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Abstract

We study the typical behavior of Google’s PageRank algorithm on inhomogeneous random digraphs,
including directed versions of the Erdős–Rényi model, the Chung–Lu model, the Poissonian random
graph and the generalized random graph. Specifically, we show that the rank of a randomly chosen
vertex converges weakly to the attracting endogenous solution to the stochastic fixed-point equation

R D
=

N∑
i=1

CiRi + Q,

where (N ,Q, {Ci }i≥1) is a real-valued vector with N ∈ N, and the {Ri } are i.i.d. copies of R,
independent of (N ,Q, {Ci }i≥1);

D
= denotes equality in distribution. This result provides further evidence of the power-law behavior

of PageRank on graphs whose in-degree distribution follows a power law.
c⃝ 2019 Elsevier B.V. All rights reserved.
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1. Introduction

In the recent decades, a growing amount of data and computer power has motivated
the development of algorithms capable of efficiently organizing and analyzing large data
sets. In many cases, this data is highly interconnected, and can be represented in the form
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of complex networks. Some important examples include the Internet and the World Wide
Web, telecommunication networks, electrical power grids, protein–protein interactions, and the
various social networks that have become an integral part of our society. Interestingly, many
of these networks share some basic characteristics that we have learned to expect, such as
short typical distances between nodes, known as the small-world property, and highly variable
degrees whose distributions follow a power-law, known as the scale-free property. Of special
interest is the problem of identifying relevant or central nodes in these networks.

We focus on the analysis of a general form of Google’s PageRank algorithm [6], which
was originally created to rank webpages in the World Wide Web. PageRank is a popular
algorithm for ranking nodes in complex networks due to its ability to efficiently identify impor-
tant/relevant nodes. Its typical behavior on scale-free directed complex networks has also been
an important research topic, since abundant empirical evidence suggests that the distribution
of the ranks produced by PageRank follows a power-law distribution with the same tail index
as the in-degree distribution [2,23,27,30,34,35]. The first rigorous proof of why this power-
law behavior is observed was given in [8], where it was shown that the rank of a randomly
chosen node in a graph generated via the directed configuration model [9] has a limiting
distribution exhibiting power-law tails whenever the in-degree distribution is scale-free. Here,
we extend this analysis to a different class of random graph models that includes as special
cases directed versions of classical models such as the Erdős–Rényi graph [1,4,15,16,18,22],
the Chung–Lu model [11–14,28], the Poissonian random graph [17,20,29] and the generalized
random graph [7,17,20]. Since the scale-free property of the degrees in these models (i.e., their
power-law behavior) is due to node-specific attributes which can also be used to influence the
rankings produced by PageRank, we believe they provide a more natural way of modeling
and understanding the behavior of ranking algorithms on complex networks than the directed
configuration model.

As is the case for the directed configuration model, the power-law behavior of the ranks
produced by PageRank can be explained by arguing that the limiting distribution of the rank
of a randomly chosen node can be written in terms of the attracting endogenous solution to a
stochastic-fixed point equation (SFPE) of the form

R D
=

N∑
i=1

CiRi + Q,

where the {Ri } are i.i.d. copies of R, independent of the vector (N ,Q, {Ci }i≥1), with the
{Ci } i.i.d. and independent of (N ,Q). The random variable N corresponds to the in-degree
distribution of the network being analyzed, and the power law behavior of the rank distribution
follows from the known asymptotic equivalence

P(R > x) ∼ K P(N > x), x → ∞,

for some constant 0 < K < ∞, when N has a power-law distribution [23,34]. Theorem 3.3 in
this paper shows that the same type of representation holds for the family of inhomogeneous
random digraphs studied here, provided the in-degree and out-degree of the same vertex are
asymptotically independent. Therefore, the results in this paper provide further evidence of the
power-law behavior of PageRank in scale-free directed networks.

The remainder of the paper is organized as follows. Section 2 describes the family of
inhomogeneous random digraphs mentioned above, and includes some of its most basic
properties, in particular, its ability to generate inhomogeneous directed graphs with a wide
range of degree distributions, including scale-free ones. In Section 3 we state our main result
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on the distribution of the ranks produced by a generalized form of PageRank, including the
description of a three-step approach towards its proof, and in Section 4 we provide all the
proofs.

2. A family of inhomogeneous random digraphs

As mentioned in the introduction, the fact that many of the complex networks in the
real world exhibit highly variable degrees, often with tails that appear to follow a power
law, motivates our interest in random graph models capable of generating inhomogeneous
degrees. One model that produces graphs from any prescribed (graphical) degree sequence is
the configuration or pairing model [3,20], which assigns to each vertex in the graph a number
of half-edges equal to its target degree and then randomly pairs half-edges to connect vertices.
The resulting graph, when the pairing process does not create self-loops or multiple edges,
is known to have the distribution of a uniformly chosen graph among all graphs having the
prescribed degree sequence. If one chooses this degree sequence according to a power-law,
one immediately obtains a scale-free graph.

Alternatively, one could think of obtaining the scale-free property (power-law degree
distribution) as a consequence of how likely different nodes are to have an edge between them.
In the spirit of the classical Erdős–Rényi graph [1,4,15,16,18,22], we assume that whether there
is an edge between vertices i and j is determined by a coin-flip, independently of all other
edges. Unfortunately, this elegant and simple rule is known to produce highly homogeneous
degrees, Poisson distributed in the limit, making it inappropriate for modeling most real-
world networks. Several models capable of producing graphs with inhomogeneous degrees
while preserving the independence among edges have been suggested in the recent literature,
including: the Chung–Lu model [11–14,28], the Norros–Reittu model (or Poissonian random
graph) [17,20,29], and the generalized random graph [7,17,20], to name a few. In all of these
models, the inhomogeneity of the degrees is created by allowing the success probability of
each coin-flip to depend on the “attributes” of the two vertices being connected; the scale-free
property can then be obtained by choosing the attributes according to a power-law. We briefly
mention that it was shown in [17] that all these models also exhibit the small-world property,
i.e., small typical distances between vertices, hence, we expect the same to be true of their
directed counterparts.

We now give a precise description of the family of directed random graphs that we study in
this paper, which includes as special cases the directed versions of all the models mentioned
above. Throughout the paper we refer to a directed graph G(Vn, En) on the vertex set Vn =

{1, 2, . . . , n} simply as a random digraph if the event that edge (i, j) belongs to the set of
edges En is independent of all other edges.

In order to obtain inhomogeneous degree distributions, to each vertex i ∈ Vn we assign
a type Wi = (W −

i , W +

i ) ∈ R2
+

, which will be used to determine how likely vertex i is to
have inbound/outbound neighbors.1 The sequence of types {Wi : i ≥ 1} is assumed to have a
limiting behavior, in the sense that the empirical joint distribution satisfies:

Fn(u, v) =
1
n

n∑
i=1

1(W −

i ≤ u, W +

i ≤ v)
P
−→ F(u, v), as n → ∞, (1)

1 The − and + superscripts refer to the inbound or outbound nature of edges in the graph, and are not related
to the positive and negative parts of a real number.
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for all continuity points of some distribution F , where F is defined on the space S = R2
+

and
P

→

denotes convergence in probability. Let Fn = σ (Wi : 1 ≤ i ≤ n), and define Pn(·) = P(·|Fn)
and En[·] = E[·|Fn] to be the conditional probability and conditional expectation, respectively,
given the type sequence. Later in Section 3 we will enlarge the type vectors to include additional
vertex attributes.

Remark 2.1. In general, depending on the nature of the type sequence (e.g., a deterministic
sequence of numbers), it may be necessary to consider a double sequence {W(n)

i : i ≥ 1, n ≥ 1}

in order to satisfy (1). In practice, an easy way to avoid the need for considering double
sequences is to assume that the type sequence {Wi : i ≥ 1} consists of i.i.d. observations
from distribution F .

We now define our family of random digraphs using the conditional probability, given the
type sequence, that edge (i, j) ∈ En ,

p(n)
i j ≜ Pn ((i, j) ∈ En) = 1 ∧

W +

i W −

j

θn
(1 + ϕn(Wi , W j )), 1 ≤ i ̸= j ≤ n, (2)

where −1 < ϕn(Wi , W j ) a.s., and n−1∑n
i=1(W −

i + W +

i )
P

→ θ > 0 as n → ∞.
We point out that the term ϕn(Wi , W j ) = ϕ(n, Wi , W j , Wn) may depend on the entire

sequence Wn ≜ {Wi : 1 ≤ i ≤ n}, on the types of the vertices (i, j), or exclusively on n.
Here and in the sequel, x ∧ y = min{x, y} and x ∨ y = max{x, y}. In the context of [5],
definition (2) corresponds to the so-called rank-1 kernel, i.e., κ(Wi , W j ) = κ+(Wi )κ−(W j ),
with κ+(W) = W +/

√
θ and κ−(W) = W −/

√
θ .

Example 2.2. Directed versions of some known random graph models covered by (2):

• Directed Erdős–Rényi model:

p(n)
i j =

λ

2n
, 1 ≤ i ̸= j ≤ n,

for λ > 0, which corresponds to taking W −

i = W +

i = λ for all 1 ≤ i ≤ n. This graph
produces homogeneous graphs with Poisson(λ) degrees. Here, ϕn(Wi , W j ) ≡ 0 for all
1 ≤ i ̸= j ≤ n.

• Directed Chung–Lu model:

p(n)
i j =

W +

i W −

j

Ln
∧ 1, 1 ≤ i ̸= j ≤ n,

where Ln =
∑n

i=1(W −

i + W +

i ). This model is defined for any nonnegative sequences
{W −

i : i ≥ 1} and {W +

i : i ≥ 1} possessing some limiting distributions, e.g., power-
laws, usually with finite second moments. Here, ϕn(Wi , W j ) = θn/Ln − 1 for all
1 ≤ i ̸= j ≤ n.

• Directed generalized random graph:

p(n)
i j =

W +

i W −

j

Ln + W +

i W −

j
, 1 ≤ i ̸= j ≤ n,

where Ln is defined as above. Since the ratios in the definition of p(n)
i j are self-

normalized, it provides a more natural model for graphs with infinite variance degrees.
Here, ϕn(Wi , W j ) = θn/(Ln + W +

i W −

j ) − 1 for 1 ≤ i ̸= j ≤ n.
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• Directed Poissonian random graph or Norros–Reittu model:

p(n)
i j = 1 − e−W+

i W−

j /Ln , 1 ≤ i ̸= j ≤ n,

where Ln is defined as above. Here, ϕn(Wi , W j ) = (1 − e−W+

i W−

j /Ln )θn/(W +

i W −

j ) − 1
for 1 ≤ i ̸= j ≤ n.

From a modeling perspective, one can think of W +

i as an attribute of vertex i that determines
how likely it is for it to have outbound neighbors, and W −

i as an attribute that indicates its
popularity, or likelihood that other vertices may have edges pointing towards it. In other words,
W +

i controls the out-degree of vertex i and W −

i its in-degree. In applications, e.g., the World
Wide Web, these two attributes can be used to model how trustworthy a webpage is, how
valuable/relevant is its content, or how carefully it chooses the webpages it references.

2.1. Degree distributions

Our first result in the paper establishes that the family of random digraphs defined via (2)
produces inhomogeneous graphs whose degree distribution can be modeled through that of
the type distribution. The ArXiv version of this paper [26] includes a verification of all our
assumptions for each of the models in Example 2.2 when the type sequence {Wi : i ≥ 1}

consists of i.i.d. random vectors.

Assumption 2.3. Let G(Vn, En) be a random digraph having type sequence {Wi : i ≥ 1} and
edge probabilities given by (2). Suppose further that:

(a) The type sequence {Wi : i ≥ 1} satisfies (1).
(b) The following limits hold in probability:

E[W −] = lim
n→∞

1
n

n∑
i=1

W −

i and E[W +] = lim
n→∞

1
n

n∑
i=1

W +

i ,

with θ = E[W −
+ W +] < ∞.

(c) En ≜ 1
n

∑n
i=1
∑

1≤ j≤n, j ̸=i |p(n)
i j − (r (n)

i j ∧ 1)|
P
−→ 0 as n → ∞, where r (n)

i j = W +

i W −

j /(θn).

(d) 1
n

∑n
i=1
∑

1≤ j≤n, j ̸=i
∑

1≤k≤n,k ̸=i p(n)
j i p(n)

ik
P
−→ E[W −W +]E[W +]E[W −]/θ2 as n → ∞,

with E[W −W +] < ∞.

We point out that Assumption 2.3 implies that |ϕn(Wi , W j )|
P
−→ 0 as n → ∞ for any

i, j ≥ 1.
We now define the in-degree and out-degree of vertex i ∈ Vn according to

D−

i =

∑
j∈Vn , j ̸=i

X j i and D+

i =

∑
j∈Vn , j ̸=i

X i j ,

respectively, where X i j = 1((i, j) ∈ En) is the indicator function of whether edge (i, j) is
present in the graph. Note that from the independent edges assumption, we have that the
{X i j : 1 ≤ i ̸= j ≤ n} form a sequence of independent Bernoulli random variables, with
Pn(X i j = 1) = p(n)

i j .
The following theorem provides the distribution of the in-degree and out-degree of a

randomly chosen vertex, i.e., a typical vertex, in a graph generated via our model. Its proof is
given in Section 4.2.
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Theorem 2.4. Under Assumption 2.3(a)–(c), the degrees (D−

ξ , D+

ξ ) of a randomly chosen
vertex in G(Vn, En) satisfy, as n → ∞,

sup
A⊆N2

⏐⏐Pn
(
(D−

ξ , D+

ξ ) ∈ A
)
− P((Z−, Z+) ∈ A)

⏐⏐ P
−→ 0,

and

En[D±

ξ ]
P

−→ E[Z±] =
E[W −]E[W +]

θ
,

where Z− and Z+ are mixed Poisson random variables with mixing parameters, E[W+]
θ

W −

and E[W−]
θ

W +, respectively, with Z− and Z+ conditionally independent given (W −, W +).
Moreover, if Assumption 2.3(a)–(d) holds then, as n → ∞,

En[D−

ξ D+

ξ ]
P

−→ E[Z− Z+] =
E[W −W +]E[W −]E[W +]

θ2 .

Remark 2.5. To relate this result with scale-free graphs where at least one of the degree
distributions, usually the in-degree, follows a power-law, we point out that when W − ( W +)
has a regularly varying distribution with index −α < −1, i.e., P(W − > x) = x−α L(x) for
some slowly varying function L , then, by Proposition 8.4 in [19], we have that Z− (Z+) is also
regularly varying with the same index. Furthermore, it can be shown that if (W −, W +) is jointly
regularly varying (possibly in the non-standard sense defined in [32]), then so is (Z−, Z+),
however, for our analysis of PageRank we will impose that W − and W + be independent, so
only the marginal distributions of Z− and Z+ are relevant to our main result.

3. Generalized PageRank

We now move on to the analysis of the typical behavior of the PageRank algorithm on
the family of inhomogeneous random digraphs described in Section 2. Our main result shows
that the distribution of the ranks produced by the algorithm converges to that of the attracting
endogenous solution, R, to a linear SFPE. Moreover, since the behavior of R is known to
follow a power-law when the limiting in-degree distribution does, our theorem provides further
evidence of the universality of the so-called “power-law hypothesis” on scale-free complex
networks [8]. For completeness, we give below a brief description of the algorithm, which is
well-defined for any directed graph G(Vn, En) on the vertex set Vn = {1, 2, . . . , n} with edges
in the set En .

Let D−

i and D+

i denote the in-degree and out-degree, respectively, of vertex i in G(Vn, En).
We refer to the sequence {(D−

i , D+

i ) : 1 ≤ i ≤ n} as the bi-degree sequence of the graph
G(Vn, En). The generalized PageRank vector r = (r1, . . . , rn) is the unique solution to the
following system of equations:

ri =

∑
( j,i)∈En

ζ j

D+

j
· r j + qi , i = 1, . . . , n, (3)

where q = (q1, . . . , qn) is known as the personalization or teleportation vector (usually,
a probability vector), and the {ζi } are referred to as the damping factors. In the original
formulation of PageRank [6], the personalization values and the damping factors are given,
respectively, by qi = (1−c)/n and ζi = c for all 1 ≤ i ≤ n; the constant c ∈ (0, 1) is known as
the “damping factor”. The formulation given in [8] is more general, and it allows any choice for
both the personalization values and the damping factors, provided that max1≤i≤n |ζi | ≤ c < 1.
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We refer the reader to §1.1 in [8] for further details on the history of PageRank, its applications,
and a matrix representation of the solution r to (3).

In order to analyze r on directed complex networks, we first eliminate the dependence on the
size of the graph by computing the scale free ranks (R1, . . . , Rn) = R ≜ nr, which corresponds
to solving:

Ri =

∑
( j,i)∈En

C j R j + Qi , i = 1, . . . , n, (4)

where Qi = qi n and C j = ζ j/D+

j . We refer to the {C j } as the weights.
On scale-free graphs, i.e., where the in-degree sequence (or both the in-degree and out-

degree sequences) follow a power law distribution, the power law hypothesis states that the
distribution of the ranks {Ri : 1 ≤ i ≤ n} will also have a power-law with the same index
as that of the in-degrees. The first approach towards a proof of this phenomenon was given
in [23,27,35], where the tree heuristic commonly used in the analysis of locally tree-like random
graphs yields a stochastic fixed-point equation of the form

R D
=

N∑
j=1

C jR j + Q, (5)

where N is a random variable distributed according to the limiting in-degree distribution of
the graph, Q has the limiting distribution of the personalization values, the weights {C j } are
i.i.d. and independent of (N ,Q), and are size-biased versions of the weights {C j } in (4), and
the {Ri } are i.i.d. copies of R. The connection between (4) and (5) can be understood by
interpreting R as the rank of a randomly chosen vertex, with (N ,Q) denoting its in-degree
and personalization value, respectively, and then arguing that, provided the neighborhood of
the chosen vertex looks locally like a tree, the ranks of its inbound neighbors should have the
same distribution as R. That the weights {C j } in (5) are different from the {C j } appearing in
(4), and are instead size-biased versions of them, follows from the observation that vertices
with high out-degrees are more likely to be the neighbors of the randomly chosen vertex.

The heuristic described above was first made rigorous in [8], where it was shown that on
graphs generated via the directed configuration model [9], the rank of a randomly chosen vertex
converges in distribution, as the size of the graph grows to infinity, to a random variable

R∗
=

N0∑
i=1

CiRi + Q0,

where the {Ri } are i.i.d. copies of the attracting endogenous solution to (5), and are independent
of (N0,Q0, {Ci }i≥1). The vector (N0,Q0) may have a different distribution from that of (N ,Q)
in (5) depending on how we choose the first vertex (it has the same distribution as (N ,Q)
when the first vertex is chosen uniformly at random and the in-degree and out-degree are
asymptotically independent, which is consistent with the approach we take here). That the
solution R to (5) has a power-law distribution when N does has been the topic of a number
of papers [23–25,34], and together with the results in [8] (see Theorems 6.4 and 6.6) provides
the first proof of the power-law hypothesis on a complex network. We now show that a similar
result also holds for the family of inhomogeneous random digraphs considered here.

3.1. PageRank on inhomogeneous random digraphs

As with the analysis done in [8] on the directed configuration model, the key idea is to
couple the rank of a randomly chosen vertex with the rank of the root node of a tree, in
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this case, a multi-type branching process. In order to incorporate vertex information used
by the algorithm, as described by (3), we expand the type of vertex i to be of the form
Wi = (W −

i , W +

i , Qi , ζi ) ∈ R2
+

× R2 ≜ S, where the sequence {Wi : i ≥ 1} satisfies

Hn(u, v, q, t) =
1
n

n∑
i=1

1(W −

i ≤ u, W +

i ≤ v, Qi ≤ q, ζi ≤ t)
P

−→ H (u, v, q, t), (6)

as n → ∞, for all continuity points of some distribution H . With some abuse of notation,
we continue using Fn = σ (Wi : 1 ≤ i ≤ n) to denote the sigma-algebra generated by
{Wi : 1 ≤ i ≤ n}, along with the corresponding conditional probability and expectation
Pn(·) = P(·|Fn) and En[·] = E[·|Fn].

We now impose some assumptions on the extended type sequence {Wi : i ≥ 1}.

Assumption 3.1. Let G(Vn, En) be a random digraph having type sequence {Wi : i ≥ 1} and
edge probabilities given by (2). Suppose further that:

(a) The extended type sequence {Wi : i ≥ 1} satisfies (6).
(b) The following limits hold in probability:

E[W −] = lim
n→∞

1
n

n∑
i=1

W −

i , E[W +] = lim
n→∞

1
n

n∑
i=1

W +

i ,

E[|Q|] = lim
n→∞

1
n

n∑
i=1

|Qi |, and E[|ζ |] = lim
n→∞

1
n

n∑
i=1

|ζi |,

with θ = E[W −
+ W +] < ∞ and E[|Q| + |ζ |] < ∞.

(c) En =
1
n

∑n
i=1
∑

1≤ j≤n, j ̸=i |p(n)
i j − (r (n)

i j ∧ 1)|
P
−→ 0 as n → ∞, where r (n)

i j = W +

i W −

j /(θn).
(d) |ζi | ≤ c < 1 for all i = 1, . . . , n.
(e) The following limits hold in probability:

E[W +W −] = lim
n→∞

1
n

∑
i=1

W −

i W +

i and E[W +
|Q|] = lim

n→∞

1
n

∑
i=1

W +

i |Qi |,

with E[W +W −
+ W +

|Q|] < ∞.
(f) The vectors (W −, Q) and (W +, ζ ) are independent.

Remark 3.2. Note that Assumption 3.1(a)–(c) implies Assumption 2.3(a)–(c).

Our main result on the distribution of the rank of a randomly chosen vertex in the
inhomogeneous random digraph from Section 2 is given below. To avoid repetition, we refer the
reader to [8] or [25] for a detailed description of the attracting endogenous solution R to (5),
as well as its asymptotic behavior in terms of that of N ,Q, C; ⇒ denotes weak convergence.

Theorem 3.3. Suppose that Assumption 3.1 holds, and let Rξ denote the rank of a uniformly
chosen vertex in the inhomogeneous random digraph G(Vn, En). Then, as n → ∞,

Rξ ⇒ R, (7)

where R is the attracting endogenous solution to (5). The distributions of all the random
variables involved in (5) are given below:

P(N = m,Q ∈ dq) = E

[
1(Q ∈ dq) ·

e−E[W+]W−/θ (E[W +]W −/θ )m

m!

]
,
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m = 0, 1, . . . ,

P(C1 ∈ dt) =
E[1(ζ/(Z+

+ 1) ∈ dt)W +]
E[W +]

,

and Z+ is a mixed Poisson random variable with parameter E[W −]W +/θ .

The proof of Theorem 3.3 is based on a coupling argument between a graph exploration
process and a multi-type branching process, which is similar to the techniques used in [8] for
the analysis of generalized PageRank on the directed configuration model. Together with the
results in [8] and Remark 2.5, Theorem 3.3 provides further evidence of the “universality” of
the power-law hypothesis on scale-free directed complex networks. The ArXiv version of this
paper [26] contains some numerical examples illustrating the convergence of Rξ ⇒ R for all
the models in Example 2.2.

In the following section we explain the main steps involved in the proof of Theorem 3.3,
postponing all the technical proofs to Section 4.

3.2. Deriving the SFPE approximation

To make the proof of Theorem 3.3 easier to follow, we have divided it into three main
steps: (1) approximating the rank using the local neighborhood, (2) coupling with a branching
process, and (3) proving convergence to the attracting endogenous solution.

3.2.1. Approximating the rank using the local neighborhood
The first step towards proving Theorem 3.3 consists in showing that it is enough to

consider only the local neighborhood of each vertex in the graph to compute its rank. The
first observation we make is that the system of linear equations given by (4) can be written in
matrix notation as

R = RM + Q,

where R = (R1, . . . , Rn), Q = (Q1, . . . , Qn) and the matrix M has (i, j)th component

Mi j = si j Ci ,

where si j is the number of edges from i to j . Recall that C j = ζ j/D+

j , where D+

j is the
out-degree of vertex j and |ζ j | ≤ c < 1 for all j ≥ 1. Since the graphs we consider here are
simple, we have si j ∈ {0, 1}, however, the definition of matrix M also applies to multigraphs.
It follows that the rank vector R can be written as

R = R(n,∞)
=

∞∑
i=0

QMi .

Next, define (R(n,k)
1 , . . . , R(n,k)

n ) = R(n,k)
=
∑k

i=0 QMi , and note that the i.i.d. nature of the type
sequence implies that all the coordinates of the vector R(n,∞)

−R(n,k) are identically distributed
(they are not identically distributed given Fn). It follows from the exact arguments used in
Section 4.2 in [8] that for a randomly chosen vertex ξ ,

Pn

(⏐⏐⏐R(n,∞)
ξ − R(n,k)

ξ

⏐⏐⏐ > x−1
)

≤
xck

1 − c
·

1
n

n∑
i=1

|Qi | (8)

for any x ≥ 1.
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Note that the calculation of each of the R(n,k)
i , i = 1, . . . , n, requires only information about

the vertices in the graph having a directed path to vertex i of length at most k, i.e., it can be
computed using only the local (inbound) neighborhood of each vertex.

3.2.2. Coupling with a branching process
Now that we have reduced the problem of analyzing a randomly chosen component of the

vector R(n,∞) to that of analyzing the corresponding component of the vector R(n,k), the next
step is to couple R(n,k)

ξ with the rank of the root node of a branching process. For the directed
configuration model analyzed in [8], the coupling was done with a marked Galton–Watson
process, referred to as a “thorny branching process” in [8], that was then used to define a
weighted branching process [31]. The same idea works also for the inhomogeneous random
digraphs considered here, although the coupling is more easily understood if instead of using
from the beginning a marked Galton–Watson process we first consider a marked multi-type
branching process. The marks include the number of outbound neighbors, the damping factor
and the personalization value of each vertex discovered during the graph exploration process.

As it is usual when analyzing trees, we index the nodes with a label that allows us to
trace their entire path from the root. More precisely, denote the root node ∅, and label its
offspring as {1, 2, . . . , N̂∅}, where N̂∅ is the number of offspring that ∅ has. Set Â0 = {∅} and
Â1 = {1, 2, . . . , N̂∅} to be the sets of individuals in generation zero and generation one of the
tree, respectively. In general, we use Âk to denote the set of individuals in the kth generation of
the tree, and a node/individual in Âk has a label of the form i = (i1, . . . , ik) ∈ Nk

+
. Moreover,

the set Âk+1 can be constructed recursively according to

Âk+1 = {(i, j) : i ∈ Âk, 1 ≤ j ≤ N̂i},

where N̂i is the number of offspring of node i, and we use (i, j) = (i1, . . . , ik, j) to denote
the index concatenation operation; if i = ∅, then (i, j) = j . We use throughout the paper
U =

⋃
∞

k=0 Nk
+

, with the convention that N0
+

= {∅}.
To describe the multi-type branching process used in the coupling, we assume that each node

in the tree has a type from the set Wn = {Wi : 1 ≤ i ≤ n}, where Wi = (W −

i , W +

i , Qi , ζi ).
Individuals in the tree have a random number of offspring, potentially of various types,
independently of all other nodes. More precisely, if we let Z j i denote the number of offspring
of type W j that an individual of type Wi has, we have that for (m1, . . . , mn) ∈ Nn ,

Pn (Z1i = m1, . . . , Zni = mn) =

n∏
j=1

e−q(n)
j i (q (n)

j i )m j

m j !
, (9)

where

q (n)
j i =

(W +

j ∧ an)(W −

i ∧ bn)

θn
, 1 ≤ i, j ≤ n,

and an, bn ≥ 1 are sequences to be determined later. To simplify the notation, we write
W̄ +

i = W +

i ∧ an and W̄ −

i = W −

i ∧ bn . Note that the random variables {Z j i : 1 ≤ j ≤ n} are
conditionally independent (given Fn) Poisson random variables with the mean of Z j i equal to
q (n)

j i . To avoid the label of a node from giving us any information about its type, we assume
that all N̂i offspring of node i are permuted uniformly at random before being assigned a label
of the form (i, j), j = 1, . . . , N̂i.
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To make this a marked multi-type branching process, we give to each node i in the tree a
mark D̂i, such that if i has type Ws , then

Pn

(
D̂i = m

⏐⏐⏐ i has type Ws

)
=

e−W̄+
s Λ−

n /(θn)(W̄ +
s Λ−

n /(θn))m

m!
, m = 0, 1, 2, . . . ,

(10)

independently of all other nodes. Here and in the sequel, Λ−
n =

∑n
i=1 W̄ −

i and Λ+
n =

∑n
i=1 W̄ +

i .
We refer to this marked multi-type branching process as a Poisson branching tree (PBT).

As mentioned earlier, it turns out that the PBT we just described can also be thought of as a
marked Galton–Watson process. To see this, note that the properties of the Poisson distribution
imply that the type of a node i in the tree is independent of the type of its parent, as the
following result shows (its proof is given in Section 4.1).

Lemma 3.4. For any node i in the PBT and any 1 ≤ r, s ≤ n, we have

Pn(i has type Ws |parent has type Wr ) =
W̄ +

s

Λ+
n

.

This means that we could construct the PBT by assigning to each node i in the tree a
number of offspring N̂i and then sampling their types according to Lemma 3.4, independently
of everything else. The marks D̂(i, j) of each of these offspring would then be sampled according
to (10). Since the type of the root node is chosen uniformly at random from the set Wn = {Wi :

1 ≤ i ≤ n}, the distribution of N̂∅ may be different from that of all other nodes. This effect
will disappear in the limit due to Assumption 3.1(f).

We now explain how to construct a coupling of the inhomogeneous random digraph
G(Vn, En) and a PBT. We start by choosing uniformly at random a vertex in the graph, call it ξ ,
and then exploring its in-component using a breadth-first exploration process. The coupled PBT
is constructed to be in perfect agreement with the graph exploration process for a number of
generations large enough to ensure that the rank of the randomly chosen node can be accurately
approximated by its rank computed up to that point. The exploration process will have even
and odd steps: in Step 2k − 1 we will discover the set of vertices that have a directed path of
length k to the randomly chosen vertex, in Step 2k we will uncover all the outbound neighbors
of the vertices discovered in Step 2k −1. To keep track of this process, each vertex in the graph
exploration will be assigned one of three labels: {active, inactive, dead}; vertices that have not
been uncovered have no label. Active vertices will be those that are currently most distant
from the randomly chosen vertex, and all we know about them is that they have an outbound
edge connecting them to the in-component of the first vertex. The vertices that have already
been added to the exploration process, and whose inbound neighbors have been discovered,
will be labeled dead. Vertices that have been discovered as additional outbound neighbors of
active vertices are labeled inactive, and all we know about them is that they have an inbound
edge connecting them to a vertex in the in-component we are exploring. Fig. 1 illustrates this
process.

For the coupled PBT we will need to keep track of the active vertices at the end of Step 2k−1
of the graph exploration process, which will constitute the kth generation of nodes/individuals
in the tree. We will also keep track of the inactive vertices by defining a similar set composed
of all the types sampled during the creation of the marks {D̂i} (note that in the graph each type
appears only once, since each type can be identified with one of the n vertices, while on the
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Fig. 1. Graph exploration process after completing Step 4.

tree types can appear repeatedly). The notation below will help us with the construction of the
coupling.

For k = 1, 2, . . . , let

Ak = set of “active” vertices at the end of Step 2k − 1.

Tk =

k−1⋃
m=0

Am = set of “dead” vertices after Step 2k − 1; T0 = ∅.

Ik = set of “inactive” vertices after Step 2k.

Âk = set of nodes in the PBT at distance k from the root.

T̂k =

k−1⋃
m=0

Âm = set of nodes in the PBT at distance at most k − 1 from the root;

T̂0 = ∅.

Îk = set of “inactive” types in the PBT belonging to nodes at distance at most k from

the root.

Note: The sets Tk and T̂k grow in odd steps of the exploration process, while the sets Ik

and Îk do so in even steps.
We now describe the coupling, for which we will require a sequence {Ui j : 1 ≤ i, j ≤ n} of

i.i.d. Uniform(0, 1) random variables that will be the same for the graph exploration process
and the construction of the PBT. To make the role that the choice of the first node plays in
the coupling explicit, we state our coupling results in terms of the first node we choose. The
coupling has odd steps and even steps, during odd steps we discover new nodes in the inbound
component of the first node, in even steps we explore the outbound neighbors (which will
become the marks) of the nodes discovered in the previous step. Throughout the paper we will
use g−1(u) = inf{x ∈ R : g(x) ≥ u} to denote the generalized inverse of function g and |A| to
denote the cardinality of set A.
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Construction of the graph:
Step 0: Choose the vertex whose neighborhood will be explored, say vertex i . Set A0 = {i}

and label vertex i as “active”. To reveal all its outbound edges realize X i t = 1(Ui t > 1 − p(n)
i t ),

t = 1, 2, . . . , n, t ̸= i . If X i t = 1, label node t as “inactive”, so I0 = {t ∈ {1, 2, . . . , n} \ {i} :

X i t = 1}.
In Step 2k − 1, k ≥ 1, we explore the inbound neighbors of nodes in the set Ak−1. For each

i ∈ Ak−1:

(1) For all j = 1, 2, . . . , n, j ̸= i and j /∈ Tk−1:

i. Realize X j i = 1(U j i > 1 − p(n)
j i ).

ii. If X j i = 1 and node j was previously labeled “inactive”, relabel it as “active”.

(2) Label i as “dead”.

In Step 2k, k ≥ 1, we explore the outbound neighbors of all the nodes in the set Ak . For
each j ∈ Ak and all t = 1, 2, . . . , n, t ̸= j and t /∈ Tk :

(1) Realize X j t = 1(U j t > 1 − p(n)
j t ).

(2) If X j t = 1, label node t as “inactive”.

Step 2k ends when we have uncovered all the nodes in Ak as well as their outbound neighbors.

Coupled construction of the PBT:
To each node i in the tree we will also determine its mark D̂i (the type of vertex i includes

the values of Qi and ζ i so we can ignore those in the coupling). This value D̂i will be created
independently for each node in the PBT according to (10), but will be coupled with the creation
of “inactive” vertices the first time that a type appears. As long as the coupling holds, we choose
nodes in the tree in the same order as in the graph, thus D̂i represents the out-degree of the
corresponding node in the graph.

Step 0: Set Â0 = {∅} and set the root of the PBT, ∅, to have type Wi , where i is the vertex
chosen in Step 0 of the graph construction. Define G i j (x) =

∑⌊x⌋

t=0 e−q(n)
i j (q (n)

i j )t/t ! to be the
distribution of Z i j , where Z i j has the interpretation of being the number of offspring of type
Wi that a node of type W j has. Next, realize all the Z i t = G−1

i t (Ui t ) for t = 1, 2, . . . , n, t ̸= i ,
and Z∗

i i ∼ Poisson(q (n)
i i ), independent of Ui t and of any other Z i t , t ̸= i . Set

D̂∅ = Z∗

i i +

∑
1≤t≤n, t ̸=i

Z i t

and for each Z i t ≥ 1 (or Z∗

i i ≥ 1) add type Wt (or Wi ) to Î0.
In Step 2k − 1, k ≥ 1, we identify the individuals, and their types, in the kth generation of

the PBT. For each node i ∈ Âk−1:

(a) If node i is the first node in the PBT to have type Wi proceed as follows:

(1) For j = 1, 2, . . . , n, j ̸= i :

i. Realize Z j i = G−1
j i (U j i ).

ii. If Z j i ≥ 1, add Z j i nodes of type W j to the active set.

(2) Realize Z∗

i i ∼Poisson(q (n)
i i ), independently of anything else, and assign a number Z∗

i i
of type Wi offspring.
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(b) If node i is not the first node in the PBT to have type Wi , sample a vector (V1, V2, . . . , Vn)
of i.i.d. Uniform(0, 1) random variables, independent of the sequence {Ui j : 1 ≤ i, j ≤ n},
and of any other Vi ’s sampled before, and assign to node i a number G−1

j i (V j ) of type
W j offspring, for j = 1, 2, . . . , n.

In Step 2k, k ≥ 1, we sample the marks of all the nodes in Âk . For each node i ∈ Âk :

(a) If node i is the first node in the PBT to have type W j proceed as follows:

i. Realize all the Z j t = G−1
j t (U j t ) for t = 1, 2, . . . , n, and t /∈ Tk .

ii. Sample Z∗

j t ∼Poisson(q (n)
j t ) for t already “dead”, independently of everything else.

iii. Set

D̂i =

∑
1≤t≤n, t ̸= j,i,t /∈Tk

Z j t + Z∗

j j + Z∗

j i +

∑
t∈Tk

Z∗

j t ,

and add all the corresponding types (i.e., add type Wt if Z j t ≥ 1 or Z∗

j t ≥ 1) to the
“inactive” set.

(b) If node i is not the first node in the PBT to have type W j , sample a vector (V1, V2, . . . , Vn)
of i.i.d. Uniform(0,1) random variables, independent of the sequence {Ui j : 1 ≤ i, j ≤ n},
and of any other Vi ’s sampled before, and assign to node i a number G−1

j i (V j ) of type
W j offspring, for j = 1, 2, . . . , n. Set D̂i =

∑n
t=1 Z∗

j t and add the corresponding types
to the “inactive” set.

Definition 3.5. We say that the coupling of the graph and the PBT holds up to Step 2k if
the graph exploration process up to a distance k from the first (root) vertex is identical to that
of the PBT, i.e., |Am | = | Âm | and Im = Îm for all 0 ≤ m ≤ k. Let τ be the step in the graph
exploration process during which the coupling breaks.

Before stating the main result obtained from this step, we need to define:

∆n = d1(Fn, F), (11)

where d1(F, G) is the Kantorovich–Rubinstein distance (or Wasserstein distance of order one)
between distributions F and G. In particular,

d1(F, G) = inf
X∼F,Y∼G

E[∥X − Y∥1],

where the infimum is taken over all possible couplings of X and Y, where X has distribution
F and Y has distribution G. Since convergence in d1 is equivalent to weak convergence and
convergence of the first absolute moments (see Theorem 6.9 and Definition 6.8(i) in [33]),
Assumption 2.3(a)–(b) implies that

∆n
P
−→ 0 as n → ∞.

Note that ∆n is measuring the distance between the empirical distribution of the extended types
and its limiting distribution, while En is measuring the error between the edge probabilities in
the graph and their asymptotic equivalents.

Let Pn,i (·) = Pn(·|A0 = {i}) or Pn,i (·) = Pn(·|∅ has type Wi ), depending on whether the
event refers to the graph or to the PBT, respectively. The main result obtained from this step
is given below, and its proof is given in Section 4.1. The theorem provides an explicit upper
bound for the probability that the coupling breaks before step 2k; we will later choose the
sequences an, bn, cn, sn in such a way that the bound converges to zero as n → ∞.
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Theorem 3.6. Fix an, bn, cn, sn ≥ 1 such that sn ≤ an ∧ bn . Then, for any k ∈ N+,

Pn,i (τ ≤ 2k) ≤ 1(W +

i > an) + P+

n (i) + (Hn/θ )W̄ +

i (∆n + g−(bn) + anbn/n)
+ Hnksn (g+(cn) + cn (En + ∆n + g+(an) + g−(bn) + anbn/n))

+ Pn,i (|T̂k | ∨ | Îk | > sn),

where P+
n (i) =

∑
1≤ j≤n, j ̸=i |p(n)

i j − (r (n)
i j ∧ 1)|, g−(x) = E[(W −

−x)+], g+(x) = E[(W +
−x)+],

and

Hn =
2n
Λ+

n
(1 + ∆n/θ )2(3 + a−1

n + b−1
n + c−1

n ).

3.2.3. Convergence to the attracting endogenous solution
In view of Theorem 3.6, computing R(n,k)

ξ requires us to analyze only the first k generations
of the PBT, provided τ > 2k. In order to do so we first explain how to use the marks {D̂i} to
compute the generalized PageRank of the root node of the PBT. For each node i in the PBT
having type Ws , we define its weight and personalization value according to

Ĉi =
ζs

D̂i + 1
and Q̂i = Qs .

Using the tree-indexing notation introduced in Section 3.2.2, we iteratively compute the rank
of the root node of the PBT, denoted R̂(n,k)

∅
, according to

R̂(n,k)
i =

N̂i∑
j=1

Ĉ(i, j) R̂(n,k−1)
(i, j) + Q̂i, k ≥ 1, R̂(n,0)

j = 0, (12)

where N̂i is the total number of offspring that node i has. In view of Lemma 3.4 and the
observation that the type of the root node will be chosen uniformly at random, we have that
the distribution of (N̂∅, Q̂∅) is given by

Pn

(
N̂∅ = m, Q̂∅ = q

)
=

n∑
s=1

1(Qs = q) ·
e−

Λ+
n

θn W̄−
s (Λ+

n W̄ −
s /(θn))m

m!
·

1
n
, (13)

for m ∈ N and q ∈ R. Moreover, for any node i ̸= ∅, we have that

Pn

(
N̂i = m, Q̂i = q, Ĉi = t

)
=

n∑
s=1

Pn

(
N̂i = m, Q̂i = q, Ĉi = t

⏐⏐⏐ i has type Ws

) W̄ +
s

Λ+
n

=

n∑
s=1

1(Qs = q) ·
e−

Λ+
n

θn W̄−
s (Λ+

n W̄ −
s /(θn))m

m!
· Pn(ζs/(D̂i + 1) = t |i has type Ws) ·

W̄ +
s

Λ+
n

=

n∑
s=1

1(Qs = q, ζs/t − 1 ∈ N) · p(m;Λ+

n W̄ −

s /(θn)) · p(ζs/t − 1;Λ−

n W̄ +

s /(θn)) ·
W̄ +

s

Λ+
n

,

(14)

for m ∈ N and t, q ∈ R, where p(m; λ) = e−λλm/m!. Note that the independence of the edges
implies that the sequence {(N̂i, Q̂i, Ĉi) : i ∈ U} consists of conditionally independent vectors
given Fn .
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Now that we have explained how to compute generalized PageRank on the PBT, we
obtain, as a consequence of Theorem 3.6, the following result for R(n,k)

ξ ; its proof is given
in Section 4.2.

Theorem 3.7. Let ξ be the index of a uniformly chosen vertex in G(Vn, En). Under
Assumption 3.1(a)–(c) we have that for any fixed k ∈ N+,

Pn

(
R(n,k)

ξ ̸= R̂(n,k)
∅

)
≤

1
n

n∑
i=1

Pn,i (τ ≤ 2k)
P
−→ 0,

as n → ∞.

To make the connection with the SFPE, note that since we assume that (W −, Q) is indepen-
dent of (W +, ζ ), the vectors {(N̂i, Q̂i, {Ĉ(i, j)} j≥1) : i ∈ U} will be asymptotically independent,
and therefore can be used to define a weighted branching process (WBP) with generic branching
vector (N ,Q, {C j } j≥1), where the latter is the distributional limit of (N̂i, Q̂i, {Ĉ(i, j)} j≥1), i ̸= ∅.
Moreover, the {C j } j≥1 will be i.i.d. and independent of (N ,Q). We refer the reader to [8,23]
for more details on the description and basic properties of WBPs of this form. The proof of
this convergence in the Kantorovich–Rubinstein metric (see, e.g., Chapter 6 in [33]) is given in
Section 4.4. Once this convergence is established, the convergence of R̂(n,k)

∅
will follow from

Theorem 2 in [10]. The precise statement of this last step in the proof of Theorem 3.3 is given
below.

Theorem 3.8. Under Assumption 3.1(a)–(b) & (d)–(f), we have that for any fixed k ∈ N+ the
rank of the root node in the PBT computed up to generation k satisfies

R̂(n,k)
∅

⇒ R(k) and En

[
|R̂(n,k)

∅
|

]
P

−→ E[|R(k)
|], n → ∞,

where R(k)
→ R a.s. as k → ∞, with R defined as in Theorem 3.3.

The proof of Theorem 3.3 is obtained by combining (8), Theorems 3.7, and 3.8. All the
proofs are given in Section 4.

4. Proofs

This section includes the proofs of Theorem 2.4, Lemma 3.4, Theorem 3.6, Theorem 3.7,
Theorem 3.8, and ends with the proof of Theorem 3.3. Since some of the proofs are rather
technical and require some preliminary results, we have organized them in subsections. We
start with the proof of Theorem 3.6 followed by that of Theorem 3.7, since their proofs can
be used to give a short proof of Theorem 2.4.

4.1. Proofs of Lemma 3.4 and Theorem 3.6

The proof of Theorem 3.6 is rather long, so we split some of the technical steps into three
preliminary results to ease its reading. We point out that all of the results in this section are
proven conditionally on the type sequence Wn = {Wi : 1 ≤ i ≤ n}, and therefore, all the
expectations that appear throughout the section are finite. In some of our results related to
the coupling, we use the notation Pn,i (·) = Pn(·|A0 = {i}) or Pn,i (·) = Pn(·|∅ has type Wi ),
depending on whether the event occurs on the graph or on the PBT, respectively. Similarly,
we use En,i [·] = En[·|A0 = {i}] or En,i [·] = En[·|∅ has type Wi ] to denote the corresponding
conditional expectations.
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Proof of Lemma 3.4. We start by noting that

Pn(i has type Ws |parent has type Wr )

= En

[
Zsr

Z1r + · · · + Znr

⏐⏐⏐⏐ Z1r + · · · + Znr ≥ 1
]

,

where the {Z jr : 1 ≤ j ≤ n} are independent Poisson random variables with En[Z jr ] = q (n)
jr .

Since for two independent Poisson random variables X and Y with means µ and λ, respectively,
we have that X |X + Y = n has a Binomial(n, µ/(µ + λ)) distribution, then

E
[

X
X + Y

⏐⏐⏐⏐ X + Y ≥ 1
]

=
1

P(X + Y ≥ 1)
E
[

X
X + Y

· 1(X + Y ≥ 1)
]

=
1

P(X + Y ≥ 1)

∞∑
n=1

1
n

E[X |X + Y = n] ·
e−µ−λ(µ + λ)n

n!

=
µ

(µ + λ)P(X + Y ≥ 1)

∞∑
n=1

e−µ−λ(µ + λ)n

n!
=

µ

µ + λ
.

It follows that

Pn(i has type Ws |parent has type Wr ) =
q (n)

sr

q (n)
1r + · · · + q (n)

nr
=

W̄ +
s

Λ+
n

. □

The proof of Theorem 3.6 is divided into two parts, one that computes the probability that
the coupling breaks in Step 0 and another that computes the probability that it breaks in Step
m, m ≥ 1. In both cases, the idea behind the proofs is to identify the possible ways in which
the coupling can break in Step m, and carefully estimate their corresponding probabilities. To
help explain the steps in the proofs that follow, it may be helpful to list the events that can
lead to the coupling breaking in Step m.

Remark 4.1. The coupling breaks at time τ for the following reasons:

• If A0 = {i}, then τ = 0 if: Z i t ̸= X i t for any t = 1, 2, . . . , n, t ̸= i , or Z i i ≥ 1.
• τ = 2m − 1, m ≥ 1, if for some i ∈ Am−1 any of the following happen:

a. X j i = 1 for any j ∈ Im−1 (in which case a cycle is created).
b. Z j i ≥ 1 for j = i or j ∈ Im−1.
c. X j i ̸= Z j i for some j = 1, 2, . . . , n, j ̸= i , j /∈ Im−1.

• τ = 2m, m ≥ 1, if for some j ∈ Am either:

d. X j t ̸= Z j t for some t = 1, 2, . . . , n, t ̸= j, i , t /∈ Tm .
e. Z∗

j t ≥ 1 for t = i or t ∈ Tm .

A first step in the derivation of the bounds we seek is the following preliminary result
bounding the probabilities of having edge discrepancies between the exploration of the graph
and of the coupled PBT, both inbound and outbound. Recall that ∆n = d1(Fn, F) was defined
in (11).

Lemma 4.2. For any 1 ≤ i ≤ n we have

Pn

(
max

1≤ j≤n, j ̸=i
|X j i − Z j i | ≥ 1

)
≤ min

{
1, 1(W −

i > bn) + P−

n (i) + W̄ −

i η−

n

}
,
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Pn

(
max

1≤ j≤n, j ̸=i
|X i j − Z i j | ≥ 1

)
≤ min

{
1, 1(W +

i > an) + P+

n (i) + W̄ +

i η+

n

}
,

where

P−

n (i) =

∑
1≤ j≤n, j ̸=i

⏐⏐⏐p(n)
j i − (r (n)

j i ∧ 1)
⏐⏐⏐ , P+

n (i) =

∑
1≤ j≤n, j ̸=i

⏐⏐⏐p(n)
i j − (r (n)

i j ∧ 1)
⏐⏐⏐ ,

η−

n = (∆n + g+(an) + anbn/n + anbn∆n/(θn))/θ,

η+

n = (∆n + g−(bn) + anbn/n + anbn∆n/(θn))/θ,

g−(x) = E[(W −
− x)+], and g+(x) = E[(W +

− x)+].

Proof. The analysis of the two probabilities is essentially the same, so we only prove the result
for outbound edges. Let Ri j = 1(Ui j > 1 − r (n)

i j ) with r (n)
i j = W +

i W −

j /(θn). The union bound
gives:

Pn

(
max

1≤ j≤n, j ̸=i
|X i j − Z i j | ≥ 1

)
≤ 1(W +

i > an)

+ 1(W +

i ≤ an)
∑

1≤ j≤n, j ̸=i

Pn(|X i j − Z i j | ≥ 1).

Now note that

Pn(|X i j − Z i j | ≥ 1) = Pn(|X i j − Z i j | ≥ 1, |X i j − Ri j | ≥ 1)
+ Pn(|X i j − Z i j | ≥ 1, |X i j − Ri j | = 0)

≤ Pn(|X i j − Ri j | ≥ 1) + Pn(|Ri j − Z i j | ≥ 1).

The first probability can be computed to be:

Pn(|X i j − Ri j | ≥ 1) = |p(n)
i j − (r (n)

i j ∧ 1)|.

To analyze each of probabilities involving Ri j and Z i j , note that

Pn
(
|Ri j − Z i j | ≥ 1

)
= Pn(Ri j = 0, Z i j ≥ 1) + Pn(Ri j = 1, Z i j = 0)

+ Pn(Ri j = 1, Z i j ≥ 2)

=

(
1 − (1 ∧ r (n)

i j ) − e−q(n)
i j

)+

+

(
e−q(n)

i j − 1 + (1 ∧ r (n)
i j )
)+

+ min
{

1 − e−q(n)
i j (1 + q (n)

i j ), (1 ∧ r (n)
i j )
}

=

⏐⏐⏐⏐1 − (1 ∧ r (n)
i j ) − e−q(n)

i j

⏐⏐⏐⏐
+ min

{
(1 ∧ r (n)

i j ), e−q(n)
i j (eq(n)

i j − 1 − q (n)
i j )
}

.

Now use the inequalities e−x
≥ 1 − x , e−x

− 1 + x ≤ x2/2 and ex
− 1 − x ≤ x2ex/2 for x ≥ 0,

to obtain that

Pn
(
|Ri j − Z i j | ≥ 1

)
≤ r (n)

i j − q (n)
i j +

⏐⏐⏐⏐1 − q (n)
i j − e−q(n)

i j

⏐⏐⏐⏐+ e−q(n)
i j (eq(n)

i j − 1 − q (n)
i j )

= r (n)
i j − q (n)

i j + e−q(n)
i j − 1 + q (n)

i j + e−q(n)
i j (eq(n)

i j − 1 − q (n)
i j )

≤ r (n)
i j − q (n)

i j + (q (n)
i j )2.
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It follows that

1(W +

i ≤ an)
∑

1≤ j≤n, j ̸=i

Pn(|X i j − Z i j | ≥ 1)

≤ 1(W +

i ≤ an)
∑

1≤ j≤n, j ̸=i

(
|p(n)

i j − (r (n)
i j ∧ 1)| + r (n)

i j − q (n)
i j + (q (n)

i j )2
)

≤ P+

n (i) +

∑
1≤ j≤n, j ̸=i

W̄ +

i (W −

j − W̄ −

j )

θn
+

(W̄ +

i )2

(θn)2

∑
1≤ j≤n, j ̸=i

(W̄ −

j )2

≤ P+

n (i) +
W̄ +

i

θn

n∑
j=1

(W −

j − bn)+ +
(W̄ +

i )2bnΛ
−
n

(θn)2 .

To further bound the second term note that if we let (W (−,n), W (+,n)) denote a random vector
distributed according to Fn and (W −, W +) a random vector distributed according to F , then

1
n

n∑
j=1

(W −

j −bn)+ = En
[
(W (−,n)

− bn)+
]

≤ d1(Fn, F)+ E
[
(W −

− bn)+
]

= ∆n +g−(bn).

And for the last term,

(W̄ +

i )2bnΛ
−
n

(θn)2 ≤
W̄ +

i anbn

θ2n
· En

[
W (−,n)]

≤
W̄ +

i anbn

θ2n

(
∆n + E[W −]

)
.

We conclude that for η+
n as defined in the statement of the lemma,

1(W +

i ≤ an)
∑

1≤ j≤n, j ̸=i

Pn(|X i j − Z i j | ≥ 1) ≤ P+

n (i) +
W̄ +

i

θ
(∆n + g−(bn))

+
W̄ +

i anbn

θ2n
(∆n + E[W −])

≤ P+

n (i) + η+

n W̄ +

i ,

which in turn yields

Pn

(
max

1≤ j≤n, j ̸=i
|X i j − Z i j | ≥ 1

)
≤ min

{
1, 1(W +

i > an) + P+

n (i) + η+

n W̄ +

i

}
. □

We now give an upper bound for the probability that the coupling breaks on Step 0 when
the starting vertex is i .

Lemma 4.3. We have

Pn,i (τ = 0) ≤ 1(W +

i > an) + P+

n (i) + W̄ +

i (η+

n + bn/(θn)).

Proof. By the union bound followed by Lemma 4.2 we have,

Pn,i (τ = 0) ≤ Pn

(
max

1≤t≤n,t ̸=i
|X i t − Z i t | > 0

)
+ Pn

(
Z∗

i i ≥ 1
)

≤ 1(W +

i > an) + P+

n (i) + W̄ +

i η+

n + 1 − e−q(n)
i i

≤ 1(W +

i > an) + P+

n (i) + W̄ +

i η+

n + q (n)
i i

≤ 1(W +

i > an) + P+

n (i) + W̄ +

i (η+

n + bn/(θn)). □
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We now give an upper bound for the probability that the coupling breaks in Step m for
m ≥ 1.

Proposition 4.4. Fix cn, sn ≥ 1 with sn ≤ an ∧ bn and define for m ≥ 0 the event
Mm =

{
|T̂m | ∨ | Îm | ≤ sn

}
. Then, for any m ≥ 1,

Pn,i (τ = 2m − 1, Mm−1) ≤
sn

Λ+
n /n

(
g+(cn) + ∆n + cnEn + cnγ

−

n

)
,

Pn,i (τ = 2m, Mm) ≤
sn

Λ+
n /n

(
g+(cn) + ∆n + cnEn + cnγ

+

n

)
,

where g+ and g− are defined as in Lemma 4.2,

En =
1
n

n∑
i=1

∑
1≤ j≤n, j ̸=i

|p(n)
i j − (r (n)

i j ∧ 1)|,

and

γ −

n =
(E[W −] + ∆n)

θ
(∆n + g+(an) + 2anbn/n + anbn∆n/(θn) + an/n),

γ +

n =
(E[W +] + ∆n)

θ
(∆n + g−(bn) + 2anbn/n + anbn∆n/(θn) + bn/n).

Proof. We start by defining the following events:

Fi (I ) =

⎧⎨⎩ max
1≤ j≤n, j ̸=i

|X j i − Z j i | = 0, Z i i +

∑
1≤ j≤n, j ̸=i, j∈I

Z j i = 0

⎫⎬⎭ ,

G j (D) =

⎧⎨⎩ max
1≤t≤n,t ̸= j, t∈Dc

|X j t − Z j t | = 0, Z∗

j j +

∑
1≤t≤n, t ̸= j, t∈D

Z∗

j t = 0

⎫⎬⎭ ,

Hk =

⋂
i∈Ak−1

Fi (Ik−1),

Jk =

⋂
j∈Ak

G j (Dk).

Now note that for any m ≥ 1,

Pn,i (τ = 2m − 1, Mm−1) = Pn,i

(
Mm−1 ∩ J0 ∩

m−1⋂
k=1

(Hk ∩ Jk) ∩ H c
m

)
,

Pn,i (τ = 2m, Mm) = Pn,i

(
Mm ∩ J0 ∩

m−1⋂
k=1

(Hk ∩ Jk) ∩ Hm ∩ J c
m

)
,

with the convention that
⋂0

k=1(Hk ∩ Jk) = Ω .
Let Ft denote the sigma-algebra that contains the history of the inbound exploration process

in the graph as well as that of the PBT, up to the end of Step t of the graph exploration process.
It follows that we can write:

Pn,i (τ = 2m − 1, Mm−1) = En,i

[
1

(
Mm−1 ∩ J0 ∩

m−1⋂
k=1

(Hk ∩ Jk)

)
Pn(H c

m |F2(m−1))

]
,
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Pn,i (τ = 2m, Mm) = En,i

[
1

(
Mm ∩ J0 ∩

m−1⋂
k=1

(Hk ∩ Jk) ∩ Hm

)
Pn(J c

m |F2m−1)

]
.

To analyze the two conditional probabilities inside the expectations above note that condition-
ally on F2(m−1), the types of the nodes in Im−1 are known. Therefore, by the union bound and
the independence among the edges, we have:

Pn(H c
m |F2(m−1)) = Pn

⎛⎝ ⋃
i∈Am−1

Fi (Im−1)c

⏐⏐⏐⏐⏐⏐F2(m−1)

⎞⎠
≤

∑
i∈Am−1

Pn
(

Fi (Im−1)c
⏐⏐F2(m−1)

)

≤

∑
i∈Am−1

min

⎧⎨⎩1, Pn

(
max

1≤ j≤n, j ̸=i
|X j i − Z j i | ≥ 1

⏐⏐⏐⏐F2(m−1)

)

+ Pn

⎛⎝ Z i i +

∑
1≤ j≤n, j ̸=i, j∈Im−1

Z j i ≥ 1

⏐⏐⏐⏐⏐⏐F2(m−1)

⎞⎠⎫⎬⎭ .

Now use the independence of the edges from the rest of the exploration process and Lemma 4.2
to obtain that

Pn

(
max

1≤ j≤n, j ̸=i
|X j i − Z j i | ≥ 1

⏐⏐⏐⏐F2(m−1)

)
= Pn

(
max

1≤ j≤n, j ̸=i
|X j i − Z j i | ≥ 1

)
≤ 1(W −

i > bn) + P−

n (i) + W̄ −

i η−

n .

The independence from the exploration process also yields

Pn

⎛⎝ Z i i +

∑
1≤ j≤n, j ̸=i, j∈Im−1

Z j i ≥ 1

⏐⏐⏐⏐⏐⏐F2(m−1)

⎞⎠ = 1 − e−q(n)
i i −

∑
1≤ j≤n, j ̸=i, j∈Im−1

q(n)
j i

= 1 − e−
W̄−

i
θn

(
W̄+

i +
∑

1≤ j≤n, j ̸=i, j∈Im−1
W̄+

j

)

≤ 1 − e−
an W̄−

i
θn (1+|Im−1|)

≤
an W̄ −

i

θn
(1 + |Im−1|),

where in the last inequality we used 1 − e−x
≤ x for x ≥ 0.

It follows that

Pn,i (τ = 2m − 1, Mm−1) ≤ En,i

⎡⎣1

(
Mm−1 ∩ J0 ∩

m−1⋂
k=1

(Hk ∩ Jk)

) ∑
j∈Am−1

min

{
1, P−

n ( j)

+η−

n W̄ −

j +
an W̄ −

j

θn
(1 + |Im−1|)

}⎤⎦ .
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Almost the exact arguments can be used to obtain

Pn,i (τ = 2m, Mm) ≤ En,i

⎡⎣1

(
Mm ∩ J0 ∩

m−1⋂
k=1

(Hk ∩ Jk) ∩ Hm

) ∑
j∈Am

1(W̄ +

i ≤ cn)

× min

⎧⎨⎩1, P+

n ( j)

+η+

n W̄ +

j +
bn W̄ +

j

θn
(1 + |Tm |)

}⎤⎦ .

To analyze these two remaining expectations we note that on the events {J0 ∩
⋂m−1

k=1 (Hk ∩ Jk)}

and {J0 ∩
⋂m−1

k=1 (Hk ∩ Jk)∩ Hm} the coupling has not broken yet, and therefore we can replace
Am−1, Im−1, Am and Tm with their tree counterparts Âm−1, Îm−1, Âm and T̂m . Also, note that by
Lemma 3.4 we have that the types of the nodes in each of the active sets Âk are independent of
the type of their parents. We will then identify the nodes in Âm−1 (or Âm−1) as {Y1, . . . , Y

| Âm−1|
}

(or {Y1, . . . , Y
| Âm |

}), where for any t ≥ 1,

Pn(Yt = j) =
W̄ +

j

Λ+
n

, j = 1, 2, . . . , n.

It follows that

Pn,i (τ = 2m − 1, Mm−1) ≤ En,i

⎡⎣1 (Mm−1)

| Âm−1|∑
t=1

min

{
1, P−

n (Yt ) + η−

n W̄ −

Yt

+
an W̄ −

Yt

θn
(1 + | Îm−1|)

}⎤⎦
and

Pn,i (τ = 2m, Mm) ≤ En,i

⎡⎣1 (Mm)

| Âm |∑
t=1

min

{
1, P+

n (Yt ) + η+

n W +

Yt

+
bn W̄ +

Yt

θn
(1 + |T̂m |)

}⎤⎦ .

Since on the event Mk we have | Îk | ≤ sn ≤ bn and |T̂k | ≤ sn ≤ an , we further obtain
that

Pn,i (τ = 2m − 1, Mm−1) ≤ En,i

[
⌊sn⌋∑
t=1

min

{
1, P−

n (Yt ) + η−

n W̄ −

Yt
+

an W̄ −

Yt

θn
(1 + bn)

}]

≤ snEn

[
min

{
1, P−

n (Y1) + (η−

n + an(1 + bn)/(θn))W̄ −

Y1

}]



Please cite this article as: J. Lee and M. Olvera-Cravioto, PageRank on inhomogeneous random digraphs, Stochastic Processes and their Applications
(2019), https://doi.org/10.1016/j.spa.2019.07.002.

J. Lee and M. Olvera-Cravioto / Stochastic Processes and their Applications xxx (xxxx) xxx 23

and

Pn,i (τ = 2m, Mm) ≤ En,i

[
⌊sn⌋∑
t=1

min

{
1, P+

n (Yt ) + η+

n W̄ +

Yt
+

bn W̄ +

Yt

θn
(1 + an)

}]
≤ snEn

[
min

{
1, P+

n (Y1) + (η+

n + bn(1 + an)/(θn))W̄ +

Y1

}]
.

It only remains to compute the last two expectations. Throughout the rest of the proof,
let (W (−,n), W (+,n), W −, W +) be constructed according to the optimal coupling for Fn and F ,
i.e., En

[
|W (−,n)

− W −
| + |W (+,n)

− W +
|
]

= ∆n . Let (W̄ (−,n), W̄ (+,n)) = (W (−,n)
∧bn, W (+,n)

∧

an). Now let γ −
n = (E[W −] + ∆n)(η−

n + an(1 + bn)/(θn)) and note that for any cn ≥ 1,

snEn

[
min

{
1, P−

n (Y1) +
γ −

n

E[W −] + ∆n
W̄ −

Y1

}]
= sn

n∑
j=1

W̄ +

j

Λ+
n

min
{

1, P−

n ( j) +
γ −

n

E[W −] + ∆n
W̄ −

j

}

≤
snn
Λ+

n
·

1
n

n∑
j=1

(W̄ +

j − cn)+ +
snn
Λ+

n
·

1
n

n∑
j=1

cn min
{

1, P−

n ( j) +
γ −

n

E[W −] + ∆n
W̄ −

j

}
≤

sn

Λ+
n /n

· En[(W̄ (+,n)
− cn)+] +

sncn

Λ+
n /n

(
En +

γ −
n

E[W −] + ∆n
En[W̄ (−,n)]

)
≤

sn

Λ+
n /n

(
g+(cn) + ∆n + cnEn + cnγ

−

n

)
.

Essentially the same arguments also yield for γ +
n = (E[W +] + ∆n)(η+

n + bn(1 + an)/(θn)),

snEn

[
min

{
1, P+

n (Y1) +
γ +

n

E[W +] + ∆n
W̄ +

Y1

}]
≤

sn

Λ+
n /n

(
g+(cn) + ∆n + cnEn + cnγ

+

n

)
.

This completes the proof. □

We are now ready to prove Theorem 3.6.

Proof of Theorem 3.6. Fix cn, sn ≥ 1 with sn ≤ an ∧ bn , and the event Mm as in
Proposition 4.4. Now write

Pn,i (τ ≤ 2k) ≤ Pn,i (τ ≤ 2k, Mk) + Pn,i (Mc
k )

= Pn,i (τ = 0, Mk) +

k∑
m=1

{
Pn,i (τ = 2m − 1, Mk) + Pn,i (τ = 2m, Mk)

}
+ Pn,i (Mc

k )

≤ Pn,i (τ = 0) +

k∑
m=1

{
Pn,i (τ = 2m − 1, Mm−1) + Pn,i (τ = 2m, Mm)

}
+ Pn,i (Mc

k ),
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where in the last inequality we used the observation that Mm+1 ⊆ Mm for all m ≥ 1. Now use
Lemma 4.3 and Proposition 4.4 to obtain that

Pn,i (τ ≤ 2k) ≤ 1(W +

i > an) + P+

n (i) + W̄ +

i (η+

n + bn/(θn))

+

k∑
m=1

sn

Λ+
n /n

(
2g+(cn) + 2∆n + 2cnEn + cn(γ −

n + γ +

n )
)
+ Pn,i (Mc

k )

≤ 1(W +

i > an) + P+

n (i) + (Hn/θ )W̄ +

i (∆n + g−(bn) + anbn/n)
+ Hnksn (g+(cn) + cn (En + ∆n + g+(an) + g−(bn) + anbn/n))

+ Pn,i (|T̂k | ∨ | Îk | > sn),

where

Hn =
2

Λ+
n /n

(1 + ∆n/θ )2(3 + a−1
n + b−1

n + c−1
n ). □

4.2. Proof of Theorem 3.7

In view of Theorem 3.6, the proof of Theorem 3.7 reduces to showing that we can choose
an, bn, cn, sn such that the bound in Theorem 3.6 converges to zero. The only term that is not
yet explicit is

1
n

n∑
i=1

Pn,i

(
|T̂k | ∨ | Îk | > sn

)
,

which we will first write in terms of a marked Galton–Watson process that does not depend
on the type sequence Wn = {Wi : 1 ≤ i ≤ n}. To do this we need two preliminary results, the
first of which shows the convergence of the degree vectors (N̂∅, D̂∅) and (N̂1, D̂1) in the total
variation distance.

Lemma 4.5. Define (W̄ −, W̄ +) = (W −
∧ bn, W +

∧ an) and consider the joint distributions

Pn

(
N̂∅ = m, D̂∅ = k

)
=

n∑
s=1

p(m;Λ+

n W̄ −

s /(θn)) · p(k;Λ−

n W̄ +

s /(θn)) ·
1
n
,

Pn

(
N̂1 = m, D̂1 = k

)
=

n∑
s=1

p(m;Λ+

n W̄ −

s /(θn)) · p(k;Λ−

n W̄ +

s /(θn)) ·
W̄ +

s

Λ+
n

,

P
(
N̄0 = m, D̄0 = k

)
= E

[
p(m; E[W̄ +]W̄ −/θ ) · p(k; E[W̄ −]W̄ +/θ )

]
,

P
(
N̄ = m, D̄ = k

)
=

1
E[W +]

E
[
W + p(m; E[W̄ +]W̄ −/θ ) · p(k; E[W̄ −]W̄ +/θ )

]
,

for m, k ∈ N, where p(m; λ) = e−λλm/m!. Then, under Assumption 2.3(a)–(b), and for any
cn ≥ 1,

sup
A⊆N2

⏐⏐⏐Pn

(
(N̂∅, D̂∅) ∈ A

)
− P((N̄0, D̄0) ∈ A)

⏐⏐⏐ ≤
∆2

n

θ
+ 2∆n,

sup
A⊆N2

⏐⏐⏐Pn

(
(N̂1, D̂1) ∈ A

)
− P((N̄ , D̄) ∈ A)

⏐⏐⏐ ≤
1

E[W̄ +]
(4cn∆n + 2g+(an) + g+(cn)

+cn∆
2
n/θ

)
,

where g+ is defined as in Lemma 4.2.
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Proof. By Assumption 2.3(a)–(b) and the observations following Definition 3.5, we know that
Fn converges to F in the Kantorovich–Rubinstein distance, and therefore we can pick a random
vector(

W (−,n), W (+,n), W −, W +
)

so that (W (−,n), W (+,n)) has distribution Fn , (W −, W +) has distribution F , and

En
[
|W (−,n)

− W −
| + |W (+,n)

− W +
|
]

= d1(Fn, F) = ∆n.

Next, using this optimal coupling define (W̄ (−,n), W̄ (+,n)) = (W (−,n)
∧bn, W (+,n)

∧an), X (−,n)
=

Λ+
n W̄ (−,n)/(θn), X (+,n)

= Λ−
n W̄ (+,n)/(θn), X−

= E[W̄ +]W̄ −/θ , and X+
= E[W̄ −]W̄ +/θ . Let

Gn = σ
(
Fn ∪ σ (W (−,n), W (+,n), W −, W +)

)
.

Now note that for any A ⊆ N2,⏐⏐⏐Pn

(
(N̂∅, D̂∅) ∈ A

)
− P ((N0,D0) ∈ A)

⏐⏐⏐
≤ En

[⏐⏐⏐Pn

(
(N̂∅, D̂∅) ∈ A

⏐⏐⏐Gn

)
− Pn

(
(N̄0, D̄0) ∈ A

⏐⏐Gn
)⏐⏐⏐]

≤ En

[
sup
B⊆N

⏐⏐⏐Pn(N̂∅ ∈ B|Gn) − Pn(N̄0 ∈ B|Gn)
⏐⏐⏐

+ sup
B⊆N

⏐⏐⏐Pn(D̂∅ ∈ B|Gn) − Pn(D̄0 ∈ B|Gn)
⏐⏐⏐]

≤ En
[
min{1, |X (−,n)

− X−
|} + min{1, |X (+,n)

− X+
|}
]
,

where in the first inequality we used the conditional independence of (N̂∅, N̄0) and (D̂∅, D̄0)
given Gn , and in the second one we used the observation that if Poi(λ) denotes a Poisson
random variable with mean λ, then

sup
A∈N

|P(Poi(µ) ∈ A) − P(Poi(λ) ∈ A)| ≤ P(Poi(|µ − λ|) ≥ 1) ≤ min{1, |µ − λ|}.

Moreover, since Λ±
n /n = En[W̄ (±,n)] and En[|W̄ (±,n)

− W̄ ±
|] ≤ En[|W (±,n)

− W ±
|], we have

that

En
[
|X (−,n)

− X−
|
]

≤
Λ+

n

θn
En
[
|W̄ (−,n)

− W̄ −
|
]
+ E[W̄ −]

⏐⏐⏐⏐Λ+
n

θn
−

E[W̄ +]
θ

⏐⏐⏐⏐
≤

(
En[W̄ (+,n)

− W̄ +]
θ

+
E[W̄ +]

θ

)
En
[
|W̄ (−,n)

− W̄ −
|
]

+
E[W̄ −]

θ

⏐⏐En[W̄ (+,n)] − E[W̄ +]
⏐⏐

≤

(
En[|W (+,n)

− W +
|]

θ
+

E[W +]
θ

)
En[|W (−,n)

− W −
|]

+
E[W −]

θ
En[|W (+,n)

− W +
|],

and similarly,

En
[
|X (+,n)

− X+
|
]

≤

(
En[|W (−,n)

− W −
|]

θ
+

E[W −]
θ

)
En[|W (+,n)

− W +
|]

+
E[W −]

θ
En[|W (+,n)

− W +
|].
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Combining the two bounds we obtain

En
[
|X (−,n)

− X−
| + |X (+,n)

− X+
|
]

≤
∆2

n

θ
+ 2∆n.

Taking the supremum over all A gives the first result.
For the second result we start by noting that for any A ⊆ N2,

Pn

(
(N̂1, D̂1) ∈ A

)
= En

[
W̄ (+,n)

En[W̄ (+,n)]
Pn((N̂∅, D̂∅) ∈ A|Gn)

]
and

P
(
(N̄ , D̄) ∈ A

)
= E

[
W +

E[W +]
P((N̄0, D̄0) ∈ A|W −, W +)

]
.

Hence, for any A ⊆ N2 and any cn ≥ 1,⏐⏐⏐Pn

(
(N̂1, D̂1) ∈ A

)
− P

(
(N̄ , D̄) ∈ A

)⏐⏐⏐
≤

⏐⏐⏐⏐En

[
W̄ (+,n)

En[W̄ (+,n)]
Pn((N̂∅, D̂∅) ∈ A|Gn)

]
− En

[
W̄ +

E[W̄ +]
Pn((N̂∅, D̂∅) ∈ A|Gn)

]⏐⏐⏐⏐
+

⏐⏐⏐⏐En

[
W̄ +

E[W̄ +]
Pn((N̂∅, D̂∅) ∈ A|Gn)

]
− En

[
W̄ +

E[W̄ +]
Pn
(

(N̄0, D̄0) ∈ A
⏐⏐Gn

)]⏐⏐⏐⏐
+

⏐⏐⏐⏐E [ W̄ +

E[W̄ +]
P
(

(N̄0, D̄0) ∈ A
⏐⏐W −, W +

)]
−E

[
W +

E[W +]
P((N̄0, D̄0) ∈ A|W −, W +)

]⏐⏐⏐⏐
≤ En

[⏐⏐⏐⏐ W̄ (+,n)

En[W̄ (+,n)]
−

W̄ +

E[W̄ +]

⏐⏐⏐⏐]
+ En

[
W̄ +

E[W̄ +]

⏐⏐⏐Pn((N̂∅, D̂∅) ∈ A|Gn) − Pn
(

(N̄0, D̄0) ∈ A
⏐⏐Gn

)⏐⏐⏐]
+ E

[⏐⏐⏐⏐ W̄ +

E[W̄ +]
−

W +

E[W +]

⏐⏐⏐⏐]
≤

En
[
|E[W̄ +]W̄ (+,n)

− En[W̄ (+,n)]W̄ +
|
]

En[W̄ (+,n)]E[W̄ +]
+

E[|W̄ +E[W +] − W +E[W̄ +]|]
E[W̄ +]E[W +]

+ En

[
W̄ +

E[W̄ +]

(
min{1, |X (−,n)

− X−
|} + min{1, |X (+,n)

− X+
|}
)]

≤
2En[|W̄ (+,n)

− W̄ +
|]

E[W̄ +]
+

2E[(W +
− an)+]

E[W +]

+ En

[
W̄ +

E[W̄ +]

(
min{1, |X (−,n)

− X−
|} + min{1, |X (+,n)

− X+
|}
)]

≤
2∆n

E[W̄ +]
+

2g+(an)
E[W +]

+
cn

E[W̄ +]
En
[
|X (−,n)

− X−
| + |X (+,n)

− X+
|
]
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+
E[(W̄ +

− cn)+]
E[W̄ +]

≤
1

E[W̄ +]

(
2∆n + 2g+(an) + g+(cn) + 2cn∆n + cn∆

2
n/θ

)
.

This completes the proof. □

The second technical result prior to the proof of Theorem 3.7 states the convergence in total
variation of the processes |T̂k | and | Îk |. Note that the delayed marked Galton–Watson process
appearing in the lemma still depends on n via the truncation of W +

∧ an and W −
∧ bn , but

does not depend on the type sequence Wn = {Wi : 1 ≤ i ≤ n}. In particular, by monotonicity
of the Poisson distribution in its parameter, we have that under Assumption 2.3(a)–(b),

(N̄0, D̄0) ↗ (N0,D0) a.s. and (N̄ , D̄) ↗ (N ,D) a.s,

as n → ∞, for well-defined random vectors (N0,D0) and (N ,D). Moreover, under Assump-
tion 2.3(a)–(b) we have that E[N0 +D0] < ∞, although it is possible to have E[N +D] = ∞.
If the latter happens, the probability P

(
|T̄k | ∨ |Īk | > sn

)
will still converge to zero as sn → ∞

for any fixed k ∈ N+, however, it may do so very slowly.

Lemma 4.6. Under Assumption 2.3(a)–(b) we have that for any fixed k ≥ 1 and any
cn, sn ≥ 1,

1
n

n∑
i=1

Pn,i

(
|T̂k | ∨ | Îk | > sn

)
≤ P

(
|T̄k | ∨ |Īk | > sn

)
+

∆2
n

θ
+ 2∆n

+
ksn

E[W + ∧ an]

(
4cn∆n + 2g+(an) + g+(cn) + cn∆

2
n/θ

)
,

where |T̄k | = 1 +
∑k−1

m=1 |Ām |, |Īk | =
∑k

m=0
∑

i∈Ām
D̄i, and Ām is the set of individuals in the

mth generation of a delayed marked Galton–Watson process whose root has offspring/mark
distributed as (N̄0, D̄0) and all other nodes have offspring/mark distributed as (N̄ , D̄), as
defined in Lemma 4.5.

Proof. We start by noting that under the measure Pn(·) = n−1∑n
i=1 Pn,i (·), |T̂k | and | Îk |

denote the total population and the sum of all the marks, up to generation k, on a marked
Galton–Watson process whose offspring/mark distribution is that of (N̂∅, D̂∅) for the root node
and (N̂1, D̂1) for all other nodes, as defined in Lemma 4.5. Next, let (N̂∅, D̂∅, N̄0, D̄0) and
(N̂1, D̂1, N̄ , D̄) be couplings satisfying

sup
A⊆N2

⏐⏐⏐Pn((N̂∅, D̂∅) ∈ A) − P((N̄0, D̄0) ∈ A)
⏐⏐⏐ = Pn((N̂∅, D̂∅) ̸= (N̄0, D̄0))

and

sup
A⊆N2

⏐⏐⏐Pn((N̂1, D̂1) ∈ A) − P((N̄ , D̄) ∈ A)
⏐⏐⏐ = Pn((N̂1, D̂1) ̸= (N̄ , D̄)),

which are guaranteed to exist (see, e.g., Theorem 2.12 in [21]). Construct the two marked
Galton–Watson processes simultaneously using this optimal coupling of the degree/mark
vectors and let σ = inf{m ≥ 0 : (N̂i, D̂i) ̸= (N̄i, D̄i) for some i ∈ Ām}.
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Now note that

1
n

n∑
i=1

Pn,i

(
|T̂k | ∨ | Îk | > sn

)
= Pn

(
|T̂k | ∨ | Îk | > sn

)
≤ P

(
|T̄k | ∨ |Īk | > sn

)
+ Pn

(
|T̂k | ∨ | Îk | > sn ≥ |T̄k | ∨ |Īk |

)
≤ P

(
|T̄k | ∨ |Īk | > sn

)
+

k∑
m=0

Pn
(
|T̄k | ∨ |Īk | ≤ sn, σ = m

)
.

To analyze each of the probabilities in the sum let Fm = σ
(

(N̂i, D̂i, N̄i, D̄i) : i ∈ Âl ,

0 ≤ l ≤ m
)

and note that for 0 ≤ m ≤ k:

Pn
(
|T̄k | ∨ |Īk | ≤ sn, σ = m

)
≤ Pn

(
|Ām | ≤ sn, σ = m

)
= En

[
1(|Ām | ≤ sn)Pn(σ = m|Fm−1)

]
≤ En

⎡⎣1(|Ām | ≤ sn)Pn

×

⎛⎝ ⋃
i∈Ām

{(N̂i, D̂i) ̸= (N̄i, D̄i)}

⏐⏐⏐⏐⏐⏐Fm−1

⎞⎠⎤⎦
≤ En

⎡⎣1(|Ām | ≤ sn)
∑

i∈Ām

Pn

(
(N̂i, D̂i) ̸= (N̄i, D̄i)

)⎤⎦
= En

[
1(|Ām | ≤ sn)(|Ām | − 1)Pn

(
(N̂1, D̂1) ̸= (N̄ , D̄)

)]
× 1(m ≥ 1)

+ Pn

(
(N̂∅, D̂∅) ̸= (N̄0, D̄0)

)
≤ snPn

(
(N̂1, D̂1) ̸= (N̄ , D̄)

)
1(m ≥ 1)

+ Pn

(
(N̂∅, D̂∅) ̸= (N̄0, D̄0)

)
.

It follows that

1
n

n∑
i=1

Pn,i

(
|T̂k | ∨ | Îk | > sn

)
≤ P

(
|T̄k | ∨ |Īk | > sn

)
+ Pn

(
(N̂∅, D̂∅) ̸= (N̄0, D̄0)

)
+ ksnPn

(
(N̂1, D̂1) ̸= (N̄ , D̄)

)
.

The conclusion now follows from Lemma 4.5. □

We now use these two results to prove Theorem 3.7.

Proof of Theorem 3.7. Let (W (−,n), W (+,n)) be distributed according to Fn . Then, by
Theorem 3.6 and Lemma 4.6 we have that

1
n

n∑
i=1

Pn,i (τ ≤ 2k) ≤ Pn(W (−,n) > an) + En + (Hn/θ )
Λ+

n

n
(∆n + g−(bn) + anbn/n)

+ Hnksn (g+(cn) + cn(En + ∆n + g+(an) + g−(bn) + anbn/n))
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+ P
(
|T̄k | ∨ |Īk | > sn

)
+

∆2
n

θ
+ 2∆n

+
ksn

E[W + ∧ an]

(
4cn∆n + 2g+(an) + g+(cn) + cn∆

2
n/θ

)
≤ Pn(W (−,n) > an) + P

(
|T̄k | ∨ |Īk | > sn

)
+ Knksn (g+(cn) + cn(En + ∆n + g+(an) + g−(bn) + anbn/n)) ,

with

Kn =
2

En[W (−,n) ∧ an] ∧ E[W + ∧ an]
(1 + ∆n/θ )2(3 + a−1

n + b−1
n + c−1

n ),

and T̄k, Īk defined as in Lemma 4.6. As argued right before the statement of Lemma 4.6,
limn→∞ |T̄k | ∨ |Īk | < ∞ a.s. for any fixed k ∈ N+, and therefore,

lim
n→∞

P
(
|T̄k | ∨ |Īk | > sn

)
= 0

provided sn → ∞. Clearly, limn→∞ Pn(W (−,n) > an) ≤ limn→∞ a−1
n En[W (−,n)] = 0

for any an → ∞, so it only remains to show that we can pick an, bn, cn, sn such that
min{an, bn, cn, sn}

P
−→ ∞ and

sn (g+(cn) + cn(En + ∆n + g+(an) + g−(bn) + anbn/n))
P
−→ 0 (15)

as n → ∞. To this end, choose an = bn = n(1−ϵ)/2 for some 0 < ϵ < 1,

cn = (En + ∆n + g+(an) + g−(bn) + anbn/n)−1/2,

and sn = (g+(cn) + c−1
n )−1/2. Assumption 2.3(a)–(c) guarantee that cn

P
−→ ∞ as n → ∞ and

our choice of sn ensures (15) holds. □

4.3. Proof of Theorem 2.4

We now give a short proof of Theorem 2.4 using Theorem 3.6 and Lemma 4.5. A direct
proof is possible, but would involve repeating some of the arguments used earlier.

Proof of Theorem 2.4. Start by noting that (Z−, Z+) D
= (N0,D0), as defined in Lemma 4.5,

and therefore,

sup
A⊆N2

⏐⏐Pn((D−

ξ , D+

ξ ) ∈ A) − P((Z−, Z+) ∈ A)
⏐⏐

≤ sup
A⊆N2

⏐⏐⏐Pn((D−

ξ , D+

ξ ) ∈ A) − Pn((N̂∅, D̂∅) ∈ A)
⏐⏐⏐

+ sup
A⊆N2

⏐⏐⏐Pn((N̂∅, D̂∅) ∈ A) − P((N0,D0) ∈ A)
⏐⏐⏐

≤
1
n

n∑
i=1

Pn,i (τ ≤ 1) + sup
A⊆N2

⏐⏐⏐Pn((N̂∅, D̂∅) ∈ A) − P((N0,D0) ∈ A)
⏐⏐⏐ .



Please cite this article as: J. Lee and M. Olvera-Cravioto, PageRank on inhomogeneous random digraphs, Stochastic Processes and their Applications
(2019), https://doi.org/10.1016/j.spa.2019.07.002.

30 J. Lee and M. Olvera-Cravioto / Stochastic Processes and their Applications xxx (xxxx) xxx

Now use Lemma 4.3 and Proposition 4.4 as in the proof of Theorem 3.6 to obtain that

Pn,i (τ ≤ 1) ≤ Pn,i (τ = 0) + Pn,i (τ = 1, M0) + Pn,i (Mc
0 )

≤ 1(W +

i > an) + Pn,i (i) + (η+

n + bn/(θn))W̄ +

i

+
sn

Λ+
n /n

(g+(cn) + ∆n + cnEn + cnγ
−

n ) + Pn,i (| Î0| > sn).

Note that under Pn(·) = n−1∑n
i=1 Pn,i (·) we have that | Î0|

D
= D̂∅, so following the same steps

as in the proof of Theorem 3.7, we obtain

1
n

n∑
i=1

Pn,i (τ ≤ 1) ≤ Pn(W (−,n) > an) + Pn(D̂∅ > sn)

+ Knsn (g+(cn) + cn(En + ∆n + g+(an) + g−(bn) + anbn/n)) ,

where (W (−,n), W (+,n)) is distributed according to Fn and Kn is bounded. Moreover, this bound
converges to zero as n → ∞ for the same choice of an, bn, cn, sn used in the proof of
Theorem 3.7. Finally, Lemma 4.5 gives that

sup
A⊆N2

⏐⏐⏐Pn((N̂∅, D̂∅) ∈ A) − P((N0,D0) ∈ A)
⏐⏐⏐ ≤

∆2
n

θ
+ 2∆n

P
−→ 0

as n → ∞. We conclude that

sup
A⊆N2

⏐⏐Pn((D−

ξ , D+

ξ ) ∈ A) − P((Z−, Z+) ∈ A)
⏐⏐ P
−→ 0 n → ∞.

To obtain the convergence of the means, let (W (−,n), W (+,n)) and (Ŵ (−,n), Ŵ (+,n)) be
conditionally i.i.d. (given Fn) vectors have distribution Fn and note that

⏐⏐En[D±

ξ ] − E[Z±]
⏐⏐ ≤

⏐⏐⏐⏐⏐⏐1n
n∑

i=1

∑
1≤ j≤n, j ̸=i

(
p(n)

i j − (r (n)
i j ∧ 1)

)⏐⏐⏐⏐⏐⏐
+

1
n

n∑
i=1

∑
1≤ j≤n, j ̸=i

r (n)
i j 1(r (n)

i j > 1)

+

⏐⏐⏐⏐⏐⏐1n
n∑

i=1

∑
1≤ j≤n, j ̸=i

r (n)
i j − E[Z±]

⏐⏐⏐⏐⏐⏐
≤ En +

1
θ
En

[
W (+,n)Ŵ (−,n)1(W (+,n)Ŵ (−,n) > θn)

]
+

1
θ

⏐⏐En[W (−,n)]En[W (+,n)] − E[W −]E[W +]
⏐⏐ ,

where En
P
−→ 0 by Assumption 2.3(c) and En[W (−,n)]En[W (+,n)]

P
−→ E[W +]E[W −] by

Assumption 2.3(b). For the middle term note that

En

[
W (+,n)Ŵ (−,n)1(W (+,n)Ŵ (−,n) > θn)

]
≤ En

[
W (+,n)Ŵ (−,n)

(
1(W (+,n) >

√
θn) + 1(Ŵ (−,n) >

√
θn)

)]
= En[W (−,n)]En

[
W (−,n)1(W (−,n) >

√
θn)

]
+ En[W (+,n)]En

[
W (+,n)1(W (+,n) >

√
θn)

]
,

which also converges in probability to zero as n → ∞ since E[W −
+ W +] < ∞.
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The result for the mixed expectation is a consequence of Assumption 2.3(d) since

En
[
D−

ξ D+

ξ

]
=

1
n

n∑
i=1

∑
1≤ j≤n, j ̸=i

∑
1≤k≤n,k ̸=i

p(n)
j i p(n)

ik
P
−→

E[W −W +]E[W −]E[W +]
θ2

= E[Z− Z+],

as n → ∞. This completes the proof. □

4.4. Proof of Theorem 3.8

In this section we prove Theorem 3.8, which establishes the convergence of R̂(n,kn )
∅

to the
attracting endogenous solution to (5), under Assumption 3.1. The main step in the proof of
Theorem 3.8 consists in showing that the vectors {(N̂i, Q̂i, Ĉi) : i ∈ U} converge, in the
Kantorovich–Rubinstein metric, to the distribution of (N ,Q, C) defined in Theorem 3.3, with
C independent of (N ,Q). To simplify the proof of Theorem 3.8, we show this convergence
separately.

Throughout the section, for probability measures φ, χ in Rd , we interchangeably use the
notation d1(φ, χ) = d1(F, G) to denote the Kantorovich–Rubinstein distance between φ and
χ , where F and G are the cumulative distribution functions of φ and χ , respectively.

Theorem 4.7. Define G∗
n(m, q) = Pn(N̂∅ ≤ m, Q̂∅ ≤ q) and Gn(m, q, t) = Pn(N̂i ≤ m, Q̂i ≤

q, Ĉi ≤ t) for i ̸= ∅, according to (13) and (14), respectively. Define G∗(m, q) = P(N0 ≤

m,Q0 ≤ q) and G(m, q, t) = P(N ≤ m,Q ≤ q, C ≤ t), for m ∈ N, q, t ∈ R, according to:

P(N0 = m,Q0 ∈ dq) = E
[
1 (Q ∈ dq) p(m; E[W +]W −/θ )

]
,

P(N = m,Q ∈ dq, C ∈ dt) = E
[

W +

E[W +]
1
(
Q ∈ dq, ζ/(Z+

+ 1) ∈ dt
)

× p(m; E[W +]W −/θ )
]

,

where Z+ is a mixed Poisson random variable with mixing parameter E[W −]W +/θ and
p(m; λ) = e−λλm/m!. Then, under Assumption 3.1(a)–(b), we have that

d1(G∗

n, G∗)
P
−→ 0 and (N̂1, Q̂1, Ĉ1) ⇒ (N ,Q, C)

as n → ∞. Moreover, if Assumption 3.1(a), (b), (e) hold, then

d1(Gn, G)
P
−→ 0 as n → ∞.

Proof. We start by showing the weak convergence of the vectors (N̂∅, Q̂∅) and (N̂1, D̂1, Q̂1, ζ̂1);
recall that Ĉ1 = ζ̂1/(D̂1 + 1). Let (W (−,n), W (+,n), Q(n), ζ (n)) be distributed according to Hn
and define (W̄ (−,n), W̄ (+.n)) = (W (−,n)

∧ bn, W (+,n)
∧ an). Now note that if f : N × R → R is

bounded and continuous, then the function J (x, q) =
∑

∞

m=0 f (m, q)p(m; x) is also bounded
and continuous, and by Assumption 3.1(a)–(b) we have

En

[
f (N̂∅, Q̂∅)

]
=

1
n

n∑
s=1

∞∑
m=0

f (m, Qs)p(m;Λ+

n W̄ −

s /(θn))

= En
[
J
(
Q(n),Λ+

n W̄ (−,n)/(θn)
)]

P
−→ E

[
J (Q, E[W +]W −/θ )

]
= E[ f (N0,Q0)],
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as n → ∞. For the second vector let g : N × R2
→ R be a bounded and continuous function

and note that JM (x, y, q, z) = (y∧M)
∑

∞

m=0
∑

∞

k=0 p(m; x)p(k; y)g(m, q, z/(k+1)) is bounded
and continuous for any fixed M > 0. Then,

En

[
g(N̂1, Q̂1, Ĉ1)

]
=

n∑
s=1

W̄ +
s

Λ+
n

∞∑
m=0

∞∑
k=0

p(m;Λ+

n W̄ −

s /(θn))p(k;Λ−

n W̄ +

s /(θn))

× g(m, Qs, ζs/(k + 1))

≤
θn2

Λ+
n Λ

−
n
En
[
JM
(
Λ+

n W̄ (−,n)/(θn),Λ−

n W̄ (+,n)/(θn), Q(n), ζ (n))]
+

n
Λ+

n
En
[
(W̄ (+,n)

− M)+
]

sup
m,q,z

|g(m, q, z)|,

and, similarly,

En

[
g(N̂1, Q̂1, Ĉ1)

]
≥

θn2

Λ+
n Λ

−
n
En
[
JM
(
Λ+

n W̄ (−,n)/(θn),Λ−

n W̄ (+,n)/(θn), Q(n), ζ (n))]
−

n
Λ+

n
En
[
(W̄ (+,n)

− M)+
]

sup
m,q,z

|g(m, q, z)|.

It follows from Assumption 3.1(a)–(b) that the limits

θ

E[W +]E[W −]
E
[
JM (E[W +]W −/θ, E[W −]W +/θ, Q, ζ )

]
−

E[(W +
− M)+]

E[W +]
sup
m,q,z

|g(m, q, z)|

≤ lim inf
n→∞

En

[
g(N̂1, Q̂1, Ĉ1)

]
≤ lim sup

n→∞

En

[
g(N̂1, Q̂1, Ĉ1)

]
≤

θ

E[W +]E[W −]
E
[
JM (E[W +]W −/θ, E[W −]W +/θ, Q, ζ )

]
+

E[(W +
− M)+]

E[W +]
sup
m,q,z

|g(m, q, z)|

hold in probability. Taking the limit as M → ∞ now yields (via the dominated convergence
theorem)

En

[
g(N̂1, Q̂1, Ĉ1)

]
P
−→

θ

E[W +]E[W −]
lim

M→∞

E
[
JM (E[W +]W −/θ, E[W −]W +/θ, Q, ζ )

]
= E

[
W +

E[W +]

∞∑
m=0

∞∑
k=0

p(m; E[W +]W −/θ )p(k; E[W −]W +/θ )

× g(m, Q, ζ/(k + 1))

]
= E [g(N ,Q, C)] .

This establishes the weak convergence for both G∗
n and Gn .

To prove the convergence in the Kantorovich–Rubinstein distance recall that it suffices to
show that the first absolute moments converge (see Theorem 6.9 and Definition 6.8(i) in [33]).
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Under Assumption 3.1(a)–(b) we have that

En

[
N̂∅ + |Q̂∅|

]
= En

[
Λ+

n W̄ (−,n)

θn
+ |Q(n)

|

]
P
−→ E

[
E[W +]W −

θ
+ |Q|

]
= E [N0 + |Q0|]

as n → ∞. We conclude that d1(G∗
n, G∗)

P
−→ 0 as n → ∞.

For Gn we have that

En

[
N̂1 + |Q̂1| + |Ĉ1|

]
= En

[
N̂1 + |Q̂1| +

|ζ̂1|

D̂1 + 1

]

= En

[
nW̄ (+,n)

Λ+
n

(
Λ+

n W̄ (−,n)

θn
+ |Q(n)

| +
|ζ (n)

|

Λ−
n W̄ (+,n)/(θn)

(
1 − e−Λ−

n W̄ (+,n)/(θn)
))]

= En

[
W̄ (+,n)W̄ (1,n)

θ
+

nW̄ (+,n)
|Q(n)

|

Λ+
n

+
θn2

|ζ (n)
|

Λ−
n Λ

+
n

(
1 − e−Λ−

n W̄ (+,n)/(θn)
)]

,

where we used the observation that if Z is Poisson with mean λ then E[1/(Z+1)] =
1
λ

(1−e−λ).
The third summand inside the expectation converges under Assumption 3.1(a)–(b), however,
the first two require part (e) of the assumption. Hence, under Assumption 3.1(a),(b),(e) we have

En

[
N̂1 + |Q̂1| + |Ĉ1|

]
P
−→ E

[
W +W −

θ
+

W +
|Q|

E[W +]

+
θ |ζ |

E[W −]E[W +]

(
1 − e−E[W−]W+/θ

)]
= E

[
W +

E[W +]

(
E[W +]W −

θ
+ |Q|

+
|ζ |

E[W −]W +/θ

(
1 − e−E[W−]W+/θ

))]
= E [N + |Q| + |C|]

as n → ∞. This completes the proof. □

The proof of Theorem 3.8 will now follow from Theorem 2 in [10].

Proof of Theorem 3.8. Recall that the sequence {(N̂i, Q̂i, Ĉi) : i ∈ U , i ̸= ∅} consists
of conditionally i.i.d. vectors, given Fn , with (N̂∅, Q̂∅, Ĉ∅) conditionally independent of
this sequence. To simplify the notation let (Q̂, N̂ , Ĉ) D

= (Q̂1, N̂1, Ĉ1). Define φn to be the
probability measure of the vector

(Ĉ Q̂, Ĉ1(N̂ ≥ 1), Ĉ1(N̂ ≥ 2), . . . )

and let φ∗
n denote the probability measure of (Q̂∅, N̂∅). Similarly, define φ and φ∗ to be the

probability measures of vectors

(CQ, C1(N ≥ 1), C1(N ≥ 2), . . . ) and (Q,N ),

respectively, where C and (N ,Q) are distributed as in Theorem 4.7, with C independent of
(Q,N ).
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Next, let d1 denote the Kantorovich–Rubinstein distance on S, with S either R∞ or R2 as
needed, defined conditionally on Fn . More precisely, if we let ∥x∥1 =

∑
i |xi | for x ∈ S, then,

for any two probability measures φ and χ on R∞,

d1(φ, χ) = inf
U,V

En [∥U − V∥1] ,

where U is distributed according to φ and V is distributed according to χ , and the infimum is
taken over all couplings of φ and χ .

Let R(k)
=
∑k

r=0
∑

i∈Ar
ΠiQi denote the rank of the root node in the delayed weighted

branching process constructed using the i.i.d. vectors {(Ni,Qi, {C(i, j)} j≥1) : i ∈ U} (see [10]
for more details). By Theorem 2 (Case 2) in [10], the convergence of R̂(n,k)

∅
to R(k) in the

Kantorovich–Rubinstein distance will follow once we show that

d1(φ∗

n , φ∗) + d1(φn, φ)
P
−→ 0 as n → ∞. (16)

That convergence in d1 is equivalent to weak convergence plus convergence of the first absolute
moments follows from Theorem 6.9 in [33].

Now let G∗
n(m, q) = Pn(N̂∅ ≤ m, Q̂∅ ≤ q), Gn(m, q, x) = Pn(N̂ ≤ m, Q̂ ≤ q, Ĉ ≤ x),

G∗(m, q) = P(N ≤ m,Q ≤ q), and G(m, q, x) = P(N ≤ m,Q ≤ q)P(C ≤ x). Note that by
Theorem 4.7 we have

d1(Gn, G) + d1(G∗

n, G∗)
P
−→ 0 n → ∞.

Moreover, d1(G∗
n, G∗) = d1(φ∗

n , φ∗). To see that d1(Gn, G)
P
−→ 0 implies that d1(φn, φ)

P
−→ 0,

choose (N̂ , Q̂, Ĉ,N ,Q, C) and (N̂∅, Q̂∅, Ĉ∅,N ,Q, C) such that
En

[
∥(N̂ , Q̂, Ĉ) − (N ,Q, C)∥1

]
= d1(Gn, G), which can be done since optimal couplings

always exist (see Theorem 4.1 in [33]). Next, note that since |Ĉ | ≤ c and |C| ≤ c with c < 1,

d1(φn, φ) ≤ En

[
∥ (Ĉ Q̂, Ĉ1(N̂ ≥ 1), Ĉ1(N̂ ≥ 2), . . . )

−(CQ, C1(N ≥ 1), C1(N ≥ 2), . . . ) ∥1

]
= En

[
|Ĉ Q̂ − CQ| +

∞∑
i=1

|Ĉ1(N̂ ≥ i) − C1(N ≥ i)|

]

≤ En

[
|Ĉ ||Q̂ − Q| + |Q||Ĉ − C| +

∞∑
i=1

|Ĉ ||1(N̂ ≥ i) − 1(N ≥ i)|

+|Ĉ − C|1(N ≥ i)

]

≤ cEn

[
|Q̂ − Q|

]
+ En[|Q||Ĉ − C|] + c

∞∑
i=1

En

[
|1(N̂ ≥ i) − 1(N ≥ i)|

]
+ En

[
|Ĉ − C|

∞∑
i=1

1(N ≥ i)

]

= cEn

[
|Q̂ − Q|

]
+ c

∞∑
i=1

En

[
|1(N̂ < i ≤ N ) − 1(N < i ≤ N̂ )|

]
+ En

[
|Ĉ − C|(N + |Q|)

]
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≤ cEn

[
|Q̂ − Q|

]
+ cEn

[
|N̂ − N |

]
+ En

[
|Ĉ − C|(N + |Q|)

]
≤ cd1(Gn, G) + En

[
|Ĉ − C|(N + |Q|)

]
.

Since En[|Ĉ − C|] ≤ d1(Gn, G)
P
−→ 0, then dominated convergence gives that En[

|Ĉ − C|(N + |Q|)
]

P
−→ 0 as well.

Finally, it is well known that provided E
[∑N

i=1 |Ci |

]
= E[N ]E[C1] < 1, we have

R(k)
→ R =

∑
∞

r=0
∑

i∈Ar
ΠiQi a.s. as k → ∞ (see, e.g., Lemma 4.1 in [25]). To see that the

required condition is satisfied note that

E[N ]E[|C1|] = E
[

W +

E[W +]
·

E[W +]W −

θ

]
E
[

W +

E[W +]

∫
∞

−∞

|t |1(ζ/(Z+
+ 1) ∈ dt)

]
=

E[W +W −]
θ

· E
[

W +

E[W +]
|ζ |

Z+ + 1

]
=

E[W −]
θ

· E
[

W +
|ζ |

E[W −]W +/θ

(
1 − e−E[W−]W+/θ

)]
= E

[
|ζ |

(
1 − e−E[W−]W+/θ

)]
≤ c < 1,

where we used the observation that if Z is Poisson with mean λ then E[1/(Z + 1)] =

λ−1(1 − e−λ). This completes the proof. □

4.5. Proof of Theorem 3.3

Finally, we combine the inequality in (8), Theorem 3.7, and Theorem 3.8 to prove
Theorem 3.3.

Proof. Fix ϵ > 0 and k ∈ N+. Next, construct (R(n,∞)
ξ , R(n,k)

ξ , R̂(n,k)
∅

) using the graph
exploration and coupling described in Section 3.2.2. Then, by (8) and Theorem 3.7, the
following limit holds in probability:

lim
n→∞

Pn

(
|R(n,∞)

ξ − R̂(n,k)
∅

| > ϵ
)

≤ lim
n→∞

Pn

(
|R(n,∞)

ξ − R(n,k)
ξ | > ϵ/2

)
+ lim

n→∞
Pn

(
|R̂(n,k)

ξ − R̂(n,k)
∅

| > ϵ/2
)

=
2ck

ϵ(1 − c)
E[|Q|].

Also, by Theorem 3.8 there exists R(k) such that

lim
n→∞

Pn

(
|R̂(n,k)

∅
− R(k)

| > ϵ
)

= 0

in probability, with R(k)
→ R a.s. as k → ∞. Choosing k sufficiently large yields

R(n,∞)
ξ ⇒ R

as n → ∞. □
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