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Abstract

We consider a Markovian regime switching insurance risk model (also called Markov-modulated
risk model). The closed form solutions for the joint distribution of surplus before and after ruin when
the initial surplus is zero or when the claim size distributions are phase-type distributed are obtained.
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1. Introduction

In the classical insurance risk model, a compound Poisson process is often used to model
the surplus process. There is a huge amount of literature devoted to the generalization of
the classical model in different ways. For more detailed discussions, see Gerber [J],
Grandell [8], Rolski et al. [13], Asmussen [2] and the references therein.

The Markov-modulated risk model was proposed by Asmussen [1], in which the ruin
probability was studied. The model is also called Markovian regime switching model in the
finance and actuarial science literature. This model can capture the feature that insurance
policies may need to change if economical or political environment changes. Recently,
there have been resurgent interests of using regime switching models in finance and
actuarial science. Hardy [9] used monthly data from the Standard and Poor’s 500 and the
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Toronto Stock Exchange 300 indices to fit a regime-switching lognormal model. The fit of
the regime-switching model to the data is compared with other econometric models.

In this paper, we consider the joint distribution of the surplus before and after ruin. In
particular, we assume that the claim sizes are phase-type distributed. The class of phase-
type distributions is important in the analysis of insurance risk models because any positive
distribution can be approximated by a sequence of phase-type distributions. If the problem
can be solved in the case of phase-type distribution, the problem in a general case can be
approximated by using a sequence of phase-type distributions which converges to
the desired probability distribution. In the literature, many methods to find a good
approximating sequence have been proposed. We shall show here that when the initial
surplus is zero or the claim size distributions are phase-type, it is possible to obtain a closed
form solution to the joint distribution being considered. By taking proper limits, the
distribution of the surplus prior to ruin and the distribution of the deficit at ruin can be
obtained.

2. The insurance risk model

Let {J;},>¢ be a homogenous continuous-time Markov chain taking values in a finite set
M =1{1,2,...,d} with generator A = (4;). A is assumed to be irreducible with stationary
distribution © = (71, 7,...,74). J; governs the state of economy. When the state of
economy J, is i, the claim size distribution is B; with density b;, Laplace transform b;(s),
moment generating function éi(s) and mean y;, the arrival intensity is ff; and the premium
rate is ¢;. The initial surplus is #>0.

Let {Rtl}, {Rf}, e, {R?} be d independent classical compound Poisson risk process with
premium rate ¢;, claim arrival rate f3;, claim size distribution B; and zero initial surplus. The
risk process {R;} is then given by

d t
R =u+ Z/ 1(J, =) dR,
i=1 70

where 1(A4) is the indicator function of event 4 and the aggregate loss process {S;} is given
by S; = u — R,. This is the same model as in Asmussen [2].
Following the proof of Theorem 12.3.2 of Rolski et al. [13], it is easy to see that

d

lim — Z mi(ci — Pitsy)- (1)
i=1

Let P;(-) = P(-|Jy = i). From the above, the condition of having a positive expected

profit is

d

Z (¢ — Bipy)>0. @)

i=1

Let ©(u) = inf{z : S;>u} = inf{zr : R, <0} be the time of ruin with initial surplus u and
t=1(0). Forie ., u,x,y>0, let

Fi(u,x,y) = Pi(t(u) <00, Ry~ <X, |Reyl <YIRo = u)
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be the joint distribution of surplus before and after ruin with initial surplus «# and

: o’
fi(uaxﬂy) = mFi(uaan’)
be the joint density of surplus before and after ruin with initial surplus u.
In order to obtain explicit formulae for the two quantities of interest above, we shall
need the joint distribution and joint density of surplus before and after ruin fixing the state
of economy at the time of ruin to be j. They are denoted by

Fij(u, x,y) = Pi(t(u) <00, Jo) = J, Rey~ <X, [Rewy| <YIRo = 1)
and

62
fl](u3x7y) = mFU(%X,y)

The joint distribution and joint density of surplus before and after ruin can be obtained by
summing Fy;(u, x,y) and f;(u, x,y) over all j € 4.

We assume in the following that condition (2) holds so that the ruin probability is
strictly less than one starting with any non-negative surplus and any state of economy and
¢ =1 for all i € ./ since only events in infinite horizon are considered. Indeed, for any
given sets of premium rate {¢;},. 4, the transformation

= =t g2
Ci Ci
yields a process {S;} such that the joint distributions of the surplus before and after ruin
with initial surplus u for the corresponding {R,} and {R,} are the same.

3. The joint distribution of surplus before and after ruin with zero initial surplus

Assume u =0 and ¢; = 1 for all i € .#. As in Asmussen [2], let {m,},-( be the .#-value
process obtained by observing {J,} only when {S,} is at a minimum. If m, = i, then there
exists a unique value of ¢ such that S, > S, for any u<t, S; = —x and J, =i. One can
understand the process {m,} as the state variable of S, at the first time when S, hits level
—x. Fig. 1 below (similar to Fig. 2.1 in Chapter VI of Asmussen [2]) illustrates this when
A = {1,2,3}. In the figure, there are three states of {J,}, marked by thin, thick and dashed
lines, respectively, in the path of {S;}. The corresponding values of m, is represented by the
line next to the vertical axis.

By the net profit condition (2), S; - —oo as ¢t - oo. Thus {m,} is a non-terminating
homogenous continuous-time Markov chain and its generator is denoted by Q.

Consider stationary version of {J,} and its time-reversed version {J,} on a finite time
interval. The generator of {J,} is

o o T
A=) = {;j Aﬂ}-

In matrix notation, let A4 = diag(n;,na,...,7y), then A=A4""A'A. Let {S;} be defined
similar to {S,} but with {J,} replaced by the time-reversed version {J,}. The process {71} is
defined similarly and its generator is denoted by Q. {ri,} is also non-terminating, since
S, — —00 as t — oQ.
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Fig. 1. The illustration of {m,}.

Proposition VI.2.4 of Asmussen [2] (with a slight change of notations) states that 0
satisfies the non-linear matrix equation Q = ¢(Q) where

mQr=A—m@wbmynm»+A S(dx)el”

and S(dx) = diag(p, Bi1(dx), f,B2(dx),..., ;Bs(dx)). Furthermore, the sequence {Q(n)}
defined by

- ~ (n+1) _ > (1)

0" = A — diag(B), pon.... B, 0" = (0"

converges monotonically to Q. The matrix Q can be found by a similar iteration scheme.

The matrix Q is important in the calculation of the joint density of surplus before and
after ruin, as illustrated in Corollary VI.2.6(a) of Asmussen [2], which states that for a
measure-valued matrix G, (A) defined by ijth element

G (i,j,A) = Pi(r<o00,S; € A,J, =),
letting K = A’IQ/A, then

G.((z,00)) = /0 ” K¥S(x + 2, 00)) dx.

The following theorem extends the result above.
Theorem 1. Let G(u,x,y) be the matrix with ijth element

Pi(t(u) <00, Rewy > X, Rewy < — ¥, Jzwy = JjIRo = u).
Then

G(0,x,y) = / ” eK=8((z + y, 00)) dz. Q)

X
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Proof. When u = 0, the jjth element of G(0, x, y) is

Pi(t<oo,R->x,R. < —y,J. =j|Ry = 0)
= Pi(t<oo, =S:->x,S:>p,J;. =)).
Fix T>0, let J,=J7_ and S, =Sy — Sy_ for all 7€ [0, T]. The process {(J},S))}
has the same d1str1but10n as the time-reversed version {(J;,S,)} under the stationary
initial distribution. Let %, be the time when S, first hits level —z. Then
nipi(‘]T =ja _ST_ € [Z,Z + dZ]sT> T)
=P,Jo=0iJr=J,—Sr €[z,z+dz],S;<0 for all t<T)
=Pr(Jy=4Jy =10,S,> —zforall t<T,—S- €[z,z+dz])
=nP(Jr =i,1.>T,—Sr €[z,z+dz]). 4)
Let g;(T) be the density function
lim P(Jr=j,t.<T+t,—Sr-€lz,z+dz)) - P:(Jr =J,t.<T,—S7- € [z,z+dz])
t}0 t

and g;,(T) be the density function

i Pi(Jr=it.<T+t,~Sr €lz,z+dz]) — P;(Jr = i,1.<T, S €[z,z+dz])
t}0 t ’

By (4),
Pi(t<o0,—S;- €[z,z4+dz],J. =)) = /0 ﬁ,Bj(z)gii(T)dT

- TL'] o0 o

= ﬂij(Z)— gji(T)dT

TT; 0

- T . .

= ﬁij(z)n—]_Pj(mz =1i)dz

= ﬁjB,(z)Z—ie}eQ‘—ei dz,

where ¢; is the ith unit column vector. When 7 < oo and J; = j, denote the density function
of —S:- by s;i(z). By conditioning on S;-,

o0
Pi(t<oo,—S¢->x,S.>y,J, =j) = / P(Y>y+z|Y >z Y~B))s;(z)dz
X

Bi(y+2)
= /Y g(z)z Z] B;Bj(2)e; e, dz

o0
T B 0z
= /x ;fiﬂij(y + Z)ejeQ e;dz. 5
Rewriting in matrix form, the result is obtained. [

Assuming all claim size distributions are absolutely continuous, the joint density of
surplus before and after ruin starting with zero initial surplus can now be obtained.
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Theorem 2. The joint density of surplus before and after ruin starting with zero initial surplus
and state of economy i is given by

d . - -
110,x,9) =3 TRy + x)eele; = eeks(x + pe, ©)
=

where s(x) = diag(f,b1(x), f2b2(x), . .., B ba(x)).

Proof. Since all the claim size distributions are absolutely continuous, (5) can be
differentiated twice to yield

1350,x,y) = %ﬁjbj@ + x)e}eQ-“e,.
1

and hence a closed form solution of f;(0, x, y) can be obtained from
d d
i 1.0 N
S10.59) =) f0.x.9) =Y Lhbi(y+xeee = ees(x +y)e. O
j=1 j=1 "

By integrating the joint density, the joint distribution of surplus before and after ruin
starting with zero initial surplus and Jy =i is

X y . X o
Fi(0,x,y) = / / ee®s(z + v)dvdze = e;/ X S((z,z + y)) dze.
o Jo 0

Thus the distributions of surplus before ruin and the deficit at ruin, starting with zero
initial surplus and Jy = i, are given by

Fi(0,x,00) = ¢, /0 ' ek=8((z, 00)) dze
and
Fi(0,00,y) =¢; /Ooo eX=8((z,z + ) dze.
Let §/;(0) = Pi(r<o00,J, =jIRy=0) and ,(0) = Pyt <oo|Ry = 0) = L ;(0) be

the infinite-horizon ruin probability starting with zero initial surplus and Jy =1,
then

;;(0) = €;G(0,0,0)e; = e; / eX°8((z, 00)) dze;
0
and the closed form solution of ¥,;(0) is
¢ / eK2S((z, 00)) dze, )
0

where e is the column vector with all entries equal to 1.
Comparing with the result in the classical compound Poisson risk model

P(t<o00,—S; >x,S;>y) = [3/ B(z)dz
xX+y

and
f(O,X,y) = ﬁb(x+y)a
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the symmetry between x and y is lost in the Markov-modulated risk model because of the
presence of O and K. But if one starts with the stationary initial distribution m, using the
fact that e is a stochastic matrix,

Qo=
and on combining with (5),

Prt<o0,—S->x,S;:>y)
d d 00

T - .
33 / 5B By + )eleie; dz
=1 j=1 Jx T

o ; d 00 _
/ njﬁjl}j(y + z)e}eQZe dz = Z/ i Bi(y + z)e}e dz
X Jj=1 X

[
M=~

1

~.
Il

I
.M&

/ njﬁij(y+Z)dZ=ﬁ/ B(y+z)dz=ﬁ/+ B(z)dz,
X X x+y

1

J

where /3=Z;1:17Tj/3_/ and B(x):%Z;lenjﬁij(x) are the average claim arrival rate
and average claim size distribution. In this case, the symmetry between x and y is
preserved.

4. A coupled system of integro-differential equations for the expected discounted penalty
function

Gerber and Shiu [6] introduced the function
$(u) = Ele™ " w(Reu, | Rety)1(x() < 00)| Ry = 1]

for >0 and bivariate non-negative function w for the classical compound Poisson
risk model. This function is called the expected discounted penalty function because
if one treat 0 as the constant force of interest and w as the benefit of an insurance
payable at the time of ruin, with the benefit amount varying according to the
surplus before and after ruin, ¢(u) is the actuarial present value of the insurance. The
expected discounted penalty function unifies the study of ruin probability, joint
distribution of surplus before and after ruin, moments of the surplus at ruin and the
time of ruin. For example, to study the distribution of the time of ruin, one can set
w(x,y) =1 for all x,y>0 and ¢(u) is the Laplace transform of the time of ruin. For a
detailed study of the expected discounted penalty function in the classical model, one can
refer to Gerber and Shiu [6].

In this section we shall derive a set of integro-differential equations satisfied by the
Gerber—Shiu expected discounted penalty function in the Markov-modulated risk model
defined by

di(u) = Eile " w(Reqy, | Reuy )1 (x(1t) < 00)| Ry = ul],

where w is a bivariate non-negative function and #>0. This function is useful in obtaining
quantities regarding the time of ruin.
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Theorem 3. Let w(u):fjo w(u,z — u)Bi(dz) and Wwi(s) = 0°°e"”w,-(u)du. Then ¢ (u)
satisfies

(8, + 0) ) ~ 2:: by = 900+, [ =802+
and the Laplace transj]:orm of ¢,(u), denoted by §,(s), satisfies

[+ 0 =5 = Bbi9)| dts) - Xdlj Ly (9) = Bii(s) — ¢,(0).
Proof. By the property of Markoifiprocess,

bi(u) = e“’{(l — Bydn)(1 + Zi di)p(u + d) + (1 — B;di)

< Y 2y dig(u+ do) + B de(l + 2y do)
J#i

X { / ¢;(u— 2)Bi(dz) + / w(u, z — u)B,-(dz)} + o(dt)} ®)
0 u
where the four terms correspond to

(1) no change of state and no claim in d¢,

(2) a change of state but no claim in dz,

(3) no change of state but a claim arrives in d¢, and
(4) all other events with total probability o(dz).

Eq. (8) can be simplified to

$ilw) = (13 dr){[l + i = B) Al ) + Gy de + Y Ay () dt

J#i
+ B dt [ / ' ¢i(u— 2)Bi(dz) + / ” w(u, z — u)Bi(dz)] + o(dt)}
0 u
= ¢,(u) + i) dt + (i — B; — O)p(w) di + Y Ayp;(w) di

J#i
+ p;dt [/ ¢;(u — z)Bi(dz) + / w(u, z — u)B,-(dz)] + o(dp).
0 u
Cancelling ¢;(u), dividing both sides by dr and taking limit, the equation above reduces to

d u
(Bi+ O)dpiw) = > 2yp () — i) = B; [ /0 ¢,(u — 2)Bi(dz) + wi(uﬁ ,
j=1

which is an integro-differential equation corresponding to (2.16) of Gerber and Shiu [6].
Multiplying both sides by e™* and integrating with respect to u, the above becomes

d
[Bi+0 =5 = BB b = D 2ydy9) = Biv(9) = 40 O
J=1
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From the above system of linear equations, if the values of ¢,(0) for all i € .# are known
and the matrix

A(s) = diag(B,(1 — bi(5)), B(1 = b2(5)), - . ., Bu(1 = ba(s))) + (6 — )4 — A

is invertible, the Laplace transform of the expected discounted penalty function (Eﬁi(s) can
be obtained. The difficulty and limitation of the use of the coupled system lies in the
determination of ¢;(0), since, unlike the classical compound Poisson risk model, the
boundary condition when s tends to infinity does not lead to a system of equations that can
be used to solve ¢,;(0). But in virtue of Theorem 2, if the discount rate ¢ is equal to 0, then
¢;(0) can be readily obtained. Thus, it may be possible to obtain the Laplace transform of
the joint distribution and the joint survival function of the surplus before and after ruin.
The Laplace transform of the marginal distributions F;(u, x,00) and F;(u, 00, y) and ruin
probability can also be obtained by taking proper limits.
To obtain the Laplace transform of ,(u), put w(s,#) =1 for all 5,7 and 6 = 0. Then

\mm=/m&mm=3@

and hence

o 1 — b
wi(s) = / e ¥Bi(z)dz = 7’@)
0 N
The corresponding ;(0) is given by (7).
To obtain the Laplace transform of P;(t(u)<o0, Ryw~ > X, |Ryw|>y|Ro = u), put
w(s, 1) = 1(s>x,t>y) and 6 = 0. Then

wi(u) = / 1(u>x,z —u>y)Bi(dz) = 1(u>x)Bi(u+ y)
and hence
Wi(s) = / e Bi(z + y)dz.

The corresponding initial condition is ¢;(0) = €;G(0, x, y)e.

To illustrate the use of the coupled system of integro-differential equations, we consider
a simple example which leads to an explicit formula for the expected discounted penalty
function.

Consider a Markov-modulated risk model with two states of economy,

=[] o]

In state of economy 1, claims are exponentially distributed with mean g :% whereas in
state of economy 2, claims are exponentially distributed with mean u, = %. Thus
Z_f:]njﬂj/xj = % <1 and condition (2) holds. We are interested in finding the probability
that starting in state 1 and initial surplus u, ruin occurs and the deficit at ruin exceeds y.
The proper choice of the expected discount penalty function is w(s,7) = 1(¢>y) and the
discount rate ¢ is zero.

First we shall obtain the initial value ¢(0) by Eq. (3), which involves the calculation of
the matrix K. The stationary distribution of the continuous-time Markov chain is [0.5, 0.5].

[SS][OS I IS] N}
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By Proposition VI.2.4 of Asmussen [2] stated in Section 3, it can be found that

. —2.78743178  2.78743178 . —2.78743178  1.23014682
T 1.23014682  —1.23014682 an T | 2.78743178  —1.23014682 |
Let
-3 0 e
P == 0 _4 and W(y) = %6_4)/, .

Then by the mixed product rule of Kronecker product, the initial value ¢;(0) can be
obtained from

9 a—3(z+y)
6.0 = ¢ GO0 e =, [ k|2 dz
1V) =€ G,U,y)e = ¢; A %6—4(z+y)

2 o 2 5
=Y 6 [ e dwo) = 3 (e @)K o P) e o W),
i=1 0 i=1
where
0.200931 0 0.058432 0
g 4 0 0.163084 0 0.038358
(-KeP) " =

0.132402 0 0.274902 0
0 0.086916 0 0.211642

After some simplifications, ¢(0) = 0.904189e~3 + 0.057537¢~%".
Then we shall solve the system of integro-differential equations in Theorem 3:

g‘l’l(“) = (=1 () + s ()] — P () = % [/ (1 — 2)3e ¥ dz + e-“””)}
0
and
: =2 —4 ~4(uty)
30200 = 19100 = 93000 = 930 =3 | [t — e gz .
0

Letting u = 0, the first integro-differential equation leads to

11¢,(0) — 2¢,(0) — 9e™*
5 :

$1(0) =

To eliminate ¢,(0), note that the effect of Q or K disappears when the risk process starts
with the stationary initial distribution n. Mathematically, ¢,(0) = nG(0,0,y)e can be
simplified into

! ! *T1 (9 1/3

from which we can obtain

$2(0) =3¢V +3e™ = 6,(0).



254 A.C.Y. Ng, H. Yang | Stochastic Processes and their Applications 116 (2006) 244-266

Thus
$1(0) =5 ,(0) — 67 — Fe ¥,

Differentiating the equations with respect to u and eliminating the two integral terms by
making use of the two original integro-differential equations, we arrive at

(2D* — 5D — 6)¢,(u) + (2D + 6)¢p,(u) = 0,
(2D + 8)¢,(u) + 2D? + 3D — 8)¢h,(u) = 0,

where the symbol D is the differential operator.

By eliminating ¢,(u) from the system of linear differential equations, one can
obtain a fourth order linear differential equation of ¢(«). The roots of the resulting
characteristic equation are 4.017579,0, —0.129265 and —2.888313. Noting that ¢,(#) — 0
as u — 0o,

<l51(u) — Ae—0.129265u+Be—2.888313u

where 4 and B (which are functions of y only) can be determined from ¢,(0) and ¢}(0). By
making use of

$,(0)= A+ B,
$1(0) =5 ¢,(0) — 6™ —3e™ = —0.1292654 — 2.888313B,
it can be seen that

A = 3.40274¢,(0) — 2.17466e > — 0.13592e %,
B = —2.40274¢,(0) 4 2.17466e > + 0.13592¢ %"
Finally, on combining with the initial condition ¢,(0), we obtain

¢, (1) = [0.902055¢ % + 0.059866¢ ' ]e 0129265,
+[0.0021342¢ 7% — 0.0023291¢ 4]~ 2888313

5. Barrier probabilities of {S,} in the case of phase-type claims

A phase-type distribution F is the distribution of the life time of a terminating
continuous-time Markov chain {M,},5, with finitely many states, one of which is
absorbing and all others are transient. Let the state space of {M,} be {1,...,d,0} = E U {0}
and 0 be the absorbing state. Then the generator of {M,} admits the structure

T t
0 o
where T is a sub-intensity matrix, t = —Te and 0 is a zero column vector. Let
(a1,00,...,04,0) = (o, 0) be the initial distribution of {A,;} so that the continuous-time
Markov chain will not start at the absorbing state. We denote the distribution of F by
PH(E,a, T).
Two important characteristics of phase-type distribution are

(1) it is closed under mixture and convolution, and
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(2) it is dense in the set of all distributions with positive support, that is, for any given
distribution F on (0, 00), there exists a sequence {F,} of phase-type distributions which
converges in distribution to F.

Erlang(n) distribution and mixture of exponential distributions are all in the family of
phase-type distribution. For more information about phase-type distribution, one can
refer to Neuts [12].

Li and Garrido [10] obtained the closed form solution of the infinite-horizon ruin
probability and the joint distribution of the surplus before and after ruin for the Sparre
Andersen models when the initial surplus is zero or the claim sizes belong to the rational
family which includes the phase-type distribution as a special case. See also Li and Garrido
[11]. We will show in the following that, when the claim size distribution in each of the
states is phase-type, it is possible to obtain a closed form solution of the infinite-horizon
ruin probability and the joint distribution of the surplus before and after ruin under the
regime switching model.

Let the claim size distribution in state i be PH(E®, a?, T™¥). From Proposition VIIL.5.5
and Theorem VIIL.5.6 of Asmussen [2], it is immediate that the distribution of the first
overshoot of {S;} above zero given J, = i follows the distribution PH(E, 8, T) where

E=|JEY and 07 =007,. . ..67)
jett
with Bj(-_i) = Pi(e; ® a)(—K & T(’))_l(ej ® I), I having the same dimension as 7% and T is
obtained by putting TV on the main diagonal with all other entries zero. Also, the
maximum M = sup S, given Jo = i follows the distribution PH(E, 8, U) where the matrix
U is formed by

/) ) 9l P
[T0),, + 1969 for j = &,

U; ’kh, = . . .
T e for j#k.
Here the symbols ® and & stand for Kronecker product and Kronecker sum. For details
about these two operations one can refer to Graham [7].

First we introduce some notations very similar to that in Asmussen and Perry [3]. For
u=0, o € EY, define the first upcrossing and downcrossing probabilities

+
i.jo
7, (u) = Pi(S, downcrosses — u the first time in state j)

nt. = P,(S, upcrosses 0 the first time in state j, phase o« € E¥),

and barrier probabilities
pifja(u) = P;(S; first upcrosses 0 in state j, phase o before downcrossing — u),
p; () = Pi(S, first downcrosses — u in state j before upcrossing 0).

It is obvious from the above and Section 3 that
i, =00), and 7 () = Pim, = j) = ejee;.

Asmussen and Perry [3] derived the barrier probabilities in a more complicated
situation in a queuing theory context, where they related {S;} to the virtual waiting
time {V,} of a MAP/MMPH/1 queue (MAP = Markovian arrival process,
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MMPH = Markov-modulated phase-type). Here we shall briefly go through their
argument in order to give probabilistic interpretations to various auxiliary quantities
needed to construct the barrier probabilities to be used in later sections.

First consider the event

Pi(S; upcrosses 0 in state j, phase « € E?)
= [P,(S, upcrosses 0 in state j, phase o € EY before downcrossing — )

+ Z Pi(S; upcrosses 0 in state j, phase « € E? after
kel
downcrossing — u in state k)
= P;(S, upcrosses 0 in state j, phase « € EV before downcrossing — u)

+ Z P,(S, downcrosses — u in state k before upcrossing O)O(k)eU”ejC< 9)
kel
since P(S, overshoots u in j,o € EV) = O(k)eU”ej“. See Fig. 2 below for the decomposition
above.
Denote the probability 8% eV “ej, by n; J; (u), (9) becomes

T = Pit) + ) Py, @), (10)
kel

Then consider Fig. 3 below for the decomposition of 7;;(u).

P;(S; downcrosses — u in state j)

= P;(S; downcrosses — u in state j before upcrossing 0)

+ Z Z P:(S; upcrosses 0 in state k, phase o € E®
kel yeE®

before downcrossing — u in state j). (11)

To calculate the probability in the double summation, first condition on the state of
economy and phase of S, to be k € .#,0 € E®. Given this condition, the overshoot of S,
has distribution PH(E®, ¢/, T®) and conditional density function e,e”*#®. Then further
condition on the amount of the overshoot to be x. The event of interest becomes the
probability that S; downcrosses —u the first time in state j given that downcrossing —u did

not happen before and now the state of economy is k and S'is at a height of x above 0. This

S St

—U b e e —u b N

Fig. 2. The decomposition of n,f)r/-l.
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S Si

Fig. 3. The decomposition of n;(u).

probability is the same as the probability that starting with Jo = k, Sy = 0, S, first descends
level —(x + u) in state j, which equals

¢ e Q00
Thus the sum in (11) equals
o0
Z Z p;rkoz(u)/ e;eT(A)Xt(k)e;ceQ(qux)ej dx.
kel yeE® 0

The integral is the probability that starting at level u of an overshoot in state k,
phase ve E®, S, first descends level 0 in state j. This can be evaluated as
€, ®e)(—TP @ Q)7 (P ® e2)e;, which is denoted by nf,; (). Hence (11) becomes

) = py) + Y > Pl nl,; W) (12)
kel y4eE®
Rewriting in matrix notation and denoting / as the dimension of E, (10) and (12) become

nt=p W) +p WN (),
o (u) =p () +pr@WN ()

and the unique solution is given by
P @ =[n"w—n"N*"@]lixa — N @N @],
P =" —n N @] — NN @],

which is Theorem 6.1 of Asmussen and Perry [3].
Finally, let x, >0 and define

Pij,(x. y) = Pi(S, upcrosses x in state j, phase « € EV
before downcrossing — y).
For 0 <z<u, consider Fig. 4 for the decomposition of pi/a(u):

Pi(w) = pil(2) + Z Pi(S; downcrosses — z in state k before
kel

upcrossing 0) pj,(z,u — z). (13)
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S S

Fig. 4. The decomposition of pji;, ().

.. + — .
It follows from the definition of p;;,(x,y) and p; (u) that (13) can be rewritten as

P W) =pl(2) + Z pijk(z)pltjm(z’ U= 2z). (14)
ket

Rewriting (14) in matrix notation and letting ¥ = x 4+ y and z = x,
P+ =p () +p (pT(x, )
Assuming the invertibility of p~(x),

ey = )P (x + ) = pF L.

6. The joint distribution of surplus before and after ruin in the case of phase-type claims

In this section, we shall derive explicit formulae for f [/(u, x,y), Fi(u,00,y) and
Fi(u,00,y) in the case of phase-type claims. The barrier probabilities and the distribution
of the first overshoot of {S;} above level zero obtained in the Section 5 will be the basic
building blocks. The dual process {S,;} defined similar to {S;} but with the state of economy
{J,} replaced by the time-reversed version {J,} will also be used. All barrier probabilities
and other symbols related to the time-reversed version {S;} will be labelled with the
notation —. Recall the notation s(x) = diag(f;b:(x)) defined in Theorem 2.

Theorem 4. Let f(u, x,y) be a matrix with ijth element f ;(u, x, y). Assuming the invertibility
of the appropriate matrices, for u<x,

f,x,p) = [p~ @] s(x + »)
for u>x,

f(,x,3) = [4p~ @] [~ 0)s(x + 9@ — x, N @] A~ ()]

Proof. If x>u, let f(u,x) be a matrix with jjth element
: d .
S, x) = P Pi(t(u) <00, Jow) = J, Rey- < X|Ro = u).

Consider Fig. 5 for the decomposition of f;(0, x):
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S

Fig. 5. The decomposition of f;(0, x).

Conditioning on J, at the first time S; downcrosses —u before overshooting 0,

f[j(Oa x) = Z PZk(”)fk/(”» X).

kel

Rewriting in matrix notation and assuming the invertibility of p~(u),

S, x) = [p~ @]~ 'f(0,x),
where by (6),

d
f(oa X) - a G(07 X, 0)
= k¥ S((x, 00)).
Hence f;(u, x, y) can be obtained from

bix+y)

fij(us X,y) :fl](u’ X) B(x)
J

In matrix notation,

F,x.) = f(u, x) diag (” ity )>

Bj(x)
- —1 .Kx q; D : bj(x +y)

= [p~ ()] """ diag(B; B;(x)) dlag< Bj(x)

If x<u, let T = 7(0) be the time of ruin with initial zero reserve as usual and 7 be the time
of recovery, that is, the time when S, first downcrosses 0 after upcrossing 0. In the classical
compound Poisson risk model, Dickson [4] obtained f (u X, y) by time-reversion. Consider
stationary version of J, and J,, we may then assume J,=Jr_, and S, = —S7_, where
v € [0, T]. Let x, y,i and j be fixed. Consider the event A4 that Jo = i and S; downcrosses —u
before overshooting 0, overshoots 0 with —S;_ € [x,x + dx] and S; € [y,y + dy] at 7, and
S; does not overshoot y before downcrossing 0 at state j for any t <7< T. The dual event of
A is the event that Jy =, S, cannot descend below level —u before *, —S:_ € v,y + dy],
S: € [x,x +dx], and S, has to overshoot u before recovering at state of economy i. One
sample path realization of event 4 and its dual sample path is shown in Fig. 6.

) = [P~ ] 'eFs(x + ).
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S

X b NG e

Fig. 6. The dual sample path.

Mathematically,
TiPi(A) = Pa(Jo = i, A)

=Pr(Jo=1,S,<0 Vv € (0,7),3( € (0, 7) such that S; = —u,
—S- ex,x+dx],S; €,y +dy], So<y Vv e (r,T),J1r =)

=Pr(Jo=/,S> -y Ve (0,T—1),-Sr_ €[y,y+dyl,
S ex,x+dx],S,>0Vv e (T —1,T),
A € (T — =, T) such that S‘g =u,Jr =1i)

= m,Pi(S,> -~y Ve (0,T—1),-Sr_ €[y,y+dyl,
Si—c € [x,x +dx], S, >0 Yo e (T — 1, T),
A € (T — 1, T) such that S’g =u,Jr =i).

(15)

Given that Jy, = i, the probability that S, downcrosses —u the first time in state of
economy / before overshooting 0 is p;;(u). Given that Ry = u and Jo =/, the probability
that Ry~ € [x,x +dx], =Ry € v,y +dy] and J.(u) = k is f(u, x,y)dxdy. Given that
now the state of economy is k and S, = y, the probability that S, will downcross 0 in state
of economy j before overshooting y is the same as the probability that given the state of
economy is k and Sy = 0, the probability that S, will downcross —y in state of economy j
before overshooting 0, which is p,;].(y). Thus conditioning on J, =/ when S, first
downcrosses —u and J, = k when S, overshoots 0 and then summing over all /and k € .,
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the probability on the left-hand side of (15) can be written as
no Y P s X, y) dx dy pi ),

Lke.#l

Similarly, conditioning on J, = k when S, attains —y and J, = / and the phase of the
claim to be y € E¥ when S, upcrosses u for the first time after attaining x and then
summing over all k,/ € .# and y € E", the probability on the right-hand side of (15) can
be written as

. ) TR k - SR
7 Z pj’k(y)ﬁka( Ve TNk dx dy Z Py, — x, )7 () |
kel IyeED

Rewrite (15) in matrix notation,

Ap~(W)f (%, Y)p~ () = [~ ()sCx + )pH  — x, )N ()] 4.

Assuming the invertibility of p~(u), p~(¥) and p~(u — x) (due to the presence of
P (u— x, x)), the joint density can be obtained by

f(u,x,5) = [Ap~ @] [~ 0)s(x + »FH @ — x, N @] A~ ()]

The joint density of surplus before and after ruin can be obtained by summing over all
j. O

The necessary condition for the invertibility of the matrices is hard to establish, but we
shall consider a numerical example to illustrate that the assumption is not fictitious.
Although the formula for x<u is not as explicit as that for x>u, it is easy to program
using mathematical languages like MATLAB.

From the above results on the joint distribution of the surplus before and after ruin, by
taking proper limits, we can obtain the closed form solutions for the distribution of the
surplus before ruin and the distribution of the deficit at ruin. But for the distribution of the
deficit at ruin, we can obtain a very explicit result using a simpler argument. Recall the joth
unit column vector e, in (9). Let ¢ = Y _;i ¢j, be a column vector with entries equal to 1
at positions jo for all @ € E¥ and F be the matrix formed by placing the elements of ¢/ on
the main diagonal and letting all other entries equal to 0.

Theorem 5. The distribution of the deficit at ruin starting with initial surplus u and state of
economy i and ruins at state of economy j is given by

Fii(u,00,y) = 00eVte/ — gl pelre
and the distribution of the deficit at ruin starting with initial surplus u and state of economy i
is given by

Fi(u, OO,y) — G(i)eUue _ e(i)eUueTye.

Proof. Consider the event that ruin occurs and the deficit is greater than y, that is, the
overshoot of S; above level u is greater than y. This is the same as the event (1) <oco and
S:wy>u-+y. To calculate this event, we further partition this into disjoint events by
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considering the phase of the claim when S, first upcrosses level u:
P[(T(u) <090, Jr(u) =j5 Rr(u) < - y|R0 = u)
= P,‘(‘E(u) <00, Jr(u) =], Sr(u) >u—+ y)
= Z 00e e, x €),e™e =07 Vele.
acEY
Hence
Fi(u,00,y) = Pi(t(u) <00, J 1wy = J, Requy> — yIRo = u)
= ‘//g/(u) — Pi(t(u) <00, Jow) = J, Rey < — yIRo = u)
= 0Dl — gWeVupelye
and the distribution of the deficit at ruin starting with initial surplus «# and state of
economy i is given by
Fi(u,00,y) = 00eV1e — 90Uy, O

7. Numerical illustration

In this section, we shall consider one numerical example for the calculation of the joint
density function of surplus before and immediately after ruin for a Markov-modulated risk
model with three states of economy. Suppose that

W=
Of—
NI SRN-TNY

% and P =

0 -

A=

A= O|—
— = D=

In state of economy 1, the claims sizes are exponentially distributed with mean 1. In state
of economy 2, the claim sizes are exponentially distributed with mean 6. In state of
economy 3, the claim sizes are hyperexponentially distributed with two channels and the
density is

3a—x 4 1 a—2x

Ze X +§e A.
The stationary distribution of the continuous-time Markov chain is

_[9 3 4

=[x % 7

and Z?:l mifiup, = % which means that the relative security loading is %
By using the iteration scheme, it is found that, up to five decimal places of accuracy,

[—0.46500 0.14747  0.31753 ]
0= | 021378 —0.56527 035149 |,

| 033403 0.02722  —0.36125

—0.46524  0.05651  0.40874
0= | 045329 —0.56831 0.11502

| 027141 0.08656 —0.35797
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[0.36809
" = | 0.05840

| 0.06325
[0.36833

0.10908
[ 0.05361

0.23991
0.59014

0.12940
0.20535

0.60837
0.14542

0.21527
0.19750

0.59188
0.24481

0.12382
0.58908

[—0.63191
0.00973
0.06325

| 0.12650
[—0.63167

0.01818
0.05361
| 0.10722

0.23991
—0.06831
0.12940

0.25880
0.20535

—0.06527
0.14542
0.29085

(W
Il

0.21527
0.03292
—0.40812

1.18376
0.24481

0.02064
—0.41092
1.17816

0.02250 ]
0.02097

0.10841 |
0.02637

0.01067

0.10817 |

0.02550 T
0.00350
0.10841

—1.78318 |
0.02637

0.00178
0.10817
—1.78366 |

263

The matrices Nt~ (), etc. can be found by the formulae in Section 5, say, &~ (1) = e and

N_+(u) = TC+eU”‘

By summing up each row of ™, the ruin probabilities with zero initial reserve are found
to be ;(0) = 0.8458, ,(0) = 0.8670 and y/5(0) = 0.8929.

Figs. 7 and 8 are some graphs of the joint density function f;(u,x,y) for various
combinations of u,i and j. Notice that for each graph there is a ridge at the line x = u
because of the structural change of the joint density function. From Fig. 7, we note that

0.

Fig. 7. /110, x, ).




264 A.C.Y. Ng, H. Yang | Stochastic Processes and their Applications 116 (2006) 244-266

£11(0,x,y) has a unique mode and is a decreasing function in both x and y. We observe,
from Fig. &, that f,;(2, x, y) has two modes, although one of them is much smaller. This bi-
modal feature becomes more obvious in Figs. 9 and 10.

Figs. 9 and 10 are the graphs of the joint density function f;(u,x,y) foru =1,i =1 and
u=2i=2.

Fig. 11 is the graph of the distribution of the deficit at ruin F;(u, 00,y) for u =1,
i=1and u=2,i =2. From the figures we see that F,(2,00,y) has heavier tail than
Fl(la 00, J’)

0 9 x

Fig. 8. f3(2,x,).

Fig. 9. f1(1,x,).
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Fig. 10. f5(2,x,).

0.8 T T 0.8
0.6} e ] R RS A
& o4 204
& : : e : :
L e Q.20 o e
0 4 8 12 0 4 8 12
y y

Fig. 11. Fi(1,00,y) and F»(2,00,).

Acknowledgments

The authors would like to thank the referee for careful reading of the paper and many
helpful suggestions. The work described in this paper was partially supported by a grant
from the Research Grants Council of the Hong Kong Special Administrative Region,
China (Project No. HKU 7239/04H).

References

[1] S. Asmussen, Risk theory in a Markovian environment, Scand. Actuar. J. 1989 (1989) 69-100.

[2] S. Asmussen, Ruin Probabilities, World Scientific, Singapore, 2000.

[3] S. Asmussen, D. Perry, On cycle maxima, first passage problems and extreme value theory for queues,
Stochastic Models 8 (1992) 421-458.

[4] D.C.M. Dickson, On the distribution of the surplus prior to ruin, Insurance: Math. Econom. 11 (1992)
191-207.

[5] H.U. Gerber, An Introduction to Mathematical Risk Theory, S.S. Huebner Foundation Monograph Series

No. 8, R. Irwin, Homewood, IL, 1979.
[6] H.U. Gerber, E.S.W. Shiu, On the time value of ruin, North American Actuar. J. 2 (1) (1998) 48-78.



266 A.C.Y. Ng, H. Yang | Stochastic Processes and their Applications 116 (2006) 244-266

[71 A. Graham, Kronecker Products and Matrix Calculus with Applications, Ellis Horwood Series in
Mathematics and its Applications, Chichester, Horwood, 1981.
[8] J. Grandell, Aspects of Risk Theory, Springer, New York, 1990.
[9] M.R. Hardy, A regime-switching model of long-term stock returns, North American Actuar. J. 5 (2) (2001)
41-53.
[10] S. Li, J. Garrido, On ruin for the Erlang(n) risk process, Insurance: Math. Econom. 34 (2004) 391-408.
[11] S.Li, J. Garrido, On a general class of renewal risk process: analysis of the Gerber—Shiu function, Adv. Appl.
Probab. 37 (2005) 836-856.
[12] M.F. Neuts, Matrix-geometric Solutions in Stochastic Models, Johns Hopkins University Press, Baltimore,
London, 1981.
[13] T. Rolski, H. Schmidli, V. Schmidt, J. Teugels, Stochastic Processes for Insurance and Finance, Wiley,
New York, 1999.



	On the joint distribution of surplus before and after ruin under a Markovian regime switching model
	Introduction
	The insurance risk model
	The joint distribution of surplus before and after ruin with zero initial surplus
	A coupled system of integro-differential equations for the expected discounted penalty function
	Barrier probabilities of lbraceStrbrace in the case of phase-type claims
	The joint distribution of surplus before and after ruin in the case of phase-type claims
	Numerical illustration
	Acknowledgments
	References


