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Abstract

Let Zt be a one-dimensional symmetric stable process of order � with �∈ (0; 2) and consider
the stochastic di�erential equation

dXt = �(Xt−) dZt :

For �¡ (1=�) ∧ 1, we show there exists a function � that is bounded above and below by
positive constants and which is H8older continuous of order � but for which pathwise uniqueness
of the stochastic di�erential equation does not hold. This result is sharp.
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1. Introduction

Let Zt be a one-dimensional symmetric stable process of order � with �∈ (0; 2). In
this paper, we are concerned with whether or not pathwise uniqueness holds for the
stochastic di�erential equation

dXt = �(Xt−) dZt: (1.1)
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In integrated form this can be written as

Xt = X0 +
∫ t

0
�(Xs−) dZs: (1.2)

For details concerning the stochastic calculus of processes with jumps, see Meyer
(1976).
It is relatively straightforward, using Picard iteration, to show that if � is Lipschitz,

then the solution to (1.1) exists and is pathwise unique. If �¿ 1, it was shown in Bass
(2003) that if � is bounded, has modulus of continuity 
, and 
 satisHes∫

0+

1

(x)�

dx =∞; (1.3)

then (1.1) admits a strong solution and the solution is pathwise unique. As an example,
if � is H8older continuous of order 1=�, then (1.3) holds. Condition (1.3) is the exact
analogue of the Yamada–Watanabe condition for stochastic di�erential equations driven
by a Brownian motion. See also Komatsu (1982, Theorem 1).
Just as in the Brownian case, one can show that condition (1.3) is sharp. That is,

if the integral is Hnite, one can Hnd a continuous function � having 
 as its modulus
of continuity for which pathwise uniqueness for (1.1) does not hold; see Bass (2003).
However, just as in the Brownian case, the examples in Bass (2003) showing sharpness
are a bit unsatisfying: � degenerates to 0 and not only does pathwise uniqueness fail,
but one does not have uniqueness in law either. In Barlow (1982), for each �¡ 1

2 ,
Barlow constructed examples of nondegenerate (i.e., bounded away from 0 and inHnity)
functions � that were H8older continuous of order �, but for which pathwise uniqueness
did not hold for the equation

dXt = �(Xt) dBt;

driven by a one-dimensional Brownian motion Bt .
Our main result in this paper is the extension of Barlow’s theorem to the stable

case. We prove:

Theorem 1.1. Let �0 = (1=�) ∧ 1. If �¡�0, there exists � that is bounded above
and bounded below by strictly positive 7nite constants and such that � is H9older
continuous of order �, but for which two distinct solutions to (1.2) exist.

We see from (1.3) that the result in Theorem 1.1 is sharp as far as H8older exponents
go.
See Barlow (1982) for deHnitions of weak, strict, and strong solutions of SDEs,

weak uniqueness and pathwise uniqueness, and for information about the implications
between the existence of weak solutions, strong solutions, weak uniqueness and path-
wise uniqueness. We just mention here that weak uniqueness and the existence of a
strong solution imply pathwise uniqueness. It is well known that when � is bounded
between two strictly positive constants, a weak solution to (1.2) exists and its law is
unique (cf. Proposition 3.3 of Bass (2003)). So Theorem 1.1 implies that no strong
solution to (1.2) exists for the � in Theorem 1.1. We do not pursue this here and refer
the reader to Bass (2003) for further information.
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In Section 3 of Bass (2003) it is asserted that if �¡ 1, there is pathwise uniqueness
for (1.2) if � is bounded above and below by positive constants and � is continuous.
There is an error in the proof of Proposition 3.2 there—the argument that the strong
solution constructed there is adapted is faulty. In fact, in view of Theorem 1.1 of the
present paper, � being bounded between two positive constants and only continuous
is not suOcient for pathwise uniqueness.
A recent paper by Williams (2001) is also concerned with pathwise solutions for

SDEs driven by LPevy processes. The paper (Williams, 2001), however, involves the
Stratonovich stochastic integral rather than the Itô integral considered here. The reader
might notice that our Theorem 1.1 seems to contradict Theorem 3 of Komatsu (1982).
We were unable to follow the last line of the proof of Theorem 3 of Komatsu (1982),
which appeals to a technique of Nakao (1972). It seems to us that the Lemma of
Nakao (1972), which has the hypothesis that the processes have continuous paths, uses
this hypothesis in an essential way. For example, if we let M be the di�erence of two
independent Poisson processes of rate one and let V =M , then (7) of Komatsu (1982)
is satisHed, but M is not identically zero.
Our method owes a great deal to Barlow’s paper (Barlow, 1982), but because we

are working with jump processes, there are also signiHcant di�erences. We give a brief
outline of our proof.
For �¿ 0, we let Xt(�); Yt(�); Zt(�); Z ′

t (�) be processes such that Z(�) and Z ′(�) are
independent symmetric stable processes of order � and

dXt(�) = �(Xt−(�)) dZt(�); X0(�) = x0;

dYt(�) = [�(Xt−(�) + Yt−(�))− �(Xt−(�))] dZt(�) + � dZ ′
t (�); Y0(�) = 0:

(1.4)

Suppose we can show that as � ↓ 0, the joint law of (Xt(�); Yt(�); Zt(�); Z ′
t (�)) has a

weak limit (Xt; Yt ; Zt ; Z ′
t ), where Yt is not identically zero. Then

Xt = x0 +
∫ t

0
�(Xs−) dZs;

Yt =
∫ t

0
[�(Xs− + Ys−)− �(Xs−)] dZs;

and so

Xt + Yt = x0 +
∫ t

0
�(Xs− + Ys−) dZs:

Hence Xt and Xt+Yt are distinct solutions to (1.1) and we have pathwise nonuniqueness.
Let T �

b = inf{t : |Yt(�)|¿ b}: The main goal is to show that for some b6 1
2 the

quantity ET �
b is bounded uniformly in �. Once we have that, we can argue as in the

Hrst part of Barlow’s paper (Barlow, 1982) to show that Yt(�) has a nonzero limit.
For notational convenience we will omit the � from Yt(�) and T �

b . Let Ik=[2−k ; 2−k+1]
and I∗k =[2−k−1; 2−k+2]. Roughly speaking, for some b6 1

2 , the strong Markov property
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tells us that the amount of time Yt spends in (0; b) up to time Tb is bounded by∑
k

[expected number of crossings by Yt from Ik to (I∗k )
c before Tb]

× [maximum expected time to exit I∗k from Ik ]:

(See Section 5 for details.)
The proof is now reduced to Hnding estimates for the terms in the last sum. Assuming

this is done, we can obtain a similar estimate for the time spent in (−b; 0), then we
argue that no time is spent at 0, and thus we obtain a uniform bound on ETb. We will
now give a few more details of this strategy.
To estimate the expected number of crossings from Ik to (I∗k )

c by Yt , we observe
that Yt is a time change of a symmetric stable process, so this is the same as the
expected number of crossings from Ik to (I∗k )

c by a symmetric stable process before
time Tb. We estimate this using a bound for the Green function of a symmetric stable
process on an interval.
The expected time for a symmetric stable process Zt to exit I∗k starting from a point

in Ik is of order (2−k)�, by scaling. For a constant h, the expected length of time for
hZt to exit I∗k starting from Ik is the same as the expected length of time for Zt to
leave (1=h)I∗k starting from (1=h)Ik , which is of order (2−k =h)�. For h we want to take
h= |�(x + y)− �(x)|, because

dYt = [�(Xt− + Yt−)− �(Xt−)] dZt:

To complete the argument, we would like to apply the above estimates with large h,
but we cannot construct � so that |�(x+ y)−�(x)| is large for all x and y. We can,
however, construct it so this expression is large enough for many x’s, and that turns
out to be good enough.
In Section 2 we construct �, while in Section 3 we estimate the number of crossings

from the set Ik to the complement of I∗k . Section 4 is where the estimate on the expected
time for Yt to leave an interval is given, and all the parts of the proof are put together
in Section 5.
We use the letter c with subscripts to denote strictly positive Hnite constants whose

exact value is unimportant. For a process Vt that is right continuous with left limits,
we denote the left limit at t by Vt− and the jump at time t by TVt .

2. Constructing �

Fix any �∈ (0; 1). Let U be the piecewise linear function on [0; 1] such that U (0)=
U (1) = 0 and U 

(
1
2

)
= 1; that is,

U (x) =

{
2x; 06 x6 1

2 ;

2− 2x; 1
2 6 x6 1:

DeHne  0 :R → [0; 1] by  0(x) = U (x − [x]), where [x] is the integer part of x. Note
that  0 is periodic with period 1 and agrees with U on [0; 1].
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Set

 n(x) =  0(2nx) and �(x) = 1 +
∞∑
n=0

2−�n n(x):

Note that the function � is bounded and bounded away from 0 because  n(x)¿ 0 and∑∞
n=0 2−�n ¡∞.
The family of functions which are H8older continuous with exponent � will be denoted

C�. We will Hrst show that � �∈ C�+� for any �¿ 0. We have

�(2−n−1)− �(0)¿ 2−�n[ n(2−n−1)−  n(0)] = 2−n�: (2.1)

Then

|�(2−n−1)− �(0)|
(2−n−1)�+� ¿ 2�+�+n�;

which will surpass any positive constant if n is large enough.

Proposition 2.1. If 0¡ ¡�, then �∈C .

Proof. Since
∑∞

n=1 2−�n is summable, � is bounded. It is easy to see that

| n(x)−  n(y)|=|x − y| 

cannot surpass the maximum value of  n(z)=z for z ∈ (0; 2−n−1]. Since  ′
n(z) equals

2n+1 for such z,

 n(z)
z 

= 2n+1z1− 6 2(n+1) :

Therefore,

| n(x)−  n(y)|6 2(n+1) |x − y| ;
and then

|�(x)− �(y)|6
∞∑
n=0

2−�n2(n+1) |x − y| 6 c1 |x − y| ;

since �¿ .

Let |A| denote the Lebesgue measure of a Borel set A in R. Let I∗k =[2−k−1; 2−k+2]
and

Ak(#) = {x : |�(x + y)− �(x)|¿#2−k� for all y∈ I∗k }:

Proposition 2.2. There are positive constants k0, #; L, and % such that if J is an
interval of length larger than L2−k , then |J ∩ Ak(#)|¿ %|J | for all k¿ k0.
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Proof. Let k¿ 5, r = 2−k , n = k − 5, and j0 a positive integer to be Hxed later on.
Since  n has slope 2n+1 on [0; 2−n−1], we have for y∈ I∗k and 06 x6 r=16

2−�n n(x + y)− 2−�n n(x) = 2−�n2n+1y¿ 2−�n2n+12−k−1 = c1r�; (2.2)

where c1 = 2−5(1−�). If 06 j¡n, the slope of  j is positive on [0; 2−n], so

 j(x + y)−  j(x)¿ 0 (2.3)

if 06 x6 r=16 and y∈ I∗k . Next we see that∣∣∣∣∣∣
∞∑

l=n+j0

2−�l l(x)

∣∣∣∣∣∣6
∞∑

l=n+j0

2−l� =
2−�(n+j0)

1− 2−� =
2−�( j0−5)

1− 2−� r�:

Provided j0 is chosen large enough,∣∣∣∣∣∣
∞∑

l=n+j0

2−�l l(x)

∣∣∣∣∣∣6 c1r�=4: (2.4)

The derivative of  l is bounded by 2l+1, so if y∈ I∗k ,

|2−�l l(x + y)− 2−�l l(x)|6 2−�l+l+1|y|
6 2(1−�)l+3r1−�r�6 2l(1−�)+32−k(1−�)r�: (2.5)

So if j0 is chosen to be suOciently large and n¿j0,
n−j0−1∑

l=1

|2−�l l(x + y)− 2−�l l(x)|6 2(n−j0−1)(1−�)+3

21−� − 1
2−k(1−�)r�

6 c1r�=4: (2.6)

If 06 �6 1
16 and 06 x6 �r, then since | ′

l | is bounded by 2l+1,∣∣∣∣∣
n+j0−1∑
l=n+1

2−�l l(x)

∣∣∣∣∣6
n+j0−1∑
l=n+1

2l(1−�)+1x

=
2(n+j0)(1−�)+1 − 2(n+1)(1−�)+1

21−� − 1
x

6 (21−� − 1)−1�2n(1−�)2j0(1−�)+1r�r1−�

6 c2�2j0(1−�)r�: (2.7)

Choose j0 so that (2.4) and (2.6) hold, and then choose �¡ 1
16 small so that (2.7)

implies∣∣∣∣∣
n+j0−1∑
l=n+1

2−�l l(x)

∣∣∣∣∣6 c1r�=4: (2.8)

Since 2−�l l(x + y)¿ 0 for all l, combining (2.4) and (2.8),
∞∑

l=n+1

[2−�l l(x + y)− 2−�l l(x)]¿− c1r�=2 (2.9)
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if x∈ (0; �r] and y∈ I∗k . Let

�̃(x) =
∞∑

l=n−j0

2−�l l(x):

We obtain from (2.2), (2.3) and (2.9),

�̃(x + y)− �̃(x)¿ c1r�=2 (2.10)

if x∈ (0; �r] and y∈ I∗k .
The function �̃ is periodic with period 2−(n−j0). So if J is an interval of length at

least 2−(n−j0)+1, then

|{x∈ J : �̃(x + y)− �̃(x)¿ c1r�=2 for all y∈ I∗k }|¿ �2−j0−5|J |: (2.11)

Using (2.6), if |J |¿ 2−(n−j0)+1, then

|{x∈ J :�(x + y)− �(x)¿ c1r�=4 for all y∈ I∗k }|¿ �2−j0−5|J |:
This implies the proposition with k0 = j0 + 6, #= c1=4, L=2j0+6, and %= �2−j0−5.

3. Expected number of crossings

On a Hltered probability space (*;F; {Ft}t¿0;P), a real-valued stochastic process
Xt is said to be an {Ft}-adapted one-dimensional symmetric stable process of order
�∈ (0; 2) if for every +∈R, t ¿ 0 and s¿ 0,

E[ei+(Xt+s−Xs)|Fs] = e−t|+|� :

In other words, for every s¿ 0, process t 
→ Xt+s − Xs is independent of Fs and is a
symmetric �-stable process starting from the origin.
In this section, � is a continuous function on R that is bounded between two strictly

positive constants.

Proposition 3.1. For each �¿ 0, x0; y0 ∈R, there exists a 7ltered probability space
(*;F; {Ft}t¿0;P) with processes Xt; Yt ; Zt ; Z ′

t , such that Zt and Z ′
t are independent

one-dimensional {Ft}-adapted symmetric stable processes of order �,

Xt = x0 +
∫ t

0
�(Xs−) dZs; (3.1)

and

Yt = y0 +
∫ t

0
[�(Xs− + Ys−)− �(Xs−)] dZs + �Z ′

t : (3.2)

Proof. Using the substitution Kt = Xt + Yt , it is easy to see that the Eqs. (3.1)–(3.2)
are equivalent to the following two equations:

Xt = x0 +
∫ t

0
�(Xs−) dZs;

Kt = x0 + y0 +
∫ t

0
�(Ks−) dZs + �Z ′

t :

(3.3)
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The idea of the proof of weak existence for (3.3)–(3.4) is standard; cf. Bass (1988),
Section 3. We take smooth �n which converge uniformly to � on compact intervals
and Hnd (unique) solutions to

dX n
t = �n(X n

t−) dZ̃ t ; X n
0 = x0;

dKn
t = �n(Kn

t−) dZ̃ t + � dZ̃
′
t ; Kn

0 = x0 + y0;

where Z̃ t and Z̃
′
t are independent one-dimensional symmetric �-stable processes. It is

routine to show tightness and also routine to show that a weak subsequential limit
(Xt; Kt ; Z; Z ′) of (X n

t ; K
n
t ; Z̃ ; Z̃

′
) satisHes (3.3)–(3.4), where Z̃ ; Z̃

′
are independent sym-

metric �-stable processes. Then if we take Yt=Kt−Xt , we see that (Xt; Yt ; Z; Z ′) solves
(3.1)–(3.2).

Proposition 3.2. Let (Xt; Yt) be a weak solution of (3.1)–(3.2). De7ne

At =
∫ t

0
(|�(Xs− + Ys−)− �(Xs−)|� + ��) ds

and -t = inf{s¿ 0 :As ¿ t} for t¿ 0. Then Wt = Y-t is a symmetric �-stable process
starting from y0.

Proof. The proof is a straightforward modiHcation of arguments used in Proposition
3.1 and Theorem 3.1 of RosiPnski and WoyczyPnski (1986).

Recall that

Ik = [2−k ; 2−k+1]; I∗k = [2−k−1; 2−k+2]:

Let RY
1 = inf{t :Yt ∈ Ik},
SY
i = inf{t ¿RY

i :Yt �∈ I∗k } and RY
i+1 = inf{t ¿SY

i :Yt ∈ Ik} for i¿ 1:

Let

NY
k (t) = sup{j :RY

j 6 t};
the number of crossings from Ik to (I∗k )

c. Let TY
b =inf{t : |Yt |¿ b}. Recall that Wt=Y-t

and deHne RW
i ; SW

i ; NW
k , and TW

b analogously, but in terms of W instead of Y .

Proposition 3.3. For b¿ 0, there exists c1 = c1(b)¿ 0 such that

ENW
k (TW

b )6




c12k(�−1); �¿ 1;

c1k; �= 1;

c1; �¡ 1:

(3.4)

Proof. We drop the superscripts W from the notation. Let 3k be the Hrst exit from I∗k
by Wt . Since Wt ∈ I∗k when Ri ¡ t¡Si, by the strong Markov property,

E
∫ Tb

0
1I∗k (Ws) ds¿

∞∑
i=1

E(Si ∧ Tb − Ri ∧ Tb)
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=
∞∑
i=1

E[EW(Ri∧Tb)S1;Ri ¡Tb]

¿ [E(Nk(Tb)− 1]
[
inf
x∈Ik

Ex3k
]
: (3.5)

Let Uk=inf {t : |Wt−W0|¿ 2−k−3}, the time for Wt to move a distance at least 2−k−3.
If x∈ Ik , Ex3k ¿ ExUk = E0Uk . By scaling,

E0Uk = c2(2−k)�E0U0 = c32−k�:

Combining with (3.6) we have

ENk(Tb)6 1 + c32k�E
∫ Tb

0
1I∗k (Ws) ds: (3.6)

Suppose �¿ 1. The Green function for Wt killed on exiting [−b; b] is bounded (see
Corollary 4 of Blumenthal et al., 1961), so

E
∫ Tb

0
1I∗k (Ws) ds6 c4|I∗k |6 c52−k :

If � = 1, the Green function is bounded by c6 log(1=|x|) (again see Blumenthal et al.,
1961), and then

E
∫ Tb

0
1I∗k (Ws) ds6 c6

∫
I∗k

log(1=|x|) dx

= c6

∫ 2−k+2

2−k−1
log(1=|x|) dx6 c7k2−k :

Finally, if �¡ 1, the Green function is bounded by c8|x|�−1; see Blumenthal et al.
(1961). In this case

E
∫ Tb

0
1I∗k (Ws) ds6 c9

∫
I∗k

|x|�−1 dx6 c102−k�:

If we substitute the appropriate estimate for E
∫ Tb

0 1I∗k (Ws) ds into (3.7), we obtain the
proposition.

Corollary 3.4. For b¿ 0, there exists c1 = c1(b)¿ 0 such that

ENY
k (T

Y
b )6




c12k(�−1); �¿ 1;

c1k; �= 1;

c1; �¡ 1:

(3.7)

Proof. This follows from Proposition 3.3 and the fact that Y is a nondegenerate time
change of W (see Proposition 3.2).
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4. Expected time to leave an interval

Let (Xt; Yt) be a weak solution of (3.1)–(3.2). We want an estimate on E3k , where
3k =inf{t :Yt �∈ I∗k } (note that here 3k is deHned in terms of Yt). Let �0 = 1

� ∧1, choose
any �¡�0, and then Hx any �∈ (�; �0). Construct � as in Section 2, and let k0; #; L,
and % be as in the statement of Proposition 2.2.
Fix k¿ k0. For simplicity write r for 2−k and set t0 = r�(1−�). Recall the deHnition

of Ak(#) from Section 2. Let

Ct =
∑
s6t

1{|TZs|¿8# −1r1−�}1{Xs−∈Ak (#)}: (4.1)

Lemma 4.1. There is a constant c1 ¿ 0, independent of k¿ k0 and such that ECt0 ¿ c1.

Proof. Recall that the symmetric �-stable process Z has LPevy kernel c(�)=|z|1+� for
some c(�)¿ 0; see (Bertoin, 1996, p. 13). The process

Vt =
∑
s6t

1(|TZs|¿8# −1r1−�) (4.2)

is a Poisson process with parameter c(�)�−1(8# −1r1−�)−� (cf. Bertoin, 1996). Since
Zt is an {Ft}-adapted symmetric �-stable process, it follows that Mt = Vt − c(�)�−1

(8# −1r1−�)−�t is a purely discontinuous square integrable martingale with respect to
{Ft} (note that this Hltration is larger than the natural Hltration generated by Mt).
Hence the stochastic integral

∫ t
0 1Ak (#)(Xs−) dMs is also a square integrable martingale

with respect to {Ft}. It follows that

ECt = E
∫ t

0
1Ak (#)(Xs−) dVs

= c2E
∫ t

0
1Ak (#)(Xs−)r−(1−�)� ds

= c2r−�(1−�)E
∫ t

0
1Ak (#)(Xs) ds: (4.3)

In the last equality we used the fact that Xs− = Xs for all but countably many s’s.
Since Xt = x0 +

∫ t
0 �(Xs−) dZs and � is bounded between two positive numbers, by

Theorem 3.1 of RosiPnski and WoyczyPnski (1986), Wt = X-t is a symmetric �-stable
process starting from x0, where

-t = inf
{
s¿ 0 :

∫ s

0
�(Xu−)� du¿ t

}
:

Note that d-t=dt is bounded between two positive constants since � is. Therefore, for
some c3 and c4,

E
∫ t0

0
1Ak (#)(Xs) ds = E

∫ -−1(t0)

0
1Ak (#)(Wt)

d-t

dt
dt
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¿ c3E
∫ c4t0

0
1Ak (#)(Wt) dt

¿ c3E
∫ c4t0

c4t0=2
1Ak (#)(Wt) dt; (4.4)

where we used the change of variables s=-t in the Hrst line. If ps(x; y) is the transition
density for a symmetric stable process of order �, then there exists (see Proposition
3.1 of Kolokoltsov, 2000) c5 ¿ 0 such that

ps(x; y)¿ c5t
−1=�
0 for s∈ [c4t0=2; c4t0] and |y − x| ∈ [− Lt1=�0 ; Lt1=�0 ]: (4.5)

Let J = [x0 − Lt1=�0 ; x0 + Lt1=�0 ]. Putting (4.4) and (4.5) together and using Proposition
2.2,

E
∫ t0

0
1Ak (#)(Xs) ds¿ c6t

1−(1=�)
0 |Ak(#) ∩ J |

¿ c7t
1−(1=�)
0 %|J |= 2c7t

1−(1=�)
0 %Lt1=�0

¿ c8t0:

Therefore, using (4.3),

ECt0 ¿ c9 t0r−(1−�)� = c9:

Proposition 4.2. There exists c1¿ 0 not depending on x0; y0 ∈R, k¿ k0 and �∈ (0; 1)
such that P(Ct0 ¿ 1)¿ c1.

Proof. With Vt deHned as in (4.2), we have Ct6Vt , and as Vt is a Poisson process
with parameter c2r−�(1−�),

EV 2
t0 = (c2t0r−�(1−�))2 + c2t0r−�(1−�) = c22 + c2 = c3:

By Lemma 4.1,

c46 ECt0 = E[Ct0 ;Ct0 ¿ 1]6 E[Vt0 ;Ct0 ¿ 1]

6 (EV 2
t0 )

1=2(P(Ct0 ¿ 1))1=2 = c1=23 (P(Ct0 ¿ 1))1=2:

Rearranging yields the result.

Recall that k¿ k0 and 3k = inf{t :Yt �∈ I∗k }.

Proposition 4.3. There exists c1¿ 0, not depending on k and �∈ (0; 1), such that for
every starting point (x0; y0) for (Xt; Yt) in (3.1)–(3.2), E3k 6 c1(2−k)�(1−�).

Proof. Let Us = inf{t ¿ s :Ct¿ 1}. Then
P(U0 ¿mt0)6P(U(m−1)t0 ¿mt0; U0 ¿ (m− 1)t0)

= E[P(U(m−1)t0 ¿mt0|F(m−1)t0 );U0 ¿ (m− 1)t0]: (4.6)
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The conditional law of (Xt+(m−1)t0 ; Yt+(m−1)t0 ) given F(m−1)t0 solves an SDE of the
same form as (3.1) and (3.2); cf. Bass (1988), proof of Proposition 3.2. This and
Proposition 4.2 give

P(Cmt0 − C(m−1)t0 ¿ 1|F(m−1)t0 )¿ c2: (4.7)

Inequality (4.7) implies

P(U(m−1)t0 ¿mt0|F(m−1)t0 )6 1− c2:

Substituting this in (4.6),

P(U0 ¿mt0)6 (1− c2)P(U0 ¿ (m− 1)t0):

Using induction, P(U0 ¿mt0)6 (1− c2)m, and from this it follows that

EU06 c3t0 = c4(2−k)�(1−�): (4.8)

Recall that the probability that Z and Z ′ jump at the same time is 0. At time U0

the process C has a jump so TZU0 ¿ 8# −1r1−� and XU0− ∈Ak(#). Had Yt not exited
I∗k by that time, then �(XU0− + YU0−) − �(XU0−)¿#r� (by the deHnition of Ak(#)),
and therefore Y would have had a jump of size at least (8# −1r1−�)(#r�) = 8r. This
would have meant that YU0 �∈ I∗k . We have thus shown that 3k 6U0. This combined
with (4.7) completes the proof.

5. Pathwise nonuniqueness

It follows from Proposition 3.1 that for each i¿ 1, there exists a Hltered probability
space (*(i);F(i); {F(i)

t };P(i)) and processes X (i)
t ; Y (i)

t ; Z (i)
t ; Z (i)

t′ such that Z (i)
t and Z (i)

t′

are independent {F(i)
t }-adapted symmetric stable processes of order �,

X (i)
t = x0 +

∫ t

0
�(X (i)

s−) dZ
(i)
s ; (5.1)

and

Y (i)
t =

∫ t

0
[�(X (i)

s− + Y (i)
s−)− �(X (i)

s−)] dZ
(i)
s +

1
i
Z (i)
t′ : (5.2)

Let T i
b = inf{t : |Y (i)

t |¿ b} and deHne NY (i)

k (t) analogously to NY
k (t) in Section 3.

Proposition 5.1. Let k0 be as in Proposition 2.2 and b= 2−k0 . If k¿ k0, then

E
∫ T i

b

0
1Ik (Y

(i)
s ) ds6 c1(2−k)�(1−�)ENY (i)

k (T i
b); (5.3)

where c1 is independent of k.

Proof. We drop the (i)’s from the notation. Suppose R is any Hnite stopping time.
The conditional law of (Xt; Yt) given FR is again a solution to

dXt = �(Xt−) dZt;

dYt = [�(Xt− + Yt−)− �(Xt−)] dZt +
1
i
dZ ′

t ; (5.4)
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starting from (XR; YR). So the argument of Section 4 shows that the expected amount of
time for Yt to leave I∗k after time R is again bounded by c2(2−k)�(1−�) (see Proposition
4.3). Let Rj = RY

j ; Sj = SY
j be deHned as in Section 3. Then

E
∫ Tb

0
1Ik (Ys) ds6

∞∑
j=1

E(Sj ∧ Tb − Rj ∧ Tb)

=
∞∑
j=1

E[E[(Sj ∧ Tb − Rj ∧ Tb|FRj∧Tb];Rj ¡Tb]

6
∞∑
j=1

c2(2−k)�(1−�)E1(Rj¡Tb)

= c2(2−k)�(1−�)E
∞∑
j=1

1(Rj¡Tb)

= c2(2−k)�(1−�)ENY
k (Tb):

Recall that �0 = (1=�) ∧ 1, �¡�0, �∈ (�; �0), and b = 2−k0 , where k0 is given in
Proposition 2.2.

Theorem 5.2. There exists c1 such that ET i
b6 c1 for all i¿ 1.

Proof. By Proposition 5.1,

E
∫ T i

b

0
1(0; b)(Y (i)

s ) ds6
∞∑
k=1

E
∫ T i

b

0
1Ik (Y

(i)
s ) ds

6
∞∑
k=1

c2(2−k)�(1−�)ENY (i)

k (T i
b): (5.5)

If �¿ 1, then by Corollary 3.4, the right-hand side is bounded by
∞∑
k=1

c2(2−k)�(1−�)c3(2−k)1−�:

As �(1− �) + (1− �) = 1− ��¿ 0, this is summable, and we have

E
∫ T i

b

0
1(0; b)(Y (i)

s ) ds6 c4:

If �6 1, then by Corollary 3.4 the right-hand side of (5.5) is bounded by
∞∑
k=1

c2(2−k)�(1−�)c5k or
∞∑
k=1

c2(2−k)�(1−�)c5:

In either case, as �¡ 1, we have �(1− �)¿ 0, and both series are summable.
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The same arguments with only cosmetic changes imply that

E
∫ T i

b

0
1(−b;0)(Y (i)

s ) ds6 c4

with c4 independent of i. Since the expected amount of time a symmetric stable process
of order � spends at 0 is 0 and Y (i)

t is a nondegenerate time change of a symmetric
stable process, then Y (i)

t spends 0 time at 0. That is,

E
∫ T i

b

0
1{0}(Y (i)

s ) ds= 0:

Combining, we have our theorem.

Proof Theorem 1.1. It is routine (Bass, 1988, Section 3) to see that the quadruples of
processes (X (i)

t ; Y (i)
t ; Z (i)

t ; Z (i)
t′ ) are tight and any subsequential limit point (Xt; Yt ; Zt ; Z ′

t )
under weak convergence will satisfy (3.1)–(3.2) with y0 = 0 and � = 0 there. By
Theorem 5.2, ET i

b6 c1. We have that Xt satisHes (1.2) and so does Xt + Yt . We have
for t1 ¿ 0,

P
(
sup
s6t1

|Ys|6 b
)
6 lim sup

i
P
(
sup
s6t1

|Y (i)
s |6 b

)

6 lim sup
i

P(T i
b¿ t1)6 lim sup

i

ET i
b

t1
:

If we set t1 =2c1, then the right side is less than 1
2 , which proves that with probability

at least 1
2 , we have sups6t1 |Ys|¿ b. Therefore, our two solutions Xt and Xt + Yt are

not identically equal and pathwise uniqueness fails.

References

Barlow, M.T., 1982. One-dimensional stochastic di�erential equations with no strong solution. J. London
Math. Soc. 26, 335–347.

Bass, R.F., 1988. Uniqueness in law for pure jump Markov processes. Probab. Theory Related Fields 79,
271–287.

Bass, R.F., 2003. Stochastic di�erential equations driven by symmetric stable processes. SPeminaire de
ProbabilitPes, Vol. XXXVI. Springer, New York, pp. 302–313.

Bertoin, J., 1996. LPevy Processes. Cambridge University Press, Cambridge.
Blumenthal, R.M., Getoor, R.K., Ray, D.B., 1961. On the distribution of Hrst hits for the symmetric stable

processes. Trans. Amer. Math. Soc. 99, 540–554.
Kolokoltsov, V., 2000. Symmetric stable laws and stable-like jump-di�usions. Proc. London Math. Soc. 80,

725–768.
Komatsu, T., 1982. On the pathwise uniqueness of solutions of one-dimensional stochastic di�erential

equations of jump type. Proc. Japan Acad. Ser. A Math. Sci. 58, 353–356.
Meyer, P.-A., 1976. Un cours sur les intPegrales stochastiques. SPeminaire de ProbabilitPes X. Springer, Berlin,

pp. 245–400.



R.F. Bass et al. / Stochastic Processes and their Applications 111 (2004) 1–15 15

Nakao, S., 1972. On the pathwise uniqueness of solutions of one-dimensional stochastic di�erential equations.
Osaka J. Math. 9, 513–518.

RosiPnski, J., WoyczyPnski, W.A., 1986. On Ito stochastic integration with respect to p-stable motion: inner
clock, integrability of sample paths, double and multiple integrals. Ann. Probab. 14, 271–286.

Williams, D.R., 2001. Path-wise solutions of stochastic di�erential equations driven by LPevy processes. Rev.
Mat. Iberoamericana 17, 295–329.


	Stochastic differential equations driven by stable processes for which pathwise uniqueness fails
	Introduction
	Constructing phi
	Expected number of crossings
	Expected time to leave an interval
	Pathwise nonuniqueness
	References


