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Abstract

We consider the classical Wright–Fisher model with mutation and selection. Mutations occur indepen-
dently in each locus, and selection is performed according to the sharp peak landscape. In the asymptotic
regime studied in Cerf (2014), a quasispecies is formed. We find explicitly the distribution of this quasis-
pecies, which turns out to be the same distribution as for the Moran model.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

The concept of quasispecies first appeared in 1971, in Manfred Eigen’s celebrated paper [7].
Eigen studied the evolution of a population of macromolecules, subject to both selection and
mutation effects. The selection mechanism is coded in a fitness landscape; while many interest-
ing landscapes might be considered, some have been given more attention than others. One of
the most studied landscapes is the sharp peak landscape: one particular sequence – the master
sequence – replicates faster than the rest, all the other sequences having the same replication
rate. A major discovery made by Eigen is the existence of an error threshold for the mutation
rate on the sharp peak landscape: there is a critical mutation rate qc such that, if q > qc then the
population evolves towards a disordered state, while if q < qc then the population evolves so
as to form a quasispecies, i.e., a population consisting of a positive concentration of the master
sequence, along with a cloud of mutants which highly resemble the master sequence.
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Eigen’s model is a deterministic model, the population of macromolecules is considered to be
infinite and the evolution of the concentrations of the different genotypes is driven by a system
of differential equations. Therefore, when trying to apply the concepts of error threshold and
quasispecies to other areas of biology (e.g. population genetics or virology), Eigen’s model is not
particularly well suited; a model for a finite population, which incorporates stochastic effects, is
the most natural mathematical approach to the matter.

Several works have tackled the issue of creating a finite and stochastic version of Eigen’s
model [1,5,6,9–14]. Some of these works have recovered the error threshold phenomenon in the
case of finite populations: Alves and Fontanari [1] find a relation between the error threshold and
the population size by considering a finite version of Eigen’s model on the sharp peak landscape.
Demetrius, Schuster and Sigmund [5] generalise the error threshold criteria by modelling the
evolution of a population via branching processes. Nowak and Schuster [12] also find the error
threshold phenomenon in finite populations by making use of a birth and death chain. Some other
works have tried to prove the validity of Eigen’s model in finite populations by designing algo-
rithms that give similar results to Eigen’s theoretical calculations [9], while others have focused
on proposing finite population models that converge to Eigen’s model in the infinite population
limit [6,11].

The Wright–Fisher model is one of the most classical models in mathematical evolutionary
theory, it is also used to understand the evolution of DNA sequences. In [3], some counterparts
of the results on Eigen’s model were derived in the context of the Wright–Fisher model. The
Wright–Fisher model describes the evolution of a population of m chromosomes of length ℓ over
an alphabet with κ letters. Mutations occur independently at each locus with probability q . The
sharp peak landscape is considered: the master sequence replicates at rate σ > 1, while all the
other sequences replicate at rate 1. The following asymptotic regime is studied:

ℓ → +∞, m → +∞, q → 0,

ℓq → a,
m

ℓ
→ α.

In this asymptotic regime the error threshold phenomenon present in Eigen’s model is recovered,
in the form of a critical curve αψ(a) = ln κ in the parameter space (a, α). If αψ(a) < ln κ , then
the equilibrium population is totally random, whereas a quasispecies is formed when αψ(a) >
ln κ . In the regime where a quasispecies is formed, the concentration of the master sequence in
the equilibrium population is also found. The aim of this paper is to continue with the study of
the Wright–Fisher model in the above asymptotic regime in order to find the distribution of the
whole quasispecies. It turns out that the resulting distribution is the same as the one found for the
Moran model in [4]. Nevertheless, the techniques we use to prove our result are very different
from those of [4]. The study of the Moran model relied strongly on monotonicity arguments, and
the result was proved inductively. The initial case and the inductive step boiled down to the study
of birth and death Markov chains, for which explicit formulas could be found. The Wright–Fisher
model is a model with no overlapping generations, for which this approach is no longer suitable.
In order to find a more robust approach, we rely on the ideas developed by Freidlin and Wentzell
to investigate random perturbations of dynamical systems [8], as well as some techniques already
used in [3]. Our setting is essentially the same as the one in [3], the biggest difference being that
we work in several dimensions instead of having one dimensional processes. The main challenge
is therefore to extend the arguments from [3] to the multidimensional case. This is achieved by
replacing the monotonicity arguments employed in [3] by uniform estimates.

We present the main result in the next section. The rest of the paper is devoted to the proof.
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2. Main result

We present the main result of the article here. We start by describing the Wright–Fisher model,
we state the result next, and we give a sketch of the proof at the end of the section.

2.1. The Wright–Fisher model

Let A be a finite alphabet and let κ be its cardinality. Let ℓ,m ≥ 1. Elements of Aℓ represent
the chromosome of an individual, and we consider a population of m such chromosomes.
Two main forces drive the evolution of the population: selection and mutation. The selection
mechanism is controlled by a fitness function A : Aℓ

→ [0,+∞[ . We define a selection function
F : Aℓ

× (Aℓ)m → [0, 1] by setting

∀u ∈ Aℓ
∀x ∈ (Aℓ)m F(u, x) =

A(u)card{i : 1 ≤ i ≤ m, x(i) = u}

A(x(1))+ · · · + A(x(m))
.

For a given population x , the value F(u, x) is the probability that the individual u is chosen
when sampling from x . Throughout the replication process, mutations occur independently on
each allele with probability q ∈ ]0, 1 − 1/κ[ . When a mutation occurs, the letter is replaced by
a new letter, chosen uniformly at random among the remaining κ − 1 letters of the alphabet.
The mutation mechanism is encoded in a mutation matrix M(u, v), u, v ∈ Aℓ. The analytical
formula for the mutation matrix is as follows:

∀u, v ∈ Aℓ M(u, v) =

ℓ
j=1


(1 − q)1u( j)=v( j) +

q

κ − 1
1u( j)≠v( j)


.

We consider the classical Wright–Fisher model. The transition mechanism from one generation
to the next one is divided in two steps. Firstly, we sample with replacement m chromosomes from
the current population, according to the selection function F given above. Secondly, each of the
sampled chromosomes mutates according to the law given by the mutation matrix. Finally, the
whole old generation is replaced with the new one, so generations do not overlap. For n ≥ 0, we
denote by Xn the population at time n, or equivalently, the nth generation. The Wright–Fisher
model is the Markov chain (Xn)n≥0 with state space (Aℓ)m , having the following transition
matrix:

∀n ∈ N ∀x, y ∈ (Aℓ)m P(Xn+1 = y | Xn = x) =

m
i=1


u∈Aℓ

F(u, x)M(u, y(i))


.

2.2. Main result

We will work only with the sharp peak landscape: there exists a sequence w∗
∈ Aℓ, called

master sequence, whose fitness is A(w∗) = σ > 1, whereas for all u ≠ w∗ in Aℓ the fitness
A(u) is 1. We introduce Hamming classes in the space Aℓ. The Hamming distance between two
chromosomes u, v ∈ Aℓ is defined as follows:

dH (u, v) = card{i ∈ { 1, . . . , ℓ } : u(i) ≠ v(i)}.

For K ∈ { 1, . . . , ℓ } and a population x ∈ (Aℓ)m , we denote by NK (x) the number of sequences
in the population x which are at distance K from the master sequence, i.e.,

NK (x) = card{i ∈ { 1, . . . ,m } : dH (x(i), w
∗) = K }.
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Let us denote by I (p, t) the rate function governing the large deviations of a binomial law of
parameter p ∈ [0, 1]:

∀t ∈ [0, 1] I (p, t) = t ln
t

p
+ (1 − t) ln

1 − t

1 − p
.

We define, for a ∈ ]0,+∞[,

∀k ≥ 0 ρ∗

k = (σe−a
− 1)

ak

k!


i≥1

ik

σ i ,

ρ∗(a) =


ρ∗

0 if σe−a > 1
0 if σe−a

≤ 1

ψ(a) = inf
l∈N

inf


l−1
k=1

I


σρk

(σ − 1)ρk − 1
, γk


+ γk I


e−a,

ρk+1

γk


:

ρ0 = ρ∗(a), ρl = 0, ρk, γk ∈ [0, 1] for 0 ≤ k < l


.

Theorem 2.1. We suppose that

ℓ → +∞, m → +∞, q → 0,

in such a way that

ℓq → a ∈ ]0,+∞[,
m

ℓ
→ α ∈ [0,+∞].

We have the following dichotomy:
• if αψ(a) < ln κ , then

∀K ≥ 0 lim
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

lim
n→∞

E


NK (Xn)

m


= 0,

• if αψ(a) > ln κ , then

∀K ≥ 0 lim
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

lim
n→∞

E


NK (Xn)

m


= ρ∗

K .

Moreover, in both cases,

∀K ≥ 0 lim
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

lim
n→∞

Var


NK (Xn)

m


= 0.

We denote by Q(σ, a) the distribution of the quasispecies of parameters σ > 1 and a ≥ 0,
i.e., the probability distribution that assigns the mass ρ∗

k to each non-negative integer k. In [4] we
can find a couple of graphs showing the concentrations of the master sequence as a function of
a, for different values of the parameter σ .

2.3. Sketch of proof

The Wright–Fisher process (Xn)n≥0 is hard to handle, mainly due to the huge size of the state
space and the lack of a natural ordering in it. Instead of directly working with the Wright–Fisher
process, we work with the occupancy process (On)n≥0. The occupancy process is a simpler pro-
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cess which derives directly from the original process (Xn)n≥0, but only keeps the information we
are interested in, namely, the number of chromosomes in each of the ℓ+1 Hamming classes. The
state space of the occupancy process is much simpler than that of the Wright–Fisher process, and
it is endowed with a partial ordering. The occupancy process will be the main subject of our study.

We fix next K ≥ 0 and we focus on finding the concentration of the individuals in the K th
Hamming class. We compare the time that the occupancy process spends having at least one
individual in one of the Hamming classes 0, . . . , K (persistence time), with the time the process
spends having no sequences in any of the classes 0, . . . , K (discovery time). Asymptotically,
when αψ(a) < ln κ , the persistence time becomes negligible with respect to the discovery time,
whereas when αψ(a) > ln κ , it is the discovery time that becomes negligible with respect to
the persistence time. This fact, which already proves the first assertion of Theorem 2.1, is shown
in [3] for the case K = 0; the more general case K ≥ 1 is dealt with in the same way as the case
K = 0, and the proof does not make any new contributions to the understanding of the model.
Therefore, we will admit this fact and focus on the interesting case αψ(a) > ln κ .

We build a coupling to compare the occupancy process with some simpler processes, which
will only keep track of the dynamics of the Hamming classes 0, . . . , K . The simpler processes
can be viewed as random perturbations of the same dynamical system. The dynamical system
has two fixed points: an unstable one, 0, and a stable one, ρ∗

= (ρ∗

0 , . . . , ρ
∗

K ). We use the theory
developed by Freidlin and Wentzell [8], as well as some useful estimates from [3], to show that
the perturbed processes spend the greatest part of their time very close to the stable fixed point
ρ∗, thus showing that the invariant measures of the perturbed processes converge to the Dirac
mass in ρ∗.

2.4. The occupancy process

The occupancy process (On)n≥0 will be the starting point of our study. It is obtained from
the original Wright–Fisher process (Xn)n≥0 by using a technique known as lumping (Section 4
of [3]). Let P m

ℓ+1 be the set of the ordered partitions of the integer m in at most ℓ+ 1 parts:

P m
ℓ+1 =


(o(0), . . . , o(ℓ)) ∈ Nℓ+1

: o(0)+ · · · + o(ℓ) = m

.

A partition (o(0), . . . , o(ℓ)) is interpreted as an occupancy distribution, which corresponds to a
population with o(l) individuals in the Hamming class l, for 0 ≤ l ≤ ℓ. The occupancy process
(On)n≥0 is a Markov chain with values in P m

ℓ+1 and transition matrix given by:

∀o, o′
∈ P m

ℓ+1 pO(o, o′) =


0≤h≤ℓ

 
k∈{ 0,...,ℓ }

o(k)AH (k)MH (k, h)
h∈{ 0,...,ℓ }

o(h)AH (h)

o′(h)

,

where AH is the lumped fitness function, defined as follows

∀b ∈ { 0, . . . , ℓ } AH (b) =


σ if b = 0,
1 if b ≥ 1,

and MH is the lumped mutation matrix: for b, c ∈ { 0, . . . , ℓ } the coefficient MH (b, c) is given
by 

0≤k≤ℓ−b
0≤l≤b

k−l=c−b


ℓ− b

k


b

l


qk(1 − q)ℓ−b−k


q

κ − 1

l 
1 −

q

κ − 1

b−l

.
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The state space P m
ℓ+1 of the occupancy process is endowed with a partial order. Let o, o′

∈ P m
ℓ+1,

we say that o is lower than or equal to o′, and we write o ≼ o′, if

∀l ∈ { 0, . . . , ℓ } o(0)+ · · · + o(l) ≤ o′(0)+ · · · + o′(l).

3. Stochastic bounds

In this section we build simpler processes in order to bound stochastically the occupancy
process (On)n≥0. We will couple the simpler processes with the original occupancy process and
we will compare their invariant probability measures.

3.1. Lower and upper processes

We begin by constructing a lower process (Oℓ
n)n≥0 and an upper process (O K+1

n )n≥0 in order
to bound stochastically the original occupancy process (On)n≥0. In other words, the lower and
upper processes will be built so that for every occupancy distribution o ∈ P m

ℓ+1, if the three
processes start from o, then

∀n ≥ 0 Oℓ
n ≼ On ≼ O K+1

n .

The new processes will have simpler dynamics than the original occupancy process.
Let us describe loosely the dynamics of the lower process. As long as there are no master

sequences present in the population, the lower process evolves exactly as the original occupancy
process. As soon as a master sequence appears, all the chromosomes in the Hamming classes
K + 1, . . . , ℓ are directly sent to the class ℓ. Moreover, as long as the master sequence remains
present in the population, all mutations towards the classes K + 1, . . . , ℓ are also sent to the
Hamming class ℓ. The dynamics of the upper process is similar, this time with the Hamming class
ℓ replaced by the class K + 1. The rest of the section is devoted to formalising this construction.

Let ΨO be the coupling map defined in Section 5.1 of [3]. We modify this map in order to
obtain a lower map Ψ ℓ

O and an upper map Ψ K+1
O . The coupling map ΨO takes two arguments,

an occupancy distribution o ∈ P m
ℓ+1 and a matrix r ∈ R, where R is the set of matrices of size

m×(ℓ+1)with coefficients in [0, 1]. The Markov chain (On)n≥0 is built with the help of the map
ΨO and a sequence (Rn)n≥1 of independent random matrices with values in R, the entrances of
the same random matrix Rn being independent and identically distributed, with uniform law over
the interval [0, 1].

Let us define two maps πℓ, πK+1 : P m
ℓ+1 → P m

ℓ+1 by setting, for every o ∈ P m
ℓ+1,

πℓ(o) =

o(0), . . . , o(K ), 0, . . . , 0,m − o


(0)+ · · · + o(K )


,

πK+1(o) =

o(0), . . . , o(K ),m −


o(0)+ · · · + o(K )


, 0, . . . , 0


.

Obviously,

∀o ∈ P m
ℓ+1 πℓ(o) ≼ o ≼ πK+1(o).

We denote by W ∗ the set of occupancy distributions having at least one master sequence, i.e.,

W ∗
= {o ∈ P m

ℓ+1 : o(0) ≥ 1},

and we denote by N the set of occupancy distributions having no master sequences, i.e.,

N = {o ∈ P m
ℓ+1 : o(0) = 0}.
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Let us define

oℓenter = (1, 0, . . . , 0,m − 1), oℓexit = (0, . . . , 0,m).

The occupancy distributions oℓenter and oℓexit are the absolute minima of the sets W ∗ and N . We
define the lower map Ψ ℓ

O by setting, for o ∈ P m
ℓ+1 and r ∈ R,

Ψ ℓ
O(o, r) =


ΨO(o, r) if o ∈ N and ΨO(o, r) ∉ W ∗,

oℓenter if o ∈ N and ΨO(o, r) ∈ W ∗,

πℓ

ΨO(πℓ(o), r)


if o ∈ W ∗ and ΨO(πℓ(o), r) ∉ N ,

oℓexit if o ∈ W ∗ and ΨO(πℓ(o), r) ∈ N .

Likewise, we define the occupancy distributions

oK+1
enter = (m, 0, . . . , 0), oK+1

exit = (0,m, 0, . . . , 0),

which are the absolute maxima of the sets W ∗ and N . We define an upper map Ψ K+1
O by setting,

for o ∈ P m
ℓ+1 and r ∈ R,

Ψ K+1
O (o, r) =


ΨO(o, r) if o ∈ N and ΨO(o, r) ∉ W ∗,

oK+1
enter if o ∈ N and ΨO(o, r) ∈ W ∗,

πK+1

ΨO(πK+1(o), r)


if o ∈ W ∗ and ΨO(πK+1(o), r) ∉ N ,

oK+1
exit if o ∈ W ∗ and ΨO(πK+1(o), r) ∈ N .

The coupling map ΨO is monotone – Lemma 5.5 of [3] – i.e., for every pair of occupancy
distributions o, o′ and for every r ∈ R,

o ≼ o′
H⇒ ΨO(o, r) ≼ ΨO(o

′, r).

We deduce that the lower map Ψ ℓ
O is below the coupling map ΨO and the upper map Ψ K+1

O is
above the coupling map ΨO , i.e.,

∀o ∈ P m
ℓ+1 ∀r ∈ R Ψ ℓ

O(o, r) ≼ ΨO(o, r) ≼ Ψ K+1
O (o, r).

We use the lower and upper maps, along with the i.i.d. sequence of random matrices (Rn)n≥0, in
order to build a lower occupancy process (Oℓ

n)n≥0 and an upper occupancy process (O K+1
n )n≥0.

Let o ∈ P m
ℓ+1 be the starting point of the processes. We set Oℓ

0 = O K+1
0 = o and

∀n ≥ 1 Oℓ
n = Ψ ℓ

O(O
ℓ
n−1, Rn), O K+1

n = Ψ K+1
O (O K+1

n−1 , Rn).

Proposition 3.1. Suppose that the processes (On)n≥0, (Oℓ
n)n≥0, (O K+1

n )n≥0 start all from the
same occupancy distribution o. We have

∀n ≥ 0 Oℓ
n ≼ On ≼ O K+1

n .

The proof is similar to the proof of Proposition 8.1 in [2].

3.2. Dynamics of the bounding processes

We study now the dynamics of the lower and upper processes in W ∗. Since the calculations
are the same for both processes, we take θ to be either K + 1 or ℓ, and we denote by (Oθ

n )n≥0
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the corresponding process. For the process (Oθ
n )n≥0, the states in the set

T θ
= {o ∈ P m

ℓ+1 : o(0) ≥ 1 and o(0)+ · · · + o(K )+ o(θ) < m},

are transient, and the states in N ∪ (W ∗
\ T θ ) form a recurrence class. Let us take a look at the

transition mechanism restricted to N ∪ (W ∗
\ T θ ). Since

W ∗
\ T θ

= {o ∈ P m
ℓ+1 : o(0) ≥ 1 and o(0)+ · · · + o(K )+ o(θ) = m},

a state in W ∗
\ T θ is totally determined by the occupancy numbers of the Hamming classes

0, . . . , K ; whenever the process (Oθ
n )n≥0 starts from a state in W ∗

\ T θ , the dynamics of
Oθ

n (0), . . . , Oθ
n (K )


n≥0 is Markovian until the time of exit from W ∗

\ T θ . We build now a

Markov chain (Z θn )n≥0 which will replicate the dynamics of the coordinates 0, . . . , K of (Oθ
n )n≥0

in W ∗
\ T θ , but with no neutral phase. Let us define the set

D = {z ∈ NK+1
: z0 + · · · + zK ≤ m}.

We define the projection π : P m
ℓ+1 → D by setting, for o ∈ P m

ℓ+1,

π(o) = (o(0), . . . , o(K )).

We denote by (Z θn )n≥0 the Markov chain with state space D and transition matrix given by: for
z, z′

∈ D and for any n ≥ 0, let o be the unique element of P m
ℓ+1 \ T θ such that π(o) = z,

• if z0, z′

0 ≥ 1,

P(Z θn+1 = z′
| Z θn = z) = P(π(Oθ

n+1) = z′
| Oθ

n = o).

• if z0 ≥ 1 and z′

0 = 0,

P(Z θn+1 = zθexit | Z θn = z) =


z′:z′

0=0

P(π(Oθ
n+1) = z′

| Oθ
n = o),

where zℓexit = (0, . . . , 0) and zK+1
exit = (0,m, 0, . . . , 0).

• if z = zθexit,

P(Z θn+1 = zθenter | Z θn = zθexit) = 1,

where zℓenter = (1, 0, . . . , 0) and zK+1
enter = (m, 0, . . . , 0).

The remaining non-diagonal coefficients of the transition matrix are null. The diagonal co-
efficients are chosen so that the matrix is stochastic, i.e., each row adds up to 1. Let us denote
by pθ (z, z′) the above transition matrix and let us compute its value for z, z′

∈ D such that
z0, z′

0 ≥ 1. We introduce some notation first. For d ≥ 1 and a vector v ∈ Rd , we denote by |v|1

the L1 norm of v:

|v|1 = |v1| + · · · + |vd |.

For d ≥ 1, a square matrix M ∈ Rd2
, and i ∈ {1, . . . , d}, we denote by M(i, ·) or Mi · the i th

row of M , and by M(·, i) or M·i the i th column of M . We also denote by |M |1 the L1 norm of
M in Rd2

:

|M |1 =

d
i, j=1

|Mi j |.
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We say that a vector s ∈ D is compatible with another vector z ∈ D, and we write s ∼ z, if

zi = 0 ⇒ si = 0 for i ∈ { 0, . . . , K } and |z|1 = m ⇒ |s|1 = m.

We say that a matrix b ∈ N(K+1)2 is compatible with the vectors s, z′
∈ D, and we write

b ∼ (s, z′), if

∀i ∈ { 0, . . . , K } |b(i, ·)|1 ≤ si and |b(·, i)|1 ≤ z′

i .

Finally, for i ∈ { 0, . . . , K } ∪ {θ}, we define MH (i) to be the vector of [0, 1]
K+1 given by

MH (i) =

MH (i, 0), . . . ,MH (i, K )


.

Let z, z′
∈ D such that z0, z′

0 ≥ 1. We now use the transition mechanism of (Oθ
n )n≥0 in order to

compute the value of pθ (z, z′):

pθ (z, z′) =


s∼z


b∼(s,z′)

pθ (z, s, b, z′),

where pθ (z, s, b, z′) is the probability that, given Z θn = z:

• for i ∈ { 0, . . . , K }, si individuals from the class i are selected, and m −|s|1 individuals from
the class θ are selected. The probability of this event is

m!

s0! · · · sK !(m − |s|1)!
×
(σ z0)

s0 zs1
1 · · · zsK

K (m − |z|1)m−|s|1

((σ − 1)z0 + m)m
,

• for i, j ∈ { 0, . . . , K }, bi j individuals from the class i mutate to the class j , and si −|b(i, ·)|1
individuals from the class i mutate to the class θ . For i ∈ { 0, . . . , K }, the probability of this
event is

si !

bi0! · · · bi K !(si − |b(i, ·)|1)!
× MH (i, 0)bi0 · · · MH (i, K )bi K (1 − |MH (i)|1)

si −|b(i,·)|1 ,

• for j ∈ { 0, . . . , K }, z′

j − |b(·, j)|1 individuals from the class θ mutate to the class j , and
m − |s|1 − |z′

|1 + |b|1 individuals from the class θ do not mutate to any of the classes
{ 0, . . . , K }. The probability of this event is

(m − |s|1)!

(z′

0 − |b(·, 0)|1)! · · · (z′

K − |b(·, K )|1)!(m − |s|1 − |z′|1 + |b|1)!

× MH (θ, 0)z
′

0−|b(·,0)|1 · · · MH (θ, K )z
′
K −|b(·,K )|1(1 − |MH (θ)|)

m−|s|1−|z′
|1+|b|1 .

Finally,

pθ (z, s, b, z′) =
m!

s0! · · · sK !(m − |s|1)!
×
(σ z0)

s0 zs1
1 · · · zsK

K (m − |z|1)m−|s|1

((σ − 1)z0 + m)m

×

K
i=0

si !

bi0! · · · bi K !(si − |bi ·|1)!

×MH (i, 0)bi0 · · · MH (i, K )bi K (1 − |MH (i)|1)
si −|bi ·|1

×
(m − |s|1)!

(z′

0 − |b·0|1)! · · · (z′

K − |b·K |1)!(m − |s|1 − |z′|1 + |b|1)!

× MH (θ, 0)z
′

0−|b·0|1 · · · MH (θ, K )z
′
K −|b·K |1(1 − |MH (θ)|1)

m−|s|1−|z′
|1+|b|1 .
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3.3. Bounds on the invariant measure

Let us denote by µO , µ
ℓ
O , µ

K+1
O the invariant probability measures of the processes (On)n≥0,

(Oℓ
n)n≥0, (O K+1

n )n≥0. Let ν be the image measure of µO through the map

o ∈ P m
ℓ+1 −→

o(0)+ · · · + o(K )

m
=

|π(o)|1
m

∈ [0, 1].

For every function g : [0, 1] → R,
[0,1]

g dν =


P m
ℓ+1

g


|π(o)|1

m


dµO = lim

n→∞
E


g


|π(On)|1

m


.

Let now g : [0, 1] → R be an increasing function such that g(0) = 0. Thanks to Proposition 3.1,
the following inequalities hold: for all n ≥ 0,

g


|π(Oℓ

n)|1

m


≤ g


|π(On)|1

m


≤ g


|π(O K+1

n )|1

m


.

Taking the expectation and sending n to ∞ we deduce that
P m
ℓ+1

g


|π(o)|1

m


dµℓO(o) ≤


[0,1]

g dν ≤


P m
ℓ+1

g


|π(o)|1

m


dµK+1

O (o).

Next, we seek to estimate the above integrals. The strategy is the same for the lower and upper
integrals; we set θ to be either K + 1 or ℓ and we study the invariant probability measure µθO .
We will rely on the following renewal result. Let E be a finite set and let (Xn)n≥0 be an ergodic
Markov chain with state space E and invariant probability measure µ. Let W ∗ be a subset of E
and let e ∈ E be a state outside W ∗. We define

τ ∗
= inf{n ≥ 0 : Xn ∈ W ∗

}, τ = inf{n ≥ τ ∗
: Xn = e}.

Proposition 3.2. For every function f : E → R, we have


E

f dµ =

E


τ−1
n=0

f (Xn)

 X0 = e


E(τ | X0 = e)

.

The proof is standard and similar to that of Proposition 9.2 of [2]. We apply the renewal result to
the process (Oθ

n )n≥0 restricted to N ∪ (W ∗
\ T θ ), the set W ∗

\ T θ , the occupancy distribution
oθexit and the function o → g


|π(o)|1/m


. We set

τ ∗
= inf{n ≥ 0 : Oθ

n ∈ W ∗
\ T θ

}, τ = inf{n ≥ τ ∗
: Oθ

n = oθexit}.

Applying the renewal theorem we get


P m
ℓ+1

g


|π(o)|1

m


dµθO(o) =

E


τ−1
n=0

g


|π(Oθ

n )|1
m

  Oθ
0 = oθexit


E(τ | Oθ

0 = oθexit)
.

Whenever the process (Oθ
n )n≥0 is in W ∗

\ T θ , the dynamics of the first K + 1 Hamming
classes,


π(Oθ

n )


n≥0, is that of the Markov chain (Z θn )n≥0 defined at the end of the previous
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section. Let us suppose that (Z θn )n≥0 starts from zθenter ∈ D, where zℓenter = (1, 0, . . . , 0) and
zK+1

enter = (m, 0, . . . , 0). Let τ0 be the first time that Z θn (0) becomes null:

τ0 = inf{n ≥ 0 : Z θn (0) = 0}.

Since the process (Oθ
n )n≥0 always enters the set W ∗

\ T θ at the state oθenter, the law of τ0 is
the same as the law of τ − τ ∗ for the process (Oθ

n )n≥0 starting from oθexit. We conclude that the
trajectories


π(Oθ

n )

τ∗≤n≤τ

and

Z θn


0≤n≤τ0
have the same law. Therefore,

E(τ − τ ∗
| Oθ

0 = oθexit) = E(τ0 | Z θ0 = zθenter),

E


τ−1

n=τ∗

g


|π(Oθ

n )|1

m

  Oθ
0 = oθexit


= E


τ0−1
n=0

g


|Z θn |1

m

  Z θ0 = zθenter


.

Thus, we can rewrite the formula for the invariant probability measure µθO as follows:


P m
ℓ+1

g


|π(o)|1

m


dµθO(o) =

E


τ∗

−1
n=0

g


|π(Oθ
n )|1

m

  Oθ
0 = oθexit


E(τ ∗ | Oθ

0 = oθexit)+ E(τ0 | Z θ0 = zθenter)

+

E


τ0−1
n=0

g


|Zθn |1
m

  Z θ0 = zθenter


E(τ ∗ | Oθ

0 = oθexit)+ E(τ0 | Z θ0 = zθenter)
.

The objective of the following sections is to estimate each of the terms appearing in the right
hand side of this formula.

4. Replicating Markov chains

We study now the Markov chains (Zℓn)n≥0 and (Z K+1
n )n≥0. The computations are the same

for both processes, we take θ to be either K + 1 or ℓ and we study the Markov chain (Z θn )n≥0.
We will carry out all of our estimates in the asymptotic regime

ℓ → +∞, m → +∞, q → 0, ℓq → a ∈ ]0,+∞[.

We will say that a property holds asymptotically, if it holds for ℓ,m large enough, q small enough
and ℓq close enough to a.

4.1. Large deviations for the transition matrix

We define the set D ⊂ RK+1 by

D =

r ∈ RK+1

: r0 ≥ 0, . . . , rK ≥ 0 and r0 + · · · + rK ≤ 1

.

For p, t ∈ D, we define the quantity IK (p, t) as follows:

IK (p, t) =

K
k=0

tk ln
tk
pk

+ (1 − |t |1) ln
1 − |t |1
1 − |p|1

.

We make the convention that a ln(a/b) = 0 if a = b = 0. The function IK (p, ·) is the rate
function governing the large deviations of a multinomial distribution with parameters n and
p0, . . . , pK , 1 − |p|1. We have the following estimate for the multinomial coefficients:
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Lemma 4.1. For all n ≥ 1, N < n and i0, . . . , iN ∈ {0, . . . , n} such that s = i0 +· · ·+ iN ≤ n,
we haveln n!

i0! · · · iN !(n − s)!
+

N
k=0

ik ln
ik

n
+ (n − s) ln

n − s

n

 ≤ (N + 2) ln n + 2N + 3.

The proof is similar to that of Lemma 7.1 of [3].
We define a function f : D → D by setting

∀r ∈ D f (r) =
1

(σ − 1)r0 + 1
(σr0, r1, . . . , rK ).

We also define a function Iℓ : D × D × [0, 1]
(K+1)2

× D → [0,+∞] by setting, for r, ξ, t ∈ D
and β ∈ [0, 1]

(K+1)2 ,

Iℓ(r, ξ, β, t) = IK ( f (r), ξ)+

K
k=0

ξk IK


MH (k), ξ

−1
k β(k, ·)


+ (1 − |ξ |1)IK


MH (θ), (1 − |ξ |1)

−1(t0 − |β(·, 0)|1, . . . , tK − |β(·, K )|1)

.

Thanks to the previous identities, for all z, z′, s ∈ D and b ∈ N(K+1)2 , we can express the
logarithm of the transition probability pθ (z, s, b, z′) as follows:

ln pθ (z, s, b, z′) = −m IK


f
 z

m


,

s

m


−

K
k=0

sk IK

MH (k), s−1

k b(k, ·)


− (m − |s|1)IK


MH (θ), (m − |s|1)

−1z′

0 − |b(·, 0)|1, . . . , z′

K − |b(·, K )|1


+Φ(z, s, b, z′) = −m Iℓ


z

m
,

s

m
,

b

m
,

z′

m


+ Φ(z, s, b, z′).

The error term Φ(z, s, b, z′) satisfies, for all m ≥ 1,

∀z, z′, s ∈ D ∀b ∈ N(K+1)2
Φ(z, s, b, z′)

 ≤ C(K )(ln m + 1),

where C(K ) is a constant that depends on K but not on m. In the asymptotic regime, for all
i, j ≥ 0,

MH (i, j) −→ M∞(i, j) =

e−a a j−i

( j − i)!
si i ≤ j,

0 si i > j.

For k ∈ { 0, . . . , K }, we set

M∞(k) =

M∞(k, 0), . . . ,M∞(k, K )


.

For t ∈ D, we call B(t) the subset of [0, 1]
(K+1)2 of the upper triangular matrices β such that the

sum of the columns of β is equal to the vector t , i.e.,

B(t) =

β ∈ [0, 1]

(K+1)2
: βi j = 0 for i > j and |β(·, k)|1 = tk for 0 ≤ k ≤ K


.
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In the asymptotic regime, for r, ξ, t ∈ D and β ∈ [0, 1]
(K+1)2 , we get

Iℓ(r, ξ, β, t) −→


I (r, ξ, β, t) if β ∈ B(t),
+∞ otherwise,

where the function I (r, ξ, β, t) is given by

I (r, ξ, β, t) = IK ( f (r), ξ)+

K
k=0

ξk IK (M∞(k), ξ
−1
k β(k, ·)).

We define a function V1 : D × D → [0,∞] by setting, for r, t ∈ D,

V1(r, t) = inf


I (r, ξ, β, t) : ξ ∈ D, β ∈ B(t)

.

For r ∈ RK+1, we denote by ⌊r⌋ the vector ⌊r⌋ = (⌊r0⌋, . . . , ⌊rK ⌋).

Proposition 4.2. The one step transition probabilities of the Markov chain (Z θn )n≥0 verify the
large deviations principle governed by V1:

• For any subset U of D and for any ρ ∈ D, we have, for n ≥ 0,

− inf


V1(ρ, t) : t ∈ Ů


≤ lim inf
ℓ,m→∞, q→0

ℓq→a

1
m

ln P

Z θn+1 ∈ mU | Z θn = ⌊mρ⌋


.

• For any subsets U,U ′ of D, we have, for n ≥ 0,

lim sup
ℓ,m→∞, q→0

ℓq→a

1
m

ln sup
z∈mU

P

Z θn+1 ∈ mU ′

| Z θn = z


≤ − inf


V1(r, t) : r ∈ U , t ∈ U
′ 
.

Proof. We begin by showing the large deviations upper bound. Let U,U ′ be two subsets of D
and take z ∈ mU . For n ≥ 0,

P

Z θn+1 ∈ mU ′

| Z θn = z


=


z′∈mU ′∩D

pθ (z, z′)

=


z′∈mU ′∩D


s∼z


b∼(s,z′)

pθ (z, s, b, z′).

Thanks to the estimates on pθ , we have, for m ≥ 1,

sup
z∈mU

P

Z θn+1 ∈ mU ′

| Z θn = z


≤ (m + 1)C(K ) max


pθ (z, s, b, z′) : z ∈ mU, s ∼ z, z′
∈ mU ′, b ∼ (s, z′)


≤ (m + 1)C(K ) exp


−m min


Iℓ
 z

m
,

s

m
,

b

m
,

z

m


:

z ∈ mU, z′
∈ mU ′

s ∼ z, b ∼ (s, z′)


,

where C(K ) is a constant depending on K but not on m. For each m ≥ 1, let zm, sm, z′
m ∈ D,

bm ∈ { 0, . . . ,m }
(K+1)2 be four terms that realise the above minimum. We observe next the

expression

lim sup
ℓ,m→∞, q→0

ℓq→a

−Iℓ


zm

m
,

sm

m
,

bm

m
,

z′
m

m


.
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Since D and [0, 1]
(K+1)2 are compact sets, up to the extraction of a subsequence, we can suppose

that when m → ∞,

zm

m
→ ρ ∈ U ,

sm

m
→ ξ ∈ D,

bm

m
→ β ∈ [0, 1]

(K+1)2 ,
z′

m

m
→ t ∈ U

′
.

If β is not an upper triangular matrix, or if, for some j ∈ { 0, . . . , K }, |β(·, j)| ≠ t j , the limit is
−∞. Thus, the only case we need to take care of is when β ∈ B(t). In this case, we have

lim sup
ℓ,m→∞, q→0

ℓq→a

−Iℓ
 zm

m
,

sm

m
,

bm

m
,

zm

m


≤ −I (ρ, ξ, β, t).

Optimising with respect to ρ, ξ, β, t , we obtain the upper bound of the large deviations principle.
We show next the lower bound. Let ξ, t ∈ D and β ∈ B(t). We have

P

Z θn+1 = ⌊mt⌋ | Z θn = ⌊mρ⌋


≥ pθ (⌊mρ⌋, ⌊mξ⌋, ⌊mβ⌋, ⌊mt⌋)

≥ (m + 1)−C(K ) exp


−m Iℓ


⌊mρ⌋

m
,
⌊mξ⌋

m
,
⌊mβ⌋

m
,
⌊mt⌋

m


.

We take the logarithm and we send m, ℓ to ∞ and q to 0. We obtain then

lim inf
ℓ,m→∞, q→0

ℓq→a

1
m

ln P

Z θn+1 = ⌊tm⌋ | Z θn = ⌊ρm⌋


≥ −I (ρ, ξ, β, t).

Moreover, if t ∈ Ů , for m large enough, ⌊tm⌋ belongs to mU . Therefore,

lim inf
ℓ,m→∞, q→0

ℓq→a

1
m

ln P

Z θn+1 ∈ mU | Z θn = ⌊mρ⌋


≥ −I (ρ, ξ, β, t).

We optimise over ξ, β, t and we obtain the large deviations lower bound. �

A similar proof shows that the l-step transition probabilities of (Z θn )n≥0 also satisfy a large
deviations principle. For l ≥ 1, we define a function Vl on D × D as follows:

Vl(r, t) = inf


l−1
k=0

I (ρk, ξk, βk, ρk+1) :

ρ0 = r, ρl = t, ρk, ξk ∈ D, βk ∈ B(t) for 0 ≤ k < l


.

Corollary 4.3. For l ≥ 1, the l-step transition probabilities of (Z θn )n≥0 satisfy the large
deviations principle governed by Vl :

• For any subset U of D and for any ρ ∈ D, we have, for n ≥ 0,

− inf


Vl(ρ, t) : t ∈ Ů


≤ lim inf
ℓ,m→∞, q→0

ℓq→a

1
m

ln P

Z θn+l ∈ mU | Z θn = ⌊ρm⌋


.

• For any subsets U,U ′ of D, we have, for n ≥ 0,

lim sup
ℓ,m→∞, q→0

ℓq→a

1
m

ln sup
z∈mU

P

Z θn+l ∈ mU ′

| Z θn = z


≤ − inf


Vl(r, t) : r ∈ U , t ∈ U
′ 
.
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4.2. Perturbed dynamical system

We look next for the zeros of the rate function I (r, ξ, β, t). We see that I (r, ξ, β, t) = 0 if
and only if ξ = f (r), β ∈ B(t) and β(k, ·)/ξk = M∞(k) for 0 ≤ k ≤ K . We define a function
F = (F0, . . . , FK ) : D → D by setting, for r ∈ D and k ∈ { 0, . . . , K },

Fk(r) =

k
i=0

fi (r)e
−a ak−i

(k − i)!
.

Replacing f by its value in the above formula, we can rewrite, for 0 ≤ k ≤ K ,

Fk(r) =
e−a

(σ − 1)r0 + 1


ak

k!
σr0 +

k
i=1

ak−i

(k − i)!
ri


.

The Markov chain (Z θn )n≥0 can be seen as a perturbation of the dynamical system associated to
the map F :

z0
∈ D, ∀n ≥ 1 zn

= F(zn−1).

Let ρ∗ be the point of D given by:

∀k ∈ { 0, . . . , K } ρ∗

k = (σe−a
− 1)

ak

k!


i≥1

ik

σ i .

Proposition 4.4. We have the following dichotomy:

• if σe−a
≤ 1, the function F has a single fixed point, 0, and (zn)n≥0 converges to 0.

• if σe−a > 1, the function F has two fixed points, 0 and ρ∗. If z0
0 = 0, the sequence (zn)n∈N

converges to 0, whereas if z0
0 > 0, the sequence (zn)n∈N converges to ρ∗.

Proof. For k ∈ { 0, . . . , K }, the function Fk(r) is a function of r0, . . . , rk only; we can
inductively solve the system of equations

Fk(r) = rk, 0 ≤ k ≤ K .

For k = 0, we have

F0(r) =
σe−ar0

(σ − 1)r0 + 1
.

The equation F0(r) = r0 has two solutions: r0 = 0 and r0 = ρ∗

0 . For k in {1, . . . , K }, we have
Fk(r) = rk if and only if

rk =
e−a

(σ − 1)r0 + 1 − e−a


ak

k!
σr0 +

k−1
i=1

ak−i

(k − i)!
ri


.

We end up with a recurrence relation. If the initial condition is r0 = 0, the only solution is rk = 0
for all k ∈ { 0, . . . , K }, whereas if the initial condition is r0 = ρ∗

0 , the only solution is rk = ρ∗

k
for all k ∈ { 0, . . . , K }, this last assertion is shown in Section 2.2 of [4].

It remains to show the convergence. We will show the convergence in the case σe−a > 1, z0
0 >

0. The other cases are dealt with in a similar fashion, or are even simpler. We will prove the



J. Dalmau / Stochastic Processes and their Applications 125 (2015) 272–293 287

convergence by induction on the coordinates. Since the function

F0(r) =
σe−ar0

(σ − 1)r0 + 1

is increasing, concave, and satisfies F0(ρ
∗) = ρ∗

0 , the sequence (zn
0)n≥0 is monotone and

converges to ρ∗

0 . Let k ∈ {1, . . . , K } and let us suppose that the following limit holds:

lim
n→∞

(zn
0, . . . , zn

k−1) = (ρ∗

0 , . . . , ρ
∗

k−1).

Let ε > 0. We define two functions F, F : [0, 1] → [0, 1] by setting, for ρ ∈ [0, 1],

F(ρ) =
e−a

(σ − 1)(ρ∗

0 + ε)+ 1


ak

k!
σ(ρ∗

0 − ε)+

k−1
i=1

ak−i

(k − i)!
(ρ∗

i − ε)+ ρ


,

F(ρ) =
e−a

(σ − 1)(ρ∗

0 − ε)+ 1


ak

k!
σ(ρ∗

0 + ε)+

k−1
i=1

ak−i

(k − i)!
(ρ∗

i + ε)+ ρ


.

By the induction hypothesis, there exists N ∈ N such that for all n ≥ N and i ∈ {0, . . . , k − 1},
|zn

i − ρ∗

i | < ε. We have then, for all n ≥ N and for all ρ ∈ [0, 1],

F(ρ) ≤ Fk(z
n
0, . . . , zn

k−1, ρ) ≤ F(ρ).

We define two sequences, (zn)n≥N and (zn)n≥N , by setting zN
= zN

= zN
k and for n > N

zn
= F(zn−1), zn

= F(zn−1).

Thus, for all n ≥ N , we have zn
≤ zn

k ≤ zn . Since F(ρ) and F(ρ) are affine functions, and
for ε small enough their main coefficient is strictly smaller than 1, the sequences (zn)n≥N and
(zn)n≥N converge to the fixed points of the functions F and F , which are given by:

ρ∗

k
=

e−a

(σ − 1)(ρ∗

0 + ε)+ 1 − e−a


ak

k!
σ(ρ∗

0 − ε)+

k−1
i=1

ak−i

(k − i)!
(ρ∗

i − ε)


,

ρ∗

k =
e−a

(σ − 1)(ρ∗

0 − ε)+ 1 − e−a


ak

k!
σ(ρ∗

0 + ε)+

k−1
i=1

ak−i

(k − i)!
(ρ∗

i + ε)


.

We let ε go to 0 and we see that

lim
n→∞

zn
k =

e−a

(σ − 1)ρ∗

0 + 1 − e−a


ak

k!
σρ∗

0 +

k−1
i=1

ak−i

(k − i)!
ρ∗

i


= ρ∗

k ,

which finishes the inductive step. �

4.3. Comparison with the master sequence

In Section 3, in order to build the bounding occupancy processes, we have fixed an integer
K ≥ 0 and we have kept the relevant information about the dynamics of the occupancy
numbers of the Hamming classes 0, . . . , K . Let us call (Θℓ

n )n≥0 and (Θ1
n )n≥0 the lower and

upper occupancy processes that are obtained for K = 0, and let us call, as before, (Oℓ
n)n≥0 and
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(O K+1
n )n≥0 the lower and upper occupancy processes corresponding to K > 0. Let us define the

following stopping times:

τ(Θℓ) = inf{n ≥ 0 : Θℓ
n ∈ N }, τ (O K+1) = inf{n ≥ 0 : O K+1

n ∈ N }.

We have constructed the processes (Θℓ
n )n≥0, (Θ1

n )n≥0, (Oℓ
n)n≥0, (O K+1

n )n≥0 in such a way that
they are all coupled and the following relations hold: if the four processes start from the same
occupancy distribution o ∈ W ∗, then

∀n ∈ {0, . . . , τ (Θℓ)} Θℓ
n ≼ Oℓ

n ≼ O K+1
n ≼ Θ1

n ,

∀n ∈ {0, . . . , τ (O K+1)} O K+1
n ≼ Θ1

n .

These inequalities are naturally inherited by the Markov chains derived from the occupancy
processes; let (Zℓn)n≥0 and (Z K+1

n )n≥0 be the Markov chains associated to the processes (Oℓ
n)n≥0

and (O K+1
n )n≥0, as in the end of Section 3.2. Likewise, let (Y ℓn )n≥0 and (Y 1

n )n≥0 be the Markov
chains associated to the processes (Θℓ

n )n≥0 and (Θ1
n )n≥0. The state space of the Markov chains

(Zℓn)n≥0, (Z K+1
n )n≥0 is the set D defined in Section 3.2, whereas the state space for the Markov

chains (Y ℓn )n≥0, (Y 1
n )n≥0 is { 0, . . . ,m }. Let us define the following stopping times:

τ(Y ℓ) = inf{n ≥ 0 : Y ℓn = 0}, τ (Z K+1) = inf{n ≥ 0 : Z K+1
n (0) = 0}.

Let z ∈ D be such that z0 ≥ 1, let the Markov chains (Zℓn)n≥0, (Z K+1
n )n≥0 start from z, and

let z0 be the starting point of the Markov chains (Y ℓn )n≥0, (Y 1
n )n≥0. The inequalities between the

occupancy processes translate to the associated Markov chains as follows:

∀n ∈ {0, . . . , τ (Y ℓ)} Y ℓn ≤ Zℓn(0) ≤ Z K+1
n (0) ≤ Y 1

n ,

∀n ∈ {0, . . . , τ (Z K+1)} Z K+1
n (0) ≤ Y 1

n .

The occupancy processes (Θℓ
n )n≥0, (Θ1

n )n≥0, along with the associated Markov chains (Y ℓn )n≥0,

(Y 1
n )n≥0, have been studied in detail in [3]. Thanks to the relations just stated, we will be able

to make use of many of the estimates derived in [3]. Let θ be K + 1 or ℓ and let us call V the
cost function associated to the Markov chain (Y θn )n≥0. We will make use of the following results
from [3]:

Let us define a function F : [0, 1] → [0, 1] as follows:

∀r ∈ [0, 1] F(r) = e−a σr

(σ − 1)r + 1
.

Lemma 4.5. Suppose that σe−a > 1. For s, t ∈ [0, 1], we have V (s, t) = 0 if and only if
• either s = t = 0,
• or there exists l ≥ 1 such that t = F l(s),
• or s ≠ 0, t = ρ∗.

Let τ(Y θ ) be the first time that the Markov chain (Y θn )n≥0 becomes null:

τ(Y θ ) = inf{n ≥ 0 : Y θn = 0}.

Proposition 4.6. Let a ∈ ]0,+∞[ and let i ∈ { 1, . . . ,m }. The expected value of τ(Y θ ) starting
from i satisfies

lim
ℓ,m→∞, q→0

ℓq→a

1
m

ln E(τ (Y θ ) | Y θ0 = i) = V (ρ∗

0 , 0).
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4.4. Concentration near ρ∗

We show next that, when σe−a > 1, asymptotically, the Markov chain (Z θn )n≥0 concentrates
in a neighbourhood of ρ∗. Let us loosely describe the strategy we will follow. The Markov chain
(Z θn )n≥0 is a perturbation of the dynamical system associated to the map F . The map F has two
fixed points: 0 and ρ∗. The fixed point 0 is unstable, while ρ∗ is a stable fixed point. The proof
relies mainly on two different kinds of estimates. We estimate first the typical time the process
(Z θn )n≥0 needs to leave a neighbourhood of the region {z ∈ D : z0 = 0}; since the instability at
0 concerns principally the dynamics of the master sequence, we will be able to make use of the
estimates developed in [3] by means of the inequalities stated in Section 4.3. We estimate then
the time the process (Z θn )n≥0 spends outside a neighbourhood of the region {z ∈ D : z0 = 0}

and ρ∗. Since (Z θn )n≥0 tends to follow the discrete trajectories given by the dynamical system
associated to F , it cannot stay a long time outside such a neighbourhood. This fact will be proved
with the help of the large deviations principle stated in the previous section. This estimate will
help us to bound the number of excursions outside a neighbourhood of ρ∗, as well as the length
of these excursions. We formalise these ideas in the rest of the section. In order to simplify the
notation, from now on we omit the superscript θ and we denote by Pz and Ez the probabilities
and expectations for the Markov chain (Zn)n≥0 starting from z ∈ D.

Let us define

Dδ =

r ∈ D : 0 < r0 < δ


.

Lemma 4.7. For all δ > 0, there exists c > 0, depending on δ, such that, asymptotically, for all
z ∈ D such that z0 ≥ 1, we have

Pz

Z1(0) > 0, . . . , Z⌊c ln m⌋−1(0) > 0, Z⌊c ln m⌋ ∈ m(D \ Dδ)


≥

1

mc ln m
.

Proof. Let (Y ℓn )n≥0 be the Markov chain defined in Section 4.3. By the remarks in Section 4.3
we can see that

Pz

Z1(0) > 0, . . . , Z⌊c ln m⌋−1(0) > 0, Z⌊c ln m⌋ ∈ m(D \ Dδ)


≥ Pz


Z1(0) > 0, . . . , Z⌊c ln m⌋−1(0) > 0, Z⌊c ln m⌋ ∈ m(D \ Dδ), τ (Y

ℓ) > ⌊c ln m⌋


≥ P1

Y ℓ1 > 0, . . . , Y ℓ

⌊c ln m⌋−1 > 0, Y ℓ
⌊c ln m⌋

> m(ρ∗

0 − δ)

.

As shown in Lemma 7.8 of [3], this last probability is bounded from below by 1/mc ln m , which
gives the desired result. �

We estimate next the length of a typical excursion of (Zn)n≥0 outside a neighbourhood of
{z ∈ D : z0 = 0} and mρ∗. For ρ ∈ D and δ > 0, we define the δ-neighbourhood of ρ
by

U (ρ, δ) =

r ∈ D : |r − ρ| < δ


.

Lemma 4.8. For all δ > 0, there exist h ≥ 1 and c > 0, depending on δ, such that, asymptoti-
cally, for all r ∈ D such that r0 ≥ δ, we have

P⌊mr⌋


Z1(0) > 0, . . . , Zh−1(0) > 0, Zh ∈ mU (ρ∗, δ)


≥ 1 − exp(−cm).
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Proof. Let δ > 0 and let us define the set

K = {r ∈ D : r0 ≥ δ}.

For each r ∈ K there exists an integer hr ≥ 0 such that Fhr (r) ∈ U (ρ∗, δ/4). By continuity of
the map F , for each r ∈ K there exist also positive numbers δr

0, . . . , δ
r
hr

such that δr
0, . . . , δ

r
hr
<

δ/2 and

∀k ∈ {0, . . . , hr } F

U (Fk−1(r), δr

k−1)


⊂ U (Fk(r), δr
k/2).

The family {U (r, δr
0) : r ∈ K} is an open cover of the set K; since K is a compact set, we can

extract a finite subcover, i.e., there exist N ∈ N and r1, . . . , rN ∈ K such that

K ⊂ U0 =

N
n=1

U (rn, δ
rn
0 ).

Let us set h = max{hri : 1 ≤ i ≤ N }, For n ∈ {1, . . . , N } we take δrn
hrn +1, . . . , δ

rn
h to be positive

numbers such that, as before,

∀k ∈ {hrn + 1, . . . , h} F

U (Fk−1(rn), δ

rn
k−1)


⊂ U (Fk(rn), δ

rn
k /2).

Let us define

∀k ∈ {1, . . . , h − 1} Uk =

N
n=1

U (Fk(rn), δ
rn
k ).

We have then, for any r ∈ K,

P⌊mr⌋


Z1(0) > 0, . . . , Zh−1(0) > 0, Zh ∈ mU (ρ∗, δ)


≥ P⌊mr⌋


∀k ∈ {1, . . . , h} Zk ∈ mUk


.

The rest of the proof is carried out as for Lemma 7.10 in [3]. �

Corollary 4.9. Let δ > 0. There exist h ≥ 1, c ≥ 0, depending on δ, such that, asymptotically,
for all r ∈ D \ (Dδ ∪ U (ρ∗, δ)) and for all n ≥ 0, we have

P⌊mr⌋


Z t ∈ D \ (Dδ ∪ U (ρ∗, δ)) for 0 ≤ t ≤ n


≤ exp


−cm

n

h


.

The proof is carried out by dividing the interval {0, . . . , n} in subintervals of length h and using
the estimate of Lemma 4.8 on each of the subintervals. We will not write the details, which can
be found in the proof of Corollary 7.11 of [3].

Proposition 4.10. Let g : [0, 1] → [0, 1] be an increasing and continuous function, such that
g(0) = 0. For all z0

∈ D such that z0
0 ≥ 1, we have

lim
ℓ,m→∞, q→0

ℓq→a

E


τ0−1
n=0

g


|Zn |1

m

  Z0 = z0


E(τ0 | Z0 = z0)
= g(|ρ∗

|1).
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Proof. The proof is an adaptation of the proof of Theorem 7.12 in [3] to the case of K + 1
dimensions. Thus, we will only outline the proof, and refer the reader to [3] for the details. Let
ε > 0 and let δ > 0 be small enough so that such that

∀ρ ∈ U (ρ∗, 2δ)
g(|ρ|1)− g(|ρ∗

|1)
 < ε.

We define next a sequence of stopping times in order to control the excursions of the Markov
chain (Zn)n≥0 outside U (ρ∗, δ). We take T0 = 0 and

T ∗

1 = inf


n ≥ 0 :
Zn

m
∈ U (ρ∗, δ)


T1 = inf


n ≥ T ∗

1 :
Zn

m
∉ U (ρ∗, 2δ)


...

...

T ∗

k = inf


n ≥ Tk−1 :
Zn

m
∈ U (ρ∗, δ)


Tk = inf


n ≥ T ∗

k :
Zn

m
∉ U (ρ∗, 2δ)


...

....

Let us also define, for n ≥ 0,

K (n) = max

k ≥ 1 : Tk−1 < n


.

We can proceed as in [3] and break the sum up to time τ0 according to the sequence of stopping
times we just defined, thus reducing the problem to showing

K (τ0)
k=1

(T ∗

k ∧ τ0 − Tk−1) −→ 0.

We introduce the same threshold tηm as in [3]: in order to get rid of the τ0 in the above expression:

K (τ0)
k=1

(T ∗

k ∧ τ0 − Tk−1) ≤ 1τ0>tηm τ0 + 1τ0≤tηm

K (τ0)
k=1

(T ∗

k ∧ τ0 − Tk−1).

Thanks to the estimates developed in Section 7.3 of [3], we know that, uniformly on the starting
point of the Markov chain,

lim
m→∞

E(1τ0>tηm τ0) = 0.

Proceeding as in Lemma 7.14 of [3], we can obtain the following bound on K :

Lemma 4.11. There exists c > 0, depending on δ, such that, asymptotically,

∀k, n ≥ 0 P(K (n) > k) ≤
nk

k!
exp(−cmk).

We estimate the term

E


1τ0≤tηm

K (τ0)
k=1

(T ∗

k ∧ τ0 − Tk−1)


as in [3]: we use the Cauchy–Schwarz inequality along with the Markov property to obtain the
bound

E


1τ0≤tηm

N (τ0)
k=1

(T ∗

k ∧ τ0 − Tk−1)


≤


z∈D: z0≥1

Ez

(T ∗

1 ∧ τ0)
2P


ZTk−1 = z


.
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The following lemma will help to bound the random time T ∗

1 ∧ τ0.

Lemma 4.12. For all δ > 0, there exist h ≥ 1, c > 0, depending on δ, such that, asymptotically,
for z ∈ D such that z0 ≥ 1,

Pz

Z⌊c ln m⌋+h ∈ mU (ρ∗, δ)


≥

1

2mc ln m
.

The proof consists on applying Lemmas 4.7 and 4.8 to obtain the desired bound, in a similar way
as for Lemma 7.15 of [3].

Corollary 4.13. For all δ > 0, there exist h ≥ 1, c > 0, depending on δ, such that, asymptoti-
cally, for all z ∈ D such that z0 ≥ 1,

∀n ≥ 0 Pz

T ∗

1 ∧ τ0 ≥ n(⌊c ln m⌋ + h)


≤


1 −

1

2mc ln m

n

.

The rest of the proof follows closely the argument in the end of Section 7.3 of [3]. Using
Corollary 4.13 we obtain the bound

E

(T ∗

1 ∧ τ0)
2

≤ m3c ln m,

which combined with Lemma 4.11 gives

E


1τ0≤tηm

N (τ0)
k=0


T ∗

k ∧ τ0 − Tk−1


≤ m3c ln m


tηm exp(−cm/3)+


k≥0

exp
k

2
− cm

k

3


.

We choose η such that 0 < η < c/3. From the definition of tηm and the preceding inequality, we
see that

lim sup
ℓ,m→∞, q→0

ℓq→a

1
m

ln E


1τ0≤tηm

N (τ0)
k=1


T ∗

k ∧ τ0 − Tk−1


≤ V (ρ∗

0 , 0)+ η −
c

3
< V (ρ∗

0 , 0).

These estimates, along with the result of Proposition 4.6, imply thatE
τ0−1

n=0

g


|Zn|1

m


− g(|ρ∗

|1)E(τ0)

 ≤ 3εE(τ0),

which concludes the proof of Proposition 4.10. �

5. Synthesis

The first statement of Theorem 2.1 is proved in [3] for the case of the master sequence,
K = 0. The proof for the case K ≥ 1 does not involve any new arguments or ideas for a better
understanding of the model; it is a straightforward generalisation of the proof for the case K = 0.
Thus we deal only with the second statement of Theorem 2.1. Let us suppose that αψ(a) > ln κ .
As shown in [3], the following estimates hold: ∀a ∈ ]0,+∞[, ∀α ∈ [0,+∞],

lim
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

1
m

ln E(τ0 | Z θ0 = zθenter) = V (ρ∗, 0),

lim sup
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

1
ℓ

ln E(τ ∗
| Oθ

0 = oθexit) ≤ ln κ.
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Thus, since we are studying the case αψ(a) > ln κ ,

lim
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

E(τ0 | Z θ0 = zθenter)

E(τ ∗ | Oθ
0 = oθexit)

= +∞.

On one hand, g being a bounded function, the above identity readily implies that

lim
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

E


τ∗

−1
n=0

g


|π(Oθ

n )|1
m

  Oθ
0 = oθexit


E(τ ∗ | Oθ

0 = oθexit)+ E(τ0 | Z θ0 = zθenter)
= 0.

On the other hand, using Proposition 4.10, we see that

lim
ℓ,m→∞, q→0
ℓq→a, m

ℓ
→α

E


τ0−1
n=0

g


|Zθn |1

m

  Z θ0 = zθenter


E(τ ∗ | Oθ

0 = oθexit)+ E(τ0 | Z θ0 = zθenter)
= g(ρ∗

0 + · · · + ρ∗

K ).

Reporting back in the formula at the very end of Section 3.3, we conclude the proof of
Theorem 2.1.
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