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Abstract

We consider a Markovian regime switching insurance risk model (also called Markov-modulated

risk model). The closed form solutions for the joint distribution of surplus before and after ruin when

the initial surplus is zero or when the claim size distributions are phase-type distributed are obtained.
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1. Introduction

In the classical insurance risk model, a compound Poisson process is often used to model
the surplus process. There is a huge amount of literature devoted to the generalization of
the classical model in different ways. For more detailed discussions, see Gerber [5],
Grandell [8], Rolski et al. [13], Asmussen [2] and the references therein.
The Markov-modulated risk model was proposed by Asmussen [1], in which the ruin

probability was studied. The model is also called Markovian regime switching model in the
finance and actuarial science literature. This model can capture the feature that insurance
policies may need to change if economical or political environment changes. Recently,
there have been resurgent interests of using regime switching models in finance and
actuarial science. Hardy [9] used monthly data from the Standard and Poor’s 500 and the
see front matter r 2005 Elsevier B.V. All rights reserved.
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Toronto Stock Exchange 300 indices to fit a regime-switching lognormal model. The fit of
the regime-switching model to the data is compared with other econometric models.

In this paper, we consider the joint distribution of the surplus before and after ruin. In
particular, we assume that the claim sizes are phase-type distributed. The class of phase-
type distributions is important in the analysis of insurance risk models because any positive
distribution can be approximated by a sequence of phase-type distributions. If the problem
can be solved in the case of phase-type distribution, the problem in a general case can be
approximated by using a sequence of phase-type distributions which converges to
the desired probability distribution. In the literature, many methods to find a good
approximating sequence have been proposed. We shall show here that when the initial
surplus is zero or the claim size distributions are phase-type, it is possible to obtain a closed
form solution to the joint distribution being considered. By taking proper limits, the
distribution of the surplus prior to ruin and the distribution of the deficit at ruin can be
obtained.

2. The insurance risk model

Let fJtgtX0 be a homogenous continuous-time Markov chain taking values in a finite set
M ¼ f1; 2; . . . ; dg with generator K ¼ ðlijÞ. K is assumed to be irreducible with stationary
distribution p ¼ ðp1;p2; . . . ; pdÞ. Jt governs the state of economy. When the state of
economy Jt is i, the claim size distribution is Bi with density bi, Laplace transform b̂iðsÞ,
moment generating function B̂iðsÞ and mean mi, the arrival intensity is bi and the premium
rate is ci. The initial surplus is uX0.

Let fR1
t g; fR

2
t g; . . . ; fR

d
t g be d independent classical compound Poisson risk process with

premium rate ci, claim arrival rate bi, claim size distribution Bi and zero initial surplus. The
risk process fRtg is then given by

Rt ¼ uþ
Xd

i¼1

Z t

0

1ðJs ¼ iÞdRi
s,

where 1ðAÞ is the indicator function of event A and the aggregate loss process {St} is given
by St ¼ u� Rt: This is the same model as in Asmussen [2].

Following the proof of Theorem 12.3.2 of Rolski et al. [13], it is easy to see that

lim
t!1

Rt

t
¼
Xd

i¼1

piðci � bimiÞ. (1)

Let Pið�Þ ¼ Pð�jJ0 ¼ iÞ. From the above, the condition of having a positive expected
profit is

Xd

i¼1

piðci � bimiÞ40. (2)

Let tðuÞ ¼ infft : St4ug ¼ infft : Rto0g be the time of ruin with initial surplus u and
t ¼ tð0Þ. For i 2M, u;x; yX0, let

Fiðu;x; yÞ ¼ PiðtðuÞo1;RtðuÞ�px; jRtðuÞjpyjR0 ¼ uÞ
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be the joint distribution of surplus before and after ruin with initial surplus u and

f iðu; x; yÞ ¼
q2

qxqy
Fiðu;x; yÞ

be the joint density of surplus before and after ruin with initial surplus u.
In order to obtain explicit formulae for the two quantities of interest above, we shall

need the joint distribution and joint density of surplus before and after ruin fixing the state
of economy at the time of ruin to be j. They are denoted by

F ijðu;x; yÞ ¼ PiðtðuÞo1; JtðuÞ ¼ j;RtðuÞ�px; jRtðuÞjpyjR0 ¼ uÞ

and

f ijðu; x; yÞ ¼
q2

qxqy
Fijðu; x; yÞ.

The joint distribution and joint density of surplus before and after ruin can be obtained by
summing Fijðu;x; yÞ and f ijðu;x; yÞ over all j 2M.
We assume in the following that condition (2) holds so that the ruin probability is

strictly less than one starting with any non-negative surplus and any state of economy and
ci ¼ 1 for all i 2M since only events in infinite horizon are considered. Indeed, for any
given sets of premium rate fcigi2M, the transformation

~lij ¼
lij

ci

; ~bi ¼
bi

ci

; ~ci ¼ 1

yields a process f ~Stg such that the joint distributions of the surplus before and after ruin
with initial surplus u for the corresponding f ~Rtg and fRtg are the same.

3. The joint distribution of surplus before and after ruin with zero initial surplus

Assume u ¼ 0 and ci ¼ 1 for all i 2M. As in Asmussen [2], let fmxgxX0 be the M-value
process obtained by observing fJtg only when fStg is at a minimum. If mx ¼ i, then there
exists a unique value of t such that Su4St for any uot; St ¼ �x and Jt ¼ i. One can
understand the process fmxg as the state variable of St at the first time when St hits level
�x. Fig. 1 below (similar to Fig. 2.1 in Chapter VI of Asmussen [2]) illustrates this when
M ¼ f1; 2; 3g. In the figure, there are three states of fJtg, marked by thin, thick and dashed
lines, respectively, in the path of fStg. The corresponding values of mx is represented by the
line next to the vertical axis.
By the net profit condition (2), St !�1 as t!1. Thus fmxg is a non-terminating

homogenous continuous-time Markov chain and its generator is denoted by Q.
Consider stationary version of fJtg and its time-reversed version f �Jtg on a finite time

interval. The generator of f �Jtg is

�K ¼ ½�lij� ¼
pj

pi

lji

� �
.

In matrix notation, let D ¼ diagðp1; p2; . . . ;pdÞ, then �K ¼ D�1K0D: Let f �Stg be defined
similar to fStg but with fJtg replaced by the time-reversed version f �Jtg. The process f �mxg is
defined similarly and its generator is denoted by �Q. f �mxg is also non-terminating, since
�St !�1 as t!1.
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Fig. 1. The illustration of fmxg.
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Proposition VI.2.4 of Asmussen [2] (with a slight change of notations) states that �Q
satisfies the non-linear matrix equation �Q ¼ jð �QÞ where

jð �QÞ ¼ �K� diagðb1; b2; . . . ; bdÞ þ

Z 1
0

SðdxÞe
�Qx

and SðdxÞ ¼ diagðb1B1ðdxÞ;b2B2ðdxÞ; . . . ; bdBd ðdxÞÞ. Furthermore, the sequence f �Q
ðnÞ
g

defined by

�Q
ð0Þ
¼ �K� diagðb1;b2; . . . ;bdÞ; �Q

ðnþ1Þ
¼ jð �Q

ðnÞ
Þ

converges monotonically to �Q. The matrix Q can be found by a similar iteration scheme.
The matrix �Q is important in the calculation of the joint density of surplus before and

after ruin, as illustrated in Corollary VI.2.6(a) of Asmussen [2], which states that for a
measure-valued matrix GþðAÞ defined by ijth element

Gþði; j;AÞ ¼ Piðto1;St 2 A; Jt ¼ jÞ,

letting �K ¼ D�1 �Q
0
D, then

Gþððz;1ÞÞ ¼

Z 1
0

e
�KxSððxþ z;1ÞÞdx.

The following theorem extends the result above.

Theorem 1. Let Gðu;x; yÞ be the matrix with ijth element

PiðtðuÞo1;RtðuÞ�4x;RtðuÞo� y; JtðuÞ ¼ jjR0 ¼ uÞ.

Then

Gð0; x; yÞ ¼

Z 1
x

e
�KzSððzþ y;1ÞÞdz. (3)
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Proof. When u ¼ 0, the ijth element of Gð0;x; yÞ is

Piðto1;Rt�4x;Rto� y; Jt ¼ jjR0 ¼ 0Þ

¼ Piðto1;�St�4x;St4y; Jt ¼ jÞ.

Fix T40, let J 0t ¼ JT�t� and S0t ¼ ST � ST�t� for all t 2 ½0;T �. The process fðJ 0t;S
0
tÞg

has the same distribution as the time-reversed version fð �Jt; �StÞg under the stationary
initial distribution. Let �tz be the time when �St first hits level �z. Then

piPiðJT ¼ j;�ST� 2 ½z; zþ dz�; t4TÞ

¼ PpðJ0 ¼ i; JT ¼ j;�ST� 2 ½z; zþ dz�;Sto0 for all toTÞ

¼ PpðJ
0
0 ¼ j; J 0T ¼ i;S0t4� z for all toT ;�S0T� 2 ½z; zþ dz�Þ

¼ pjPjð �JT ¼ i; �tz4T ;� �ST� 2 ½z; zþ dz�Þ. ð4Þ

Let gijðTÞ be the density function

lim
t#0

PiðJT ¼ j; tzoT þ t;�ST� 2 ½z; zþ dz�Þ � PiðJT ¼ j; tzoT ;�ST� 2 ½z; zþ dz�Þ

t

and �gjiðTÞ be the density function

lim
t#0

Pjð �JT ¼ i; �tzoT þ t;� �ST� 2 ½z; zþ dz�Þ � Pjð �JT ¼ i; �tzoT ;� �ST� 2 ½z; zþ dz�Þ

t
.

By (4),

Piðto1;�St� 2 ½z; zþ dz�; Jt ¼ jÞ ¼

Z 1
0

bj B̄jðzÞgijðTÞdT

¼ bj B̄jðzÞ
pj

pi

Z 1
0

�gjiðTÞdT

¼ bj B̄jðzÞ
pj

pi

Pjð �mz ¼ iÞdz

¼ bj B̄jðzÞ
pj

pi

e0je
�Qzei dz,

where ei is the ith unit column vector. When to1 and Jt ¼ j, denote the density function
of �St� by sijðzÞ. By conditioning on St� ,

Piðto1;�St�4x;St4y; Jt ¼ jÞ ¼

Z 1
x

PðY4yþ zjY4z;Y�BjÞsijðzÞdz

¼

Z 1
x

B̄jðyþ zÞ

B̄jðzÞ

pj

pi

bj B̄jðzÞe
0
je
�Qzei dz

¼

Z 1
x

pj

pi

bj B̄jðyþ zÞe0je
�Qzei dz. ð5Þ

Rewriting in matrix form, the result is obtained. &

Assuming all claim size distributions are absolutely continuous, the joint density of
surplus before and after ruin starting with zero initial surplus can now be obtained.
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Theorem 2. The joint density of surplus before and after ruin starting with zero initial surplus

and state of economy i is given by

f ið0;x; yÞ ¼
Xd

j¼1

pj

pi

bjbjðyþ xÞe0je
�Qxei ¼ e0ie

�Kxsðxþ yÞe, (6)

where sðxÞ ¼ diagðb1b1ðxÞ;b2b2ðxÞ; . . . ;bdbdðxÞÞ.

Proof. Since all the claim size distributions are absolutely continuous, (5) can be
differentiated twice to yield

f ijð0;x; yÞ ¼
pj

pi

bjbjðyþ xÞe0je
�Qxei

and hence a closed form solution of f ið0; x; yÞ can be obtained from

f ið0;x; yÞ ¼
Xd

j¼1

f ijð0; x; yÞ ¼
Xd

j¼1

pj

pi

bjbjðyþ xÞe0je
�Qxei ¼ e0ie

�Kxsðxþ yÞe: &

By integrating the joint density, the joint distribution of surplus before and after ruin
starting with zero initial surplus and J0 ¼ i is

Fið0;x; yÞ ¼

Z x

0

Z y

0

e0ie
�Kzsðzþ vÞdvdze ¼ e0i

Z x

0

e
�KzSððz; zþ yÞÞdze.

Thus the distributions of surplus before ruin and the deficit at ruin, starting with zero
initial surplus and J0 ¼ i, are given by

Fið0;x;1Þ ¼ e0i

Z x

0

e
�KzSððz;1ÞÞdze

and

Fið0;1; yÞ ¼ e0i

Z 1
0

e
�KzSððz; zþ yÞÞdze.

Let cijð0Þ ¼ Piðto1; Jt ¼ jjR0 ¼ 0Þ and cið0Þ ¼ Piðto1jR0 ¼ 0Þ ¼
Pd

j¼1cijð0Þ be
the infinite-horizon ruin probability starting with zero initial surplus and J0 ¼ i,
then

cijð0Þ ¼ e0iGð0; 0; 0Þej ¼ e0i

Z 1
0

e
�KzSððz;1ÞÞdzej

and the closed form solution of cið0Þ is

e0i

Z 1
0

e
�KzSððz;1ÞÞdze, (7)

where e is the column vector with all entries equal to 1.
Comparing with the result in the classical compound Poisson risk model

Pðto1;�St�4x;St4yÞ ¼ b
Z 1

xþy

B̄ðzÞdz

and

f ð0;x; yÞ ¼ bbðxþ yÞ,
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the symmetry between x and y is lost in the Markov-modulated risk model because of the
presence of �Q and �K . But if one starts with the stationary initial distribution p, using the
fact that e

�Qz is a stochastic matrix,

e
�Qze ¼ e

and on combining with (5),

Ppðto1;�St�4x;St4yÞ

¼
Xd

i¼1

Xd

j¼1

pi

Z 1
x

pj

pi

bj B̄jðyþ zÞe0je
�Qzei dz

¼
Xd

j¼1

Z 1
x

pjbj B̄jðyþ zÞe0je
�Qzedz ¼

Xd

j¼1

Z 1
x

pjbj B̄jðyþ zÞe0jedz

¼
Xd

j¼1

Z 1
x

pjbj B̄jðyþ zÞdz ¼ b
Z 1

x

B̄ðyþ zÞdz ¼ b
Z 1

xþy

B̄ðzÞdz,

where b ¼
Pd

j¼1pjbj and BðxÞ ¼ 1
b

Pd
j¼1pjbjBjðxÞ are the average claim arrival rate

and average claim size distribution. In this case, the symmetry between x and y is
preserved.
4. A coupled system of integro-differential equations for the expected discounted penalty

function

Gerber and Shiu [6] introduced the function

fðuÞ ¼ E½e�dtðuÞwðRtðuÞ� ; jRtðuÞjÞ1ðtðuÞo1ÞjR0 ¼ u�

for dX0 and bivariate non-negative function w for the classical compound Poisson
risk model. This function is called the expected discounted penalty function because
if one treat d as the constant force of interest and w as the benefit of an insurance
payable at the time of ruin, with the benefit amount varying according to the
surplus before and after ruin, fðuÞ is the actuarial present value of the insurance. The
expected discounted penalty function unifies the study of ruin probability, joint
distribution of surplus before and after ruin, moments of the surplus at ruin and the
time of ruin. For example, to study the distribution of the time of ruin, one can set
wðx; yÞ ¼ 1 for all x; yX0 and fðuÞ is the Laplace transform of the time of ruin. For a
detailed study of the expected discounted penalty function in the classical model, one can
refer to Gerber and Shiu [6].
In this section we shall derive a set of integro-differential equations satisfied by the

Gerber–Shiu expected discounted penalty function in the Markov-modulated risk model
defined by

fiðuÞ ¼ Ei½e
�dtðuÞwðRtðuÞ� ; jRtðuÞjÞ1ðtðuÞo1ÞjR0 ¼ u�,

where w is a bivariate non-negative function and uX0. This function is useful in obtaining
quantities regarding the time of ruin.
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Theorem 3. Let wiðuÞ ¼
R1

u
wðu; z� uÞBiðdzÞ and ŵiðsÞ ¼

R1
0 e�suwiðuÞdu. Then fiðuÞ

satisfies

ðbi þ dÞfiðuÞ �
Xd

j¼1

lijfjðuÞ ¼ f0iðuÞ þ bi

Z u

0

fiðu� zÞBiðdzÞ þ wiðuÞ

� �

and the Laplace transform of fiðuÞ, denoted by f̂iðsÞ, satisfies

bi þ d� s� bi b̂iðsÞ
h i

f̂iðsÞ �
Xd

j¼1

lijf̂jðsÞ ¼ biŵiðsÞ � fið0Þ.

Proof. By the property of Markov process,

fiðuÞ ¼ e�d dt ð1� bi dtÞð1þ lii dtÞfiðuþ dtÞ þ ð1� bi dtÞ

�
�
X
jai

lij dtfjðuþ dtÞ þ bi dtð1þ lii dtÞ

�

Z u

0

fiðu� zÞBiðdzÞ þ

Z 1
u

wðu; z� uÞBiðdzÞ

� �
þ oðdtÞ

�
ð8Þ

where the four terms correspond to
(1)
 no change of state and no claim in dt,

(2)
 a change of state but no claim in dt,

(3)
 no change of state but a claim arrives in dt, and

(4)
 all other events with total probability oðdtÞ.
Eq. (8) can be simplified to

fiðuÞ ¼ ð1� ddtÞ ½1þ ðlii � biÞdt�fiðuÞ þ f0iðuÞdtþ
X
jai

lijfjðuÞdt

(

þbi dt

Z u

0

fiðu� zÞBiðdzÞ þ

Z 1
u

wðu; z� uÞBiðdzÞ

� �
þ oðdtÞ

�
¼ fiðuÞ þ f0iðuÞdtþ ðlii � bi � dÞfiðuÞdtþ

X
jai

lijfjðuÞdt

þ bi dt

Z u

0

fiðu� zÞBiðdzÞ þ

Z 1
u

wðu; z� uÞBiðdzÞ

� �
þ oðdtÞ.

Cancelling fiðuÞ, dividing both sides by dt and taking limit, the equation above reduces to

ðbi þ dÞfiðuÞ �
Xd

j¼1

lijfjðuÞ � f0iðuÞ ¼ bi

Z u

0

fiðu� zÞBiðdzÞ þ wiðuÞ

� �
,

which is an integro-differential equation corresponding to (2.16) of Gerber and Shiu [6].
Multiplying both sides by e�su and integrating with respect to u, the above becomes

bi þ d� s� bi b̂iðsÞ
h i

f̂iðsÞ �
Xd

j¼1

lijf̂jðsÞ ¼ biŵiðsÞ � fið0Þ: &
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From the above system of linear equations, if the values of fið0Þ for all i 2M are known
and the matrix

AðsÞ ¼ diagðb1ð1� b̂1ðsÞÞ; b2ð1� b̂2ðsÞÞ; . . . ; bdð1� b̂d ðsÞÞÞ þ ðd� sÞId�d � K

is invertible, the Laplace transform of the expected discounted penalty function f̂iðsÞ can
be obtained. The difficulty and limitation of the use of the coupled system lies in the
determination of fið0Þ, since, unlike the classical compound Poisson risk model, the
boundary condition when s tends to infinity does not lead to a system of equations that can
be used to solve fið0Þ. But in virtue of Theorem 2, if the discount rate d is equal to 0, then
fið0Þ can be readily obtained. Thus, it may be possible to obtain the Laplace transform of
the joint distribution and the joint survival function of the surplus before and after ruin.
The Laplace transform of the marginal distributions F iðu;x;1Þ and Fiðu;1; yÞ and ruin
probability can also be obtained by taking proper limits.
To obtain the Laplace transform of ciðuÞ, put wðs; tÞ ¼ 1 for all s; t and d ¼ 0. Then

wiðuÞ ¼

Z 1
u

BiðdzÞ ¼ B̄iðuÞ

and hence

ŵiðsÞ ¼

Z 1
0

e�szB̄iðzÞdz ¼
1� b̂iðsÞ

s
.

The corresponding cið0Þ is given by (7).
To obtain the Laplace transform of PiðtðuÞo1;RtðuÞ�4x; jRtðuÞj4yjR0 ¼ uÞ, put

wðs; tÞ ¼ 1ðs4x; t4yÞ and d ¼ 0. Then

wiðuÞ ¼

Z 1
u

1ðu4x; z� u4yÞBiðdzÞ ¼ 1ðu4xÞB̄iðuþ yÞ

and hence

ŵiðsÞ ¼

Z 1
x

e�szB̄iðzþ yÞdz.

The corresponding initial condition is fið0Þ ¼ e0iGð0;x; yÞe.
To illustrate the use of the coupled system of integro-differential equations, we consider

a simple example which leads to an explicit formula for the expected discounted penalty
function.
Consider a Markov-modulated risk model with two states of economy,

K ¼
�1 1

1 �1

� �
; b ¼

9
2
3
2

" #
.

In state of economy 1, claims are exponentially distributed with mean m1 ¼
1
3
whereas in

state of economy 2, claims are exponentially distributed with mean m2 ¼
1
4
. ThusP2

j¼1pjbjmj ¼
15
16
o1 and condition (2) holds. We are interested in finding the probability

that starting in state 1 and initial surplus u, ruin occurs and the deficit at ruin exceeds y.
The proper choice of the expected discount penalty function is wðs; tÞ ¼ 1ðt4yÞ and the
discount rate d is zero.
First we shall obtain the initial value f1ð0Þ by Eq. (3), which involves the calculation of

the matrix �K . The stationary distribution of the continuous-time Markov chain is ½0:5; 0:5�.
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By Proposition VI.2.4 of Asmussen [2] stated in Section 3, it can be found that

�Q ¼
�2:78743178 2:78743178

1:23014682 �1:23014682

� �
and �K ¼

�2:78743178 1:23014682

2:78743178 �1:23014682

� �
.

Let

P ¼
�3 0

0 �4

� �
and WðyÞ ¼

9
2
e�3y

3
2
e�4y

" #
.

Then by the mixed product rule of Kronecker product, the initial value f1ð0Þ can be
obtained from

f1ð0Þ ¼ e01Gð0; 0; yÞe ¼ e01

Z 1
0

e
�Kz

9
2
e�3ðzþyÞ

3
2
e�4ðzþyÞ

2
4

3
5dz

¼
X2
i¼1

e01

Z 1
0

e
�Kzeie

0
ie

Pz dzWðyÞ ¼
X2
i¼1

ðe01 � e0iÞð�
�K � PÞ�1ðei �WðyÞÞ,

where

ð� �K � PÞ�1 ¼

0:200931 0 0:058432 0

0 0:163084 0 0:038358

0:132402 0 0:274902 0

0 0:086916 0 0:211642

2
6664

3
7775.

After some simplifications, f1ð0Þ ¼ 0:904189e�3y þ 0:057537e�4y.
Then we shall solve the system of integro-differential equations in Theorem 3:

9

2
f1ðuÞ � ½�f1ðuÞ þ f2ðuÞ� � f01ðuÞ ¼

9

2

Z u

0

f1ðu� zÞ3e�3z dzþ e�3ðuþyÞ

� �

and

3

2
f2ðuÞ � ½f1ðuÞ � f2ðuÞ� � f02ðuÞ ¼

3

2

Z u

0

f2ðu� zÞ4e�4z dzþ e�4ðuþyÞ

� �
.

Letting u ¼ 0, the first integro-differential equation leads to

f01ð0Þ ¼
11f1ð0Þ � 2f2ð0Þ � 9e�3y

2
.

To eliminate f2ð0Þ, note that the effect of �Q or �K disappears when the risk process starts
with the stationary initial distribution p. Mathematically, fpð0Þ ¼ pGð0; 0; yÞe can be
simplified into

1

2
f1ð0Þ þ

1

2
f2ð0Þ ¼

Z 1
0

1

2

9

2
e�3ðzþyÞ

� �
þ

1

2

3

2
e�4ðzþyÞ

� �� �
dz

from which we can obtain

f2ð0Þ ¼
3
2
e�3y þ 3

8
e�4y � f1ð0Þ.
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Thus

f01ð0Þ ¼
13
2
f1ð0Þ � 6e�3y � 3

8
e�4y.

Differentiating the equations with respect to u and eliminating the two integral terms by
making use of the two original integro-differential equations, we arrive at

ð2D2 � 5D� 6Þf1ðuÞ þ ð2Dþ 6Þf2ðuÞ ¼ 0,

ð2Dþ 8Þf1ðuÞ þ ð2D2 þ 3D� 8Þf2ðuÞ ¼ 0,

where the symbol D is the differential operator.
By eliminating f2ðuÞ from the system of linear differential equations, one can

obtain a fourth order linear differential equation of f1ðuÞ. The roots of the resulting
characteristic equation are 4:017579; 0;�0:129265 and �2:888313. Noting that f1ðuÞ ! 0
as u!1,

f1ðuÞ ¼ Ae�0:129265u þ Be�2:888313u

where A and B (which are functions of y only) can be determined from f1ð0Þ and f01ð0Þ. By
making use of

f1ð0Þ ¼ Aþ B,

f01ð0Þ ¼
13
2
f1ð0Þ � 6e�3y � 3

8
e�4y ¼ �0:129265A� 2:888313B,

it can be seen that

A ¼ 3:40274f1ð0Þ � 2:17466e�3y � 0:13592e�4y,

B ¼ �2:40274f1ð0Þ þ 2:17466e�3y þ 0:13592e�4y.

Finally, on combining with the initial condition f1ð0Þ, we obtain

f1ðuÞ ¼ ½0:902055e
�3y þ 0:059866e�4y�e�0:129265u,

þ ½0:0021342e�3y � 0:0023291e�4y�e�2:888313u.

5. Barrier probabilities of {St} in the case of phase-type claims

A phase-type distribution F is the distribution of the life time of a terminating
continuous-time Markov chain fMtgtX0 with finitely many states, one of which is
absorbing and all others are transient. Let the state space of fMtg be f1; . . . ; d; 0g ¼ E [ f0g
and 0 be the absorbing state. Then the generator of fMtg admits the structure

T t

00 0

� �
,

where T is a sub-intensity matrix, t ¼ �Te and 0 is a zero column vector. Let
ða1; a2; . . . ; ad ; 0Þ ¼ ða; 0Þ be the initial distribution of fMtg so that the continuous-time
Markov chain will not start at the absorbing state. We denote the distribution of F by
PHðE;a;TÞ.
Two important characteristics of phase-type distribution are
(1)
 it is closed under mixture and convolution, and
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(2)
 it is dense in the set of all distributions with positive support, that is, for any given
distribution F on ð0;1Þ, there exists a sequence fFng of phase-type distributions which
converges in distribution to F.
Erlang(n) distribution and mixture of exponential distributions are all in the family of
phase-type distribution. For more information about phase-type distribution, one can
refer to Neuts [12].

Li and Garrido [10] obtained the closed form solution of the infinite-horizon ruin
probability and the joint distribution of the surplus before and after ruin for the Sparre
Andersen models when the initial surplus is zero or the claim sizes belong to the rational
family which includes the phase-type distribution as a special case. See also Li and Garrido
[11]. We will show in the following that, when the claim size distribution in each of the
states is phase-type, it is possible to obtain a closed form solution of the infinite-horizon
ruin probability and the joint distribution of the surplus before and after ruin under the
regime switching model.

Let the claim size distribution in state i be PH(EðiÞ;aðiÞ;T ðiÞ). From Proposition VIII.5.5
and Theorem VIII.5.6 of Asmussen [2], it is immediate that the distribution of the first
overshoot of fStg above zero given J0 ¼ i follows the distribution PH(E; hðiÞ;T) where

E ¼
[
j2M

EðjÞ and hðiÞ ¼ ðhðiÞ1� ; h
ðiÞ
2� ; . . . ; h

ðiÞ
d� Þ

with hðiÞj� ¼ bjðe
0
i � aðjÞÞð� �K � T ðjÞÞ�1ðej � IÞ, I having the same dimension as T ðjÞ and T is

obtained by putting T ðjÞ on the main diagonal with all other entries zero. Also, the
maximum M ¼ supSt given J0 ¼ i follows the distribution PH(E; hðiÞ;U) where the matrix
U is formed by

uja;kg ¼
½T ðjÞ�ag þ tðjÞa yðjÞjg for j ¼ k;

tðjÞa yðjÞkg for jak:

8<
:

Here the symbols � and � stand for Kronecker product and Kronecker sum. For details
about these two operations one can refer to Graham [7].

First we introduce some notations very similar to that in Asmussen and Perry [3]. For
uX0, a 2 EðjÞ, define the first upcrossing and downcrossing probabilities

pþi;ja ¼ PiðSt upcrosses 0 the first time in state j; phase a 2 EðjÞÞ,

p�i;jðuÞ ¼ PiðSt downcrosses � u the first time in state jÞ

and barrier probabilities

pþi;jaðuÞ ¼ PiðSt first upcrosses 0 in state j; phase a before downcrossing � uÞ,

p�i;jðuÞ ¼ PiðSt first downcrosses � u in state j before upcrossing 0Þ.

It is obvious from the above and Section 3 that

pþi;ja ¼ ðh
ðiÞ
j� Þa and p�i;jðuÞ ¼ Piðmu ¼ jÞ ¼ e0ie

Quej.

Asmussen and Perry [3] derived the barrier probabilities in a more complicated
situation in a queuing theory context, where they related fStg to the virtual waiting
time fVtg of a MAP/MMPH/1 queue (MAP ¼Markovian arrival process,
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MMPH ¼Markov-modulated phase-type). Here we shall briefly go through their
argument in order to give probabilistic interpretations to various auxiliary quantities
needed to construct the barrier probabilities to be used in later sections.
First consider the event

PiðSt upcrosses 0 in state j; phase a 2 EðjÞÞ

¼ PiðSt upcrosses 0 in state j; phase a 2 EðjÞ before downcrossing � uÞ

þ
X
k2M

PiðSt upcrosses 0 in state j; phase a 2 EðjÞ after

downcrossing � u in state kÞ

¼ PiðSt upcrosses 0 in state j; phase a 2 EðjÞ before downcrossing � uÞ

þ
X
k2M

PiðSt downcrosses � u in state k before upcrossing 0ÞhðkÞeUueja ð9Þ

since PkðSt overshoots u in j; a 2 EðjÞÞ ¼ hðkÞeUueja. See Fig. 2 below for the decomposition
above.
Denote the probability hðkÞeUueja by n� þk;ja ðuÞ, (9) becomes

pþi;ja ¼ pþi;jaðuÞ þ
X
k2M

p�i;kðuÞn
� þ
k;ja ðuÞ. (10)

Then consider Fig. 3 below for the decomposition of p�i;jðuÞ.

PiðSt downcrosses � u in state jÞ

¼ PiðSt downcrosses � u in state j before upcrossing 0Þ

þ
X
k2M

X
a2EðkÞ

PiðSt upcrosses 0 in state k; phase a 2 EðkÞ

before downcrossing � u in state jÞ. ð11Þ

To calculate the probability in the double summation, first condition on the state of
economy and phase of St to be k 2M; a 2 EðkÞ. Given this condition, the overshoot of St

has distribution PH(EðkÞ; e0a;T
ðkÞ) and conditional density function e0ae

T ðkÞxtðkÞ. Then further
condition on the amount of the overshoot to be x. The event of interest becomes the
probability that St downcrosses �u the first time in state j given that downcrossing �u did
not happen before and now the state of economy is k and S is at a height of x above 0. This
–u –u

t t

St St

 j,α  j,α

k

Fig. 2. The decomposition of pþi;ja.
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St St

 j

k,α
x

 j

Fig. 3. The decomposition of p�i;jðuÞ.
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probability is the same as the probability that starting with J0 ¼ k;S0 ¼ 0, St first descends
level �ðxþ uÞ in state j, which equals

e0ke
QðuþxÞej.

Thus the sum in (11) equalsX
k2M

X
a2EðkÞ

pþi;kaðuÞ

Z 1
0

e0ae
T ðkÞxtðkÞe0ke

QðuþxÞej dx.

The integral is the probability that starting at level u of an overshoot in state k,
phase a 2 EðkÞ; St first descends level 0 in state j. This can be evaluated as
ðe0a � e0kÞð�T ðkÞ �QÞ�1ðtðkÞ � eQuÞej, which is denoted by nþ �ka;j ðuÞ. Hence (11) becomes

p�i;jðuÞ ¼ p�i;jðuÞ þ
X
k2M

X
a2EðkÞ

pþi;kaðuÞn
þ �
ka;j ðuÞ. (12)

Rewriting in matrix notation and denoting l as the dimension of E, (10) and (12) become

pþ ¼ pþðuÞ þ p�ðuÞN�þðuÞ,

p�ðuÞ ¼ p�ðuÞ þ pþðuÞNþ�ðuÞ

and the unique solution is given by

p�ðuÞ ¼ ½p�ðuÞ � pþNþ�ðuÞ�½Id�d �N�þðuÞNþ�ðuÞ��1,

pþðuÞ ¼ ½pþ � p�ðuÞN�þðuÞ�½I l�l �Nþ�ðuÞN�þðuÞ��1,

which is Theorem 6.1 of Asmussen and Perry [3].
Finally, let x; yX0 and define

pþi;jaðx; yÞ ¼ PiðSt upcrosses x in state j; phase a 2 EðjÞ

before downcrossing � yÞ.

For 0ozou, consider Fig. 4 for the decomposition of pþi;jaðuÞ:

pþi;jaðuÞ ¼ pþi;jaðzÞ þ
X
k2M

PiðSt downcrosses � z in state k before

upcrossing 0Þ pþk;jaðz; u� zÞ. ð13Þ
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St St

 j,α  j,α

–z –z

Fig. 4. The decomposition of pþi;jaðuÞ.
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It follows from the definition of pþi;jaðx; yÞ and p�i;jðuÞ that (13) can be rewritten as

pþi;jaðuÞ ¼ pþi;jaðzÞ þ
X
k2M

p�i;kðzÞp
þ
k;jaðz; u� zÞ. (14)

Rewriting (14) in matrix notation and letting u ¼ xþ y and z ¼ x,

pþðxþ yÞ ¼ pþðxÞ þ p�ðxÞpþðx; yÞ.

Assuming the invertibility of p�ðxÞ,

pþðx; yÞ ¼ ½p�ðxÞ��1½pþðxþ yÞ � pþðxÞ�.
6. The joint distribution of surplus before and after ruin in the case of phase-type claims

In this section, we shall derive explicit formulae for f ijðu;x; yÞ, Fijðu;1; yÞ and
Fiðu;1; yÞ in the case of phase-type claims. The barrier probabilities and the distribution
of the first overshoot of fStg above level zero obtained in the Section 5 will be the basic
building blocks. The dual process f �Stg defined similar to fStg but with the state of economy
fJtg replaced by the time-reversed version f �Jtg will also be used. All barrier probabilities
and other symbols related to the time-reversed version f �Stg will be labelled with the
notation ^. Recall the notation sðxÞ ¼ diagðbibiðxÞÞ defined in Theorem 2.

Theorem 4. Let f ðu;x; yÞ be a matrix with ijth element f ijðu; x; yÞ. Assuming the invertibility

of the appropriate matrices, for upx,

f ðu; x; yÞ ¼ ½p�ðuÞ��1e
�Kxsðxþ yÞ

for u4x,

f ðu; x; yÞ ¼ ½Dp�ðuÞ��1½�p�ðyÞsðxþ yÞ�pþðu� x;xÞ �N
þ�
ðuÞ�0D½p�ðyÞ��1.

Proof. If xXu, let f ðu; xÞ be a matrix with ijth element

f ijðu; xÞ ¼
d

dx
PiðtðuÞo1; JtðuÞ ¼ j;RtðuÞ�pxjR0 ¼ uÞ.

Consider Fig. 5 for the decomposition of f ijð0;xÞ:
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Fig. 5. The decomposition of f ijð0;xÞ.
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Conditioning on Jt at the first time St downcrosses �u before overshooting 0,

f ijð0;xÞ ¼
X
k2M

p�i;kðuÞf kjðu;xÞ.

Rewriting in matrix notation and assuming the invertibility of p�ðuÞ,

f ðu;xÞ ¼ ½p�ðuÞ��1f ð0;xÞ,

where by (6),

f ð0;xÞ ¼ �
d

dx
Gð0; x; 0Þ

¼ e
�KxSððx;1ÞÞ.

Hence f ijðu;x; yÞ can be obtained from

f ijðu;x; yÞ ¼ f ijðu; xÞ
bjðxþ yÞ

B̄jðxÞ
.

In matrix notation,

f ðu;x; yÞ ¼ f ðu;xÞdiag
bjðxþ yÞ

B̄jðxÞ

� �

¼ ½p�ðuÞ��1e
�Kx diagðbj B̄jðxÞÞdiag

bjðxþ yÞ

B̄jðxÞ

� �
¼ ½p�ðuÞ��1e

�Kxsðxþ yÞ.

If xou, let t ¼ tð0Þ be the time of ruin with initial zero reserve as usual and T be the time
of recovery, that is, the time when St first downcrosses 0 after upcrossing 0. In the classical
compound Poisson risk model, Dickson [4] obtained f ðu;x; yÞ by time-reversion. Consider
stationary version of Jt and �Jt, we may then assume �Jv ¼ JT�v and �Sv ¼ �ST�v where
v 2 ½0;T �. Let x; y; i and j be fixed. Consider the event A that J0 ¼ i and St downcrosses �u

before overshooting 0, overshoots 0 with �St� 2 ½x;xþ dx� and St 2 ½y; yþ dy� at t, and
St does not overshoot y before downcrossing 0 at state j for any totoT . The dual event of
A is the event that �J0 ¼ j;St cannot descend below level �u before �t, � �S�t� 2 ½y; yþ dy�,
�S�t 2 ½x;xþ dx�, and �St has to overshoot u before recovering at state of economy i. One
sample path realization of event A and its dual sample path is shown in Fig. 6.
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Fig. 6. The dual sample path.
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Mathematically,

piPiðAÞ ¼ PpðJ0 ¼ i;AÞ

¼ PpðJ0 ¼ i;Svo0 8v 2 ð0; tÞ; 9z 2 ð0; tÞ such that Sz ¼ �u,

� St� 2 ½x;xþ dx�;St 2 ½y; yþ dy�;Svoy 8v 2 ðt;TÞ; JT ¼ jÞ

¼ Ppð �J0 ¼ j; �Sv4� y 8v 2 ð0;T � tÞ;� �ST�t� 2 ½y; yþ dy�,

�St�t 2 ½x;xþ dx�; �Sv40 8v 2 ðT � t;TÞ,

9z 2 ðT � t;TÞ such that �Sz ¼ u; �JT ¼ iÞ

¼ pjPjð �Sv4� y 8v 2 ð0;T � tÞ;� �ST�t� 2 ½y; yþ dy�,

�St�t 2 ½x;xþ dx�; �Sv40 8v 2 ðT � t;TÞ,

9z 2 ðT � t;TÞ such that �Sz ¼ u; �JT ¼ iÞ. ð15Þ

Given that J0 ¼ i, the probability that St downcrosses �u the first time in state of
economy l before overshooting 0 is p�i;lðuÞ. Given that R0 ¼ u and J0 ¼ l, the probability
that RtðuÞ� 2 ½x; xþ dx�; �RtðuÞ 2 ½y; yþ dy� and JtðuÞ ¼ k is f lkðu;x; yÞdxdy. Given that
now the state of economy is k and St ¼ y, the probability that St will downcross 0 in state
of economy j before overshooting y is the same as the probability that given the state of
economy is k and S0 ¼ 0, the probability that St will downcross �y in state of economy j

before overshooting 0, which is p�k;jðyÞ. Thus conditioning on Jt ¼ l when St first
downcrosses �u and Jt ¼ k when St overshoots 0 and then summing over all l and k 2M,
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the probability on the left-hand side of (15) can be written as

pi

X
l;k2M

p�i;lðuÞf lkðu;x; yÞdxdy p�k;jðyÞ.

Similarly, conditioning on �Jt ¼ k when �St attains �y and �Jt ¼ l and the phase of the
claim to be g 2 EðlÞ when �St upcrosses u for the first time after attaining x and then
summing over all k; l 2M and g 2 EðlÞ, the probability on the right-hand side of (15) can
be written as

pj

X
k2M

�p�j;kðyÞbka
ðkÞeT ðkÞðxþyÞtðkÞ dxdy

X
l;g2EðlÞ

�pþk;lgðu� x;xÞ �nþ�lg;i ðuÞ

2
4

3
5.

Rewrite (15) in matrix notation,

Dp�ðuÞf ðu;x; yÞp�ðyÞ ¼ ½�p�ðyÞsðxþ yÞ�pþðu� x;xÞ �N
þ�
ðuÞ�0D.

Assuming the invertibility of p�ðuÞ, p�ðyÞ and �p�ðu� xÞ (due to the presence of
�pþðu� x;xÞ), the joint density can be obtained by

f ðu;x; yÞ ¼ ½Dp�ðuÞ��1½�p�ðyÞsðxþ yÞ�pþðu� x;xÞ �N
þ�
ðuÞ�0D½p�ðyÞ��1.

The joint density of surplus before and after ruin can be obtained by summing over all
j. &

The necessary condition for the invertibility of the matrices is hard to establish, but we
shall consider a numerical example to illustrate that the assumption is not fictitious.
Although the formula for xou is not as explicit as that for xXu, it is easy to program
using mathematical languages like MATLAB.

From the above results on the joint distribution of the surplus before and after ruin, by
taking proper limits, we can obtain the closed form solutions for the distribution of the
surplus before ruin and the distribution of the deficit at ruin. But for the distribution of the
deficit at ruin, we can obtain a very explicit result using a simpler argument. Recall the jath
unit column vector eja in (9). Let ej ¼

P
a2EðjÞ eja be a column vector with entries equal to 1

at positions ja for all a 2 EðjÞ and I j be the matrix formed by placing the elements of ej on
the main diagonal and letting all other entries equal to 0.

Theorem 5. The distribution of the deficit at ruin starting with initial surplus u and state of

economy i and ruins at state of economy j is given by

Fijðu;1; yÞ ¼ hðiÞeUuej � hðiÞeUuI jeTye

and the distribution of the deficit at ruin starting with initial surplus u and state of economy i

is given by

Fiðu;1; yÞ ¼ hðiÞeUue� hðiÞeUueTye.

Proof. Consider the event that ruin occurs and the deficit is greater than y, that is, the
overshoot of St above level u is greater than y. This is the same as the event tðuÞo1 and
StðuÞ4uþ y. To calculate this event, we further partition this into disjoint events by
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considering the phase of the claim when St first upcrosses level u:

PiðtðuÞo1; JtðuÞ ¼ j;RtðuÞp� yjR0 ¼ uÞ

¼ PiðtðuÞo1; JtðuÞ ¼ j;StðuÞ4uþ yÞ

¼
X
a2EðjÞ

hðiÞeUueja � e0jae
Tye ¼ hðiÞeUuI jeTye.

Hence

Fijðu;1; yÞ ¼ PiðtðuÞo1; JtðuÞ ¼ j;RtðuÞ4� yjR0 ¼ uÞ

¼ cijðuÞ � PiðtðuÞo1; JtðuÞ ¼ j;RtðuÞp� yjR0 ¼ uÞ

¼ hðiÞeUuej � hðiÞeUuI jeTye

and the distribution of the deficit at ruin starting with initial surplus u and state of
economy i is given by

F iðu;1; yÞ ¼ hðiÞeUue� hðiÞeUueTye: &

7. Numerical illustration

In this section, we shall consider one numerical example for the calculation of the joint
density function of surplus before and immediately after ruin for a Markov-modulated risk
model with three states of economy. Suppose that

K ¼

� 1
3

1
9

2
9

1
9
� 1

3
2
9

1
6

0 � 1
6

2
64

3
75 and b ¼

1
2
1
3

1

2
64
3
75.

In state of economy 1, the claims sizes are exponentially distributed with mean 1. In state
of economy 2, the claim sizes are exponentially distributed with mean 6. In state of
economy 3, the claim sizes are hyperexponentially distributed with two channels and the
density is

3
4
e�x þ 1

2
e�2x.

The stationary distribution of the continuous-time Markov chain is

p ¼ 9
28

3
28

4
7

� �
and

P3
i¼1 pibimBi

¼ 7
8
which means that the relative security loading is 1

7
.

By using the iteration scheme, it is found that, up to five decimal places of accuracy,

Q ¼

�0:46500 0:14747 0:31753

0:21378 �0:56527 0:35149

0:33403 0:02722 �0:36125

2
664

3
775,

�Q ¼

�0:46524 0:05651 0:40874

0:45329 �0:56831 0:11502

0:27141 0:08656 �0:35797

2
664

3
775,
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pþ ¼

0:36809 0:23991 0:21527 0:02250

0:05840 0:59014 0:19750 0:02097

0:06325 0:12940 0:59188 0:10841

2
664

3
775,

�pþ ¼

0:36833 0:20535 0:24481 0:02637

0:10908 0:60837 0:12382 0:01067

0:05361 0:14542 0:58908 0:10817

2
664

3
775,

U ¼

�0:63191 0:23991 0:21527 0:02550

0:00973 �0:06831 0:03292 0:00350

0:06325 0:12940 �0:40812 0:10841

0:12650 0:25880 1:18376 �1:78318

2
666664

3
777775,

�U ¼

�0:63167 0:20535 0:24481 0:02637

0:01818 �0:06527 0:02064 0:00178

0:05361 0:14542 �0:41092 0:10817

0:10722 0:29085 1:17816 �1:78366

2
666664

3
777775.

The matrices Nþ�ðuÞ, etc. can be found by the formulae in Section 5, say, �p�ðuÞ ¼ e
�Qu and

N�þðuÞ ¼ pþeUu.
By summing up each row of pþ, the ruin probabilities with zero initial reserve are found

to be c1ð0Þ ¼ 0:8458; c2ð0Þ ¼ 0:8670 and c3ð0Þ ¼ 0:8929.
Figs. 7 and 8 are some graphs of the joint density function f ijðu; x; yÞ for various

combinations of u; i and j. Notice that for each graph there is a ridge at the line x ¼ u

because of the structural change of the joint density function. From Fig. 7, we note that
Fig. 7. f 11ð0;x; yÞ.
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f 11ð0;x; yÞ has a unique mode and is a decreasing function in both x and y. We observe,
from Fig. 8, that f 23ð2;x; yÞ has two modes, although one of them is much smaller. This bi-
modal feature becomes more obvious in Figs. 9 and 10.
Figs. 9 and 10 are the graphs of the joint density function f iðu;x; yÞ for u ¼ 1; i ¼ 1 and

u ¼ 2; i ¼ 2.
Fig. 11 is the graph of the distribution of the deficit at ruin F iðu;1; yÞ for u ¼ 1;

i ¼ 1 and u ¼ 2; i ¼ 2. From the figures we see that F2ð2;1; yÞ has heavier tail than
F1ð1;1; yÞ.
Fig. 8. f 23ð2;x; yÞ.

Fig. 9. f 1ð1; x; yÞ.
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Fig. 10. f 2ð2; x; yÞ.
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Fig. 11. F1ð1;1; yÞ and F 2ð2;1; yÞ.
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