−→
n→∞


1
θ
η(t̃)+

ψ(θ)

θ
t̃ : t̃ ∈ [0, 2T ]


.

Introducing the variable t = t̃ − T , we can rewrite this as follows: Weakly on D[−T, T ],
ηn(t)+ bn − b̃n : t ∈ [−T, T ]


w

−→
n→∞


1
θ
η(t + T )+

ψ(θ)

θ
(t + T ) : t ∈ [−T, T ]


.

Using (74) and the stationarity of η, we obtain the required weak convergence on D[−T, T ].

4.2. Proof of Theorem 1.20

Fix T > 0. Let first α ≠ 1. Let ξ1,α, ξ2,α, . . . be i.i.d. copies of the α-stable Lévy process ξα .
Consider the process

η̃n,α(t) := (log n)
1
α max

i=1,...,n
ξi,α(et/ log n)− bn,α. (75)

Let γn(t) be a function such that

eγn(t)/ log n
= 1 +

t

log n
, t ∈ R. (76)

Solving this equation w.r.t. γn(t) and using Taylor’s expansion we obtain that

lim
n→∞

(γn(t)− t) = 0 uniformly in t ∈ [−T, T ]. (77)

From (44) (recall also the notation introduced in (43), (75), (76)) we know that weakly on
D[−T, T ],

{η̃n,α(γn(t)) : t ∈ [−T, T ]}
w

−→
n→∞

{η̃α(t) : t ∈ [−T, T ]}. (78)



4298 S. Engelke, Z. Kabluchko / Stochastic Processes and their Applications 125 (2015) 4272–4299

Since by (77) the Skorokhod J1-distance between η̃n,α(γn(·)) and η̃n,α(·) goes to 0 as n → ∞,
we also have

{η̃n,α(t) : t ∈ [−T, T ]}
w

−→
n→∞

{η̃α(t) : t ∈ [−T, T ]} (79)

weakly on D[−T, T ]. Recalling that Zi,α(t) = e−t/αξi,α(et ) are i.i.d. α-stable
Ornstein–Uhlenbeck processes, consider

(log n)
1
α max

i=1,...,n
Zi,α


t

log n


− bn,α = e−

t
α log n η̃n,α(t)+ bn,α


e−

t
α log n − 1


. (80)

By (79), the first term on the right-hand side of (80) converges to η̃α(t) weakly on D[−T, T ],
whereas the second term is deterministic and converges, uniformly on [−T, T ], to −ψ(θα)t/θα
by (40) and (39). It follows that the right-hand side of (80) converges to η̃α(t) − ψ(θα)t/θα =

ηα(t)/θα weakly on D[−T, T ].
The proof in the case α = 1 is similar, but it is based on (45) and uses b̃n,1 instead of bn,α .
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