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Abstract

We investigate the behavior of systems of interacting diffusion processes, known as volatility-stabilized
market models in the mathematical finance literature, when the number of diffusions tends to infinity.
We show that, after an appropriate rescaling of the time parameter, the empirical measure of the system
converges to the solution of a degenerate parabolic partial differential equation. A stochastic representation
of the latter in terms of one-dimensional distributions of a time-changed squared Bessel process allows us
to give an explicit description of the limit.
© 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, Fernholz and Karatzas [9] have introduced two kinds of systems of interacting
diffusion processes, the volatility-stabilized market models and the rank-based market models,
in the context of stochastic portfolio theory. Both of them serve as models for the evolution of
capitalizations in equity markets and incorporate the fact that stocks of firms with smaller market
capitalization tend to have higher rates of returns and be more volatile. In a previous paper [25]
the author gave a description of the joint dynamics of the market capitalizations in rank-based
models, when the number of firms tends to infinity (see also [13] for related results). Here, the
corresponding limit is investigated in the context of volatility-stabilized models. For an analysis
of arbitrage opportunities in these models we refer the reader to [8,2].
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The dynamics of the capitalizations in volatility-stabilized models is given by the unique weak
solution to the following system of stochastic differential equations:

dX;(t) = gS(t)dt +VXi@®)S@) dW;i(t), 1<i<N, (1)
which is endowed with an initial distribution of the vector (X;(0), ..., X5 (0)) on [0, co0)™.

Hereby, 1 is a real number greater than 1, S(#r) = X;(#) +--- + Xy(@#) and Wy, ..., Wy is a
collection of N independent standard Brownian motions. We refer the reader to Section 12 of [9]
for a construction of a weak solution to (1) and an explanation of why it is unique.

We will analyze the limit of the path of empirical measures % >N 8x,() corresponding
to (1), after a suitable rescaling of the time parameter, when N tends to infinity. The slowdown of
the time by a factor of N is needed to observe a non-degenerate limiting behavior. Heuristically,
this can be inferred from the appearance of the process S() = X(¢t) + - - - + Xn(¢), an order N
object, in the drift and diffusion coefficients of the processes X1, ..., Xy.

We show that the limit of the sequence of laws of % Zf\;l dx;(t/Ny» N € N, exists and that
the limiting measure is supported on generalized solutions of the degenerate linear parabolic
equation (5) below. Overcoming the problem of degeneracy, we show that the generalized
solution of the Eq. (5) is unique. Having shown uniqueness, we use a stochastic representation
of the solution of (5) to determine the latter explicitly.

Due to our results one may approximate the evolution of the capitalizations in a large
volatility-stabilized market by the solution of the limiting Eq. (5). Moreover, in the context of
stochastic portfolio theory (see e.g. [7,9]) one is interested in the behavior of the rank statistics

of the vector (X1(¢), ..., Xn(¢)) of capitalizations. Since these are given by the %, %, R %—

quantiles of the empirical measure % Z,N: 1 0x,(1), our results can also be used to approximate
sample paths of any finite number of ranked capitalizations (or market weights) by the sample
paths of the corresponding quantiles (or appropriate functions of those) of the solution to
the partial differential equation (5). This complements the exact formulas for the transition
probabilities of the market weights in volatility-stabilized markets given in [20], which allow us
to simulate the vector of market weights at finitely many different points in time. In addition, the
stochastic representation mentioned above shows that the solution to Eq. (5) is given by the one-
dimensional distributions of a time-changed squared Bessel process and, thus, establishes a new
connection between volatility-stabilized market models and squared Bessel processes (see [9] for
further connections). The latter were analyzed in much detail in the works [22—24] among others.

Independently from the field of stochastic portfolio theory, systems of interacting diffusion
processes play a major role in statistical physics. In particular, systems of diffusions interacting
through their empirical measure (mean field) have been studied in the literature by many authors;
see e.g. [11,15,4,10,14,16-18]. We remark that the system (1) can be cast into the framework of
[11], since the drift and the diffusion coefficients in the ith equation of the system (1) can be
expressed as functions of the empirical measure of the particle system and the position of the ith
particle. However, the generator of the particle system is not uniformly elliptic on [0, c0)" and
the same is true on [0, oo) for the elliptic differential operator on the right-hand side of Eq. (5).
For this reason, the results of [11] do not carry over directly to our setting. Nonetheless, we adapt
some of the techniques developed there to our case.

The time-varying mass partition

X; (1) .
, 1 <i<N
X1+ +Xn@®

2

o (1) =
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is referred to as the collection of market weights in the mathematical finance literature and
describes the capitalizations of the firms as fractions of the total capitalization of the market.
The collection of market weights has the remarkable property of being extremely stable over
time in all major US equity markets (see [7] for plots of the corresponding capital distribution
curves over a period of eight decades). Under rank-based models with appropriate parameters, it
was shown before that the market weights are stable and the capital distribution curve is rigid,
thereby matching the empirical observations (see [3,21]).

The model (1) incorporates the empirically observed fact that the capitalizations of firms with
a small market weight tend to have a higher rate of growth and to fluctuate more wildly. Indeed,
this becomes apparent from the dynamics of the logarithmic capitalizations corresponding to (1):

n— 1 .
d(log X; (1)) = dt + dw;(t), 1<i<N, 3
(log X; (1)) e 0) O] i) (3)
and the assumption 1 > 1. A detailed analysis of the evolution of the market weights under the
model (1) and the corresponding invariant measure can be found in [20].

We assume the following condition on the initial values X;(0),..., Xx(0) of the
capitalizations.

Assumption 1.1. The laws of % ZIN=1 3x,;0), N € N, on M;([0, 00)), the space of probability
measures on [0, co) endowed with the topology of weak convergence of measures, converge
weakly to 8, for some A € M;([0, co)) with a finite first moment, the quantities E[S(0)] and
E[S(0)?] are finite for all N € N, and it holds that

E[S(0)] E[SO0)?] 5

S e e i = = @

where m; = f[o 00y X A(dx). In addition, we make the non-degeneracy assumption m; > 0.

We remark at this point that Assumption 1.1 is, in particular, satisfied if the random vari-
ables X1(0), ..., Xn(0) are i.i.d. and distributed according to a measure A with finite first two
moments and m) > 0. This is a consequence of Varadarajan’s Theorem in the form of Theo-
rem 11.4.1 in [6]. Another example of a situation in which Assumption 1.1 is satisfied is the fol-
lowing. Suppose that . € M ([0, co)) has a positive density on [0, c0) and a finite first moment.
Let X1(0), ..., Xn(0) be the %, R % quantiles of A. Then, for any continuous function f
which is integrable with respect to A,

lim
N—o0

1 N
FOOAAx) — = f(X:(0))
Aw N;

N
Z(f(x) — f(Xi (ON)1x,_, 0, x: 0 (X) A(dx)| = 0

[0,00) j=1

= lim
N—o0

by the Dominated Convergence Theorem, where we have set Xo(0) = 0. In particular, the condi-
tions in Assumption 1.1 hold. Clearly, other discretizations of the measure A work equally well.

In order to formulate our main results we introduce the following notation. We write M (R)
and M ([0, co)) for the spaces of probability measures on the real line and the non-negative
half-line, respectively. We metrize both spaces in a way compatible with the topology of weak
convergence of measures. Moreover, for a positive real number T, we let C([0, T], M1(R))
and C([0, T'], M([0, 00))) be the spaces of continuous functions from [0, 7] to M;(R) and
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from [0, T'] to M1 ([0, c0)), respectively, endowed with the topology of uniform convergence. In

addition, we introduce the time-changed capitalization processes YiN ) =Xi@t/N),t =0,1<

i < N, and the corresponding path of empirical measures ,oN(t) = % ZlN:l dyn ! € [0, T,

on an arbitrary finite time interval [0, T'], which is considered to be fixed from Il10W on. Finally,

we let QITV be the distribution of the random variable p® (¢), t € [0, T], on C([0, T, M1 (R)).
The main results of this paper are summarized in the following theorem.

Theorem 1.2. Under Assumption 1.1 the following statements are true.

(a) The sequence QITV , N €N, converges weakly to a limit Q7. Moreover, QF is a Dirac delta
measure, whose unique atom p is given by the unique distributional solution of the Cauchy
problem

2
9 _ n ap 1 ¥ 0 (xp)’ )
ot 2 ox 2
p0) =2 (6)
in C([0, T1, M1([0, 00))), where m; = f[O,oo) x A(dx).
(b) Let Z(t),t = 0, be a squared Bessel process satisfying the stochastic initial value problem

dZ(t) = g dt +JZ@) dB@t), 1> 0, 7

L(Z(0)) = A, (®)

where B is a standard Brownian motion and L(Z(0)) denotes the law of Z(0). Then the

unique distributional solution to the Cauchy problem (5), (6) in C([0, T], M1([0, 00))) is

given by the one-dimensional distributions of the time-changed process Z ( fot e/ 2my, ds),
tel0,T].

(c) Let p(t),t € [0, T], be the only atom of the measure QF°. Then for every t € (0, T] the

measure p(t) is absolutely continuous with respect to the Lebesgue measure Leb on [0, 00)
and the corresponding density is given by

D0 = [ () e (<20 1 (S s,

dLeb 0.00) J (1) \x J(t) J(t)

where J(t) = fé e 2my, ds and 1)1 is the Bessel function of the first kind of index n — 1.

Remarks. (1) By a distributional solution of the problem (5), (6) in C([0, T'], M1([0, 00)))
we mean an element p of C([0, T], M([0, c0))) which satisfies the system (29), (30),
where S(R) is the space of Schwartz functions on R and (y, f) denotes f]R f dy for any
feSMR),y € Mi(R).

(2) In [25] the limiting dynamics was derived (under some assumptions) for a different class of
interacting diffusion processes, which go by the name of rank-based models in the context
of stochastic portfolio theory. There, the limiting equation for the cumulative distribution
function of the empirical measure of the logarithmic capitalizations was given by the porous
medium equation, that is, a nonlinear non-degenerate parabolic partial differential equation.
It was also shown there that its generalized solution w can be represented by the one-
dimensional distributions of the process with the dynamics

dX(1) = p(w(r, X(1))) dt +o(w(r, X(1))) df(1), €))
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where 1 and o are functions depending on the parameters of the model. In contrast, the
partial differential equation (5) is a linear degenerate parabolic differential equation, which
admits the stochastic representation of Theorem 1.2(b). Hence, although the rank-based
and the volatility-stabilized models share multiple common features (such as the monotone
dependence of the drift and diffusion coefficients of the logarithmic capitalizations on the
market weights), their limiting behaviors differ significantly. Indeed, it was shown in [1]
that the generalized solution of the porous medium equation may fail to be differentiable in
the spatial variable for all #+ > 0 in contrast to the findings in Theorem 1.2(c) for Eq. (5).
In addition, a big difference from the applicational point of view is the explicitness of the
solution to Eq. (5), whereas (in general) no explicit formula for the generalized solution of the
porous medium equation is known. It is also remarkable that with the usual parameterizations
of the two models as in [9], the time in the volatility-stabilized models (1) has to be slowed
down by a factor of N to observe non-degenerate limiting behavior, whereas this is not the
case in the rank-based market models. The extreme fluctuations of the capitalizations in
volatility-stabilized models are a usual point of criticism, and our results suggest that an
appropriate way to correct for this is to slow down the time by a factor proportional to N.

(3) Let d be a metric on M (R) which metrizes the topology of weak convergence of probability
measures (such as the Lévy metric or any other metric in Section 11.3 of [6]), and let d|o,7)
be the metric on C ([0, T'], M1 (R)) given by

dio,r1(61,62) = sup d(&1(1), &2(1)). (10)
1€[0,T]

Then djo,77 makes the space C([0, T], Mi(R)) into a separable metric space (see e.g.
Theorem 2.4.3 in [26]). Moreover, combining part (a) of Theorem 1.2 with Problem 6 in
Chapter 9.3 of [6], we conclude that the sequence p¥, N € N, converges to the path of
measures p of Theorem 1.2 (c¢) in probability on (C([0, T'], M1 (R)), djo,17), that is,

Ve > 0: lim P| sup d(pN(t), p) >e] =0. an
N—oo  \;g[0,T]

This gives an alternative way of stating part (a) of Theorem 1.2.

(4) The transition densities of the squared Bessel process Z in Theorem 1.2 (b) are known
(see e.g. Corollary 1.4 in Chapter XI of [24]), so part (c) of Theorem 1.2 is a direct
consequence of parts (a) and (b) of Theorem 1.2.

We conclude the introduction with two figures (see Fig. 1) showing the normalized diversity

process
1 & ’
Dip@)=(—=D a®'?]) ., t>0, (12)
&

and the time-averaged capital distribution curve for a volatility-stabilized market with N = 500

and n = 2. These should be compared with Fig. 6.5 on p. 124 of [7] and Fig. 5.1 on p. 95

of [7] showing the same quantities for US equity market data from the Center for Research in

Securities Prices (CRSP) at the University of Chicago. As one might expect, the enormous drift

and diffusion coefficients in (1) lead to much higher fluctuations of the normalized diversity

in volatility-stabilized markets compared to that for real-world markets. However, the capital

distribution curves observed in practice can be captured quite well by the volatility-stabilized
market models as the second figure shows.
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Fig. 1. The first figure shows the evolution of the normalized diversity in a volatility-stabilized market with N = 500
and n = 2. The second figure shows the time-averaged capital distribution curve for the same market.

The rest of the paper is organized as follows. Part (a) of Theorem 1.2 is proven in Sections 2.1
and 2.2. Its proof is divided into three parts. Firstly, in Proposition 2.1 it is shown that the
sequence O, N € N, is tight. Its proof relies on the characterization of compact subsets of
C([0, T], M1(R)) obtained in [11] and a characterization of compact subsets of C([0, T'], R),
the space of continuous real-valued functions on [0, 7] endowed with the topology of uniform
convergence, given in [27]. Secondly, in Proposition 2.3 we prove that every limit point of the
sequence O, N e N, is supported on generalized solutions of the Cauchy problem (5), (6).
Here, we use arguments from the theory of convergence of semimartingales in the spirit of
[12]. The main challenge in these two parts is dealing with the unboundedness of the drift and
diffusion coefficients in the dynamics of the processes Y7, ..., YIOI . Thirdly, in Proposition 2.4
we demonstrate that the problem (5), (6) has a unique distributional solution in the space
C([0, T], M1([0, 00))). Hereby, we cannot apply the classical uniqueness results due to the
degeneracy of the elliptic operator on the right-hand side of Eq. (5). Instead, we transform the
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uniqueness problem into an existence problem and use the semigroup of the appropriate squared
Bessel process to construct a solution for the latter. After that, we give the proof of part (b) of
Theorem 1.2 in Section 2.3 using methods of stochastic calculus.

2. The law of large numbers
2.1. Tightness

In this subsection we will combine the characterization of relatively compact sets in the space
C([0, T], M1 (R)) of [11] with a characterization of relatively compact subsets of C ([0, T'], R)
in [27] to prove the tightness of the sequence Q% , N € N.

Proposition 2.1. The sequence Qy, N e N, is tight on C([0, T], M| (R)).

Proof. (1) Let C.(R) be the space of compactly supported continuous functions on R endowed
with the topology of uniform convergence. We fix an arbitrary € > 0 and a countable dense
subset { f1, f2, ...} of C.(R) such that each f, is twice continuously differentiable. Moreover,
for every y € M1(R) and every function f on R which is integrable with respect to y, we write
(v, f) for [ f dy.

From the proof of Lemma 1.3 in [11] we see that it is enough to find a compact set K in
M (R) and compact sets K1, K2, ...in C([0, T], R) such that forall N € N,

OY ({5 € C(I0, T1, Mi(R)|V1 € [0, T]: £() € Ko}) = 1 — ¢, (13)
07 ({5 € C(0, T, MiR)I(EC), [ e KN =1-27€,r > 1. (14)

To define K¢ we introduce the function ¢ (x) = |x| and use the non-negativity of the processes
Y IN s, Y ,C] together with the dynamics of the processes X1, ..., Xy to conclude that

YN 1 N
d(pN (@), ¢) = N(t) 1+ 37 > VYN @) SYN @) dBi(t).
i=1

where B; (r) = N1/2w; (t/N),1 <i <N, SY-N(p) = YIN(t)—i—- . -+Y1(,V(t). From the representa-
tion of X1, ..., Xy as time-changed squared Bessel processes (see Egs. (12.7)—-(12.9) in [9]) and
remark (ii) after Corollary 1.4 in Chapter XI of [24] (note that their dimension parameter § cor-

responds to our 27) it follows that the time of return to 0 of the processes X1, ..., Xy is infinity
Jrv
with probability 1. Hence, the process B(f) = ) ;_; fo NGEID) N(b( dB;(s),t > 0, is well-defined

and a standard Brownian motion by Lévy’s Theorem. As a consequence we have
(PN (1), ¢)
VN

The latter equation is a Black—Scholes stochastic differential equation and it is well-known that
its unique strong solution is given by

d(p™ (), ¢) = gmN(r), ¢)dt + dB(1). (15)

(P (1).) = (0" O, @) exp (/2 = @M ™Hr + NTV2BW)). (16)
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Thus, for every C > 0 and all N € N we have

P (( sup (" (1), $)) > C)

0<t<T

<P ((pN(O), ) exp(N‘”zosupT B(t)) > Cexp(—(n/2 — (2N>—1)T)> :
<t<

A routine computation involving Chebyshev’s inequality and (4) shows that the sequence of ran-
dom variables (p"(0), ¢) exp(N~1/2 supg<;<7 B()), N € N, converges in probability to the
constant m;_. Hence, by choosing C large enough, one can make the latter upper bound smaller
than € for all N € N. Thus, we can let K be the closure of the set

{y e MiR)|(y,¢) = C}

in M1 (R), which is compact by Prokhorov’s Theorem.

(2) To prove the existence of the sets K1, K7, ... with the desired properties it suffices to show
that for any fixed r € N the sequence of probability measures Q?’f "N e N,on C([0,T],R)
induced by QITV , N € N, through the mapping & +— (£(-), f;-) is tight. To this end, we fix an

r € N and aim to deduce the tightness of the sequence Q]}]’f ", N € N, from Theorem 1.3.2
of [27]. To do this, we need to show that

L N.f;
1 f 0))<6) =1
Olrrglo[\llI;N 07" (ly(@)] =0)

and
VA >0: limlimsup QITV’fr sup |y(t) —y(s)| > A ) =0,
0 N> oo (s,1)€A;

where Ay = {(5,0)[0 < s <t < T,t —s =< ¢}. The first assertion follows immediately by
considering 6 > sup, g | fr(x)|.
To prove the second assertion, we first rewrite it in terms of X, ..., Xn:
> A) =0,
where A; vy = {(s,)|0 < s <t < T/N,t —s < {/N}. Next, we apply Itd’s formula to the
process % ZlNzl fr(Xi()),t > 0, and conclude that it holds that

1 N
— DY (X)) = £ (Xi ()

i=1

VA >0: limlimsupP sup
840 N—oo (s,1)€A¢ N

% gfr(Xi(t)) = %gfr(xi(o)) + D)+ M(r), t=0, a7)
where
D) = L i/f TR XS + lf”(Xi(bt))Xi(u)S(u) du (18)
N —=Jo 2 g 27 ’

1
M(t) = I Z/O FAXi )y Xi () S(u) dW; (u). (19)
i=1
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Thus, for every fixed A > 0 the latter limit can be bounded from above by

limlimsup P sup |ID() — D(s)| > A/2
0 N oo 0<s<t<T/N.,i—s<t/N
+ limlim sup P sup [M(t) — M(s)| > A/2 ],
0 Nooo 0<s<t<T/N,i—s<(/N

which we will call expression (). We will show that the first summand in (x) is zero in step 3
and that the second summand is equal to zero in step 4.

(3) To bound the first summand from above, we set

R = max (n/z sup £/, 1/2 sup |f,”(x>|) (20)

XE

and use the definition of the process D to give the estimates

P sup |ID(t) — D(s)| > A/2
0<s<t<T/N,t—s<¢/N
! A
<P sup / Su) + Su)?/N du > —
0<s<t<T/N,t—s<¢/N Js 2R

<P| sup (S@)+S1)?*/N) > AN
~ N\o<t<1/N ~ 2R¢

=]P’( sup  S(t) >

0<t<T/N

—1+ JTF24A/(R?) /(Rg)N>
5 .

Hereby, in the second inequality we have estimated the integrand from above by the maximal
value that it can take, and the last identity has been obtained by solving the appropriate quadratic
equation.

To estimate the latter upper bound further, we use the dynamics of the processes X1, ..., Xn
to find

N
dS(t) = S(@) %dt + Z\/Xi(f) S@)dW;(t) = S(t) %dt + 8@ dE(t),
i=1

where B ) = ZZNZ | Ot —V\/}gf’((;)) dW;(s),t > 0, is a standard Brownian motion due to the same ar-

gument as for the process B in step 1 of this proof. Thus, S satisfies the Black—Scholes stochastic
differential equation and is given explicitly by

S(t) = SOy exp ((gN/2 — 1/2)t + B(1)), 1> 0. 1)

Hence, the latter upper bound is not greater than

P—=exp|(WN/2—-1/2)T/N+ sup B(t)
N 0<t<T/N

) oLV QA—/(Rg“))
> > .
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From (4) and Chebyshev’s inequality it follows that the sequence of random variables

50 exp ((nN/Z —1/2T/N + sup E(r)) ,NeN
N 0<t<T/N

converges to the constant 1, e’ /% in probability in the limit N — oo. Thus, the latter probability

converges to 0 in the limit N — oo for all ¢ small enough.

(4) To show that the second summand in expression (x) is zero, we first note that for every pair
0<s<t<T/Nwitht —s <¢/N thereisak € Nwiths,r € [k¢/N, (k+2)¢/N]. We use
this observation and the union bound to conclude that

IP( sup IM(t) — M(s)| > A/Z)

0<s<t<T/N,t—s<{/N

[7/¢]-1

< Y P sup |M(t) = Mkt /N)| > AJ4 ),
k=0 k¢ /N<t=<(k+2)¢/N

where | -] denotes the function taking a real number to its integer part.
Next, we use (21) to compute

E[S(1)] = E[S(0)]exp(nNt/2), @2
E[S(1)*] = EIS(©0)*Texp((N + 1)1).

The inequality f/(X;(t))>X;()S(t) < sup,cg | f/(x)|*>S(#), Fubini’s Theorem and (22) imply
that the process M(t),t > 0, is a martingale. Applying the L2-version of Doob’s maximal in-
equality for non-negative submartingales we obtain

[7/¢]-1
Z ]P’( sup IM(I)—M(kC/N)|>A/4>
k=0

k¢ /N<t<(k+2)¢/N
16 LT/E1-1
<5 2 ElM(K+2)0/N) = Mke/N)Y).
k=0

By the It6 isometry the latter expression can be computed to be

16 TRt (k+2)¢/N
Z ZE |:/k fr/(Xi(M))ZXi(u)S(u) dui|

2N2
AN k=0 i=1 ¢/N

/ 2
32sup[f; (x)l W/ eN
< WE /o Sw)“du|.

By Fubini’s Theorem (note that the integrand is non-negative) and (22) one deduces that the
right-hand side is equal to
32 sup | £/ (x) PE[S(0)?]

xeR
AZNZ(N + 1)

Using (4) we conclude that the latter expression tends to O in the limit N — oo for any fixed
¢>0. O

(exp ((MN + D(LT/¢] + D¢ /N) = 1).



222 M. Shkolnikov / Stochastic Processes and their Applications 123 (2013) 212-228
2.2. Identification of the limit point

In this section we will uniquely characterize the limit points of the sequence Qy ,N € N,and
thereby complete the proof of Theorem 1.2(a). To this end, we fix a convergent subsequence
Q]}]k,k € N, of the sequence Ql}/ ,N € N, and let QC;O be its limit. By the Skorokhod
Representation Theorem in the form of Theorem 3.5.1 in [5], there exist C([0, T'], M1 (R))-
valued random variables py, k € N, with laws QZTV", k € N, converging to a limiting random
variable pn with law Q° almost surely. We start with the following lemma.

Lemma 2.2. The sequence of functions t +— (pp(t),x),k € N, converges in the space
C(0,T1,R) to t — mye"'*in probability in the limit k — oo.

Proof. First, we fix a k € N and with a minor abuse of notation write S(¢) for X{(¢) + --- +
Xn, (1). By Eq. (21), we have for every € > 0,

]P’( sup ‘(ﬁk(t),x) —m,\e”’ﬂ‘ > e)

0<t<T

S(0 _
1\(!_/{) exp (n/z —1/@Np)t + N ?

W(t)) — myeM/?

)

S _
< IF’( sup |20 exp( t/2Ny) + N UzW(r)) —my| > ee_"T/2> ,
0<t<T Nk

where W (t) = l/ 2B(t /Ng), t > 0, is a standard Brownian motion. By Girsanov’s Theorem the
process ( ) exp( t/(2Ny) + N k_l/z

the Lz-versmn of Doob’s maximal inequality for non-negative submartingales to estimate the
latter upper bound from above by

nT 5(0) _ 2
‘' E |:<Tk exp (—T/(sz) + N, 1/ZW(T)) - m;\> }

€2

W(t)) — my, t > 0, is a martingale. Hence, we can apply

e" (E[S(0)?] T 2 E[SO1 5

E[S(O

e’ (]E[S(O) 1 1/m ”
A

62 N2
Hereby, we have opened the square in the first identity and used the explicit formula for the

Laplace transform of a normal random variable in both identities. It follows from (4) that the
latter expression tends to O in the limit k — oo. This finishes the proof of the lemma. [

Now, we are ready to prove that any limit point of the sequence Ql}’ , N € N, is supported on
generalized solutions of the system (5), (6).

Proposition 2.3. Let QF° be the limit of a convergent subsequence Ql}lk, k € N, of the se-
quence QN N e N. Then, OF assigns probability 1 to the set of generalized solutions of
the system (5), (6). Moreover, if poo is a random variable with law QS°, then it holds that
Poo € C([0, T1, M1 ([0, 00))) with probability 1.
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Proof. (1) Fix a QF as in the statement of the proposition. Let {g1, g2, ...} be a dense subset of
the space S(R) of Schwartz functions on R with respect to the topology of uniform convergence
of functions and their first and second derivatives, such that each g, is infinitely differentiable
with compact support. We claim that in order to prove the first assertion of the proposition it
suffices to show that

d 1
(o), &) = (p(0), gr) = mx/O (P(S) 58 + zxgr) ds, (23)
p(0) = 1 (24)

holds for all » € N and ¢ € [0, T] with probability 1 under Q%°. Indeed, this would imply that
the system (23), (24) is satisfied for all g¢ € S(R) and all 7 € [0, T'] with probability 1 under Q3.
This would yield the first assertion of the proposition.

(2) Since a countable union of null sets is a null set, it is enough to show that the system (23),
(24) is satisfied for a fixed function g, and all ¢ € [0, T'] with probability 1 under Q°. It is clear
that Eq. (24) is satisfied with probability 1 due to Assumption 1.1. In order to show that Eq. (23)
holds, we use Itd’s formula to compute

N

1 - 1 1 "
d—~ ;g,(x,-(t)) =% Z( FXi SO + 58/ (Xi (D)X (t)S(t))

1 N
+ 5 2 & XWX (SO dW; (@),
i=1

Thus, one has the dynamics

1 &,
d(p" (1), 8) = D, (1) d1 + —75 ; g (VN )Y (0) SN (1) dB; (1), (25)

where

1

N
D) = +3 Z( TN NS N @ + g (YN<t)>YN(r>S”(t>)
i=1

_ N ﬁ/ l my . N
= <p (), 2g,Jrzxgr) (™ (@), x),

t > 0,and Bj(t) = N'2W;(t/N),1 <i < N,S"N(@t) = YN(t) + --- + Y5 (¢) as before.
Moreover, the inequality

g, (YN )1,/ YN (1) SY-N (1) < sup g, (x)| SN (), (26)

xeR

Fubini’s Theorem and (22) show that the process

1 X
M) =~ Zl /0 g (N @) YN @) SYN @) dBiw), 120 27)
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is a martingale. Hence, using the L?-version of Doob’s maximal inequality for non-negative
submartingales and the It6 isometry, we obtain for every € > 0,

Pl sup > €
0<t<T

< e 2E[M,(T)*]
1 S r / N 2 yN Y.N
ZWZ;]E[/O & W) Y (u) ST (u)dui|

sup |g/ (x)[* .
< E U SY’N(u)zdu:|.
€N 0

Using S¥"N(u) = S(u/N), u > 0, Fubini’s Theorem and (22) we can compute the latter upper
bound to be

t
(PN 1), g) — (PN (0), g) — fo D, (u) du

sup |g.(x)]?
xeglgr( )| _ N E[S(0)2] (e(nN+l)T/N — 1)

€ZN3 nN +1

(28)

This expression tends to 0 in the limit N — oo for every € > 0 due to (4).

(3) Next, we recall the definition of the random variables py, k € N, and p, prior to Lemma 2.2.
In view of the latter, we may and will assume that the sequence of functions # — (0 (¢), x), k €
N, converges to ¢ > mye/? in the space C([0, T'], R) with probability 1 (otherwise we pass to
a suitable subsequence). It follows that the random variables = given by

’

t
sup (ﬁk(t),gr)—(ﬁk(o),gr)—/o (P (), 1/28; +x/2g/) - (Bx (W), x) du

0<t<T

converge almost surely in the limit k — oo to

)

t
sup (oo (1), &) — (Poo(0), &) — / (Poo(), n/28) + x/28)) - my.e™/* du
0<t<T 0

which we call Z4. Finally, using the Portmanteau Theorem and the final result of step 2 we
obtain for every € > 0,
> 6) =0.

Since the law of p is given by Q7°, it follows that Eq. (23) holds Q%°-almost surely.

P(Ex > €) < liminfP(Z; > €)
k— 00

= liminfP ( sup

k— 00 0<t<T

t
(™ (0), g1) — (P (0). g,) — /0 D, () du

(4) To prove the second assertion of the proposition, we note that g (z)([0, 00)) = 1 holds
for all k € N and ¢+ € [0, T] almost surely. This is a consequence of the representation of
X1, ..., Xn as time-changed squared Bessel processes (see Egs. (12.7)—(12.9) in [9]) and the
properties of the latter (see e.g. Chapter XI of [24]). Thus, the Portmanteau Theorem implies that
oo () ([0, 00)) = 1 for all ¢ € [0, T] on the same set of full probability. [
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In view of Propositions 2.1 and 2.3, the proof of Theorem 1.2(a) is complete, once we show
that the solution of the Cauchy problem

2
p0) = A 30)
in C([0, T], M/ ([0, 00))) is unique.

" w L,
Vg e SR): (pOLg)—(pwxg%=me;ez<p@ng“+—xg>ch, (29)

Proposition 2.4. The solution of the Cauchy problem (29), (30) in the space
C([0, T], M1([0, 00))) is unique.

Proof. (1) Let u,v € C([0,T], M1([0, 00))) be two solutions of the problem (29), (30).
Moreover, define the operator

9 oh 0 dh  x 9%h
Lh = <§+Lt>h = —+mxe%2—+mxe%f

— 31
ot 2 dx 2 9x2 D

acting on the space Cé’z([O, T1x[0, 00)) of continuous real-valued functions % on [0, T'] x [0, 00)
satisfying n(T,-) = O and having a continuous time derivative and two continuous spatial
derivatives vanishing at infinity in space. For the same reason as in the remark preceding
Theorem A.1 in [11], for every distributional solution of the problem (29), (30) it holds that

t
Vh € Cy*(10. T x R) : (p(t). h(t. ) — (p(0), h(0, ) = /o (p(s), (Lh)(s, ))ds. (32)

This follows by an approximation of functions h € C(])’2([0, T1 x R) by functions on [0, T'] x
[0, 0o) which are Schwartz functions in x for every fixed ¢ and piecewise constant in ¢. Since for
all h € Cy*([0, T] x R) it holds that (u(T), h(T, -)) = (v(T), h(T, -)) = 0, we conclude from
(32) that

T

T
Vh € CL2(10, TI x R) /0 (). (Lh)(s. ) ds = fo (). (Lh)(s, ) ds.  (33)
(2) In view of the latter equation, it suffices to show that the space
Lh, h € Cy*([0,T] x [0, 00))

contains all functions on [0, T'] x [0, co) of the form (¢, x) > [(t)r(x), where [ is an infinitely
differentiable function on [0, '] and r is an infinitely differentiable function on [0, co) with
compact support. More precisely, we claim that it holds that (Lh)(¢, x) = I(t)r (x) in the strong
sense for the function

T
h(t,x) =—E |:/ L(s)r(I'(s)) ds
t

It = x:| , (34)

where I'(t) = Z (f(; e 2m, ds) ,t € [0, T, is the process defined in part (b) of Theorem 1.2.

To prove the claim, we fix (¢, x) € [0, T] x [0, 00) and let (Ps, 5,)0<s,<s,<T be the transition
operators of the process I'(s), s € [0, T]. Then the Chapman—Kolmogorov equations for the
squared Bessel process Z show for all s € [z, T] that

d
L(CPsr)x)) = - (Prsr) () + Li((Frsr)(x)) = 0. (35)
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This allows us to perform the following computation:
T d T
[®)r(x) = 1(O)rx) — f l(S)E((Pt,sr)(x)) ds — / L)L ((Prsr)(x)) ds
t t

T T
= —%f [(s)(Prsr)(x) ds — Lz/ [(s)(Prsr)(x) ds = (Lh)(1, x).
t

t

Finally, writing % in terms of the semigroup of transition operators of the squared Bessel process
Z shows that h € Cé’z([O, T1 x [0, 00)), which concludes the proof of the proposition. [

2.3. Stochastic representation of the limit point

In this subsection we prove part (b) of Theorem 1.2.

Proof of Theorem 1.2(b). In view of Proposition 2.4 it suffices to show that the one-dimensional
distributions &(¢), t € [0, T'], of the process Z (fé ™2, ds) ,t € [0, T], form a distributional
solution to the Cauchy problem (5), (6) in the space C ([0, T], M([0, 00))). It is clear that
E(t),t € [0, T, satisfies (6) and that it is an element of C ([0, T'], M ([0, 00))), since the squared
Bessel process Z has continuous paths and takes values in [0, 0o) (see e.g. Chapter XI in [24]).
To prove that &£(¢),t € [0, T], satisfies (5), we use the time-change formalism for Brownian
motion (see e.g. [19, Chapter 8.5]) to deduce that

dt 2

t t

are = L < f 2, ds) D ar + / % ( / /2, ds),/r(r) dB(r)
0 0
_ e'ﬂ/%mg dt + e"* i JT () dB(1),

t > 0, where E is an appropriate standard Brownian motion. Hence, Itd’s formula shows that
! ) 1
g(I'(1) — g(I'(0) = /0 me"/? (gg/(ns» + Ens)g”(ns))) ds

t ~
+ /0 g (L()e™/* /m /T (s) dB(s)

for all g € S(R) and ¢ € [0, T']. Moreover, the expectations E[I'(¢)], ¢t € [0, T], are finite and
uniformly bounded (this is evident from the definition of squared Bessel processes in Chapter XI
of [24] if 25 is an integer; in the general case, this can be deduced by comparing Z with a
squared Bessel process of integer index 2n’ > 27 using, for example, the comparison theorems
of Section 3 in Chapter IX of [24]). Thus, by taking the expectation in the latter equation and
applying Fubini’s Theorem we get

' s/2 (1 ) 1 ”
(@), g — (0.9 =/O £(s), mye” <§g +5%8 )) ds (36)

forall g € S(R) and ¢t € [0, T]. Thus, £(t),t € [0, T], solves Eq. (5) in the distributional
sense. [
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